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Preface

w e wrote this textbook to make possible the teaching of game theory to 
first- or second-year college students at an introductory or “principles” 
level without requiring any prior knowledge of the fields where game 
theory is used—economics, political science, evolutionary biology, and 

so forth—and requiring only minimal high school mathematics. Our aim has 
succeeded beyond our expectations. Many such courses now exist where none 
did 20 years ago; indeed, some of these courses have been inspired by our text-
book. An even better sign of success is that competitors and imitators are ap-
pearing on the market.

However, success does not justify complacency. We have continued to im-
prove the material in each new edition in response to feedback from teachers 
and students in these courses and from our own experiences of using the book.  

For the fourth edition, the main new innovation concerns mixed strategies. 
In the third edition, we treated this in two chapters on the basis of a distinction 
between simple and complex topics. Simple topics included the solution and 
interpretation of mixed-strategy equilibria in two-by-two games; the main com-
plex topic was the general theory of mixing in games with more than two pure 
strategies, when some of them may go unused in equilibrium. But we found 
that few teachers used the second of these two chapters. We have now chosen to 
gather the simple topics and some basic concepts from the more complex top-
ics into just one chapter on mixed strategies (Chapter 7). Some of the omitted 
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material will be available as online appendices for those readers who want to 
know more about the advanced topics.

We have improved and simplified our treatment of information in games 
(Chapter 8). We give an expanded exposition and example of cheap talk that 
clarifies the relationship between the alignment of interest and the possibility of 
truthful communication. We have moved the treatment of examples of signaling 
and screening to an earlier section of the chapter than that of the third edition, 
better to impress upon students the importance of this topic and prepare the 
ground for the more formal theory to follow. 

The games in some applications in later chapters were sufficiently simple 
that they could be discussed without drawing an explicit game tree or showing a 
payoff table. But that weakened the connection between earlier methodological 
chapters and the applications. We have now shown more of the tools of reason-
ing about the applications explicitly.

We have continued and improved the collection of exercises. As in the third 
edition, the exercises in each chapter are split into two sets—solved and un-
solved. In most cases, these sets run in parallel: for each solved exercise, there 
is a corresponding unsolved one that presents variation and gives students fur-
ther practice. The solutions to the solved set for each chapter are available to 
all readers at wwnorton.com/studyspace/disciplines/economics.asp. The solu-
tions to the unsolved set for each chapter will be reserved for instructors who 
have adopted the textbook. Instructors should contact the publisher about get-
ting access to the instructors’ Web site. In each of the solved and unsolved sets, 
there are two kinds of exercises. Some provide repetition and drill in the tech-
niques developed in the chapter. In others—and in our view those with the most 
educational value—we take the student step by step through the process of con-
struction of a game-theoretic model to analyze an issue or problem. Such expe-
rience, gained in some solved exercises and repeated in corresponding unsolved 
ones, will best develop the students’ skills in strategic thinking.

Most other chapters were updated, improved, reorganized, and stream-
lined. The biggest changes occur in the chapters on the prisoners’ dilemma 
(Chapter 10), collective action (Chapter 11), evolutionary games (Chapter 12),  
and voting (Chapter 15). We omitted the final chapter of the third edition  
(Markets and Competition) because in our experience almost no one used it. 
Teachers who want it can find it in the third edition. 

We thank numerous readers of previous editions who provided comments 
and suggestions; they are thanked by name in the prefaces of those editions. 
The substance and writing in the book have been improved by the percep-
tive and constructive pieces of advice offered by faculty who have used the  
text in their courses and others who have read all or parts of the book in other 
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contexts. For the fourth edition, we have also had the added benefit of exten-
sive comments from Christopher Maxwell (Boston College), Alex Brown (Texas 
A&M University), Jonathan Woon (University of Pittsburgh), Klaus Becker  
(Texas Tech University), Huanxing Yang (Ohio State University), Matthew Roelofs 
(Western Washington University), and Debashis Pal (University of Cincinnati).  
Thank you all.

Avinash Dixit
Susan Skeath
David Reiley
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11
■

Basic Ideas and Examples

A ll introductory textbooks  begin by attempting to convince the stu-
dent readers that the subject is of great importance in the world and 
therefore merits their attention. The physical sciences and engineering 
claim to be the basis of modern technology and therefore of modern life; 

the social sciences discuss big issues of governance—for example, democracy 
and taxation; the humanities claim that they revive your soul after it has been 
deadened by exposure to the physical and social sciences and to engineering. 
Where does the subject games of strategy, often called game theory, fit into this 
picture, and why should you study it?

We offer a practical motivation that is much more individual and probably 
closer to your personal concerns than most other subjects. You play games of 
strategy all the time: with your parents, siblings, friends, and enemies, and even 
with your professors. You have probably acquired a lot of instinctive expertise 
in playing such games, and we hope you will be able to connect what you have 
already learned to the discussion that follows. We will build on your experience, 
systematize it, and develop it to the point where you will be able to improve 
your strategic skills and use them more methodically. Opportunities for such 
uses will appear throughout your life; you will go on playing such games with 
your employers, employees, spouses, children, and even strangers.

Not that the subject lacks wider importance. Similar games are played in 
business, politics, diplomacy, and wars—in fact, whenever people interact to 
strike mutually agreeable deals or to resolve conflicts. Being able to recognize 
such games will enrich your understanding of the world around you and will 
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make you a better participant in all its affairs. Understanding games of strategy 
will also have a more immediate payoff in your study of many other subjects. 
Economics and business courses already use a great deal of game-theoretic 
thinking. Political science, psychology, and philosophy are also using game the-
ory to study interactions, as is biology, which has been importantly influenced 
by the concepts of evolutionary games and has in turn exported these ideas to 
economics. Psychology and philosophy also interact with the study of games of 
strategy. Game theory provides concepts and techniques of analysis for many 
disciplines, one might say all disciplines except those dealing with completely 
inanimate objects.

1 WHAT IS A GAME OF STRATEGY?

The word game may convey an impression that the subject is frivolous or unim-
portant in the larger scheme of things—that it deals with trivial pursuits such as 
gambling and sports when the world is full of weightier matters such as war and 
business and your education, career, and relationships. Actually, games of strat-
egy are not “just a game”; all of these weighty matters are instances of games, 
and game theory helps us understand them all. But it will not hurt to start with 
game theory as applied to gambling or sports.

Most games include chance, skill, and strategy in varying proportions. Play-
ing double or nothing on the toss of a coin is a game of pure chance, unless you 
have exceptional skill in doctoring or tossing coins. A hundred-yard dash is a 
game of pure skill, although some chance elements can creep in; for example, a 
runner may simply have a slightly off day for no clear reason.

Strategy is a skill of a different kind. In the context of sports, it is a part of 
the mental skill needed to play well; it is the calculation of how best to use your 
physical skill. For example, in tennis, you develop physical skill by practicing 
your serves (first serves hard and flat, second serves with spin or kick) and pass-
ing shots (hard, low, and accurate). The strategic skill is knowing where to put 
your serve (wide, or on the T) or passing shot (crosscourt, or down the line). In 
football, you develop such physical skills as blocking and tackling, running and 
catching, and throwing. Then the coach, knowing the physical skills of his own 
team and those of the opposing team, calls the plays that best exploit his team’s 
skills and the other team’s weaknesses. The coach’s calculation constitutes the 
strategy. The physical game of football is played on the gridiron by jocks; the 
strategic game is played in the offices and on the sidelines by coaches and by 
nerdy assistants.

A hundred-yard dash is a matter of exercising your physical skill as best  
you can; it offers no opportunities to observe and react to what other runners in 
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the race are doing and therefore no scope for strategy. Longer races do entail 
strategy—whether you should lead to set the pace, how soon before the finish 
you should try to break away, and so on.

Strategic thinking is essentially about your interactions with others, as they 
do similar thinking at the same time and about the same situation. Your oppo-
nents in a marathon may try to frustrate or facilitate your attempts to lead, given 
what they think best suits their interests. Your opponent in tennis tries to guess 
where you will put your serve or passing shot; the opposing coach in football 
calls the play that will best counter what he thinks you will call. Of course, just 
as you must take into account what the other player is thinking, he is taking into 
account what you are thinking. Game theory is the analysis, or science, if you 
like, of such interactive decision making.

When you think carefully before you act—when you are aware of your ob-
jectives or preferences and of any limitations or constraints on your actions and 
choose your actions in a calculated way to do the best according to your own 
criteria—you are said to be behaving rationally. Game theory adds another di-
mension to rational behavior—namely, interaction with other equally rational 
decision makers. In other words, game theory is the science of rational behavior 
in interactive situations.

We do not claim that game theory will teach you the secrets of perfect play or 
ensure that you will never lose. For one thing, your opponent can read the same 
book, and both of you cannot win all the time. More importantly, many games 
are complex and subtle, and most actual situations include enough idiosyncratic 
or chance elements that game theory cannot hope to offer surefire recipes for ac-
tion. What it does is provide some general principles for thinking about strategic 
interactions. You have to supplement these ideas and some methods of calcula-
tion with many details specific to your situation before you can devise a success-
ful strategy for it. Good strategists mix the science of game theory with their own 
experience; one might say that game playing is as much art as science. We will 
develop the general ideas of the science but will also point out its limitations and 
tell you when the art is more important.

You may think that you have already acquired the art from your experience 
or instinct, but you will find the study of the science useful nonetheless. The sci-
ence systematizes many general principles that are common to several contexts 
or applications. Without general principles, you would have to figure out from 
scratch each new situation that requires strategic thinking. That would be espe-
cially difficult to do in new areas of application—for example, if you learned your 
art by playing games against parents and siblings and must now practice strategy 
against business competitors. The general principles of game theory provide you 
with a ready reference point. With this foundation in place, you can proceed much 
more quickly and confidently to acquire and add the situation-specific features or 
elements of the art to your thinking and action.

w h at  i s  a  g a m e  o f  s t r at e g y ?   5
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2 SOME EXAMPLES AND STORIES OF STRATEGIC GAMES

With the aims announced in Section 1, we will begin by offering you some sim-
ple examples, many of them taken from situations that you have probably en-
countered in your own lives, where strategy is of the essence. In each case we 
will point out the crucial strategic principle. Each of these principles will be 
discussed more fully in a later chapter, and after each example we will tell you 
where the details can be found. But don’t jump to them right away; for a while, 
just read all the examples to get a preliminary idea of the whole scope of strategy 
and of strategic games.

A. Which Passing Shot?

Tennis at its best consists of memorable duels between top players: John McEn-
roe versus Ivan Lendl, Pete Sampras versus Andre Agassi, and Martina Navra-
tilova versus Chris Evert. Picture the 1983 U.S. Open final between Evert and 
Navratilova.1 Navratilova at the net has just volleyed to Evert on the baseline. 
Evert is about to hit a passing shot. Should she go down the line or crosscourt? 
And should Navratilova expect a down-the-line shot and lean slightly that way 
or expect a crosscourt shot and lean the other way?

Conventional wisdom favors the down-the-line shot. The ball has a shorter 
distance to travel to the net, so the other player has less time to react. But this 
does not mean that Evert should use that shot all of the time. If she did, Navrati-
lova would confidently come to expect it and prepare for it, and the shot would 
not be so successful. To improve the success of the down-the-line passing shot, 
Evert has to use the crosscourt shot often enough to keep Navratilova guessing 
on any single instance.

Similarly in football, with a yard to go on third down, a run up the middle 
is the percentage play—that is, the one used most often—but the offense must 
throw a pass occasionally in such situations “to keep the defense honest.”

Thus, the most important general principle of such situations is not what 
Evert should do but what she should not do: she should not do the same thing all 
the time or systematically. If she did, then Navratilova would learn to cover that, 
and Evert’s chances of success would fall.

Not doing any one thing systematically means more than not playing the 
same shot in every situation of this kind. Evert should not even mechanically 
switch back and forth between the two shots. Navratilova would spot and exploit 

1 Chris Evert won her first title at the U.S. Open in 1975. Navratilova claimed her first title in the 
1983 final.
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this pattern or indeed any other detectable system. Evert must make the choice 
on each particular occasion at random to prevent this guessing.

This general idea of “mixing one’s plays” is well known, even to sports com-
mentators on television. But there is more to the idea, and these further aspects 
require analysis in greater depth. Why is down-the-line the percentage shot? 
Should one play it 80% of the time or 90% or 99%? Does it make any difference if 
the occasion is particularly big; for example, does one throw that pass on third 
down in the regular season but not in the Super Bowl? In actual practice, just 
how does one mix one’s plays? What happens when a third possibility (the lob) is 
introduced? We will examine and answer such questions in Chapter 7.

The movie The Princess Bride (1987) illustrates the same idea in the “battle of 
wits” between the hero (Westley) and a villain (Vizzini). Westley is to poison one 
of two wineglasses out of Vizzini’s sight, and Vizzini is to decide who will drink 
from which glass. Vizzini goes through a number of convoluted arguments as to 
why Westley should poison one glass. But all of the arguments are innately con-
tradictory, because Westley can anticipate Vizzini’s logic and choose to put the 
poison in the other glass. Conversely, if Westley uses any specific logic or system 
to choose one glass, Vizzini can anticipate that and drink from the other glass, 
leaving Westley to drink from the poisoned one. Thus, Westley’s strategy has to 
be random or unsystematic.

The scene illustrates something else as well. In the film, Vizzini loses the 
game and with it his life. But it turns out that Westley had poisoned both glasses; 
over the last several years, he had built up immunity to the poison. So Vizzini 
was actually playing the game under a fatal information disadvantage. Players 
can sometimes cope with such asymmetries of information; Chapters 8 and 13 
examine when and how they can do so.

B. The GPA Rat Race

You are enrolled in a course that is graded on a curve. No matter how well you 
do in absolute terms, only 40% of the students will get As, and only 40% will get 
Bs. Therefore, you must work hard, not just in absolute terms, but relative to 
how hard your classmates (actually, “class enemies” seems a more fitting term 
in this context) work. All of you recognize this, and after the first lecture you 
hold an impromptu meeting in which all students agree not to work too hard. 
As weeks pass by, the temptation to get an edge on the rest of the class by work-
ing just that little bit harder becomes overwhelming. After all, the others are not 
able to observe your work in any detail; nor do they have any real hold over you. 
And the benefits of an improvement in your grade point average are substantial. 
So you hit the library more often and stay up a little longer.

The trouble is, everyone else is doing the same. Therefore, your grade is 
no better than it would have been if you and everyone else had abided by the 
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agreement. The only difference is that all of you have spent more time working 
than you would have liked.

This is an example of the prisoners’ dilemma.2 In the original story, two sus-
pects are being separately interrogated and invited to confess. One of them, say 
A, is told, “If the other suspect, B, does not confess, then you can cut a very good 
deal for yourself by confessing. But if B does confess, then you would do well to 
confess, too; otherwise the court will be especially tough on you. So you should 
confess no matter what the other does.” B is told to confess, with the use of simi-
lar reasoning. Faced with this choice, both A and B confess. But it would have 
been better for both if neither had confessed, because the police had no really 
compelling evidence against them.

Your situation is similar. If the others slack off, then you can get a much bet-
ter grade by working hard; if the others work hard, then you had better do the 
same or else you will get a very bad grade. You may even think that the label 
“prisoner” is very fitting for a group of students trapped in a required course.

Professors and schools have their own prisoners’ dilemmas. Each professor 
can make his course look good or attractive by grading it slightly more liberally, 
and each school can place its students in better jobs or attract better applicants 
by grading all of its courses a little more liberally. Of course, when all do this, 
none has any advantage over the others; the only result is rampant grade infla-
tion, which compresses the spectrum of grades and therefore makes it difficult 
to distinguish abilities.

People often think that in every game there must be a winner and a loser. 
The prisoners’ dilemma is different—both or all players can come out losers. 
People play (and lose) such games every day, and the losses can range from 
minor inconveniences to potential disasters. Spectators at a sports event stand 
up to get a better view but, when all stand, no one has a better view than when 
they were all sitting. Superpowers acquire more weapons to get an edge over 
their  rivals but, when both do so, the balance of power is unchanged; all that has 
happened is that both have spent economic resources that they could have used 
for better purposes, and the risk of accidental war has escalated. The magnitude 
of the potential cost of such games to all players makes it important to under-
stand the ways in which mutually beneficial cooperation can be achieved and 
sustained. All of Chapter 10 deals with the study of this game.

Just as the prisoners’ dilemma is potentially a lose-lose game, there are win-
win games, too. International trade is an example; when each country produces 
more of what it can do relatively best, all share in the fruits of this international 
division of labor. But successful bargaining about the division of the pie is 

2 There is some disagreement regarding the appropriate grammatical placement of the apostrophe 
in the term prisoners’ dilemma. Our placement acknowledges the facts that there must be at least 
two prisoners in order for there to be any dilemma at all and that the (at least two) prisoners there-
fore jointly possess the dilemma.
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needed if the full potential of trade is to be realized. The same applies to many 
other bargaining situations. We will study these in Chapter 17.

C. “We Can’t Take the Exam Because We Had a Flat Tire”

Here is a story, probably apocryphal, that circulates on the undergraduate  
e-mail networks; each of us has independently received it from our students:

There were two friends taking chemistry at Duke. Both had done pretty well 
on all of the quizzes, the labs, and the midterm, so that going into the final 
they each had a solid A. They were so confident the weekend before the final 
that they decided to go to a party at the University of Virginia. The party was 
so good that they overslept all day Sunday, and got back too late to study for 
the chemistry final that was scheduled for Monday morning. Rather than 
take the final unprepared, they went to the professor with a sob story. They 
said they each had gone up to UVA and had planned to come back in good 
time to study for the final but had a flat tire on the way back. Because they 
 didn’t have a spare, they had spent most of the night looking for help. Now 
they were really too tired, so could they please have a makeup final the next 
day? The professor thought it over and agreed.

The two studied all of Monday evening and came well prepared on Tues-
day morning. The professor placed them in separate rooms and handed the 
test to each. The first question on the first page, worth 10 points, was very 
easy. Each of them wrote a good answer, and greatly relieved, turned the 
page. It had just one question, worth 90 points. It was: “Which tire?”

The story has two important strategic lessons for future partygoers. The first 
is to recognize that the professor may be an intelligent game player. He may 
suspect some trickery on the part of the students and may use some device to 
catch them. Given their excuse, the question was the likeliest such device. They 
should have foreseen it and prepared their answer in advance. This idea that one 
should look ahead to future moves in the game and then reason backward to 
calculate one’s best current action is a very general principle of strategy, which 
we will elaborate on in Chapter 3. We will also use it, most notably, in Chapter 9.

But it may not be possible to foresee all such professorial countertricks; after 
all, professors have much more experience seeing through students’ excuses 
than students have making up such excuses. If the two students in the story are 
unprepared, can they independently produce a mutually consistent lie? If each 
picks a tire at random, the chances are only 25% that the two will pick the same 
one. (Why?) Can they do better?

You may think that the front tire on the passenger side is the one most 
likely to suffer a flat, because a nail or a shard of glass is more likely to lie closer 
to that side of the road than to the middle, and the front tire on that side will  
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encounter the nail or glass first. You may think this is good logic, but that is not 
enough to make it a good choice. What matters is not the logic of the choice but 
making the same choice as your friend does. Therefore, you have to think about 
whether your friend would use the same logic and would consider that choice 
equally obvious. But even that is not the end of the chain of reasoning. Would 
your friend think that the choice would be equally obvious to you? And so on. 
The point is not whether a choice is obvious or logical, but whether it is obvious 
to the other that it is obvious to you that it is obvious to the other. . . . In other 
words, what is needed is a convergence of expectations about what should be 
chosen in such circumstances. Such a commonly expected strategy on which 
the players can successfully coordinate is called a focal point.

There is nothing general or intrinsic to the structure of these games that 
creates such convergence. In some games, a focal point may exist because of 
chance circumstances about the labeling of strategies or because of some expe-
rience or knowledge shared by the players. For example, if the front passenger 
side of a car were for some reason called the Duke’s side, then two Duke stu-
dents would be very likely to choose it without any need for explicit prior under-
standing. Or, if the front driver’s side of all cars were painted orange (for safety, 
to be easily visible to oncoming cars), then two Princeton students would be 
very likely to choose that tire, because orange is the Princeton color. But without 
some such clue, tacit coordination might not be possible at all.

We will study focal points in more detail in Chapter 4. Here in closing we 
merely point out that when asked in classrooms, more than 50% of students 
choose the front driver’s side. They are generally unable to explain why, except 
to say that it seems the obvious choice.

D. Why Are Professors So Mean?

Many professors have inflexible rules not to give makeup exams and never to ac-
cept late submission of problem sets or term papers. Students think the profes-
sors must be really hardhearted to behave in this way. The true strategic reason 
is often exactly the opposite. Most professors are kindhearted and would like to 
give their students every reasonable break and accept any reasonable excuse. 
The trouble lies in judging what is reasonable. It is hard to distinguish between 
similar excuses and almost impossible to verify their truth. The professor knows 
that on each occasion he will end up by giving the student the benefit of the 
doubt. But the professor also knows that this is a slippery slope. As the students 
come to know that the professor is a soft touch, they will procrastinate more and 
produce ever-flimsier excuses. Deadlines will cease to mean anything, and ex-
aminations will become a chaotic mix of postponements and makeup tests.

Often the only way to avoid this slippery slope is to refuse to take even 
the first step down it. Refusal to accept any excuses at all is the only realistic  
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alternative to accepting them all. By making an advance commitment to the “no 
excuses” strategy, the professor avoids the temptation to give in to all.

But how can a softhearted professor maintain such a hardhearted commit-
ment? He must find some way to make a refusal firm and credible. The simplest 
way is to hide behind an administrative procedure or university-wide policy. “I 
wish I could accept your excuse, but the university won’t let me” not only puts 
the professor in a nicer light, but also removes the temptation by genuinely 
leaving him no choice in the matter. Of course, the rules may be made by the 
same collectivity of professors that hides behind them, but once they are made, 
no individual professor can unmake the rules in any particular instance.

