PYTHAGORAS WORKSHEET

4) Find the perimeter of the following triangles;

5) The triangle DEF is shown below. Find the length of EF to 1 decimal place.

- 6) To wash a window that is 8 metres off the ground, Ben leans a 10 metre ladder against the side of the building. To reach the window, how far from the building should Ben place the base of the ladder?
- 7) A rectangular swimming pool is 21 metres wide and 50 metres long.Calculate the length of the diagonal to 1 decimal place.
- 8) Miss Barker is teaching a 5th grade class. She is standing 12 feet in front of Jim. Francisco is sitting 5 feet to Jim's right. How far apart are Miss Barker and Francisco?
- 9) A triangle has sides with lengths of 10 metres, 16 metres and 20 metres. Is it a right angled triangle? Explain your reasoning.
- 10) a) One side of a right angled triangle is 10cm. The other two are both of length x. Calculate x to 2 decimal places.
 - b) Find the perimeter of the triangle in part a)
- 11) Find the length of the diagonal of a square of side 4cm to 2 decimal places.

12) The diagram below shows a shaded parallelogram drawn inside a rectangle. Using Pythagoras, find the hypotenuse of triangle A and the hypotenuse of triangle B to 1 decimal place.

13) Here is a trapezium, use Pythagoras' Theorem to find the value of k to 1 decimal place.

14) The following triangle is NOT a right angled triangle and so you cannot apply Pythagoras' theorem directly. Find the length of x to 2 d.p.

Answers:

1)	a = 17cm	b = 10cm	c = 15cm	d = 20cm		
2)	a =8cm	b =3cm	c =16cm	d =5cm		
3)	a =9.6cm	b =15cm	c =8cm	d =3.1cm	e =12cm	f =12cm
4)	a =48cm	b =24cm	c =30cm	d =40cm		
5)	EF = 16.8cm					
6)	6 metres					
7)	54.2 metres					
8)	13 ft					
9)	No. Using Pythagoras, $a^2 + b^2 \neq c^2$ (a squared + b squared does not equal hypotenuse squared)					
10)	a) x = 7.07cm b) perimeter = 24.14 cm					
11)	5.65 cm					
12)	A = 5.8cm B = 5.8cm					
13)	k = 20.8cm					

14) x= 61.03 cm