If the university does not provide such a general shield, then the professor 
can try to make up commitment devices of his own. For example, he can make 
a clear and firm announcement of the policy at the beginning of the course. 
Any time an individual student asks for an exception, he can invoke a fairness 
principle, saying, “If I do this for you, I would have to do it for everyone.” Or the 
professor can acquire a reputation for toughness by acting tough a few times. 
This may be an unpleasant thing for him to do and it may run against his true 
inclination, but it helps in the long run over his whole career. If a professor is be-
lieved to be tough, few students will try excuses on him, so he will actually suffer 
less pain in denying them.

We will study commitments, and related strategies, such as threats and 
promises, in considerable detail in Chapter 9.

E. Roommates and Families on the Brink

You are sharing an apartment with one or more other students. You notice that 
the apartment is nearly out of dishwasher detergent, paper towels, cereal, beer, 
and other items. You have an agreement to share the actual expenses, but the 
trip to the store takes time. Do you spend your own time going to the store or 
do you hope that someone else will spend his, leaving you more time to study 
or relax? Do you go and buy the soap or stay in and watch TV to catch up on the 
soap operas?3

In many situations of this kind, the waiting game goes on for quite a while 
before someone who is really impatient for one of the items (usually beer) gives 
in and spends the time for the shopping trip. Things may deteriorate to the point 
of serious quarrels or even breakups among the roommates.

This game of strategy can be viewed from two perspectives. In one, each 
of the roommates is regarded as having a simple binary choice—to do the 
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Boston Globe Magazine, April 28, 1996.
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shopping or not. The best outcome for you is where someone else does the shop-
ping and you stay at home; the worst is where you do the shopping while the oth-
ers get to use their time better. If both do the shopping (unknown to each other, 
on the way home from school or work), there is unnecessary duplication and 
perhaps some waste of perishables; if neither does the shopping, there can be se-
rious inconvenience or even disaster if the toilet paper runs out at a crucial time.

This is analogous to the game of chicken that used to be played by American 
teenagers. Two of them drove their cars toward each other. The first to swerve 
to avoid a collision was the loser (chicken); the one who kept driving straight 
was the winner. We will analyze the game of chicken further in Chapter 4 and in 
Chapters 7, 11, and 12.

A more interesting dynamic perspective on the same situation regards it as 
a “war of attrition,” where each roommate tries to wait out the others, hoping 
that someone else’s patience will run out first. In the meantime, the risk esca-
lates that the apartment will run out of something critical, leading to serious 
inconvenience or a blowup. Each player lets the risk escalate to the point of 
his own tolerance; the one revealed to have the least tolerance loses. Each sees 
how close to the brink of disaster the others will let the situation go. Hence the 
name “brinkmanship” for this strategy and this game. It is a dynamic version of 
chicken, offering richer and more interesting possibilities.

One of us (Dixit) was privileged to observe a brilliant example of brinkman-
ship at a dinner party one Saturday evening. Before dinner, the company was 
sitting in the living room when the host’s 15-year-old daughter appeared at the 
door and said, “Bye, Dad.” The father asked, “Where are you going?” and the 
daughter replied, “Out.” After a pause that was only a couple of seconds but 
seemed much longer, the host said, “All right, bye.”

Your strategic observer of this scene was left thinking how it might have 
gone differently. The host might have asked, “With whom?” and the daughter 
might have replied, “Friends.” The father could have refused permission un-
less the daughter told him exactly where and with whom she would be. One or 
the other might have capitulated at some such later stage of this exchange or it 
could have led to a blowup.

This was a risky game for both the father and the daughter to play. The 
daughter might have been punished or humiliated in front of strangers; an argu-
ment could have ruined the father’s evening with his friends. Each had to judge 
how far to push the process, without being fully sure whether and when the 
other might give in or whether there would be an unpleasant scene. The risk of 
an explosion would increase as the father tried harder to force the daughter to 
answer and as she defied each successive demand.

In this respect, the game played by the father and the daughter was just 
like that between a union and a company’s management who are negotiating 
a labor contract or between two superpowers that are encroaching on each  
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other’s sphere of influence in the world. Neither side can be fully sure of the oth-
er’s intentions, so each side explores them through a succession of small incre-
mental steps, each of which escalates the risk of mutual disaster. The daughter 
in our story was exploring previously untested limits of her freedom; the father 
was exploring previously untested—and perhaps unclear even to himself— 
limits of his authority.

This was an example of brinkmanship, a game of escalating mutual risk, par 
excellence. Such games can end in one of two ways. In the first way, one of the 
players reaches the limit of his own tolerance for risk and concedes. (The father 
in our story conceded quickly, at the very first step. Other fathers might be more 
successful strict disciplinarians, and their daughters might not even initiate 
a game like this.) In the second way, before either has conceded, the risk that 
they both fear comes about, and the blowup (the strike or the war) occurs. The 
feud in our host’s family ended “happily”; although the father conceded and the 
daughter won, a blowup would have been much worse for both.

We will analyze the strategy of brinkmanship more fully in Chapter 9; in 
Chapter 14, we will examine a particularly important instance of it—namely, the 
Cuban missile crisis of 1962.

F. The Dating Game

When you go on a date, you want to show off the best attributes of your person-
ality to your date and to conceal the worst ones. Of course, you cannot hope 
to conceal them forever if the relationship progresses, but you are resolved to 
improve or hope that by that stage the other person will accept the bad things 
about you with the good ones. And you know that the relationship will not 
progress at all unless you make a good first impression; you won’t get a second 
chance to do so.

Of course, you want to find out everything, good and bad, about the other 
person. But you know that if the other is as good at the dating game as you are, 
he or she will similarly try to show the best side and hide the worst. You will 
think through the situation more carefully and try to figure out which signs of 
good qualities are real and which ones can easily be put on for the sake of mak-
ing a good impression. Even the worst slob can easily appear well groomed for 
a big date; ingrained habits of courtesy and manners that are revealed in a hun-
dred minor details may be harder to simulate for a whole evening. Flowers are 
relatively cheap; more expensive gifts may have value, not for intrinsic reasons, 
but as credible evidence of how much the other person is willing to sacrifice 
for you. And the “currency” in which the gift is given may have different signifi-
cance, depending on the context; from a millionaire, a diamond may be worth 
less in this regard than the act of giving up valuable time for your company or 
time spent on some activity at your request.
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You should also recognize that your date will similarly scrutinize your ac-
tions for their information content. Therefore, you should take actions that are 
credible signals of your true good qualities, and not just the ones that anyone 
can imitate. This is important not just on a first date; revealing, concealing, and 
eliciting information about the other person’s deepest intentions remain impor-
tant throughout a relationship. Here is a story to illustrate that.

Once upon a time in New York City there lived a man and a woman who had 
separate rent-controlled apartments, but their relationship had reached the 
point at which they were using only one of them. The woman suggested to 
the man that they give up the other apartment. The man, an economist, 
explained to her a fundamental principle: it is always better to have more 
choice available. The probability of their splitting up might be small but, 
given even a small risk, it would be useful to retain the second low-rent apart-
ment. The woman took this very badly and promptly ended the relationship!

Economists who hear this story say that it just confirms the principle that 
greater choice is better. But strategic thinking offers a very different and more 
compelling explanation. The woman was not sure of the man’s commitment 
to the relationship, and her suggestion was a brilliant strategic device to elicit 
the truth. Words are cheap; anyone can say, “I love you.” If the man had put his 
property where his mouth was and had given up his rent-controlled apartment, 
this would have been concrete evidence of his love. The fact that he refused to 
do so constituted hard evidence of the opposite, and the woman did right to end 
the relationship.

These are examples, designed to appeal to your immediate experience, of 
a very important class of games—namely, those where the real strategic issue 
is manipulation of information. Strategies that convey good information about 
yourself are called signals; strategies that induce others to act in ways that will 
credibly reveal their private information, good or bad, are called screening de-
vices. Thus, the woman’s suggestion of giving up one of the apartments was a 
screening device, which put the man in the situation of offering to give up his 
apartment or else revealing his lack of commitment. We will study games of in-
formation, as well as signaling and screening, in Chapters 8 and 13.

3 OUR STRATEGY FOR STUDYING GAMES OF STRATEGY

We have chosen several examples that relate to your experiences as amateur 
strategists in real life to illustrate some basic concepts of strategic thinking and 
strategic games. We could continue, building a whole stock of dozens of similar 
stories. The hope would be that, when you faced an actual strategic situation, 
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you might recognize a parallel with one of these stories, which would help you 
decide the appropriate strategy for your own situation. This is the case study 
approach taken by most business schools. It offers a concrete and memorable 
vehicle for the underlying concepts. However, each new strategic situation typi-
cally consists of a unique combination of so many variables that an intolerably 
large stock of cases is needed to cover all of them.

An alternative approach focuses on the general principles behind the exam-
ples and so constructs a theory of strategic action—namely, formal game theory. 
The hope here is that, facing an actual strategic situation, you might recognize 
which principle or principles apply to it. This is the route taken by the more aca-
demic disciplines, such as economics and political science. A drawback to this 
approach is that the theory is presented in a very abstract and mathematical 
manner, without enough cases or examples. This makes it difficult for most be-
ginners to understand or remember the theory and to connect the theory with 
reality afterward.

But knowing some general theory has an overwhelming compensating ad-
vantage. It gives you a deeper understanding of games and of why they have 
the outcomes they do. This helps you play better than you would if you merely 
read some cases and knew the recipes for how to play some specific games. With 
the knowledge of why, you can think through new and unexpected situations 
where a mechanical follower of a “how” recipe would be lost. A world cham-
pion of checkers, Tom Wiswell, has expressed this beautifully: “The player who 
knows how will usually draw; the player who knows why will usually win.”4 This 
is not to be taken literally for all games; some games may be hopeless situations 
for one of the players no matter how knowledgeable he may be. But the state-
ment contains the germ of an important general truth—knowing why gives you 
an advantage beyond what you can get if you merely know how. For example, 
knowing the why of a game can help you foresee a hopeless situation and avoid 
getting into such a game in the first place.

Therefore, we will take an intermediate route that combines some of the ad-
vantages of both approaches—case studies (how) and theory (why). We will orga-
nize the subject around its general principles, generally one in each of the Chapters 
3–7. Therefore, you don’t have to figure them out on your own from the cases. But 
we will develop the general principles through illustrative cases rather than ab-
stractly, so the context and scope of each idea will be clear and evident. In other 
words, we will focus on theory but build it up through cases, not abstractly. Starting 
with Chapter 8, we will apply this theory to several types of strategic situations.

Of course, such an approach requires some compromises of its own. Most 
important, you should remember that each of our examples serves the purpose 

o u r  s t r at e g y  f o r  s t u d y i n g  g a m e s  o f  s t r at e g y   1 5

4 Quoted in Victor Niederhoffer, The Education of a Speculator (New York: Wiley, 1997), p. 169. We 
thank Austin Jaffe of Pennsylvania State University for bringing this aphorism to our attention.
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of conveying some general idea or principle of game theory. Therefore, we will 
leave out many details of each case that are incidental to the principle at stake. 
If some examples seem somewhat artificial, please bear with us; we have gener-
ally considered the omitted details and left them out for good reasons.

A word of reassurance. Although the examples that motivate the development 
of our conceptual or theoretical frameworks are deliberately selected for that pur-
pose (even at the cost of leaving out some other features of reality), once the the-
ory has been constructed, we pay a lot of attention to its connection with reality. 
Throughout the book, we examine factual and experimental evidence in regard to 
how well the theory explains reality. The frequent answer—very well in some re-
spects and less well in others—should give you cautious confidence in using the 
theory and should be a spur to contributing to the formulation of better theories. 
In appropriate places, we examine in great detail how institutions evolve in prac-
tice to solve some problems pointed out by the theories; note in particular the dis-
cussion in Chapter 10 of how prisoners’ dilemmas arise and are solved in reality 
and a similar discussion of more general collective- action problems in Chapter 
11. Finally, in Chapter 14, we will examine the use of brinkmanship in the Cuban 
missile crisis. Theory-based case studies, which take rich factual details of a situ-
ation and subject them to an equally detailed theoretical analysis, are becoming 
common in such diverse fields as business studies, political science, and economic 
history; we hope our original study of an important episode in the diplomatic and 
military areas will give you an interesting introduction to this genre.

To pursue our approach, in which examples lead to general theories that are 
then tested against reality and used to interpret reality, we must first identify the 
general principles that serve to organize the discussion. We will do so in Chapter 
2 by classifying or dichotomizing games along several key dimensions of differ-
ent strategic matters or concepts. Along each dimension, we will identify two 
extreme pure types. For example, one such dimension concerns the order of 
moves, and the two pure types are those in which the players take turns making 
moves (sequential games) and those in which all players act at once (simultane-
ous games). Actual games rarely correspond to exactly one of these conceptual 
categories; most partake of some features of each extreme type. But each game 
can be located in our classification by considering which concepts or dimen-
sions bear on it and how it mixes the two pure types in each dimension. To de-
cide how to act in a specific situation, one then combines in appropriate ways 
the lessons learned for the pure types.

Once this general framework has been constructed in Chapter 2, the chap-
ters that follow will build on it, developing several general ideas and principles 
for each player’s strategic choice and the interaction of all players’ strategies in 
games.
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How to Think about  

Strategic Games

Chapter 1 gave some simple examples of strategic games and strategic 
thinking. In this chapter, we begin a more systematic and analytical ap-
proach to the subject. We choose some crucial conceptual categories or 
dimensions, each of which has a dichotomy of types of strategic inter-

actions. For example, one such dimension concerns the timing of the players’ 
actions, and the two pure types are games where the players act in strict turns 
(sequential moves) and where they act at the same time (simultaneous moves). 
We consider some matters that arise in thinking about each pure type in this di-
chotomy, as well as in similar dichotomies with respect to other matters, such as 
whether the game is played only once or repeatedly and what the players know 
about each other.

In Chapters 3–7, we will examine each of these categories or dimensions 
in more detail; in Chapters 8–17, we will show how the analysis can be used in 
several contexts. Of course, most actual applications are not of a pure type but 
rather a mixture. Moreover, in each application, two or more of the categories 
have some relevance. The lessons learned from the study of the pure types must 
therefore be combined in appropriate ways. We will show how to do this by 
using the context of our applications.

In this chapter, we state some basic concepts and terminology—such as 
strategies, payoffs, and equilibrium—that are used in the analysis and briefly de-
scribe solution methods. We also provide a brief discussion of the uses of game 
theory and an overview of the structure of the remainder of the book.
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1 DECISIONS VERSUS GAMES

When a person (or team or firm or government) decides how to act in deal-
ings with other people (or teams or firms or governments), there must be some 
cross-effect of their actions; what one does must affect the outcome for the 
other. When George Pickett (of Pickett’s Charge at the battle of Gettysburg) was 
asked to explain the Confederacy’s defeat in the Civil War, he responded, “I think 
the Yankees had something to do with it.”1

For the interaction to become a strategic game, however, we need some-
thing more—namely, the participants’ mutual awareness of this cross-effect. 
What the other person does affects you; if you know this, you can react to his ac-
tions, or take advance actions to forestall the bad effects his future actions may 
have on you and to facilitate any good effects, or even take advance actions so as 
to alter his future reactions to your advantage. If you know that the other person 
knows that what you do affects him, you know that he will be taking similar ac-
tions. And so on. It is this mutual awareness of the cross-effects of actions and 
the actions taken as a result of this awareness that constitute the most interest-
ing aspects of strategy.

This distinction is captured by reserving the label strategic games (or some-
times just games, because we are not concerned with other types of games, such 
as those of pure chance or pure skill) for interactions between mutually aware 
players and decisions for action situations where each person can choose with-
out concern for reaction or response from others. If Robert E. Lee (who ordered 
Pickett to lead the ill-fated Pickett’s Charge) had thought that the Yankees had 
been weakened by his earlier artillery barrage to the point that they no longer 
had any ability to resist, his choice to attack would have been a decision; if he 
was aware that the Yankees were prepared and waiting for his attack, then the 
choice became a part of a (deadly) game. The simple rule is that unless there are 
two or more players, each of whom responds to what others do (or what each 
thinks the others might do), it is not a game.

Strategic games arise most prominently in head-to-head confrontations of 
two participants: the arms race between the United States and the Soviet Union 
from the 1950s through the 1980s; wage negotiations between General Motors 
and the United Auto Workers; or a Super Bowl matchup between two “pirates,” 
the Tampa Bay Buccaneers and the Oakland Raiders. In contrast, interactions 
among a large number of participants seem less susceptible to the issues raised 
by mutual awareness. Because each farmer’s output is an insignificant part of 
the whole nation’s or the world’s output, the decision of one farmer to grow 

1 James M. McPherson, “American Victory, American Defeat,” in Why the Confederacy Lost,  
ed. Gabor S. Boritt (New York: Oxford University Press, 1993), p. 19.

6841D CH02 UG.indd   18 12/18/14   3:09 PM



more or less corn has almost no effect on the market price, and not much ap-
pears to hinge on thinking of agriculture as a strategic game. This was indeed 
the view prevalent in economics for many years. A few confrontations between 
large companies—as in the U.S. auto market, which was once dominated by 
GM, Ford, and Chrysler—were usefully thought of as strategic games, but most 
economic interactions were supposed to be governed by the impersonal forces 
of supply and demand.

In fact, game theory has a much greater scope. Many situations that start 
out as impersonal markets with thousands of participants turn into strategic 
 interactions of two or just a few. This happens for one of two broad classes of 
reasons—mutual commitments or private information.

Consider commitment first. When you are contemplating building a house, 
you can choose one of several dozen contractors in your area; the contractor 
can similarly choose from several potential customers. There appears to be an 
impersonal market. Once each side has made a choice, however, the customer 
pays an initial installment, and the builder buys some materials for the plan of 
this particular house. The two become tied to each other, separately from the 
market. Their relationship becomes bilateral. The builder can try to get away 
with a somewhat sloppy job or can procrastinate, and the client can try to delay 
payment of the next installment. Strategy enters the picture. Their initial con-
tract in the market has to anticipate their individual incentives in the game to 
come and specify a schedule of installments of payments that are tied to succes-
sive steps in the completion of the project. Even then, some adjustments have to 
be made after the fact, and these adjustments bring in new elements of strategy.

Next, consider private information. Thousands of farmers seek to borrow 
money for their initial expenditures on machinery, seed, fertilizer, and so forth, 
and hundreds of banks exist to lend to them. Yet the market for such loans is not 
impersonal. A borrower with good farming skills who puts in a lot of effort will 
be more likely to be successful and will repay the loan; a less-skilled or lazy bor-
rower may fail at farming and default on the loan. The risk of default is highly 
personalized. It is not a vague entity called “the market” that defaults, but indi-
vidual borrowers who do so. Therefore each bank will have to view its lending 
relation with each individual borrower as a separate game. It will seek collateral 
from each borrower or will investigate each borrower’s creditworthiness. The 
farmer will look for ways to convince the bank of his quality as a borrower; the 
bank will look for effective ways to ascertain the truth of the farmer’s claims.

Similarly, an insurance company will make some efforts to determine the 
health of individual applicants and will check for any evidence of arson when 
a claim for a fire is made; an employer will inquire into the qualifications of 
individual employees and monitor their performance. More generally, when 
participants in a transaction possess some private information bearing on the 
outcome, each bilateral deal becomes a game of strategy, even though the larger 
picture may have thousands of very similar deals going on.

d e C i s i o n s  v e r s u s  g a m e s   1 9
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To sum up, when each participant is significant in the interaction, either 
because each is a large player to start with or because commitments or private 
information narrow the scope of the relationship to a point where each is an 
important player within the relationship, we must think of the interaction as a 
strategic game. Such situations are the rule rather than the exception in busi-
ness, in politics, and even in social interactions. Therefore, the study of strategic 
games forms an important part of all fields that analyze these matters.

2 CLASSIFYING GAMES

Games of strategy arise in many different contexts and accordingly have many 
different features that require study. This task can be simplified by grouping these 
features into a few categories or dimensions, along each of which we can identify 
two pure types of games and then recognize any actual game as a mixture of the 
pure types. We develop this classification by asking a few questions that will be 
pertinent for thinking about the actual game that you are playing or studying.

A. Are the Moves in the Game Sequential or Simultaneous?

Moves in chess are sequential: White moves first, then Black, then White again, 
and so on. In contrast, participants in an auction for an oil-drilling lease or a 
part of the airwave spectrum make their bids simultaneously, in ignorance of 
competitors’ bids. Most actual games combine aspects of both. In a race to re-
search and develop a new product, the firms act simultaneously, but each com-
petitor has partial information about the others’ progress and can respond. 
During one play in football, the opposing offensive and defensive coaches simul-
taneously send out teams with the expectation of carrying out certain plays, but 
after seeing how the defense has set up, the quarterback can change the play at 
the line of scrimmage or call a time-out so that the coach can change the play.

The distinction between sequential and simultaneous moves is important 
because the two types of games require different types of interactive thinking. 
In a sequential-move game, each player must think: If I do this, how will my op-
ponent react? Your current move is governed by your calculation of its future 
consequences. With simultaneous moves, you have the trickier task of trying to 
figure out what your opponent is going to do right now. But you must recognize 
that, in making his own calculation, your opponent is also trying to figure out 
your current move, while at the same time recognizing that you are doing the 
same with him. . . . Both of you have to think your way out of this circle.

In the next three chapters, we will study the two pure cases. In Chapter 3, 
we examine sequential-move games, where you must look ahead to act now; 
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in Chapters 4 and 5, the subject is simultaneous-move games, where you must 
square the circle of “He thinks that I think that he thinks . . .” In each case, we will 
devise some simple tools for such thinking—trees and payoff tables—and ob-
tain some simple rules to guide actions.

The study of sequential games also tells us when it is an advantage to move 
first and when it is an advantage to move second. Roughly speaking, this de-
pends on the relative importance of commitment and flexibility in the game in 
question. For example, the game of economic competition among rival firms in 
a market has a first-mover advantage if one firm, by making a firm commitment 
to compete aggressively, can get its rivals to back off. But, in political competi-
tion, a candidate who has taken a firm stand on an issue may give his rivals a 
clear focus for their attack ads, and the game has a second-mover advantage.

Knowledge of the balance of these considerations can also help you devise 
ways to manipulate the order of moves to your own advantage. That in turn 
leads to the study of strategic moves, such as threats and promises, which we 
will take up in Chapter 9.

B. Are the Players’ Interests in Total Conflict or Is There Some Commonality?

In simple games such as chess or football, there is a winner and a loser. One 
player’s gain is the other’s loss. Similarly, in gambling games, one player’s win-
nings are the others’ losses, so the total is 0. This is why such situations are 
called zero-sum games. More generally, the idea is that the players’ interests 
are in complete conflict. Such conflict arises when players are dividing up any 
fixed amount of possible gain, whether it be measured in yards, dollars, acres, or 
scoops of ice cream. Because the available gain need not always be exactly 0, the 
term constant-sum game is often substituted for zero-sum game; we will use 
the two terms interchangeably.

Most economic and social games are not zero-sum. Trade, or economic ac-
tivity more generally, offers scope for deals that benefit everyone. Joint ventures 
can combine the participants’ different skills and generate synergy to produce 
more than the sum of what they could have produced separately. But the inter-
ests are not completely aligned either; the partners can cooperate to create a 
larger total pie, but they will clash when it comes to deciding how to split this 
pie among them.

Even wars and strikes are not zero-sum games. A nuclear war is the most 
striking example of a situation where there can only be losers, but the concept  
is far older. Pyrrhus, the king of Epirus, defeated the Romans at Heraclea in  
280 b.c. but at such great cost to his own army that he exclaimed, “Another such vic-
tory and we are lost!” Hence the phrase “Pyrrhic victory.” In the 1980s, at the height 
of the frenzy of business takeovers, the battles among rival bidders led to such 
costly escalation that the successful bidder’s victory was often similarly Pyrrhic.

C l a s s i f y i n g  g a m e s   2 1
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Most games in reality have this tension between conflict and cooperation, 
and many of the most interesting analyses in game theory come from the need 
to handle it. The players’ attempts to resolve their conflict—distribution of ter-
ritory or profit—are influenced by the knowledge that, if they fail to agree, the 
outcome will be bad for all of them. One side’s threat of a war or a strike is its at-
tempt to frighten the other side into conceding its demands.

Even when a game is constant-sum for all players, if it has three (or more) 
players, we have the possibility that two of them will cooperate at the expense of 
the third; this leads to the study of alliances and coalitions. We will examine and 
illustrate these ideas later, especially in Chapter 17 on bargaining.

C.  Is the Game Played Once or Repeatedly, and  
with the Same or Changing Opponents?

A game played just once is in some respects simpler and in others more com-
plicated than one that includes many interactions. You can think about a one-
shot game without worrying about its repercussions on other games you might 
play in the future against the same person or against others who might hear of 
your actions in this one. Therefore actions in one-shot games are more likely to 
be unscrupulous or ruthless. For example, an automobile repair shop is much 
more likely to overcharge a passing motorist than a regular customer.

In one-shot encounters, each player doesn’t know much about the others; 
for example, what their capabilities and priorities are, whether they are good at 
calculating their best strategies or have any weaknesses that can be exploited, 
and so on. Therefore in one-shot games, secrecy or surprise is likely to be an im-
portant component of good strategy.

Games with ongoing relationships require the opposite considerations. You 
have an opportunity to build a reputation (for toughness, fairness, honesty, re-
liability, and so forth, depending on the circumstances) and to find out more 
about your opponent. The players together can better exploit mutually benefi-
cial prospects by arranging to divide the spoils over time (taking turns to “win”) 
or to punish a cheater in future plays (an eye for an eye or tit-for-tat). We will 
consider these possibilities in Chapter 10 on the prisoners’ dilemma.

More generally, a game may be zero-sum in the short run but have scope 
for mutual benefit in the long run. For example, each football team likes to win, 
but they all recognize that close competition generates more spectator inter-
est, which benefits all teams in the long run. That is why they agree to a drafting 
scheme where teams get to pick players in reverse order of their current stand-
ing, thereby reducing the inequality of talent. In long-distance races, the run-
ners or cyclists often develop a lot of cooperation; two or more of them can help 
one another by taking turns following in one another’s slipstream. But near the 
end of the race, the cooperation collapses as all of them dash for the finish line.
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Here is a useful rule of thumb for your own strategic actions in life. In a game 
that has some conflict and some scope for cooperation, you will often think up a 
great strategy for winning big and grinding a rival into the dust but have a nag-
ging worry at the back of your mind that you are behaving like the worst 1980s 
yuppie. In such a situation, the chances are that the game has a repeated or on-
going aspect that you have overlooked. Your aggressive strategy may gain you a 
short-run advantage, but its long-run side effects will cost you even more. There-
fore, you should dig deeper and recognize the cooperative element and then alter 
your strategy accordingly. You will be surprised how often niceness, integrity, and 
the golden rule of doing to others as you would have them do to you turn out 
to be not just old nostrums, but good strategies as well when you consider the 
whole complex of games that you will be playing in the course of your life.

D. Do the Players Have Full or Equal Information?

In chess, each player knows exactly the current situation and all the moves that 
led to it, and each knows that the other aims to win. This situation is excep-
tional; in most other games, the players face some limitation of information. 
Such limitations come in two kinds. First, a player may not know all the infor-
mation that is pertinent for the choice that he has to make at every point in the 
game. This type of information problem arises because of the player’s uncer-
tainty about relevant variables, both internal and external to the game. For ex-
ample, he may be uncertain about external circumstances, such as the weekend 
weather or the quality of a product he wishes to purchase; we call this situation 
one of external uncertainty. Or he may be uncertain about exactly what moves 
his opponent has made in the past or is making at the same time he makes his 
own move; we call this strategic uncertainty. If a game has neither external nor 
strategic uncertainty, we say that the game is one of perfect information; other-
wise the game has imperfect information. We will give a more precise technical 
definition of perfect information in Chapter 6, Section 3.A, after we have intro-
duced the concept of an information set. We will develop the theory of games 
with imperfect information (uncertainty) in three future chapters. In Chapter 4, 
we discuss games with contemporaneous (simultaneous) actions, which entail 
strategic uncertainty, and we analyze methods for making choices under exter-
nal uncertainty in Chapter 8 and its appendix.

Trickier strategic situations arise when one player knows more than another 
does; they are called situations of incomplete or, better, asymmetric informa-
tion. In such situations, the players’ attempts to infer, conceal, or sometimes 
convey their private information become an important part of the game 
and the strategies. In bridge or poker, each player has only partial knowledge 
of the cards held by the others. Their actions (bidding and play in bridge, the 
number of cards taken and the betting behavior in poker) give information to  

C l a s s i f y i n g  g a m e s   2 3
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opponents. Each player tries to manipulate his actions to mislead the oppo-
nents (and, in bridge, to inform his partner truthfully), but in doing so each 
must be aware that the opponents know this and that they will use strategic 
thinking to interpret that player’s actions.

You may think that if you have superior information, you should always 
conceal it from other players. But that is not true. For example, suppose you are 
the CEO of a pharmaceutical firm that is engaged in an R&D competition to de-
velop a new drug. If your scientists make a discovery that is a big step forward, 
you may want to let your competitors know, in the hope that they will give up 
their own searches and you won’t face any future competition. In war, each side 
wants to keep its tactics and troop deployments secret; but, in diplomacy, if your 
intentions are peaceful, then you desperately want other countries to know and 
believe this fact.

The general principle here is that you want to release your information se-
lectively. You want to reveal the good information (the kind that will draw re-
sponses from the other players that work to your advantage) and conceal the 
bad (the kind that may work to your disadvantage).

This raises a problem. Your opponents in a strategic game are purposive, 
rational players, and they know that you are, too. They will recognize your in-
centive to exaggerate or even to lie. Therefore, they are not going to accept your 
unsupported declarations about your progress or capabilities. They can be con-
vinced only by objective evidence or by actions that are credible proof of your 
information. Such actions on the part of the more-informed player are called 
signals, and strategies that use them are called signaling. Conversely, the less-
informed party can create situations in which the more-informed player will 
have to take some action that credibly reveals his information; such strategies 
are called screening, and the methods they use are called screening devices. 
The word screening is used here in the sense of testing in order to sift or sepa-
rate, not in the sense of concealing. 

Sometimes the same action may be used as a signal by the informed player 
or as a screening device by the uninformed player. Recall that in the dating 
game in Section 2.F of Chapter 1, the woman was screening the man to test his  
commitment to their relationship, and her suggestion that the pair give up 
one of their two rent- controlled apartments was the screening device. If the  
man had been committed to the relationship, he might have acted first and vol-
unteered to give up his apartment; this action would have been a signal of his  
commitment.

Now we see how, when different players have different information, the 
manipulation of information itself becomes a game, perhaps more important 
than the game that will be played after the information stage. Such informa-
tion games are ubiquitous, and playing them well is essential for success in 
life. We will study more games of this kind in greater detail in Chapter 8 and 
also in Chapter 13.
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E. Are the Rules of the Game Fixed or Manipulable?

The rules of chess, card games, or sports are given, and every player must fol-
low them, no matter how arbitrary or strange they seem. But in games of busi-
ness, politics, and ordinary life, the players can make their own rules to a greater 
or lesser extent. For example, in the home, parents constantly try to make the 
rules, and children constantly look for ways to manipulate or circumvent those 
rules. In legislatures, rules for the progress of a bill (including the order in which 
amendments and main motions are voted on) are fixed, but the game that sets 
the agenda—which amendments are brought to a vote first—can be manipu-
lated. This is where political skill and power have the most scope, and we will 
address these matters in detail in Chapter 15.

In such situations, the real game is the “pregame” where rules are made, and 
your strategic skill must be deployed at that point. The actual playing out of the 
subsequent game can be more mechanical; you could even delegate it to someone 
else. However, if you “sleep” through the pregame, you might find that you have 
lost the game before it ever began. For many years, American firms ignored the 
rise of foreign competition in just this way and ultimately paid the price. But some 
entrepreneurs, such as oil magnate John D. Rockefeller Sr., adopted the strategy of 
limiting their participation to games in which they could also participate in mak-
ing the rules.2

The distinction between changing rules and acting within the chosen rules 
will be most important for us in our study of strategic moves, such as threats and 
promises. Questions of how you can make your own threats and promises cred-
ible or how you can reduce the credibility of your opponent’s threats basically 
have to do with a pregame that entails manipulating the rules of the subsequent 
game in which the promises or threats may have to be carried out. More gener-
ally, the strategic moves that we will study in Chapter 9 are essentially ploys for 
such manipulation of rules.

But if the pregame of rule manipulation is the real game, what fixes the rules 
of the pregame? Usually these pregame rules depend on some hard facts related 
to the players’ innate abilities. In business competition, one firm can take pre-
emptive actions that alter subsequent games between it and its rivals; for ex-
ample, it can expand its factory or advertise in a way that twists the results of 
subsequent price competition more favorably to itself. Which firm can do this 
best or most easily depends on which one has the managerial or organizational 
resources to make the investments or to launch the advertising campaigns.

Players may also be unsure of their rivals’ abilities. This often makes the 
pregame one of incomplete or asymmetric information, requiring more subtle 
strategies and occasionally resulting in some big surprises. We will comment on 
all these matters in the appropriate places in the chapters that follow.

C l a s s i f y i n g  g a m e s   2 5
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F. Are Agreements to Cooperate Enforceable?

We saw that most strategic interactions consist of a mixture of conflict and com-
mon interest. Then there is a case to be made that all participants should get to-
gether and reach an agreement about what everyone should do, balancing their 
mutual interest in maximizing the total benefit and their conflicting interests in 
the division of gains. Such negotiations can take several rounds in which agree-
ments are made on a tentative basis, better alternatives are explored, and the 
deal is finalized only when no group of players can find anything better. How-
ever, even after the completion of such a process, additional difficulties often 
arise in putting the final agreement into practice. For instance, all the players 
must perform, in the end, the actions that were stipulated for them in the agree-
ment. When all others do what they are supposed to do, any one participant can 
typically get a better outcome for himself by doing something different. And, if 
each one suspects that the others may cheat in this way, he would be foolish to 
adhere to his stipulated cooperative action.

Agreements to cooperate can succeed if all players act immediately and in 
the presence of the whole group, but agreements with such immediate imple-
mentation are quite rare. More often the participants disperse after the agree-
ment has been reached and then take their actions in private. Still, if these 
actions are observable to the others, and a third party—for example, a court of 
law—can enforce compliance, then the agreement of joint action can prevail.

However, in many other instances individual actions are neither directly ob-
servable nor enforceable by external forces. Without enforceability, agreements 
will stand only if it is in all participants’ individual interests to abide by them. 
Games among sovereign countries are of this kind, as are many games with pri-
vate information or games where the actions are either outside the law or too triv-
ial or too costly to enforce in a court of law. In fact, games where agreements for 
joint action are not enforceable constitute a vast majority of strategic interactions.

Game theory uses a special terminology to capture the distinction between 
situations in which agreements are enforceable and those in which they are not. 
Games in which joint-action agreements are enforceable are called cooperative 
games; those in which such enforcement is not possible, and individual partici-
pants must be allowed to act in their own interests, are called noncooperative 
games. This has become standard terminology, but it is somewhat unfortunate 
because it gives the impression that the former will produce cooperative out-
comes and the latter will not. In fact, individual action can be compatible with 
the achievement of a lot of mutual gain, especially in repeated interactions. The 
important distinction is that in so-called noncooperative games, cooperation 
will emerge only if it is in the participants’ separate and individual interests to 
continue to take the prescribed actions. This emergence of cooperative out-
comes from noncooperative behavior is one of the most interesting findings of 
game theory, and we will develop the idea in Chapters 10, 11, and 12.
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We will adhere to the standard usage, but emphasize that the terms coopera-
tive and noncooperative refer to the way in which actions are implemented or 
enforced—collectively in the former mode and individually in the latter—and 
not to the nature of the outcomes.

As we said earlier, most games in practice do not have adequate mecha-
nisms for external enforcement of joint-action agreements. Therefore, most of 
our analytical discussion will deal with the noncooperative mode. The one ex-
ception comes in our discussion of bargaining in Chapter 17.

3 SOME TERMINOLOGY AND BACKGROUND ASSUMPTIONS

When one thinks about a strategic game, the logical place to begin is by specify-
ing its structure. This includes all the strategies available to all the players, their 
information, and their objectives. The first two aspects will differ from one game 
to another along the dimensions discussed in the preceding section, and one 
must locate one’s particular game within that framework. The objectives raise 
some new and interesting considerations. Here we consider aspects of all these 
matters.

A. Strategies

Strategies are simply the choices available to the players, but even this basic no-
tion requires some further study and elaboration. If a game has purely simulta-
neous moves made only once, then each player’s strategy is just the action taken 
on that single occasion. But if a game has sequential moves, then a player who 
moves later in the game can respond to what other players have done (or what 
he himself has done) at earlier points. Therefore, each such player must make a 
complete plan of action, for example: “If the other does A, then I will do X, but if 
the other does B, then I will do Y.” This complete plan of action constitutes the 
strategy in such a game.

A very simple test determines whether your strategy is complete: Does it 
specify such full detail about how you would play the game—describing your 
action in every contingency—that, if you were to write it all down, hand it to 
someone else, and go on vacation, this other person acting as your representa-
tive could play the game just as you would have played it? He would know what 
to do on each occasion that could conceivably arise in the course of play with-
out ever needing to disturb your vacation for instructions on how to deal with 
some situation that you had not foreseen.

This test will become clearer in Chapter 3, when we develop and apply it in 
some specific contexts. For now, you should simply remember that a strategy is 
a complete plan of action.
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This notion is similar to the common usage of the word strategy to denote 
a longer-term or larger-scale plan of action, as distinct from tactics that pertain 
to a shorter term or a smaller scale. For example, generals in the military make 
strategic plans for a war or a large-scale battle, while lower-level officers devise 
tactics for a smaller skirmish or a particular theater of battle based on local con-
ditions. But game theory does not use the term tactics at all. The term strategy 
covers all the situations, meaning a complete plan of action when necessary and 
meaning a single move if that is all that is needed in the particular game being 
studied.

The word strategy is also commonly used to describe a person’s decisions 
over a fairly long time span and sequence of choices, even though there is no 
game in our sense of purposive interaction with other people. Thus, you have 
probably already chosen a career strategy. When you start earning an income, 
you will make saving and investment strategies and eventually plan a retirement 
strategy. This usage of the term strategy has the same sense as ours—a plan for a 
succession of actions in response to evolving circumstances. The only difference 
is that we are reserving it for a situation—namely, a game—where the circum-
stances evolve because of actions taken by other purposive players.

B. Payoffs

When asked what a player’s objective in a game is, most newcomers to strategic 
thinking respond that it is “to win,” but matters are not always so simple. Some-
times the margin of victory matters; for example, in R&D competition, if your 
product is only slightly better than the nearest rival’s, your patent may be more 
open to challenge. Sometimes there may be smaller prizes for several partici-
pants, so winning isn’t everything. Most important, very few games of strategy 
are purely zero-sum or win-lose; they combine some common interest and some 
conflict among the players. Thinking about such mixed-motive games requires 
more refined calculations than the simple dichotomy of winning and losing—for 
example, comparisons of the gains from cooperating versus cheating.

We will give each player a complete numerical scale with which to compare 
all logically conceivable outcomes of the game, corresponding to each available 
combination of choices of strategies by all the players. The number associated with 
each possible outcome will be called that player’s payoff for that outcome. Higher 
payoff numbers attach to outcomes that are better in this player’s rating system.

Sometimes the payoffs will be simple numerical ratings of the outcomes, 
the worst labeled 1, the next worst 2, and so on, all the way to the best. In other 
games, there may be more natural numerical scales—for example, money in-
come or profit for firms, viewer-share ratings for television networks, and so on. 
In many situations, the payoff numbers are only educated guesses. In such cases, 
we need to check that the results of our analysis do not change significantly if we 
vary these guesses within some reasonable margin of error.
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Two important points about the payoffs need to be understood clearly. First, 
the payoffs for one player capture everything in the outcomes of the game that 
he cares about. In particular, the player need not be selfish, but his concern 
about others should be already included in his numerical payoff scale. Second, 
we will suppose that, if the player faces a random prospect of outcomes, then 
the number associated with this prospect is the average of the payoffs associ-
ated with each component outcome, each weighted by its probability. Thus, if 
in one player’s ranking, outcome A has payoff 0 and outcome B has payoff 100, 
then the prospect of a 75% probability of A and a 25% probability of B should 
have the payoff 0.75 3 0 1 0.25 3 100 5 25. This is often called the expected 
payoff from the random prospect. The word expected has a special connotation 
in the jargon of probability theory. It does not mean what you think you will get 
or expect to get; it is the mathematical or probabilistic or statistical expectation, 
meaning an average of all possible outcomes, where each is given a weight pro-
portional to its probability.

The second point creates a potential difficulty. Consider a game where players 
get or lose money and payoffs are measured simply in money amounts. In refer-
ence to the preceding example, if a player has a 75% chance of getting nothing and 
a 25% chance of getting $100, then the expected payoff as calculated in that exam-
ple is $25. That is also the payoff that the player would get from a simple nonran-
dom outcome of $25. In other words, in this way of calculating payoffs, a person 
should be indifferent to whether he receives $25 for sure or faces a risky prospect 
of which the average is $25. One would think that most people would be averse to 
risk, preferring a sure $25 to a gamble that yields only $25 on the average.

A very simple modification of our payoff calculation gets around this diffi-
culty. We measure payoffs not in money sums but by using a nonlinear rescal-
ing of the dollar amounts. This is called the expected utility approach, and we 
will present it in detail in the appendix to Chapter 7. For now, please take our 
word that incorporating differing attitudes toward risk into our framework is a 
manageable task. Almost all of game theory is based on the expected utility ap-
proach, and it is indeed very useful, although not without flaws. We will adopt it 
in this book, but we also will indicate some of the difficulties that it leaves unre-
solved, with the use of a simple example in Chapter 7, Section 5.C.

C. Rationality

Each player’s aim in the game will be to achieve as high a payoff for himself as 
possible. But how good is each player at pursuing this aim? This question is not 
about whether and how other players pursuing their own interests will impede 
him; that is in the very nature of a game of strategic interaction. Rather, achiev-
ing a high payoff is based on how good each player is at calculating the strategy 
that is in his own best interests and at following this strategy in the actual course 
of play.
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Much of game theory assumes that players are perfect calculators and flaw-
less followers of their best strategies. This is the assumption of rational be-
havior. Observe the precise sense in which the term rational is being used. It 
means that each player has a consistent set of rankings (values or payoffs) over 
all the logically possible outcomes and calculates the strategy that best serves 
these interests. Thus rationality has two essential ingredients: complete knowl-
edge of one’s own interests, and flawless calculation of what actions will best 
serve those  interests.

It is equally important to understand what is not included in this concept 
of rational behavior. It does not mean that players are selfish; a player may rate 
highly the well-being of some other player(s) and incorporate this high rating 
into his payoffs. It does not mean that players are short-term thinkers; in fact, 
calculation of future consequences is an important part of strategic thinking, 
and actions that seem irrational from an immediate perspective may have valu-
able long-term strategic roles. Most important, being rational does not mean 
having the same value system as other players, or sensible people, or ethical or 
moral people would use; it means merely pursuing one’s own value system con-
sistently. Therefore, when one player carries out an analysis of how other play-
ers will respond (in a game with sequential moves) or of the successive rounds 
of thinking about thinking (in a game with simultaneous moves), he must rec-
ognize that the other players calculate the consequences of their choices by 
using their own value or rating system. You must not impute your own value 
systems or standards of rationality to others and assume that they would act as 
you would in that situation. Thus, many “experts” commenting on the Persian 
Gulf conflict in late 1990 and again in 2002–2003 predicted that Saddam Hus-
sein would back down “because he is rational”; they failed to recognize that 
Saddam’s value system was different from the one held by most Western govern-
ments and by the Western experts.

In general, each player does not really know the other players’ value systems; 
this is part of the reason that in reality many games have incomplete and asym-
metric information. In such games, trying to find out the values of others and try-
ing to conceal or convey one’s own become important components of strategy.

Game theory assumes that all players are rational. How good is this as-
sumption, and therefore how good is the theory that employs it? At one level, 
it is obvious that the assumption cannot be literally true. People often don’t 
even have full advance knowledge of their own value systems; they don’t think 
ahead about how they would rank hypothetical alternatives and then remem-
ber these rankings until they are actually confronted with a concrete choice. 
Therefore they find it very difficult to perform the logical feat of tracing all pos-
sible consequences of their and other players’ conceivable strategic choices and 
ranking the outcomes in advance in order to choose which strategy to follow. 
Even if they knew their preferences, the calculation would remain far from easy. 
Most games in real life are very complex, and most real players are limited in 
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their thinking and computational abilities. In games such as chess, it is known 
that the calculation for the best strategy can be performed in a finite number of 
steps, but that number is so large that no one has succeeded in performing it, 
and good play remains largely an art.

The assumption of rationality may be closer to reality when the players are 
regulars who play the game quite often. Then they benefit from having expe-
rienced the different possible outcomes. They understand how the strategic 
choices of various players lead to the outcomes and how well or badly they 
themselves fare. Then we can hope that their choices, even if not made with full 
and conscious computations, closely approximate the results of such compu-
tations. We can think of the players as implicitly choosing the optimal strategy 
or behaving as if they were perfect calculators. We will offer some experimental 
evidence in Chapter 5 that the experience of playing the game generates more 
rational behavior.

The advantage of making a complete calculation of your best strategy, tak-
ing into account the corresponding calculations of a similar strategically calcu-
lating rival, is that then you are not making mistakes that the rival can exploit. 
In many actual situations, you may have specific knowledge of the way in which 
the other players fall short of this standard of rationality, and you can exploit this 
in devising your own strategy. We will say something about such calculations, 
but very often this is a part of the “art” of game playing, not easily codifiable in 
rules to be followed. You must always beware of the danger that the others are 
merely pretending to have poor skills or strategy, losing small sums through bad 
play and hoping that you will then raise the stakes, when they can raise the level 
of their play and exploit your gullibility. When this risk is real, the safer advice 
to a player may be to assume that the rivals are perfect and rational calculators 
and to choose his own best response to them. In other words, you should play to 
your opponents’ capabilities instead of their limitations.

D. Common Knowledge of Rules

We suppose that, at some level, the players have a common understanding of 
the rules of the game. In a Peanuts cartoon, Lucy thought that body checking 
was allowed in golf and decked Charlie Brown just as he was about to take his 
swing. We do not allow this.

The qualification “at some level” is important. We saw how the rules of the 
immediate game could be manipulated. But this merely admits that there is an-
other game being played at a deeper level—namely, where the players choose 
the rules of the superficial game. Then the question is whether the rules of this 
deeper game are fixed. For example, in the legislative context, what are the 
rules of the agenda-setting game? They may be that the committee chairs have 
the power. Then how are the committees and their chairs elected? And so on. 
At some basic level, the rules are fixed by the constitution, by the technology 
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of campaigning, or by general social norms of behavior. We ask that all players 
recognize the given rules of this basic game, and that is the focus of the analysis. 
Of course, that is an ideal; in practice, we may not be able to proceed to a deep 
enough level of analysis.

Strictly speaking, the rules of the game consist of (1) the list of players,  
(2) the strategies available to each player, (3) the payoffs of each player for all 
possible combinations of strategies pursued by all the players, and (4) the as-
sumption that each player is a rational maximizer.

Game theory cannot properly analyze a situation where one player does not 
know whether another player is participating in the game, what the entire sets 
of actions available to the other players are from which they can choose, what 
their value systems are, or whether they are conscious maximizers of their own 
payoffs. But in actual strategic interactions, some of the biggest gains are to be 
made by taking advantage of the element of surprise and doing something that 
your rivals never thought you capable of. Several vivid examples can be found 
in historic military conflicts. For example, in 1967 Israel launched a preemptive 
attack that destroyed the Egyptian air force on the ground; in 1973 it was Egypt’s 
turn to spring a surprise by launching a tank attack across the Suez Canal.

It would seem, then, that the strict definition of game theory leaves out a 
very important aspect of strategic behavior, but in fact matters are not that bad. 
The theory can be reformulated so that each player attaches some small prob-
ability to the situation where such dramatically different strategies are available 
to the other players. Of course, each player knows his own set of available strate-
gies. Therefore, the game becomes one of asymmetric information and can be 
handled by using the methods developed in Chapter 8.

The concept of common knowledge itself requires some explanation. For 
some fact or situation X to be common knowledge between two people, A and 
B, it is not enough for each of them separately to know X. Each should also know 
that the other knows X; otherwise, for example, A might think that B does not 
know X and might act under this misapprehension in the midst of a game. But 
then A should also know that B knows that A knows X, and the other way around, 
otherwise A might mistakenly try to exploit B’s supposed ignorance of A’s knowl-
edge. Of course, it doesn’t even stop there. A should know that B knows that A 
knows that B knows, and so on ad infinitum. Philosophers have a lot of fun ex-
ploring the fine points of this infinite regress and the intellectual paradoxes that 
it can generate. For us, the general notion that the players have a common un-
derstanding of the rules of their game will suffice.

E. Equilibrium

Finally, what happens when rational players’ strategies interact? Our answer 
will generally be in the framework of equilibrium. This simply means that each 
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player is using the strategy that is the best response to the strategies of the other 
players. We will develop game-theoretic concepts of equilibrium in Chapters 3 
through 7 and then use them in subsequent chapters.

Equilibrium does not mean that things don’t change; in sequential-move 
games the players’ strategies are the complete plans of action and reaction, 
and the position evolves all the time as the successive moves are made and re-
sponded to. Nor does equilibrium mean that everything is for the best; the in-
teraction of rational strategic choices by all players can lead to bad outcomes 
for all, as in the prisoners’ dilemma. But we will generally find that the idea of 
equilibrium is a useful descriptive tool and organizing concept for our analy-
sis. We will consider this idea in greater detail later, in connection with specific 
equilibrium concepts. We will also see how the concept of equilibrium can be 
augmented or modified to remove some of its flaws and to incorporate behavior 
that falls short of full calculating rationality.

Just as the rational behavior of individual players can be the result of experi-
ence in playing the game, fitting of their choices into an overall equilibrium can 
come about after some plays that involve trial and error and nonequilibrium 
outcomes. We will look at this matter in Chapter 5.

Defining an equilibrium is not hard, but finding an equilibrium in a particular 
game—that is, solving the game—can be a lot harder. Throughout this book, we 
will solve many simple games in which there are two or three players, each of them 
having two or three strategies or one move each in turn. Many people believe this 
to be the limit of the reach of game theory and therefore believe that the theory is 
useless for the more complex games that take place in reality. That is not true.

Humans are severely limited in their speed of calculation and in their pa-
tience for performing long calculations. Therefore, humans can easily solve only 
the simple games with two or three players and strategies. But computers are 
very good at speedy and lengthy calculations. Many games that are far beyond 
the power of human calculators are easy for computers. The level of complexity 
in many games in business and politics is already within the power of comput-
ers. Even in games such as chess that are far too complex to solve completely, 
computers have reached a level of ability comparable to that of the best hu-
mans; we consider chess in more detail in Chapter 3.

Computer programs for solving quite complex games exist, and more are ap-
pearing rapidly. Mathematica and similar program packages contain routines for 
finding mixed-strategy equilibria in simultaneous-move games. Gambit, a Na-
tional Science Foundation project led by Professors Richard D. McKelvey of the 
California Institute of Technology and Andrew McLennan of the University of 
Minnesota, is producing a comprehensive set of routines for finding equilib-
ria in sequential- and simultaneous-move games, in pure and mixed strategies, 
and with varying degrees of uncertainty and incomplete information. We will 
refer to this project again in several places in the next several chapters. The biggest  
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advantage of the project is that its programs are open source and can easily be 
obtained from its Web site www.gambit-project.org.

Why then do we set up and solve several simple games in detail in this book? 
The reason is that understanding the concepts is an important prerequisite for 
making good use of the mechanical solutions that computers can deliver, and 
understanding comes from doing simple cases yourself. This is exactly how you 
learned and now use arithmetic. You came to understand the ideas of addition, 
subtraction, multiplication, and division by doing many simple problems men-
tally or using paper and pencil. With this grasp of basic concepts, you can now 
use calculators and computers to do far more complicated sums than you would 
ever have the time or patience to do manually. But if you did not understand the 
concepts, you would make errors in using calculators; for example, you might 
solve 3 1 4 3 5 by grouping additions and multiplications incorrectly as (3 1 4) 3 5 
5 35 instead of correctly as 3 1 (4 3 5) 5 23.

Thus, the first step of understanding the concepts and tools is essential. 
Without it, you would never learn to set up correctly the games that you ask the 
computer to solve. You would not be able to inspect the solution with any feel-
ing for whether it was reasonable, and if it was not, you would not be able to go 
back to your original specification, improve it, and solve it again until the spec-
ification and the calculation correctly captured the strategic situation that you 
wanted to study. Therefore, please pay serious attention to the simple examples 
that we solve and the drill exercises that we ask you to solve, especially in Chap-
ters 3 through 7.

F. Dynamics and Evolutionary Games

The theory of games based on assumptions of rationality and equilibrium has 
proved very useful, but it would be a mistake to rely on it totally. When games 
are played by novices who do not have the necessary experience to perform the 
calculations to choose their best strategies, explicitly or implicitly, their choices, 
and therefore the outcome of the game, can differ significantly from the predic-
tions of analysis based on the concept of equilibrium.

However, we should not abandon all notions of good choice; we should rec-
ognize the fact that even poor calculators are motivated to do better for their 
own sakes and will learn from experience and by observing others. We should 
allow for a dynamic process in which strategies that proved to be better in previ-
ous plays of the game are more likely to be chosen in later plays.

The evolutionary approach to games does just this. It is derived from the 
idea of evolution in biology. Any individual animal’s genes strongly influence its 
behavior. Some behaviors succeed better in the prevailing environment, in the 
sense that the animals exhibiting those behaviors are more likely to reproduce 
successfully and pass their genes to their progeny. An evolutionary stable state, 
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relative to a given environment, is the ultimate outcome of this process over sev-
eral generations.

The analogy in games would be to suppose that strategies are not chosen by 
conscious rational maximizers, but instead that each player comes to the game 
with a particular strategy “hardwired” or “programmed” in. The players then 
confront other players who may be programmed to apply the same or different 
strategies. The payoffs to all the players in such games are then obtained. The 
strategies that fare better—in the sense that the players programmed to play 
them get higher payoffs in the games—multiply faster, whereas the strategies that 
fare worse decline. In biology, the mechanism of this growth or decay is purely 
genetic transmission through reproduction. In the context of strategic games  
in business and society, the mechanism is much more likely to be social or 
 cultural—observation and imitation, teaching and learning, greater availability 
of capital for the more successful ventures, and so on.

The object of study is the dynamics of this process. Does it converge to an 
evolutionary stable state? Does just one strategy prevail over all others in the 
end, or can a few strategies coexist? Interestingly, in many games, the evolution-
ary stable limit is the same as the equilibrium that would result if the players 
were consciously rational calculators. Therefore, the evolutionary approach 
gives us a backdoor justification for equilibrium analysis.

The concept of evolutionary games has thus imported biological ideas 
into game theory; there has been an influence in the opposite direction, too. 
Biologists have recognized that significant parts of animal behavior consist of 
strategic interactions with other animals. Members of a given species com-
pete with one another for space or mates; members of different species relate 
to one another as predators and prey along a food chain. The payoff in such 
games in turn contributes to reproductive success and therefore to biological 
evolution. Just as game theory has benefited by importing ideas from biologi-
cal evolution for its analysis of choice and dynamics, biology has benefited by 
importing game-theoretic ideas of strategies and payoffs for its characteriza-
tion of basic interactions between animals. We have a true instance of synergy 
or symbiosis. We provide an introduction to the study of evolutionary games in  
Chapter 12.

G. Observation and Experiment

All of Section 3 to this point has concerned how to think about games or how 
to analyze strategic interactions. This constitutes theory. This book will cover 
an  extremely simple level of theory, developed through cases and illustrations 
 instead of formal mathematics or theorems, but it will be theory just the same. 
All theory should relate to reality in two ways. Reality should help structure the 
theory, and reality should provide a check on the results of the theory.
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We can find out the reality of strategic interactions in two ways: (1) by ob-
serving them as they occur naturally and (2) by conducting special experiments 
that help us pin down the effects of particular conditions. Both methods have 
been used, and we will mention several examples of each in the proper contexts.

Many people have studied strategic interactions—the participants’ behavior 
and the outcomes—under experimental conditions, in classrooms among “cap-
tive” players, or in special laboratories with volunteers. Auctions, bargaining, 
prisoners’ dilemmas, and several other games have been studied in this way. 
The results are a mixture. Some conclusions of the theoretical analysis are borne 
out; for example, in games of buying and selling, the participants generally set-
tle quickly on the economic equilibrium. In other contexts, the outcomes differ 
significantly from the theoretical predictions; for example, prisoners’ dilemmas 
and bargaining games show more cooperation than theory based on the as-
sumption of selfish, maximizing behavior would lead us to expect, whereas auc-
tions show some gross overbidding.

At several points in the chapters that follow, we will review the knowledge 
that has been gained by observation and experiments, discuss how it relates to 
the theory, and consider what reinterpretations, extensions, and modifications 
of the theory have been made or should be made in light of this knowledge.

4 THE USES OF GAME THEORY

We began Chapter 1 by saying that games of strategy are everywhere—in your 
personal and working life; in the functioning of the economy, society, and polity 
around you; in sports and other serious pursuits; in war and in peace. This should 
be motivation enough to study such games systematically, and that is what game 
theory is about. But your study can be better directed if you have a clearer idea of 
just how you can put game theory to use. We suggest a threefold perspective.

The first use is in explanation. Many events and outcomes prompt us to ask: 
Why did that happen? When the situation requires the interaction of decision 
makers with different aims, game theory often supplies the key to understand-
ing the situation. For example, cutthroat competition in business is the result of 
the rivals being trapped in a prisoners’ dilemma. At several points in the book, 
we will mention actual cases where game theory helps us to understand how 
and why the events unfolded as they did. This includes Chapter 14’s detailed 
case study of the Cuban missile crisis from the perspective of game theory.

The other two uses evolve naturally from the first. The second is in predic-
tion. When looking ahead to situations where multiple decision makers will 
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interact strategically, we can use game theory to foresee what actions they will 
take and what outcomes will result. Of course, prediction for a particular con-
text depends on its details, but we will prepare you to use prediction by analyz-
ing several broad classes of games that arise in many applications.

The third use is in advice or prescription. We can act in the service of one par-
ticipant in the future interaction and tell him which strategies are likely to yield 
good results and which ones are likely to lead to disaster. Once again such work is 
context specific, and we can equip you with several general principles and tech-
niques and show you how to apply them to some general types of contexts. For 
example, in Chapter 7, we will show how to mix moves; in Chapter 9, we will ex-
amine how to make your commitments, threats, and promises credible; in Chap-
ter 10, we will examine alternative ways of overcoming prisoners’ dilemmas.

The theory is far from perfect in performing any of the three functions. To 
explain an outcome, one must first have a correct understanding of the motives 
and behavior of the participants. As we saw earlier, most of game theory takes a 
specific approach to these matters—namely, the framework of rational choice 
of individual players and the equilibrium of their interaction. Actual players and 
interactions in a game might not conform to this framework. But the proof of 
the pudding is in the eating. Game-theoretic analysis has greatly improved our 
understanding of many phenomena, as reading this book should convince you. 
The theory continues to evolve and improve as the result of ongoing research. 
This book will equip you with the basics so that you can more easily learn and 
profit from the new advances as they appear.

When explaining a past event, we can often use historical records to get a 
good idea of the motives and the behavior of the players in the game. When at-
tempting prediction or advice, there is the additional problem of determining 
what motives will drive the players’ actions, what informational or other lim-
itations they will face, and sometimes even who the players will be. Most im-
portant, if game-theoretic analysis assumes that the other player is a rational 
maximizer of his own objectives when in fact he is unable to do the calculations 
or is a clueless person acting at random, the advice based on that analysis may 
prove wrong. This risk is reduced as more and more players recognize the im-
portance of strategic interaction and think through their strategic choices or get 
expert advice on the matter, but some risk remains. Even then, the systematic 
thinking made possible by the framework of game theory helps keep the errors 
down to this irreducible minimum, by eliminating the errors that arise from 
faulty logical thinking about the strategic interaction. Also, game theory can 
take into account many kinds of uncertainty and incomplete information, in-
cluding that about the strategic possibilities and rationality of the opponent. We 
will consider a few examples in the chapters to come.

t h e  u s e s  o f  g a m e  t h e o r y   3 7
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5 THE STRUCTURE OF THE CHAPTERS TO FOLLOW

In this chapter, we introduced several considerations that arise in almost every 
game in reality. To understand or predict the outcome of any game, we must 
know in greater detail all of these ideas. We also introduced some basic concepts 
that will prove useful in such analysis. However, trying to cope with all of the 
concepts at once merely leads to confusion and a failure to grasp any of them. 
Therefore, we will build up the theory one concept at a time. We will develop the 
appropriate technique for analyzing that concept and illustrate it.

In the first group of chapters, from Chapters 3 to 7, we will construct and 
illustrate the most important of these concepts and techniques. We will exam-
ine purely sequential-move games in Chapter 3 and introduce the techniques—
game trees and rollback reasoning—that are used to analyze and solve such 
games. In Chapters 4 and 5, we will turn to games with simultaneous moves and 
develop for them another set of concepts—payoff tables, dominance, and Nash 
equilibrium. Both chapters will focus on games where players use pure strate-
gies; in Chapter 4, we will restrict players to a finite set of pure strategies, and in 
Chapter 5, we will allow strategies that are continuous variables. Chapter 5 will 
also examine some mixed empirical evidence and conceptual criticisms and 
counterarguments on Nash equilibrium, and a prominent alternative to Nash 
equilibrium—namely, rationalizability. In Chapter 6, we will show how games 
that have some sequential moves and some simultaneous moves can be studied 
by combining the techniques developed in Chapters 3 through 5. In Chapter 7, 
we will turn to simultaneous-move games that require the use of randomization 
or mixed strategies. We will start by introducing the basic ideas about mixing in 
two-by-two games, develop the simplest techniques for finding mixed-strategy 
Nash equilibria, and then consider more complex examples along with the em-
pirical evidence on mixing. 

The ideas and techniques developed in Chapters 3 through 7 are the most 
basic ones: (1) correct forward-looking reasoning for sequential-move games, 
and (2) equilibrium strategies—pure and mixed—for simultaneous-move 
games. Equipped with these concepts and tools, we can apply them to study 
some broad classes of games and strategies in Chapters 8 through 12.

Chapter 8 studies what happens in games when players are subject to un-
certainty or when they have asymmetric information. We will examine strate-
gies for coping with risk and even for using risk strategically. We will also study 
the important strategies of signaling and screening that are used for manipu-
lating and eliciting information. We will develop the appropriate generaliza-
tion of Nash equilibrium in the context of uncertainty, namely Bayesian Nash 
equilibrium, and show the different kinds of equilibria that can arise. In Chap-
ter 9, we will continue to examine the role of player manipulation in games as we 
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consider strategies that players use to manipulate the rules of a game, by seizing a 
first-mover advantage and making a strategic move. Such moves are of three 
kinds—commitments, threats, and promises. In each case, credibility is essential 
to the success of the move, and we will outline some ways of making such moves 
credible.

In Chapter 10, we will move on to study the best-known game of them 
all—the prisoners’ dilemma. We will study whether and how cooperation can 
be sustained, most importantly in a repeated or ongoing relationship. Then, in 
Chapter 11, we will turn to situations where large populations, rather than pairs 
or small groups of players, interact strategically, games that concern problems 
of collective action. Each person’s actions have an effect—in some instances 
beneficial, in others, harmful—on the others. The outcomes are generally not 
the best from the aggregate perspective of the society as a whole. We will clarify 
the nature of these outcomes and describe some simple policies that can lead 
to better outcomes.

All these theories and applications are based on the supposition that the 
players in a game fully understand the nature of the game and deploy calcu-
lated strategies that best serve their objectives in the game. Such rationally 
 optimal behavior is sometimes too demanding of information and calculating 
power to be believable as a good description of how people really act. There-
fore, Chapter 12 will look at games from a very different perspective. Here, 
the players are not calculating and do not pursue optimal strategies.  Instead, 
each player is tied, as if genetically preordained, to a particular strategy. The 
population is diverse, and different players have different predetermined 
strategies. When players from such a population meet and act out their strat-
egies, which strategies perform better? And if the more successful strategies 
proliferate better in the population, whether through inheritance or imita-
tion, then what will the eventual structure of the population look like? It turns 
out that such evolutionary dynamics often favor exactly those strategies that 
would be used by rational optimizing players. Thus, our study of evolution-
ary games lends useful indirect support to the theories of optimal strategic 
choice and equilibrium that we will have studied in the previous chapters.

In the final group, Chapters 13 through 17, we will take up specific appli-
cations to situations of strategic interactions. Here, we will use as needed the 
ideas and methods from all the earlier chapters. Chapter 13 uses the methods 
developed in Chapter 8 to analyze the strategies that people and firms have to 
use when dealing with others who have some private information. We will il-
lustrate the screening mechanisms that are used for eliciting information—for 
example, the multiple fares with different restrictions that airlines use for separat-
ing the business travelers who are willing to pay more from the tourists who are 
more price sensitive. We will also develop the methods for designing incentive 
payments to elicit effort from workers when direct monitoring is difficult or too 
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costly. Chapter 14 then applies the ideas from Chapter 9 to examine a particu-
larly interesting dynamic version of a threat, known as the strategy of brinkman-
ship. We will elucidate its nature and apply the idea to study the Cuban missile 
crisis of 1962. Chapter 15 is about voting in committees and elections. We will 
look at the variety of voting rules available and some paradoxical results that 
can arise. In addition, we will address the potential for strategic behavior not 
only by voters but also by candidates in a variety of election types.

Chapters 16 and 17 will look at mechanisms for the allocation of valuable 
economic resources: Chapter 16 will treat auctions and Chapter 17 will consider 
bargaining processes. In our discussion of auctions, we will emphasize the roles 
of information and attitudes toward risk in the formulation of optimal strategies 
for both bidders and sellers. We will also take the opportunity to apply the the-
ory to the newest type of  auctions, those that take place online.  Finally, Chapter 
17 will present bargaining in both cooperative and noncooperative settings.

All of these chapters together provide a lot of material; how might readers 
or teachers with more specialized interests choose from it? Chapters 3 through 
7 constitute the core theoretical ideas that are needed throughout the rest of the 
book. Chapters 9 and 10 are likewise important for the general classes of games 
and strategies considered therein. Beyond that, there is a lot from which to pick 
and choose. Section 1 of Chapter 5, Section 7 of Chapter 7, Section 5 of Chapter 
10, and Section 7 of Chapter 12, for example, all consider more advanced top-
ics. These sections will appeal to those with more scientific and quantitative 
backgrounds and interests, but those who come from the social sciences or hu-
manities and have less quantitative background can omit them without loss of 
continuity. Chapter 8 deals with an important topic in that most games in prac-
tice have incomplete and asymmetric information, and the players’ attempts 
to manipulate information is a critical aspect of many strategic interactions. 
However, the concepts and techniques for analyzing information games are in-
herently somewhat more complex. Therefore, some readers and teachers may 
choose to study just the examples that convey the basic ideas of signaling and 
screening and leave out the rest. We have placed this chapter early in Part Three, 
however, in view of the importance of the subject. Chapters 9 and 10 are key to 
understanding many phenomena in the real world, and most teachers will want 
to include them in their courses, but Section 5 of Chapter 10 is mathematically a 
little more advanced and can be omitted. Chapters 11 and 12 both look at games 
with large numbers of players. In Chapter 11, the focus is on social interactions; 
in Chapter 12, the focus is on evolutionary biology. The topics in Chapter 12 
will be of greatest interest to those with interests in biology, but similar themes 
are emerging in the social sciences, and students from that background should 
aim to get the gist of the ideas even if they skip the details. Chapter 13 is most 
important for students of business and organization theories. Chapters 14 and 
15 present topics from political science (international diplomacy and elections, 
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respectively), and Chapters 16 and 17 cover topics from economics (auctions 
and bargaining). Those teaching courses with more specialized audiences may 
choose a subset from Chapters 11 through 17, and indeed expand on the ideas 
considered therein.

Whether you come from mathematics, biology, economics, politics, other 
sciences, or from history or sociology, the theory and examples of strategic 
games will stimulate and challenge your intellect. We urge you to enjoy the sub-
ject even as you are studying or teaching it.

SUMMARY

Strategic games situations are distinguished from individual decision-making 
situations by the presence of significant interactions among the players. Games 
can be classified according to a variety of categories including the timing of play, 
the common or conflicting interests of players, the number of times an interac-
tion occurs, the amount of information available to the players, the type of rules, 
and the feasibility of coordinated action.

Learning the terminology for a game’s structure is crucial for analysis. Play-
ers have strategies that lead to different outcomes with different associated payoffs. 
Payoffs incorporate everything that is important to a player about a game and are 
calculated by using probabilistic averages or expectations if outcomes are random 
or include some risk. Rationality, or consistent behavior, is assumed of all play-
ers, who must also be aware of all of the relevant rules of conduct. Equilibrium 
arises when all players use strategies that are best responses to others’ strategies; 
some classes of games allow learning from experience and the study of dynamic 
movements toward equilibrium. The study of behavior in actual game situations 
provides additional information about the performance of the theory.

Game theory may be used for explanation, prediction, or prescription in 
various circumstances. Although not perfect in any of these roles, the theory 
continues to evolve; the importance of strategic interaction and strategic think-
ing has also become more widely understood and accepted.

KEY TERMS3

asymmetric information (23) equilibrium (32)
constant-sum game (21) evolutionary game (34)
cooperative game (26) expected payoff (29)
decision (18) external uncertainty (23)

k e y  t e r m s   4 1

3 The number in parentheses after each key term is the page on which that term is defined or 
 discussed.
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4 Note to Students: The solutions to the Solved Exercises are found on the Web site wwnorton 
.com/books/games_of_strategy, which is free and open to all.

game (18) sequential moves (20)
imperfect information (23) signal (24)
noncooperative game (26)  signaling (24)
payoff (28) simultaneous moves (20)
perfect information (23) strategic game (18)
rational behavior (30) strategic uncertainty (23)
screening (24) strategy (27)
screening device (24) zero-sum game (21)

SOLVED EXERCISES4

 S1. Determine which of the following situations describe games and which 
describe decisions. In each case, indicate what specific features of the sit-
uation caused you to classify it as you did.

 (a) A group of grocery shoppers in the dairy section, with each shopper 
choosing a flavor of yogurt to purchase

 (b) A pair of teenage girls choosing dresses for their prom
 (c) A college student considering what type of postgraduate education 

to pursue
 (d) The New York Times and the Wall Street Journal choosing the prices 

for their online subscriptions this year
 (e) A presidential candidate picking a running mate

 S2. Consider the strategic games described below. In each case, state how 
you would classify the game according to the six dimensions outlined in 
the text. (i) Are moves sequential or simultaneous? (ii) Is the game zero-
sum or not? (iii) Is the game repeated? (iv) Is there imperfect informa-
tion, and if so, is there incomplete (asymmetric) information? (v) Are the 
rules fixed or not? (vi) Are cooperative agreements possible or not? If you 
do not have enough information to classify a game in a particular dimen-
sion, explain why not.

 (a) Rock-Paper-Scissors : On the count of three, each player makes the 
shape of one of the three items with his hand. Rock beats Scissors, 
Scissors beats Paper, and Paper beats Rock.

 (b) Roll-call voting : Voters cast their votes orally as their names are 
called. The choice with the most votes wins.

 (c) Sealed-bid auction : Bidders on a bottle of wine seal their bids in en-
velopes. The highest bidder wins the item and pays the amount of 
his bid.
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 S3. “A game player would never prefer an outcome in which every player 
gets a little profit to an outcome in which he gets all the available profit.” 
Is this statement true or false? Explain why in one or two sentences.

 S4. You and a rival are engaged in a game in which there are three possible 
outcomes: you win, your rival wins (you lose), or the two of you tie. You 
get a payoff of 50 if you win, a payoff of 20 if you tie, and a payoff of 0 if 
you lose. What is your expected payoff in each of the following situations?

 (a) There is a 50% chance that the game ends in a tie, but only a 10% 
chance that you win. (There is thus a 40% chance that you lose.)

 (b) There is a 50–50 chance that you win or lose. There are no ties.
 (c) There is an 80% chance that you lose, a 10% chance that you win, 

and a 10% chance that you tie.

 S5. Explain the difference between game theory’s use as a predictive tool and 
its use as a prescriptive tool. In what types of real-world settings might 
these two uses be most important?

UNSOLVED EXERCISES

 U1. Determine which of the following situations describe games and which 
describe decisions. In each case, indicate what specific features of the sit-
uation caused you to classify it as you did.

 (a) A party nominee for president of the United States must choose 
whether to use private financing or public financing for her  
campaign.

 (b) Frugal Fred receives a $20 gift card for downloadable music and 
must choose whether to purchase individual songs or whole albums.

 (c) Beautiful Belle receives 100 replies to her online dating profile and 
must choose whether to reply to each of them.

 (d) NBC chooses how to distribute its television shows online this sea-
son. The executives consider Amazon.com, iTunes, and/or NBC.
com. The fee they might pay to Amazon or to iTunes is open to  
negotiation.

 (e) China chooses a level of tariffs to apply to American imports.

 U2. Consider the strategic games described below. In each case, state how 
you would classify the game according to the six dimensions outlined in 
the text. (i) Are moves sequential or simultaneous? (ii) Is the game zero-
sum or not? (iii) Is the game repeated? (iv) Is there imperfect informa-
tion, and if so, is there incomplete (asymmetric) information? (v) Are the 
rules fixed or not? (vi) Are cooperative agreements possible or not? If you 
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do not have enough information to classify a game in a particular dimen-
sion, explain why not.

 (a) Garry and Ross are sales representatives for the same company. 
Their manager informs them that of the two of them, whoever sells 
more this year wins a Cadillac.

 (b) On the game show The Price Is Right, four contestants are asked 
to guess the price of a television set. Play starts with the leftmost 
player, and each player’s guess must be different from the guesses of 
the previous players. The person who comes closest to the real price, 
without going over it, wins the television set.

 (c) Six thousand players each pay $10,000 to enter the World Series of 
Poker. Each starts the tournament with $10,000 in chips, and they 
play No  -Limit Texas Hold ’Em (a type of poker) until someone wins 
all the chips. The top 600 players each receive prize money ac-
cording to the order of finish, with the winner receiving more than 
$8,000,000.

 (d) Passengers on Desert Airlines are not assigned seats; passengers 
choose seats once they board. The airline assigns the order of board-
ing according to the time the passenger checks in, either on the Web 
site up to 24 hours before takeoff or in person at the airport.

 U3. “Any gain by the winner must harm the loser.” Is this statement true or 
false? Explain your reasoning in one or two sentences.

 U4. Alice, Bob, and Confucius are bored during recess, so they decide to play 
a new game. Each of them puts a dollar in the pot, and each tosses a 
quarter. Alice wins if the coins land all heads or all tails. Bob wins if two 
heads and one tail land, and Confucius wins if one head and two tails 
land. The quarters are fair, and the winner receives a net payment of  
$2 ($3 2 $1 5 $2), and the losers lose their $1.

 (a) What is the probability that Alice will win and the probability that 
she will lose?

 (b) What is Alice’s expected payoff?
 (c) What is the probability that Confucius will win and the probability 

that he will lose?
 (d) What is Confucius’ expected payoff?
 (e) Is this a zero-sum game? Please explain your answer.

 U5. “When one player surprises another, this indicates that the players did 
not have common knowledge of the rules.” Give an example that illus-
trates this statement, and give a counterexample that shows that the 
statement is not always true.
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33
■

Games with Sequential Moves

Sequential-move games entail strategic situations in which there is a strict 
order of play. Players take turns making their moves, and they know what 
the players who have gone before them have done. To play well in such 
a game, participants must use a particular type of interactive thinking. 

Each player must consider how her opponent will respond if she makes a par-
ticular move. Whenever actions are taken, players need to think about how their 
current actions will influence future actions, both for their rivals and for them-
selves. Players thus decide their current moves on the basis of calculations of 
future consequences.

Most actual games combine aspects of both sequential- and simultaneous-move 
situations. But the concepts and methods of analysis are more easily understood 
if they are first developed separately for the two pure cases. Therefore, in this 
chapter, we study purely sequential games. Chapters 4 and 5 deal with purely si-
multaneous games, and Chapter 6 and parts of Chapter 7 show how to combine 
the two types of analysis in more realistic mixed situations. The analysis pre-
sented here can be used whenever a game includes sequential decision mak-
ing. Analysis of sequential games also provides information about when it is to 
a player’s advantage to move first and when it is better to move second. Players 
can then devise ways, called strategic moves, to manipulate the order of play to 
their advantage. The analysis of such moves is the focus of Chapter 9.
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1 GAME TREES

We begin by developing a graphical technique for displaying and analyzing 
 sequential-move games, called a game tree. This tree is referred to as the exten-
sive form of a game. It shows all the component parts of the game that we intro-
duced in Chapter 2: players, actions, and payoffs.

You have probably come across decision trees in other contexts. Such trees 
show all the successive decision points, or nodes, for a single decision maker in a 
neutral environment. Decision trees also include branches corresponding to the 
available choices emerging from each node. Game trees are just joint decision trees 
for all of the players in a game. The trees illustrate all of the possible actions that can 
be taken by all of the players and indicate all of the possible outcomes of the game.

A. Nodes, Branches, and Paths of Play

Figure 3.1 shows the tree for a particular sequential game. We do not supply a 
story for this game, because we want to omit circumstantial details and help 
you focus on general concepts. Our game has four players: Ann, Bob, Chris, and 
Deb. The rules of the game give the first move to Ann; this is shown at the leftmost 
point, or node, which is called the initial node or root of the game tree. At this 
node, which may also be called an action node or decision node, Ann has two 
choices available to her. Ann’s possible choices are labeled “Stop” and “Go” (re-
member that these labels are abstract and have no necessary significance) and 
are shown as branches emerging from the initial node.

If Ann chooses “Stop,” then it will be Bob’s turn to move. At his action node, 
he has three available choices labeled 1, 2, and 3. If Ann chooses “Go,” then Chris 
gets the next move, with choices “Risky” and “Safe.” Other nodes and branches 
follow successively, and rather than list them all in words, we draw your atten-
tion to a few prominent features.

If Ann chooses “Stop” and then Bob chooses 1, Ann gets another turn, with 
new choices, “Up” and “Down.” It is quite common in actual sequential-move 
games for a player to get to move several times and to have her available moves 
differ at different turns. In chess, for example, two players make alternate moves; 
each move changes the board and therefore the available moves are changed at 
subsequent turns.

B. Uncertainty and “Nature’s Moves”

If Ann chooses “Go” and then Chris chooses “Risky,” something happens at 
 random—a fair coin is tossed and the outcome of the game is determined by 
whether that coin comes up “heads” or “tails.” This aspect of the game is an 
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example of external uncertainty and is handled in the tree by introducing an 
outside player called “Nature.” Control over the random event is ceded to the 
player known as Nature, who chooses, as it were, one of two branches, each with 
50% probability. The probabilities here are fixed by the type of random event, a 
coin toss, but could vary in other circumstances; for example, with the throw of 
a die, Nature could specify six possible outcomes, each with 162‒3% probability. 
Use of the player Nature allows us to introduce external uncertainty in a game 
and gives us a mechanism to allow things to happen that are outside the control 
of any of the actual players.

You can trace a number of different paths through the game tree by follow-
ing successive branches. In Figure 3.1, each path leads you to an end point of 
the game after a finite number of moves. An end point is not a necessary feature 
of all games; some may in principle go on forever. But most applications that we 
will consider are finite games.

g a m e  t r e e s   4 9
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Figure 3.1  an illustrative game tree
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C. Outcomes and Payoffs

At the last node along each path, called a terminal node, no player has another 
move. (Note that terminal nodes are thus distinguished from action nodes.) In-
stead, we show the outcome of that particular sequence of actions, as measured 
by the payoffs for the players. For our four players, we list the payoffs in order 
(Ann, Bob, Chris, Deb). It is important to specify which payoff belongs to which 
player. The usual convention is to list payoffs in the order in which the players 
make the moves. But this method may sometimes be ambiguous; in our exam-
ple, it is not clear whether Bob or Chris should be said to have the second move. 
Thus, we have used alphabetical order. Further, we have color-coded every-
thing so that Ann’s name, choices, and payoffs are all in black; Bob’s in dark blue; 
Chris’s in gray; and Deb’s in light blue. When drawing trees for any games that 
you analyze, you can choose any specific convention you like, but you should 
state and explain it clearly for the reader.

The payoffs are numerical, and generally for each player a higher number 
means a better outcome. Thus, for Ann, the outcome of the bottommost path 
(payoff 3) is better than that of the topmost path (payoff 2) in Figure 3.1. But 
there is no necessary comparability across players. Thus there is no necessary 
sense in which, at the end of the topmost path, Bob (payoff 7) does better than 
Ann (payoff 2). Sometimes, if payoffs are dollar amounts, for example, such in-
terpersonal comparisons may be meaningful.

Players use information about payoffs when deciding among the various 
actions available to them. The inclusion of a random event (a choice made by 
Nature) means that players need to determine what they get on average when 
Nature moves. For example, if Ann chooses “Go” at the game’s first move, Chris 
may then choose “Risky,” giving rise to the coin toss and Nature’s “choice” of 
“Good” or “Bad.” In this situation, Ann could anticipate a payoff of 6 half the 
time and a payoff of 2 half the time, or a statistical average or expected payoff of 
4  (0.5  6)  (0.5  2).

D. Strategies

Finally, we use the tree in Figure 3.1 to explain the concept of a strategy. A sin-
gle action taken by a player at a node is called a move. But players can, do, and 
should make plans for the succession of moves that they expect to make in all of 
the various eventualities that might arise in the course of a game. Such a plan of 
action is called a strategy.

In this tree, Bob, Chris, and Deb each get to move at most once; Chris, for ex-
ample, gets a move only if Ann chooses “Go” on her first move. For them, there is 
no distinction between a move and a strategy. We can qualify the move by speci-
fying the contingency in which it gets made; thus, a strategy for Bob might be, 
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“Choose 1 if Ann has chosen Stop.” But Ann has two opportunities to move, so 
her strategy needs a fuller specification. One strategy for her is, “Choose Stop, 
and then if Bob chooses 1, choose Down.”

In more complex games such as chess, where there are long sequences of 
moves with many choices available at each, descriptions of strategies get very 
complicated; we consider this aspect in more detail later in this chapter. But the 
general principle for constructing strategies is simple, except for one peculiarity. 
If Ann chooses “Go” on her first move, she never gets to make a second move. 
Should a strategy in which she chooses “Go” also specify what she would do in 
the hypothetical case in which she somehow found herself at the node of her 
second move? Your first instinct may be to say no, but formal game theory says 
yes, and for two reasons.

First, Ann’s choice of “Go” at the first move may be influenced by her consid-
eration of what she would have to do at her second move if she were to choose 
“Stop” originally instead. For example, if she chooses “Stop,” Bob may then 
choose 1; then Ann gets a second move, and her best choice would be “Up,” giv-
ing her a payoff of 2. If she chooses “Go” on her first move, Chris would choose 
“Safe” (because his payoff of 3 from “Safe” is better than his expected payoff 
of 1.5 from “Risky”), and that outcome would yield Ann a payoff of 3. To make 
this thought process clearer, we state Ann’s strategy as, “Choose ‘Go’ at the first 
move, and choose ‘Up’ if the next move arises.”

The second reason for this seemingly pedantic specification of strategies 
has to do with the stability of equilibrium. When considering stability, we ask 
what would happen if players’ choices were subjected to small disturbances. 
One such disturbance is that players make small mistakes. If choices are made 
by pressing a key, for example, Ann may intend to press the “Go” key, but there 
is a small probability that her hand may tremble and she may press the “Stop” 
key instead. In such a setting, it is important to specify how Ann will follow up 
when she discovers her error because Bob chooses 1 and it is Ann’s turn to move 
again. More advanced levels of game theory require such stability analyses, and 
we want to prepare you for that by insisting on your specifying strategies as such 
complete plans of action right from the beginning.

E. Tree Construction

Now we sum up the general concepts illustrated by the tree of Figure 3.1. Game 
trees consist of nodes and branches. Nodes are connected to one another by the 
branches and come in two types. The first node type is called a decision node. 
Each decision node is associated with the player who chooses an action at that 
node; every tree has one decision node that is the game’s initial node, the start-
ing point of the game. The second type of node is called a terminal node. Each 
terminal node has associated with it a set of outcomes for the players taking part 
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in the game; these outcomes are the payoffs received by each player if the game 
has followed the branches that lead to this particular terminal node.

The branches of a game tree represent the possible actions that can be taken 
from any decision node. Each branch leads from a decision node on the tree ei-
ther to another decision node, generally for a different player, or to a terminal 
node. The tree must account for all of the possible choices that could be made 
by a player at each node; so some game trees include branches associated with 
the choice “Do nothing.” There must be at least one branch leading from each 
decision node, but there is no maximum. Every decision node can have only one 
branch leading to it, however.

Game trees are often drawn from left to right across a page. However, game 
trees can be drawn in any orientation that best suits the game at hand: bottom 
up, sideways, top down, or even radially outward from a center. The tree is a 
metaphor, and the important feature is the idea of successive branching, as de-
cisions are made at the tree nodes.

2 SOLVING GAMES BY USING TREES

We illustrate the use of trees in finding equilibrium outcomes of sequential-move 
games in a very simple context that many of you have probably  confronted—
whether to smoke. This situation and many other similar one-player strategic sit-
uations can be described as games if we recognize that future choices are made 
by the player’s future self, who will be subject to different influences and will 
have different views about the ideal outcome of the game.

Take, for example, a teenager named Carmen who is deciding whether to 
smoke. First, she has to decide whether to try smoking at all. If she does try it, 
she has the further decision of whether to continue. We illustrate this example 
as a simple decision in the tree of Figure 3.2.

The nodes and the branches are labeled with Carmen’s available choices, 
but we need to explain the payoffs. Choose the outcome of never smoking at 
all as the standard of reference, and call its payoff 0. There is no special signifi-
cance to the number 0 in this context; all that matters for comparing outcomes, 
and thus for Carmen’s decision, is whether this payoff is bigger or smaller than 
the others. Suppose Carmen best likes the outcome in which she tries smoking 
for a while but does not continue. The reason may be that she just likes to have 
experienced many things firsthand or so that she can more convincingly be able 
to say “I have been there and know it to be a bad situation” when she tries in 
the future to dissuade her children from smoking. Give this outcome the payoff 
1. The outcome in which she tries smoking and then continues is the worst.  
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Leaving aside the long-term health hazards, there are immediate problems—her 
hair and clothes will smell bad, and her friends will avoid her. Give this outcome 
the payoff 1. Carmen’s best choice then seems clear—she should try smoking 
but she should not continue.

However, this analysis ignores the problem of addiction. Once Carmen has 
tried smoking for a while, she develops different tastes, as well as different pay-
offs. The decision of whether to continue will be made not by “Today’s Carmen” 
with today’s assessment of outcomes as shown in Figure 3.2, but by “Future Car-
men,” who makes a different ranking of the alternatives available in the future. 
When she makes her choice today, she has to look ahead to this consequence 
and factor it into her current decision, which she should make on the basis of 
her current preferences. In other words, the choice problem concerning smok-
ing is not really a decision in the sense explained in Chapter 2—a choice made 
by a single person in a neutral environment—but a game in the technical sense 
also explained in Chapter 2, where the other player is Carmen’s future self with 
her own distinct preferences. When Today’s Carmen makes her decision, she has 
to play against Future Carmen.

We convert the decision tree of Figure 3.2 into a game tree in Figure 3.3 by 
distinguishing between the two players who make the choices at the two nodes. 
At the initial node, Today’s Carmen decides whether to try smoking. If her deci-
sion is to try, then the addicted Future Carmen comes into being and chooses 
whether to continue. We show the healthy, nonpolluting Today’s Carmen, her 
actions, and her payoffs in blue and the addicted Future Carmen, her actions, 
and her payoffs in black, the color that her lungs have become. The payoffs of 
Today’s Carmen are as before. But Future Carmen will enjoy continuing to 
smoke and will suffer terrible withdrawal symptoms if she does not continue. 
Let Future Carmen’s payoff from “Continue” be 1 and that from “Not” be 1.

Given the preferences of the addicted Future Carmen, she will choose 
“Continue” at her decision node. Today’s Carmen should look ahead to this 
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prospect and fold it into her current decision, recognizing that the choice to 
try smoking will inevitably lead to continuing to smoke. Even though Today’s 
Carmen does not want to continue to smoke in the future, given her preferences 
today, she will not be able to implement her currently preferred choice at the 
future time because Future Carmen, who has different preferences, will make 
that choice. So Today’s Carmen should foresee that the choice “Try” will lead to 
“Continue” and get her the payoff 1 as judged by her today, whereas the choice 
“Not” will get her the payoff 0. So she should choose the latter.

This argument is shown more formally and with greater visual effect in Fig-
ure 3.4. In Figure 3.4a, we cut off, or prune, the branch “Not” emerging from the 
second node. This pruning corresponds to the fact that Future Carmen, who 
makes the choice at that node, will not choose the action associated with that 
branch, given her preferences as shown in black.

The tree that remains has two branches emerging from the first node where 
Today’s Carmen makes her choice; each of these branches now leads directly to 
a terminal node. The pruning allows Today’s Carmen to forecast completely the 
eventual consequence of each of her choices. “Try” will be followed by “Con-
tinue” and yield a payoff 1, as measured in the preferences of Today’s Carmen, 
while “Not” will yield 0. Carmen’s choice today should then be “Not” rather than 
“Try.” Therefore, we can prune the “Try” branch emerging from the first node 
(along with its foreseeable continuation). This pruning is done in Figure 3.4b. 
The tree shown there is now “fully pruned,” leaving only one branch emerging 
from the initial node and leading to a terminal node. Following the only remain-
ing path through the tree shows what will happen in the game when all players 
make their best choices with correct forecasting of all future consequences.

In pruning the tree in Figure 3.4, we crossed out the branches not chosen. 
Another equivalent but alternative way of showing player choices is to “highlight” 
the branches that are chosen. To do so, you can place check marks or arrow-
heads on these branches or show them as thicker lines. Any one method will 
do; Figure 3.5 shows them all. You can choose whether to prune or to highlight, 
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Figure 3.5  showing branch selection on the tree of the smoking game
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but the latter, especially in its arrowhead form, has some advantages. First, it 
produces a cleaner picture. Second, the mess of the pruning picture sometimes 
does not clearly show the order in which various branches were cut. For ex-
ample, in Figure 3.4b, a reader may get confused and incorrectly think that the 
“Continue” branch at the second node was cut first and that the “Try” branch at 
the first node followed by the “Not” branch at the second node were cut next. Fi-
nally, and most important, the arrowheads show the outcome of the sequence of 
optimal choices most visibly as a continuous link of arrows from the initial node 
to a terminal node. Therefore, in subsequent diagrams of this type, we generally 
use arrows instead of pruning. When you draw game trees, you should practice 
showing both methods for a while; when you are comfortable with trees, you 
can choose either to suit your taste.

No matter how you display your thinking in a game tree, the logic of the 
analysis is the same and is important. You must start your analysis by consider-
ing those action nodes that lead directly to terminal nodes. The optimal choices 
for a player moving at such a node can be found immediately by comparing 
her payoffs at the relevant terminal nodes. With the use of these end-of-game 
choices to forecast consequences of earlier actions, the choices at nodes just 
preceding the final decision nodes can be determined. Then the same can be 
done for the nodes before them, and so on. By working backward along the tree 
in this way, you can solve the whole game.

This method of looking ahead and reasoning back to determine behavior in 
sequential-move games is known as rollback. As the name suggests, using rollback 
requires starting to think about what will happen at all the terminal nodes and lit-
erally “rolling back” through the tree to the initial node as you do your analysis. Be-
cause this reasoning requires working backward one step at a time, the method is 
also called backward induction. We use the term rollback because it is simpler and 
becoming more widely used, but other sources on game theory will use the older 
term backward induction. Just remember that the two are equivalent.

When all players do rollback analysis to choose their optimal strategies, we 
call this set of strategies the rollback equilibrium of the game; the outcome that 
arises from playing these strategies is the rollback equilibrium outcome. More 
advanced game theory texts refer to this concept as subgame perfect equilib-
rium, and your instructor may prefer to use that term. We provide more formal 
explanation and analysis of subgame perfect equilibrium in Chapter 6, but we 
generally prefer the simpler and more intuitive term rollback equilibrium. Game 
theory predicts this outcome as the equilibrium of a sequential game in which 
all players are rational calculators in pursuit of their respective best payoffs. 
Later in this chapter, we will address how well this prediction is borne out in 
practice. For now, you should know that all finite sequential-move games pre-
sented in this book have at least one rollback equilibrium. In fact, most have ex-
actly one. Only in exceptional cases where a player gets equal payoffs from two 
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or more different sets of moves, and is therefore indifferent between them, will 
games have more than one rollback equilibrium.

In the smoking game, the rollback equilibrium is where Today’s Carmen 
chooses the strategy “Not” and Future Carmen chooses the strategy “Continue.” 
When Today’s Carmen takes her optimal action, the addicted Future Carmen 
does not come into being at all and therefore gets no actual opportunity to 
move. But Future Carmen’s shadowy presence and the strategy that she would 
choose if Today’s Carmen chose “Try” and gave her an opportunity to move are 
important parts of the game. In fact, they are instrumental in determining the 
optimal move for Today’s Carmen.

We introduced the ideas of the game tree and rollback analysis in a very 
simple example, where the solution was obvious from verbal argument. Now we 
proceed to use the ideas in successively more complex situations, where verbal 
analysis becomes harder to conduct and the visual analysis with the use of the 
tree becomes more important.

3 ADDING MORE PLAYERS

The techniques developed in Section 2 in the simplest setting of two players 
and two moves can be readily extended. The trees get more complex, with more 
branches, nodes, and levels, but the basic concepts and the method of rollback 
remain unchanged. In this section, we consider a game with three players, each 
of whom has two choices; with slight variations, this game reappears in many 
subsequent chapters.

The three players, Emily, Nina, and Talia, all live on the same small street. 
Each has been asked to contribute toward the creation of a flower garden where 
their small street intersects with the main highway. The ultimate size and splen-
dor of the garden depends on how many of them contribute. Furthermore, al-
though each player is happy to have the garden—and happier as its size and 
splendor increase—each is reluctant to contribute because of the cost that she 
must incur to do so.

Suppose that, if two or all three contribute, there will be sufficient resources 
for the initial planting and subsequent maintenance of the garden; it will then 
be quite attractive and pleasant. However, if one or none contribute, it will be 
too sparse and poorly maintained to be pleasant. From each player’s perspec-
tive, there are thus four distinguishable outcomes:

• She does not contribute, but both of the others do (resulting in a pleasant 
garden and saving the cost of her own contribution).

• She contributes, and one or both of the others do as well (resulting in a 
pleasant garden, but incurring the cost of her own contribution).
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• She does not contribute, and only one or neither of the others does (re-
sulting in a sparse garden, but saving the cost of her own contribution).

• She contributes, but neither of the others does (resulting in a sparse gar-
den and incurring the cost of her own contribution).

Of these outcomes, the one listed at the top is clearly the best and the one 
listed at the bottom is clearly the worst. We want higher payoff numbers to in-
dicate outcomes that are more highly regarded, so we give the top outcome 
the payoff 4 and the bottom one the payoff 1. (Sometimes payoffs are associ-
ated with an outcome’s rank order, so, with four outcomes, 1 would be best and 
4 worst, and smaller numbers would denote more preferred outcomes. When 
reading, you should carefully note which convention the author is using; when 
writing, you should carefully state which convention you are using.)

There is some ambiguity about the two middle outcomes. Let us suppose 
that each player regards a pleasant garden more highly than her own contribu-
tion. Then the outcome listed second gets payoff 3, and the outcome listed third 
gets payoff 2.

Suppose the players move sequentially. Emily has the first move, and 
chooses whether to contribute. Then, after observing what Emily has chosen, 
Nina chooses between contributing and not contributing. Finally, having ob-
served what Emily and Nina have chosen, Talia makes a similar choice.1

Figure 3.6 shows the tree for this game. We have labeled the action nodes for 
easy reference. Emily moves at the initial node, a, and the branches corresponding 
to her two choices, Contribute and Don’t, respectively, lead to nodes b and c. At 
each of these nodes, Nina gets to move and to choose between Contribute and 
Don’t. Her choices lead to nodes d, e, f, and g, at each of which Talia gets to move. 
Her choices lead to eight terminal nodes, where we show the payoffs in order 
(Emily, Nina, Talia).2 For example, if Emily contributes, then Nina does not, and 
finally Talia does, then the garden is pleasant, and the two contributors each get 
payoffs 3, while the noncontributor gets her top outcome with payoff 4; in this 
case, the payoff list is (3, 4, 3).

To apply rollback analysis to this game, we begin with the action nodes 
that come immediately before the terminal nodes—namely, d, e, f, and g. Talia 
moves at each of these nodes. At d, she faces the situation where both Emily and 
Nina have contributed. The garden is already assured to be pleasant; so, if Talia 
chooses Don’t, she gets her best outcome, 4, whereas, if she chooses Contrib-
ute, she gets the next best, 3. Her preferred choice at this node is Don’t. We show 

1 In later chapters, we vary the rules of this game—the order of moves and payoffs—and examine 
how such variation changes the outcomes.
2 Recall from the discussion of the general tree in Section 1 that the usual convention for  
sequential-move games is to list payoffs in the order in which the players move; however, in case 
of ambiguity or simply for clarity, it is good practice to specify the order explicitly.
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this preference both by thickening the branch for Don’t and by adding an ar-
rowhead; either one would suffice to illustrate Talia’s choice. At node e, Emily 
has contributed and Nina has not; so Talia’s contribution is crucial for a pleasant 
garden. Talia gets the payoff 3 if she chooses Contribute and 2 if she chooses 
Don’t. Her preferred choice at e is Contribute. You can check Talia’s choices at 
the other two nodes similarly.

Now we roll back the analysis to the preceding stage—namely, nodes b and 
c, where it is Nina’s turn to choose. At b, Emily has contributed. Nina’s reason-
ing now goes as follows: “If I choose Contribute, that will take the game to node 
d, where I know that Talia will choose Don’t, and my payoff will be 3. (The gar-
den will be pleasant, but I will have incurred the cost of my contribution.) If I 
choose Don’t, the game will go to node e, where I know that Talia will choose 
Contribute, and I will get a payoff of 4. (The garden will be pleasant, and I will 
have saved the cost of my contribution.) Therefore I should choose Don’t.” Simi-
lar reasoning shows that at c, Nina will choose Contribute.

Finally, consider Emily’s choice at the initial node, a. She can foresee the 
subsequent choices of both Nina and Talia. Emily knows that, if she chooses 
Contribute, these later choices will be Don’t for Nina and Contribute for Talia. 
With two contributors, the garden will be pleasant but Emily will have incurred a 
cost; so her payoff will be 3. If Emily chooses Don’t, then the subsequent choices 
will both be Contribute, and, with a pleasant garden and no cost of her own con-
tribution, Emily’s payoff will be 4. So her preferred choice at a is Don’t.
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The result of rollback analysis for this street–garden game is now easily 
summarized. Emily will choose Don’t, then Nina will choose Contribute, and 
finally Talia will choose Contribute. These choices trace a particular path of 
play through the tree—along the lower branch from the initial node, a, and then 
along the upper branches at each of the two subsequent nodes reached, c and 
f. In Figure 3.6, the path of play is easily seen as the continuous sequence of ar-
rowheads joined tail to tip from the initial node to the terminal node fifth from 
the top of the tree. The payoffs that accrue to the players are shown at this ter-
minal node.

Rollback analysis is simple and appealing. Here, we emphasize some fea-
tures that emerge from it. First, notice that the equilibrium path of play of a 
sequential-move game misses most of the branches and nodes. Calculating the 
best actions that would be taken if these other nodes were reached, however, is 
an important part of determining the ultimate equilibrium. Choices made early 
in the game are affected by players’ expectations of what would happen if they 
chose to do something other than their best actions and by what would hap-
pen if any opposing player chose to do something other than what was best for 
her. These expectations, based on predicted actions at out-of-equilibrium nodes 
(nodes associated with branches pruned in the process of rollback), keep play-
ers choosing optimal actions at each node. For instance, Emily’s optimal choice 
of Don’t at the first move is governed by the knowledge that, if she chose Con-
tribute, then Nina would choose Don’t, followed by Talia choosing Contribute; 
this sequence would give Emily the payoff 3, instead of the 4 that she can get by 
choosing Don’t at the first move.

The rollback equilibrium gives a complete statement of all this analysis by 
specifying the optimal strategy for each player. Recall that a strategy is a com-
plete plan of action. Emily moves first and has just two choices, so her strategy 
is quite simple and is effectively the same thing as her move. But Nina, mov-
ing second, acts at one of two nodes, at one if Emily has chosen Contribute and 
at the other if Emily has chosen Don’t. Nina’s complete plan of action has to 
specify what she would do in either case. One such plan, or strategy, might be 
“choose Contribute if Emily has chosen Contribute, choose Don’t if Emily has 
chosen Don’t.” We know from our rollback analysis that Nina will not choose 
this strategy, but our interest at this point is in describing all the available strate-
gies from which Nina can choose within the rules of the game. We can abbrevi-
ate and write C for Contribute and D for Don’t; then this strategy can be written 
as “C if Emily chooses C so that the game is at node b, D if Emily chooses D so 
that the game is at node c,” or, more simply, “C at b, D at c,” or even “CD” if 
the circumstances in which each of the stated actions is taken are evident or 
previously explained. Now it is easy to see that, because Nina has two choices 
available at each of the two nodes where she might be acting, she has available 
to her four plans, or strategies—“C at b, C at c,” “C at b, D at c,” “D at b, C at c,” 
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and “D at b, D at c,” or “CC,” “CD,” “DC,” and “DD.” Of these strategies, the 
rollback analysis and the arrows at nodes b and c of Figure 3.6 show that her 
optimal strategy is “DC.”

Matters are even more complicated for Talia. When her turn comes, the his-
tory of play can, according to the rules of the game, be any one of four possibilities. 
Talia’s turn to act comes at one of four nodes in the tree, one after Emily has chosen 
C and Nina has chosen C (node d), the second after Emily’s C and Nina’s D (node 
e), the third after Emily’s D and Nina’s C (node f ), and the fourth after both Emily 
and Nina choose D (node g). Each of Talia’s strategies, or complete plans of action, 
must specify one of her two actions for each of these four scenarios, or one of her 
two actions at each of her four possible action nodes. With four nodes at which to 
specify an action and with two actions from which to choose at each node, there 
are 2  2  2  2, or 16 possible combinations of actions. So Talia has available to 
her 16 possible strategies. One of them could be written as

 “C at d, D at e, D at f, C at g” or “CDDC” for short,

where we have fixed the order of the four scenarios (the histories of moves by 
Emily and Nina) in the order of nodes d, e, f, and g. Then, with the use of the 
same abbreviation, the full list of 16 strategies available to Talia is

 CCCC, CCCD, CCDC, CCDD, CDCC, CDCD, CDDC, CDDD,
 DCCC, DCCD, DCDC, DCDD, DDCC, DDCD, DDDC, DDDD.

Of these strategies, the rollback analysis of Figure 3.6 and the arrows at nodes d, 
e, f, and g show that Talia’s optimal strategy is DCCD.

Now we can express the findings of our rollback analysis by stating the strat-
egy choices of each player—Emily chooses D from the two strategies available to 
her, Nina chooses DC from the four strategies available to her, and Talia chooses 
DCCD from the sixteen strategies available to her. When each player looks ahead 
in the tree to forecast the eventual outcomes of her current choices, she is cal-
culating the optimal strategies of the other players. This configuration of strate-
gies, D for Emily, DC for Nina, and DCCD for Talia, then constitutes the rollback 
equilibrium of the game.

We can put together the optimal strategies of the players to find the ac-
tual path of play that will result in the rollback equilibrium. Emily will begin by 
choosing D. Nina, following her strategy DC, chooses the action C in response 
to Emily’s D. (Remember that Nina’s DC means “choose D if Emily has played C, 
and choose C if Emily has played D.”) According to the convention that we have 
adopted, Talia’s actual action after Emily’s D and then Nina’s C—from node f—is 
the third letter in the four-letter specification of her strategies. Because Talia’s 
optimal strategy is DCCD, her action along the path of play is C. Thus the actual 
path of play consists of Emily playing D, followed successively by Nina and Talia 
playing C.

a D D i n g  m o r e  P l ay e r s   6 1
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To sum up, we have three distinct concepts:

 1. The lists of available strategies for each player. The list, especially for later 
players, may be very long, because their actions in situations correspond-
ing to all conceivable preceding moves by other players must be specified.

 2. The optimal strategy, or complete plan of action for each player. This 
strategy must specify the player’s best choices at each node where the 
rules of the game specify that she moves, even though many of these 
nodes will never be reached in the actual path of play. This specification 
is in effect the preceding movers’ forecasting of what would happen if 
they took different actions and is therefore an important part of their cal-
culation of their own best actions at the earlier nodes. The optimal strate-
gies of all players together yield the rollback equilibrium.

 3. The actual path of play in the rollback equilibrium, found by putting to-
gether the optimal strategies for all the players.

4 ORDER ADVANTAGES

In the rollback equilibrium of the street–garden game, Emily gets her best out-
come (payoff 4), because she can take advantage of the opportunity to make 
the first move. When she chooses not to contribute, she puts the onus on the 
other two players—each can get her next-best outcome if and only if both of 
them choose to contribute. Most casual thinkers about strategic games have 
the preconception that such a first-mover advantage should exist in all games. 
However, that is not the case. It is easy to think of games in which an oppor-
tunity to move second is an advantage. Consider the strategic interaction be-
tween two firms that sell similar merchandise from catalogs—say, Land’s End 
and L.L. Bean. If one firm had to release its catalog first, and then the second 
firm could see what prices the first had set before printing its own catalog, then 
the second mover could undercut its rival on all items and gain a tremendous 
competitive edge.

First-mover advantage comes from the ability to commit oneself to an ad-
vantageous position and to force the other players to adapt to it; second-mover 
advantage comes from the flexibility to adapt oneself to the others’ choices. 
Whether commitment or flexibility is more important in a specific game de-
pends on its particular configuration of strategies and payoffs; no generally valid 
rule can be laid down. We will come across examples of both kinds of advan-
tages throughout this book. The general point that there need not be first-mover 
advantage, a point that runs against much common perception, is so important 
that we felt it necessary to emphasize at the outset.

6841D CH03 UG.indd   62 12/18/14   3:10 PM



When a game has a first- or second-mover advantage, each player may try to 
manipulate the order of play so as to secure for herself the advantageous posi-
tion. Tactics for such manipulation are strategic moves, which we consider in 
Chapter 9.

5 ADDING MORE MOVES

We saw in Section 3 that adding more players increases the complexity of the 
analysis of sequential-play games. In this section, we consider another type of 
complexity that arises from adding additional moves to the game. We can do so 
most simply in a two-person game by allowing players to alternate moves more 
than once. Then the tree is enlarged in the same fashion as a multiple-player 
game tree would be, but later moves in the tree are made by the players who 
have made decisions earlier in the same game.

Many common games, such as tic-tac-toe, checkers, and chess, are two-person 
strategic games with such alternating sequential moves. The use of game trees 
and rollback should allow us to “solve” such games—to determine the rollback 
equilibrium outcome and the equilibrium strategies leading to that outcome. 
Unfortunately, as the complexity of the game grows and as strategies become 
more and more intricate, the search for an optimal solution becomes more and 
more difficult as well. In such cases, when manual solution is no longer really 
feasible, computer routines such as Gambit, mentioned in Chapter 2, become 
useful.

A. Tic-Tac-Toe

Start with the most simple of the three examples mentioned in the preceding 
paragraph, tic-tac-toe, and consider an easier-than-usual version in which two 
players (X and O) each try to be the first to get two of their symbols to fill any 
row, column, or diagonal of a two-by-two game board. The first player has four 
possible actions or positions in which to put her X. The second player then has 
three possible actions at each of four decision nodes. When the first player gets 
to her second turn, she has two possible actions at each of 12 (4  3) decision 
nodes. As Figure 3.7 shows, even this mini-game of tic-tac-toe has a very com-
plex game tree. This tree is actually not too complex because the game is guar-
anteed to end after the first player moves a second time, but there are still 24 
terminal nodes to consider.

We show this tree merely as an illustration of how complex game trees can 
become in even simple (or simplified) games. As it turns out, using rollback on 
the mini-game of tic-tac-toe leads us quickly to an equilibrium. Rollback shows 
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that all of the choices for the first player at her second move lead to the same 
outcome. There is no optimal action; any move is as good as any other move. 
Thus, when the second player makes her first move, she also sees that each pos-
sible move yields the same outcome, and she, too, is indifferent among her three 
choices at each of her four decision nodes. Finally, the same is true for the first 
player on her first move; any choice is as good as any other, so she is guaranteed 
to win the game.

Although this version of tic-tac-toe has an interesting tree, its solution is 
not as interesting. The first player always wins, so choices made by either 
player cannot affect the ultimate outcome. Most of us are more familiar with 
the three-by-three version of tic-tac-toe. To illustrate that version with a game 
tree, we would have to show that the first player has nine possible actions 
at the initial node, the second player has eight possible actions at each of nine 
decision nodes, and then the first player, on her second turn, has seven possible 
actions at each of 8  9  72 nodes, while the second player, on her second turn, 
has six possible actions at each of 7  8  9  504 nodes. This pattern continues 
until eventually the tree stops branching so rapidly because certain combina-
tions of moves lead to a win for one player and the game ends. But no win is 
possible until at least the fifth move. Drawing the complete tree for this game 
requires a very large piece of paper or very tiny handwriting.

Most of you know, however, how to achieve at worst a tie when you play 
three-by-three tic-tac-toe. So there is a simple solution to this game that can be 
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Figure 3.7  the Complex tree for simple two-by-two tic-tac-toe
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found by rollback, and a learned strategic thinker can reduce the complexity of 
the game considerably in the quest for such a solution. It turns out that, as in the 
two-by-two version, many of the possible paths through the game tree are stra-
tegically identical. Of the nine possible initial moves, there are only three types; 
you put your X in either a corner position (of which there are four possibilities), 
a side position (of which there are also four possibilities), or the (one) middle 
position. Using this method to simplify the tree can help reduce the complexity 
of the problem and lead you to a description of an optimal rollback equilibrium 
strategy. Specifically, we could show that the player who moves second can al-
ways guarantee at least a tie with an appropriate first move and then by con-
tinually blocking the first player’s attempts to get three symbols in a row.3

B. Chess

Although relatively small games, such as tic-tac-toe, can be solved using rollback, 
we showed above how rapidly the complexity of game trees can increase even 
in two-player games. Thus when we consider more complicated games, such as 
chess, finding a complete solution becomes much more difficult.

In chess, the players, White and Black, have a collection of 16 pieces in six 
distinct shapes, each of which is bound by specified rules of movement on the 
eight-by-eight game board shown in Figure 3.8.4 White opens with a move, Black 
responds with one, and so on, in turns. All the moves are visible to the other 
player, and nothing is left to chance, as it would be in card games that include 
shuffling and dealing. Moreover, a chess game must end in a finite number of 
moves. The rules declare that a game is drawn if a given position on the board 
is repeated three times in the course of play. Because there are a finite number 
of ways to place the 32 (or fewer after captures) pieces on 64 squares, a game 
could not go on infinitely long without running up against this rule. Therefore, 
in principle, chess is amenable to full rollback analysis.

That rollback analysis has not been carried out, however. Chess has not 
been “solved” as tic-tac-toe has been. And the reason is that, for all its simplicity 
of rules, chess is a bewilderingly complex game. From the initial set position of 
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3 If the first player puts her first symbol in the middle position, the second player must put her first 
symbol in a corner position. Then the second player can guarantee a tie by taking the third position 
in any row, column, or diagonal that the first player tries to fill. If the first player goes to a corner or 
a side position first, the second player can guarantee a tie by going to the middle first and then fol-
lowing the same blocking technique. Note that if the first player picks a corner, the second player 
picks the middle, and the first player then picks the corner opposite from her original play, then the 
second player must not pick one of the remaining corners if she is to ensure at least a tie. For a beau-
tifully detailed picture of the complete contigent strategy in tic-tac-toe, see the online comic strip at 
http://xkcd.com/832/.
4 An easily accessible statement of the rules of chess and much more is at Wikipedia, at http://
en.wikipedia.org/wiki/Chess.
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the pieces illustrated in Figure 3.8, White can open with any one of 20 moves,5 
and Black can respond with any of 20. Therefore, 20 branches emerge from the 
first node of the game tree, each leading to a second node from each of which 20 
more branches emerge. After only two moves, there are already 400 branches, 
each leading to a node from which many more branches emerge. And the total 
number of possible moves in chess has been estimated to be 10120, or a “one” 
with 120 zeros after it. A supercomputer a thousand times as fast as your PC, 
making a trillion calculations a second, would need more than 10100 years to 
check out all these moves.6 Astronomers offer us less than 1010 years before the 
sun turns into a red giant and swallows the earth.

The general point is that, although a game may be amenable in principle to 
a complete solution by rollback, its complete tree may be too complex to permit 
such solution in practice. Faced with such a situation, what is a player to do? We 
can learn a lot about this by reviewing the history of attempts to program com-
puters to play chess.

When computers first started to prove their usefulness for complex calcula-
tions in science and business, many mathematicians and computer scientists 

5 He can move one of eight pawns forward either one square or two or he can move one of the two 
knights in one of two ways (to squares a3, c3, f3, or h3).
6 This would have to be done only once because, after the game has been solved, anyone can use 
the solution and no one will actually need to play. Everyone will know whether White has a win or 
whether Black can force a draw. Players will toss to decide who gets which color. They will then know 
the outcome, shake hands, and go home.
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thought that a chess-playing computer program would soon beat the world 
champion. It took a lot longer, even though computer technology improved dra-
matically while human thought progressed much more slowly. Finally, in De-
cember 1992, a German chess program called Fritz2 beat world champion Gary 
Kasparov in some blitz (high-speed) games. Under regular rules, where each 
player gets 2¹-2 hours to make 40 moves, humans retained greater superiority for 
longer. A team sponsored by IBM put a lot of effort and resources into the devel-
opment of a specialized chess-playing computer and its associated software. In 
February 1996, this package, called Deep Blue, was pitted against Gary Kasparov 
in a best-of-six series. Deep Blue caused a sensation by winning the first game, 
but Kasparov quickly figured out its weaknesses, improved his counterstrate-
gies, and won the series handily. In the next 15 months, the IBM team improved 
Deep Blue’s hardware and software, and the resulting Deeper Blue beat Kasparov 
in another best-of-six series in May 1997.

To sum up, computers have progressed in a combination of slow patches 
and some rapid spurts, while humans have held some superiority but have not 
been able to improve sufficiently fast to keep ahead. Closer examination reveals 
that the two use quite different approaches to think through the very complex 
game tree of chess.

When contemplating a move in chess, looking ahead to the end of the whole 
game may be too hard (for humans and computers both). How about looking 
part of the way—say, 5 or 10 moves ahead—and working back from there? The 
game need not end within this limited horizon; that is, the nodes that you reach 
after 5 or 10 moves will not generally be terminal nodes. Only terminal nodes 
have payoffs specified by the rules of the game. Therefore, you need some indi-
rect way of assigning plausible payoffs to nonterminal nodes, because you are 
not able to explicitly roll back from a full look-ahead. A rule that assigns such 
payoffs is called an intermediate valuation function.

In chess, humans and computer programs both use such partial look-ahead 
in conjunction with an intermediate valuation function. The typical method as-
signs values to each piece and to positional and combinational advantages that 
can arise during play. Quantification of values for different positions are made on 
the basis of the whole chess-playing community’s experience of play in past games 
starting from such positions or patterns; this is called “knowledge.” The sum of all 
the numerical values attached to pieces and their combinations in a position is the 
intermediate value of that position. A move is judged by the value of the position to 
which it is expected to lead after an explicit forward-looking calculation for a cer-
tain number—say, five or six—of moves.

The evaluation of intermediate positions has progressed furthest with re-
spect to chess openings—that is, the first dozen or so moves of a game. Each 
opening can lead to any one of a vast multitude of further moves and positions, 
but experience enables players to sum up certain openings as being more or less 
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likely to favor one player or the other. This knowledge has been written down in 
massive books of openings, and all top players and computer programs remem-
ber and use this information.

At the end stages of a game, when only a few pieces are left on the board, 
backward reasoning on its own is often simple enough to be doable and com-
plete enough to give the full answer. The midgame, when positions have evolved 
into a level of complexity that will not simplify within a few moves, is the hardest 
to analyze. To find a good move from a midgame position, a well-built interme-
diate valuation function is likely to be more valuable than the ability to calculate 
another few moves further ahead.

This is where the art of chess playing comes into its own. The best human 
players develop an intuition or instinct that enables them to sniff out good op-
portunities and avoid subtle traps in a way that computer programs find hard 
to match. Computer scientists have found it generally very difficult to teach 
their machines the skills of pattern recognition that humans acquire and use 
instinctively—for example, recognizing faces and associating them with names. 
The art of the midgame in chess also is an exercise in recognizing and evaluat-
ing patterns in the same, still mysterious way. This is where Kasparov has his 
greatest advantage over Fritz2 or Deep Blue. It also explains why computer pro-
grams do better against humans at blitz or limited-time games: a human does 
not have the time to marshal his art of the midgame.

In other words, the best human players have subtle “chess knowledge,” 
based on experience or the ability to recognize patterns, which endows them 
with a better intermediate valuation function. Computers have the advantage 
when it comes to raw or brute-force calculation. Thus although both human and 
computer players now use a mixture of look-ahead and intermediate valuation, 
they use them in different proportions: humans do not look so many moves 
ahead but have better intermediate valuations based on knowledge; computers 
have less sophisticated valuation functions but look ahead further by using their 
superior computational powers.

Recently, chess computers have begun to acquire more knowledge. When 
modifying Deep Blue in 1996 and 1997, IBM enlisted the help of human experts 
to improve the intermediate valuation function in its software. These consul-
tants played repeatedly against the machine, noted its weaknesses, and sug-
gested how the valuation function should be modified to correct the flaws. 
Deep Blue benefited from the contributions of the experts and their subtle kind 
of thinking, which results from long experience and an awareness of complex 
interconnections among the pieces on the board.

If humans can gradually make explicit their subtle knowledge and trans-
mit it to computers, what hope is there for human players who do not get re-
ciprocal help from computers? At times in their 1997 encounter, Kasparov was 
amazed by the human or even superhuman quality of Deep Blue’s play. He even  
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attributed one of the computer’s moves to “the hand of God.” And matters can 
only get worse: the brute-force calculating power of computers is increasing 
rapidly while they are simultaneously, but more slowly, gaining some of the sub-
tlety that constitutes the advantage of humans.

The abstract theory of chess says that it is a finite game that can be solved 
by rollback. The practice of chess requires a lot of “art” based on experi-
ence, intuition, and subtle judgment. Is this bad news for the use of rollback in 
sequential-move games? We think not. It is true that theory does not take us all 
the way to an answer for chess. But it does take us a long way. Looking ahead a 
few moves constitutes an important part of the approach that mixes brute-force 
calculation of moves with a knowledge-based assessment of intermediate po-
sitions. And, as computational power increases, the role played by brute-force 
calculation, and therefore the scope of the rollback theory, will also increase.

Evidence from the study of the game of checkers, as we describe below, sug-
gests that a solution to chess may yet be feasible.

C. Checkers

An astonishing number of computer and person hours have been devoted to the 
search for a solution to chess. Less famously, but just as doggedly, researchers 
worked on solving the somewhat less complex game of checkers. And, indeed, 
the game of checkers was declared “solved” in July 2007.7

Checkers is another two-player game played on an eight-by-eight board. 
Each player has 12 round game pieces of different colors, as shown in Figure 
3.9, and players take turns moving their pieces diagonally on the board, jump-
ing (and capturing) the opponent’s pieces when possible. As in chess, the game 
ends and Player A wins when Player B is either out of pieces or unable to move; 
the game can also end in a draw if both players agree that neither can win. 

Although the complexity of checkers pales somewhat in comparison to that 
of chess—the number of possible positions in checkers is approximately the 
square root of the number in chess—there are still 5  1020 possible positions, so 
drawing a game tree is out of the question. Conventional wisdom and evidence 
from world championships for years suggested that good play should lead to 
a draw, but there was no proof. Now a computer scientist in Canada has the 
proof—a computer program named Chinook that can play to a guaranteed tie.

Chinook was first created in 1989. This computer program played the world 
champion, Marion Tinsley, in 1992 (losing four to two with 33 draws) and again 
in 1994 (when Tinsley’s health failed during a series of draws). It was put on 
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7 Our account is based on two reports in the journal Science. See Adrian Cho, “Program Proves That 
Checkers, Perfectly Played, Is a No-Win Situation,” Science, vol. 317 (July 20, 2007), pp. 308–309, and 
Jonathan Schaeffer et al., “Checkers Is Solved,” Science, vol. 317 (September 14, 2007), pp. 1518–22.
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hold between 1997 and 2001 while its creators waited for computer technol-
ogy to improve. And it finally exhibited a loss-proof algorithm in the spring of  
2007. That algorithm uses a combination of endgame rollback analysis and 
starting position forward analysis along with the equivalent of an intermediate 
valuation function to trace out the best moves within a database including all 
possible positions on the board.

The creators of Chinook describe the full game of checkers as “weakly 
solved”; they know that they can generate a tie, and they have a strategy for 
reaching that tie from the start of the game. For all 39  1012 possible positions 
that include 10 or fewer pieces on the board, they describe checkers as “strongly 
solved”; not only do they know they can play to a tie, they can reach that tie from 
any of the possible positions that can arise once only 10 pieces remain. Their al-
gorithm first solved the 10-piece endgames, then went back to the start to search 
out paths of play in which both players make optimal choices. The search mech-
anism, involving a complex system of evaluating the value of each intermediate 
position, invariably led to those 10-piece positions that generate a draw.

Thus, our hope for the future of rollback analysis may not be misplaced. 
We know that for really simple games, we can find the rollback equilibrium by 
verbal reasoning without having to draw the game tree explicitly. For games 
having an intermediate range of complexity, verbal reasoning is too hard, 
but a complete tree can be drawn and used for rollback. Sometimes we may 
enlist the aid of a computer to draw and analyze a moderately complicated 
game tree. For the most complex games, such as checkers and chess, we can 

Figure 3.9  Checkers
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draw only a small part of the game tree, and we must use a combination of two 
methods: (1) calculation based on the logic of rollback, and (2) rules of thumb 
for valuing intermediate positions on the basis of experience. The computa-
tional power of current algorithms has shown that even some games in this 
category are amenable to solution, provided one has the time and resources to 
devote to the problem.

Thankfully, most of the strategic games that we encounter in economics, 
politics, sports, business, and daily life are far less complex than chess or even 
checkers. The games may have a number of players who move a number of 
times; they may even have a large number of players or a large number of moves. 
But we have a chance at being able to draw a reasonable-looking tree for those 
games that are sequential in nature. The logic of rollback remains valid, and it is 
also often the case that, once you understand the idea of rollback, you can carry 
out the necessary logical thinking and solve the game without explicitly drawing 
a tree. Moreover, it is precisely at this intermediate level of difficulty, between 
the simple examples that we solved explicitly in this chapter and the insoluble 
cases such as chess, that computer software such as Gambit is most likely to be 
useful; this is indeed fortunate for the prospect of applying the theory to solve 
many games in practice.

6 EVIDENCE CONCERNING ROLLBACK

How well do actual participants in sequential-move games perform the cal-
culations of rollback reasoning? There is very little systematic evidence, but class-
room and research experiments with some games have yielded outcomes that 
appear to counter the predictions of the theory. Some of these experiments 
and their outcomes have interesting implications for the strategic analysis of 
 sequential-move games.

For instance, many experimenters have had subjects play a single-round 
bargaining game in which two players, designated A and B, are chosen from 
a class or a group of volunteers. The experimenter provides a dollar (or some 
known total), which can be divided between them according to the following 
procedure: Player A proposes a split—for example, “75 to me, 25 to B.” If player 
B accepts this proposal, the dollar is divided as proposed by A. If B rejects the 
proposal, neither player gets anything.

Rollback in this case predicts that B should accept any sum, no matter how 
small, because the alternative is even worse—namely, 0—and, foreseeing this, A 
should propose “99 to me, 1 to B.” This particular outcome almost never happens. 
Most players assigned the A role propose a much more equal split. In fact, 50–50 
is the single most common proposal. Furthermore, most players assigned the B 
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role turn down proposals that leave them 25% or less of the total and walk away 
with nothing; some reject proposals that would give them 40% of the pie.8

Many game theorists remain unpersuaded that these findings undermine 
the theory. They counter with some variant of the following argument: “The 
sums are so small as to make the whole thing trivial in the players’ minds. The B 
players lose 25 or 40 cents, which is almost nothing, and perhaps gain some pri-
vate satisfaction that they walked away from a humiliatingly small award. If the 
total were a thousand dollars, so that 25% of it amounted to real money, the B 
players would accept.” But this argument does not seem to be valid. Experiments 
with much larger stakes show similar results. The findings from experiments con-
ducted in Indonesia, with sums that were small in dollars but amounted to as 
much as three months’ earnings for the participants, showed no clear tendency 
on the part of the A players to make less equal offers, although the B players 
tended to accept somewhat smaller shares as the total increased; similar experi-
ments conducted in the Slovak Republic found the behavior of inexperienced 
players unaffected by large changes in payoffs.9

The participants in these experiments typically have no prior knowledge of 
game theory and no special computational abilities. But the game is extremely 
simple; surely even the most naive player can see through the reasoning, and 
answers to direct questions after the experiment generally show that most par-
ticipants do. The results show not so much the failure of rollback as the theorist’s 
error in supposing that each player cares only about her own money earnings. 
Most societies instill in their members a strong sense of fairness, which causes 
the B players to reject anything that is grossly unfair. Anticipating this, the A 
players offer relatively equal splits.

Supporting evidence comes from the new field of “neuroeconomics.” Alan 
Sanfey and his colleagues took MRI readings of the players’ brains as they 
made their choices in the ultimatum game. They found stimulation of “activity 
in a region well known for its involvement in negative emotion” in the brains 
of responders (B players) when they rejected “unfair” (less than 50;50) offers. 
Thus, deep instincts or emotions of anger and disgust seem to be implicated 
in these rejections. They also found that “unfair” (less than 50;50) offers were 

8 Reiley first encountered this game as a graduate student; he was stunned that when he offered a 
90:10 split of $100, the other economics graduate student rejected it. For a detailed account of this 
game and related ones, read Richard H. Thaler, “Anomalies: The Ultimate Game,” Journal of Eco-
nomic Perspectives, vol. 2, no. 4 (Fall 1988), pp. 195–206; and Douglas D. Davis and Charles A. Holt, 
Experimental Economics (Princeton: Princeton University Press, 1993), pp. 263–69.
9 The results of the Indonesian experiment are reported in Lisa Cameron, “Raising the Stakes in the 
Ultimatum Game: Experimental Evidence from Indonesia,” Economic Inquiry, vol. 37, no. 1 (Janu-
ary 1999), pp. 47–59. Robert Slonim and Alvin Roth report results similar to Cameron’s, but they also 
found that offers (in all rounds of play) were rejected less often as the payoffs were raised. See Robert 
Slonim and Alvin Roth, “Learning in High Stakes Ultimatum Games: An Experiment in the Slovak 
Republic,” Econometrica, vol. 66, no. 3 (May 1998), pp. 569–96.
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rejected less often when responders knew that the offerer was a computer than 
when they knew that the offerer was human.10

Notably, A players have some tendency to be generous even without the 
threat of retaliation. In a drastic variant called the dictator game, where the A 
player decides on the split and the B player has no choice at all, many As still 
give significant shares to the Bs, suggesting the players have some intrinsic 
preference for relatively equal splits.11 However, the offers by the A players are 
noticeably less generous in the dictator game than in the ultimatum game, sug-
gesting that the credible fear of retaliation is also a strong motivator. Caring 
about other people’s perceptions of us also appears to matter. When the experi-
mental design is changed so that not even the experimenter can identify who 
proposed (or accepted) the split, the extent of sharing drops noticeably.

Another experimental game with similarly paradoxical outcomes goes as 
follows: two players are chosen and designated as A and B. The experimenter 
puts a dime on the table. Player A can take it or pass. If A takes the dime, the 
game is over, with A getting the 10 cents and B getting nothing. If A passes, the 
experimenter adds a dime, and now B has the choice of taking the 20 cents or 
passing. The turns alternate, and the pile of money grows until reaching some 
limit—say, a dollar—that is known in advance by both players.

We show the tree for this game in Figure 3.10. Because of the appearance of 
the tree, this type of game is often called the centipede game. You may not even 
need the tree to use rollback on this game. Player B is sure to take the dollar at 
the last stage, so A should take the 90 cents at the penultimate stage, and so on. 
Thus, A should take the very first dime and end the game.

In experiments, however, such games typically go on for at least a few 
rounds. Remarkably, by behaving “irrationally,” the players as a group make 
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10 See Alan Sanfey, James Rilling, Jessica Aronson, Leigh Nystrom, and Jonathan Cohen, “The Neural 
Basis of Economic Decision-Making in the Ultimatum Game,” Science, vol. 300 (June 13, 2003), pp. 
1755–58.
11 One could argue that this social norm of fairness may actually have value in the ongoing evolu-
tionary game being played by the whole society. Players who are concerned with fairness reduce 
transaction costs and the costs of fights, which can be beneficial to society in the long run. These 
matters will be discussed in Chapters 10 and 11.

Take
dimes

Take
dimes

Take
dimes

Take
dimes

Take
dime

Pass Pass Pass Pass PassA B A B B

  10, 0 0, 20 30, 0 0, 40 0, 100

0, 0

Figure 3.10  the Centipede game
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more money than they would if they followed the logic of backward reasoning. 
Sometimes A does better and sometimes B, but sometimes they even solve this 
conflict or bargaining problem. In a classroom experiment that one of us (Dixit) 
conducted, one such game went all the way to the end. Player B collected the 
dollar, and quite voluntarily gave 50 cents to player A. Dixit asked A, “Did you 
two conspire? Is B a friend of yours?” and A replied, “No, we didn’t even know 
each other before. But he is a friend now.” We will come across some similar evi-
dence of cooperation that seems to contradict rollback reasoning when we look 
at finitely repeated prisoners’ dilemma games in Chapter 10.

The centipede game points out a possible problem with the logic of roll-
back in non-zero-sum games, even for players whose decisions are only based 
on money. Note that if Player A passes in the first round, he has already shown 
himself not to be playing rollback. So what should Player B expect him to do in 
round 3? Having passed once, he might pass again, which would make it rational 
for Player B to pass in round 2. Eventually someone will take the pile of money, 
but an initial deviation from rollback equilibrium makes it difficult to predict 
exactly when this will happen. And because the size of the pie keeps growing, 
if I see you deviate from rollback, I might want to deviate as well, at least for a 
little while. A player might deliberately pass in an early round in order to signal 
a willingness to pass in future rounds. This problem does not arise in zero-sum 
games, where there is no incentive to cooperate by waiting.

Supporting this observation, Steven Levitt, John List, and Sally Sadoff con-
ducted experiments with world-class chess players, finding more rollback 
behavior in zero-sum sequential-move games than in the non-zero-sum centi-
pede game. Their centipede game involved six nodes, with total payoffs increas-
ing quite steeply across rounds.12 While there are considerable gains to players 
who can manage to pass back and forth to each other, the rollback equilibrium 
specifies playing Take at each node. In stark contrast to the theory, only 4% of 
players played Take at node 1, providing little support for rollback equilibrium 
even in this simple six-move game. (The fraction of players who played Take in-
creased over the course of the game.13)

12 See Steven D. Levitt, John A. List, and Sally E. Sadoff, “Checkmate: Exploring Backward Induction 
Among Chess Players,” American Economic Review, vol. 101, no. 2 (April 2011), pp. 975–90. The de-
tails of the game tree are as follows. If A plays Take at node 1, then A receives $4 while B receives $1. If 
A passes and B plays Take at node 2, then A receives $2 while B receives $8. This pattern of doubling 
continues until node 6, where if B plays Take, the payoffs are $32 for A and $128 for B, but if B plays 
Pass, the payoffs are $256 for A and $64 for B.
13 Different results were found in an earlier paper by Ignacio Palacios-Huerta and Oscar Volij, “Field 
Centipedes,” American Economic Review, vol. 99, no. 4 (September 2009), pp. 1619–35. Of the chess 
players they studied, 69% played Take at the first node, with the more highly rated chess players 
being more likely to play Take at the first opportunity. These results indicated a surprisingly high 
ability of players to carry experience with them to a new game context, but these results have not 
been reproduced in the later paper discussed above.
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By contrast, in a zero-sum sequential-move game whose rollback equilib-
rium involves 20 moves (you are invited to solve such a game in Exercise S7), the 
chess players played the exact rollback equilibrium 10 times as often as in the 
six-move centipede game.14

Levitt and his coauthors also experimented with a similar but more diffi-
cult zero-sum game (a version of which you are invited to solve in Exercise U5). 
There the chess players played the complete rollback equilibrium only 10% of 
the time (20% for the highest-ranked grandmasters), although by the last few 
moves the agreement with rollback was nearly 100%. As world-class chess play-
ers spend tens of thousands of hours trying to win chess games by rolling back, 
these results indicate that even highly experienced players usually cannot im-
mediately carry their experience over to a new game: they need a little expe-
rience with the new game before they can figure out the optimal strategy. An 
advantage of learning game theory is that you can more easily spot underlying 
similarities between seemingly different situations and so devise good strategies 
more quickly in any new games you may face.

The examples discussed here seem to indicate that apparent violations of 
strategic logic can often be explained by recognizing that people do not care 
merely about their own money payoffs; rather, they internalize concepts such 
as fairness. But not all observed plays, contrary to the precepts of rollback, have 
such an explanation. People do fail to look ahead far enough, and they do fail 
to draw the appropriate conclusions from attempts to look ahead. For example, 
when issuers of credit cards offer favorable initial interest rates or no fees for the 
first year, many people fall for them without realizing that they may have to pay 
much more later. Therefore the game-theoretic analysis of rollback and rollback 
equilibria serves an advisory or prescriptive role as much as it does a descrip-
tive role. People equipped with the theory of rollback are in a position to make 
better strategic decisions and to get higher payoffs, no matter what they include 
in their payoff calculations. And game theorists can use their expertise to give 
valuable advice to those who are placed in complex strategic situations but lack 
the skill to determine their own best strategies.

7 STRATEGIES IN SURVIVOR

The examples in the preceding sections were deliberately constructed to illustrate 
and elucidate basic concepts such as nodes, branches, moves, and strategies,  

s t r at e g i e s  i n  s u r v i v o r   7 5

14 As you will see in the exercises, another key distinction of this zero-sum game is that there is a 
way for one player to guarantee victory, regardless of what the other player does. By contrast, a play-
er’s best move in the centipede game depends on what she expects the other player to do.
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as well as the technique of rollback. Now we show how all of them can be ap-
plied, by considering a real-life (or at least “reality-TV-life”) situation.

In the summer of 2000, CBS television broadcast the first of the Survivor 
shows, which became an instant hit and helped launch the whole new genre 
of “reality TV.” Leaving aside many complex details and some earlier stages not 
relevant for our purpose, the concept was as follows: a group of contestants, 
called a “tribe,” was put on an uninhabited island and left largely to fend for 
themselves for food and shelter. Every three days, they had to vote one fellow 
contestant out of the tribe. The person who had the most votes cast against him 
or her at a meeting of the remaining players (called the “tribal council”) was 
the victim of the day. However, before each meeting of the tribal council, the 
survivors up to that point competed in a game of physical or mental skill that 
was devised by the producers of the game for that occasion, and the winner of 
this competition, called a “challenge,” was immune from being voted off at the 
following meeting. Also, one could not vote against oneself. Finally, when two 
people were left, the seven who had been voted off most recently  returned as a 
“jury” to pick one of the two remaining survivors as the million-dollar winner 
of the whole game.

The strategic problems facing all contestants were: (1) to be generally re-
garded as a productive contributor to the tribe’s search for food and other tasks 
of survival, but to do so without being regarded as too strong a competitor and 
therefore a target for elimination; (2) to form alliances to secure blocks of votes 
to protect oneself from being voted off; (3) to betray these alliances when the 
numbers got too small and one had to vote against someone; but (4) to do so 
without seriously losing popularity with the other players, who would ultimately 
have the power of the vote on the jury.

We pick up the story when just three contestants were left: Rudy, Kelly, and 
Rich. Of them, Rudy was the oldest contestant, an honest and blunt person who 
was very popular with the contestants who had been previously voted off. It 
was generally agreed that, if he was one of the last two, then he would be voted 
the million-dollar winner. So it was in the interests of both Kelly and Rich that 
they should face each other, rather than face Rudy, in the final vote. But neither 
wanted to be seen as instrumental in voting off Rudy. With just three contestants 
left, the winner of the immunity challenge is effectively decisive in the cast-off 
vote, because the other two must vote against each other. Thus, the jury would 
know who was responsible for voting off Rudy and, given his popularity, would 
regard the act of voting him off with disfavor. The person doing so would harm 
his or her chances in the final vote. This was especially a problem for Rich, be-
cause he was known to have an alliance with Rudy.

The immunity challenge was one of stamina: each contestant had to stand 
on an awkward support and lean to hold one hand in contact with a totem on a 
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central pole, called the “immunity idol.” Anyone whose hand lost contact with 
the idol, even for an instant, lost the challenge; the one to hold on longest was 
the winner.

An hour and a half into the challenge, Rich figured out that his best strategy 
was to deliberately lose this immunity challenge. Then, if Rudy won immunity, 
he would maintain his alliance and keep Rich—Rudy was known to be a man 
who always kept his word. Rich would lose the final vote to Rudy in this case, 
but that would make him no worse off than if he won the challenge and kept 
Rudy. If Kelly won immunity, the much more likely outcome, then it would be 
in her interest to vote off Rudy—she would have at least some chance against 
Rich but none against Rudy. Then Rich’s chances of winning were quite good. 
Whereas, if Rich himself held on, won immunity, and then voted off Rudy, his 
chances against Kelly would be decreased by the fact that he voted off Rudy.

So Rich deliberately stepped off and later explained his reasons quite clearly 
to the camera. His calculation was borne out. Kelly won that challenge and voted 
off Rudy. And, in the final jury vote between Rich and Kelly, Rich won by one vote.

Rich’s thinking was essentially a rollback analysis along a game tree. He did 
this analysis instinctively, without drawing the tree, while standing awkwardly 
and holding on to the immunity idol, but it took him an hour and a half to come 
to his conclusion. With all due credit to Rich, we show the tree explicitly, and can 
reach the answer faster.

Figure 3.11 shows the tree. You can see that it is much more complex than 
the trees encountered in earlier sections. It has more branches and moves; in 
addition, there are uncertain outcomes, and the chances of winning or losing in 
various alternative situations have to be estimated instead of being known pre-
cisely. But you will see how we can make reasonable assumptions about these 
chances and proceed with the analysis.

At the initial node, Rich decides whether to continue or to give up in the im-
munity challenge. In either case, the winner of the challenge cannot be forecast 
with certainty; this is indicated in the tree by letting “Nature” make the choice, 
as we did with the coin-toss situation in Figure 3.1. If Rich continues, Nature 
chooses the winner from the three contestants. We don’t know the actual prob-
abilities, but we will assume particular values for exposition and point out the 
crucial assumptions. The supposition is that Kelly has a lot of stamina and that 
Rudy, being the oldest, is not likely to win. So we posit the following probabilities 
of a win when Rich chooses to continue: 0.5 (50%) for Kelly, 0.45 for Rich, and 
only 0.05 for Rudy. If Rich gives up on the challenge, Nature picks the winner of 
the immunity challenge randomly between the two who remain; in this case, we 
assume that Kelly wins with probability 0.9 and Rudy with probability 0.1.

The rest of the tree follows from each of the three possible winners of the 
challenge. If Rudy wins, he keeps Rich as he promised, and the jury votes Rudy 
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the winner.15 If Rich wins immunity, he has to decide whether to keep Kelly or 
Rudy. If he keeps Rudy, the jury votes for Rudy. If he keeps Kelly, it is not certain 
whom the jury chooses. We assume that Rich alienates some jurors by turning 
on Rudy and that, despite being better liked than Kelly, he gets the jury’s vote 
in this situation only with probability 0.4. Similarly, if Kelly wins immunity, she 
can either keep Rudy and lose the jury’s vote, or keep Rich. If she keeps Rich, his 
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Figure 3.11  survivor immunity game tree

15 Technically, Rudy faces a choice between keeping Rich or Kelly at the action node after he wins 
the immunity challenge. Because everyone placed 0 probability on his choosing Kelly (owing to the 
Rich-Rudy alliance), we illustrate only Rudy’s choice of Rich. The jury, similarly, has a choice be-
tween Rich and Rudy at the last action node along this branch of play. Again, the foregone conclu-
sion is that Rudy wins in this case. 
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probability of winning the jury’s vote is higher, at 0.6, because in this case he is 
both better liked by the jury and hasn’t voted off Rudy.

What about the players’ actual payoffs? We can safely assume that both Rich 
and Kelly want to maximize the probability of his or her emerging as the ulti-
mate winner of the $1 million. Rudy similarly wants to get the prize, but keeping 
his word to Rich is paramount. With these preferences of the various players in 
mind, Rich can now do rollback analysis along the tree to determine his own 
initial choice.

Rich knows that, if he wins the immunity challenge (the uppermost path 
after his own first move and Nature’s move), he will have to keep Kelly to have 
a 40% chance of eventual victory; keeping Rudy at this stage would mean a 0 
probability of eventual victory. Rich can also calculate that, if Kelly wins the im-
munity challenge (which occurs once in each of the upper and lower halves of 
the tree), she will choose to keep him for similar reasons, and then the probabil-
ity of his eventual victory will be 0.6.

What are Rich’s chances as he calculates them at the initial node? If Rich 
chooses Give Up at the initial node, then there is only one way for him to 
emerge as the eventual winner—if Kelly wins immunity (probability 0.9), if 
she then keeps Rich (probability 1), and if the jury votes for Rich (probability 
0.6). Because all three things need to happen for Rich to win, his overall prob-
ability of victory is the product of the three probabilities—namely, 0.9  1   
0.6  0.54.16 If Rich chooses Continue at the initial node, then there are two ways 
in which he can win. First, he wins the game if he wins the immunity challenge 
(probability 0.45), if he then eliminates Rudy (probability 1), and if he still wins 
the jury’s vote against Kelly (probability 0.4); the total probability of winning in 
this way is 0.45  0.4  0.18. Second, he wins the game if Kelly wins the chal-
lenge (probability 0.5), if she eliminates Rudy (probability 1), and if Rich gets the 
jury’s vote (probability 0.6); total probability here is 0.5  0.6  0.3. Rich’s overall 
probability of eventual victory if he chooses Continue is the sum of the prob-
abilities of these two paths to victory—namely, 0.18  0.3  0.48.

Rich can now compare his probability of winning the million dollars when 
he chooses Give Up (0.54) with his probability of winning when he chooses Con-
tinue (0.48). Given the assumed values of the various probabilities in the tree, Rich 
has a better chance of victory if he gives up. Thus, Give Up is his optimal strategy. 
Although this result is based on assuming specific numbers for the probabilities, 
Give Up remains Rich’s optimal strategy as long as (1) Kelly is very likely to win 
the immunity challenge once Rich gives up, and (2) Rich wins the jury’s final vote 
more often when Kelly has voted out Rudy than when Rich has done so.17
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16 Readers who need instruction or a refresher course in the rules for combining probabilities will 
find a quick tutorial in the appendix to Chapter 7.
17 Readers who can handle the algebra of probabilities can solve this game by using more general 
symbols instead of specific numbers for the probabilities, as in Exercise U10 of this chapter.
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This example serves several purposes. Most important, it shows how a 
complex tree, with much external uncertainty and missing information 
about precise probabilities, can still be solved by using rollback analysis. We 
hope this gives you some confidence in using the method and some training 
in converting a somewhat loose verbal account into a more precise logical ar-
gument. You might counter that Rich did this reasoning without drawing any 
trees. But knowing the system or general framework greatly simplifies the task 
even in new and unfamiliar circumstances. Therefore it is definitely worth the 
effort to acquire the systematic skill.

A second purpose is to illustrate the seemingly paradoxical strategy of “los-
ing to win.” Another instance of this strategy can be found in some sporting 
competitions that are held in two rounds, such as the soccer World Cup. The first 
round is played on a league basis in several groups of four teams each. The top 
two teams from each group then go to the second round, where they play others 
chosen according to a prespecified pattern; for example, the top-ranked team 
in group A meets the second-ranked team in group B, and so on. In such a situ-
ation, it may be good strategy for a team to lose one of its first-round matches 
if this loss causes it to be ranked second in its group; that ranking might earn it 
a subsequent match against a team that, for some particular reason, it is more 
likely to beat than the team that it would meet if it had placed first in its group in 
the first round.

SUMMARY

Sequential-move games require players to consider the future conse-
quences of their current moves before choosing their actions. Analysis of pure  
sequential-move games generally requires the creation of a game tree. The tree 
is made up of nodes and branches that show all of the possible actions available 
to each player at each of her opportunities to move, as well as the payoffs as-
sociated with all possible outcomes of the game. Strategies for each player are 
complete plans that describe actions at each of the player’s decision nodes con-
tingent on all possible combinations of actions made by players who acted at 
earlier nodes. The equilibrium concept employed in sequential-move games is 
that of rollback equilibrium, in which players’ equilibrium strategies are found 
by looking ahead to subsequent nodes and the actions that would be taken there 
and by using these forecasts to calculate one’s current best action. This process 
is known as rollback, or backward induction.

Different types of games entail advantages for different players, such as 
first-mover advantages. The inclusion of many players or many moves enlarges 
the game tree of a sequential-move game but does not change the solution  
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process. In some cases, drawing the full tree for a particular game may re-
quire more space or time than is feasible. Such games can often be solved by  
identifying strategic similarities between actions that reduce the size of the tree 
or by simple logical thinking.

When solving larger games, verbal reasoning can lead to the rollback equi-
librium if the game is simple enough or a complete tree may be drawn and ana-
lyzed. If the game is sufficiently complex that verbal reasoning is too difficult 
and a complete tree is too large to draw, we may enlist the help of a computer 
program. Checkers has been “solved” with the use of such a program, although 
full solution of chess will remain beyond the powers of computers for a long 
time. In actual play of these truly complex games, elements of both art (identifi-
cation of patterns and of opportunities versus peril) and science (forward-looking 
calculations of the possible outcomes arising from certain moves) have a role in 
determining player moves.

Tests of the theory of sequential-move games seem to suggest that actual 
play shows the irrationality of the players or the failure of the theory to predict 
behavior adequately. The counterargument points out the complexity of actual 
preferences for different possible outcomes and the usefulness of strategic the-
ory for identifying optimal actions when actual preferences are known.

KEY TERMS

 action node (48) intermediate valuation function (67)
 backward induction (56) move (50)
 branch (48) node (48)
 decision node (48) path of play (60)
 decision tree (48) prune (54)
 equilibrium path of play (60) rollback (56)
 extensive form (48) rollback equilibrium (56)
 first-mover advantage (62) root (48)
 game tree (48) second-mover advantage (62)
 initial node (48) terminal node (50)

SOLVED ExERCISES

 S1. Suppose two players, Hansel and Gretel, take part in a sequential-move 
game. Hansel moves first, Gretel moves second, and each player moves 
only once.

 (a) Draw a game tree for a game in which Hansel has two possible ac-
tions (Up or Down) at each node and Gretel has three possible  

e x e r C i s e s   8 1
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actions (Top, Middle, or Bottom) at each node. How many of each 
node type—decision and terminal—are there?

 (b) Draw a game tree for a game in which Hansel and Gretel each have 
three possible actions (Sit, Stand, or Jump) at each node. How many 
of the two node types are there?

 (c) Draw a game tree for a game in which Hansel has four possible ac-
tions (North, South, East, or West) at each node and Gretel has two 
possible actions (Stay or Go) at each node. How many of the two 
node types are there?

 S2. In each of the following games, how many pure strategies (complete 
plans of action) are available to each player? List out all of the pure strat-
egies for each player.

(a)

N 

SCARECROW 

S 

t
TINMAN

b 2, 1

1, 0

0, 2
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(b)

n
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 S3. For each of the games illustrated in Exercise S2, identify the rollback equi-
librium outcome and the complete equilibrium strategy for each player.

 S4. Consider the rivalry between Airbus and Boeing to develop a new com-
mercial jet aircraft. Suppose Boeing is ahead in the development process 
and Airbus is considering whether to enter the competition. If Airbus 
stays out, it earns 0 profit, whereas Boeing enjoys a monopoly and earns 
a profit of $1 billion. If Airbus decides to enter and develop the rival 
airplane, then Boeing has to decide whether to accommodate Airbus 
peaceably or to wage a price war. In the event of peaceful competition, 
each firm will make a profit of $300 million. If there is a price war, each 
will lose $100 million because the prices of airplanes will fall so low that 
neither firm will be able to recoup its development costs.

Draw the tree for this game. Find the rollback equilibrium and de-
scribe the firms’ equilibrium strategies.

 S5. Consider a game in which two players, Fred and Barney, take turns re-
moving matchsticks from a pile. They start with 21 matchsticks, and Fred 
goes first. On each turn, each player may remove either one, two, three, or 
four matchsticks. The player to remove the last matchstick wins the game.

 (a) Suppose there are only six matchsticks left, and it is Barney’s turn. 
What move should Barney make to guarantee himself victory? Ex-
plain your reasoning.

 (b) Suppose there are 12 matchsticks left, and it is Barney’s turn. What 
move should Barney make to guarantee himself victory? (Hint: Use 
your answer to part (a) and roll back.)

 (c) Now start from the beginning of the game. If both players play opti-
mally, who will win?

 (d) What are the optimal strategies (complete plans of action) for each 
player?

 S6. Consider the game in the previous exercise. Suppose the players have 
reached a point where it is Fred’s move and there are just five matchsticks 
left.

 (a) Draw the game tree for the game starting with five matchsticks.
 (b) Find the rollback equilibria for this game starting with five 

matchsticks.
 (c) Would you say this five-matchstick game has a first-mover advan-

tage or a second-mover advantage?
 (d) Explain why you found more than one rollback equilibrium. How is 

your answer related to the optimal strategies you found in part (c) of 
the previous exercise?

e x e r C i s e s   8 3
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 S7. Elroy and Judy play a game that Elroy calls the “race to 100.” Elroy goes 
first, and the players take turns choosing numbers between one and 
nine. On each turn, they add the new number to a running total. The 
player who brings the total exactly to 100 wins the game.

 (a) If both players play optimally, who will win the game? Does this 
game have a first-mover advantage? Explain your reasoning.

 (b) What are the optimal strategies (complete plans of action) for each 
player?

 S8. A slave has just been thrown to the lions in the Roman Colosseum. Three 
lions are chained down in a line, with Lion 1 closest to the slave. Each 
lion’s chain is short enough that he can only reach the two players imme-
diately adjacent to him.

The game proceeds as follows. First, Lion 1 decides whether or not 
to eat the slave.

If Lion 1 has eaten the slave, then Lion 2 decides whether or not to 
eat Lion 1 (who is then too heavy to defend himself). If Lion 1 has not 
eaten the slave, then Lion 2 has no choice: he cannot try to eat Lion 1, 
because a fight would kill both lions.

Similarly, if Lion 2 has eaten Lion 1, then Lion 3 decides whether or 
not to eat Lion 2.

Each lion’s preferences are fairly natural: best (4) is to eat and stay 
alive, next best (3) is to stay alive but go hungry, next (2) is to eat and be 
eaten, and worst (1) is to go hungry and be eaten.

 (a) Draw the game tree, with payoffs, for this three-player game.
 (b) What is the rollback equilibrium to this game? Make sure to de-

scribe the strategies, not just the payoffs.
 (c) Is there a first-mover advantage to this game? Explain why or why 

not.
 (d) How many complete strategies does each lion have? List them.

 S9. Consider three major department stores—Big Giant, Titan, and Frieda’s—
contemplating opening a branch in one of two new Boston-area shop-
ping malls. Urban Mall is located close to the large and rich population 
center of the area; it is relatively small and can accommodate at most two 
department stores as “anchors” for the mall. Rural Mall is farther out in a 
rural and relatively poorer area; it can accommodate as many as three 
anchor stores. None of the three stores wants to have branches in both 
malls because there is sufficient overlap of customers between the malls 
that locating in both would just mean competing with itself. Each store 
prefers to be in a mall with one or more other department stores than 
to be alone in the same mall, because a mall with multiple department  
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stores will attract sufficiently many more total customers that each 
store’s profit will be higher. Further, each store prefers Urban Mall to 
Rural Mall because of the richer customer base. Each store must choose 
between trying to get a space in Urban Mall (knowing that if the attempt 
fails, it will try for a space in Rural Mall) and trying to get a space in Rural 
Mall right away (without even attempting to get into Urban Mall).

In this case, the stores rank the five possible outcomes as follows: 5 
(best), in Urban Mall with one other department store; 4, in Rural Mall 
with one or two other department stores; 3, alone in Urban Mall; 2, alone 
in Rural Mall; and 1 (worst), alone in Rural Mall after having attempted 
to get into Urban Mall and failed, by which time other nondepartment 
stores have signed up the best anchor locations in Rural Mall.

The three stores are sufficiently different in their managerial struc-
tures that they experience different lags in doing the paperwork required 
to request an expansion space in a new mall. Frieda’s moves quickly, 
followed by Big Giant, and finally by Titan, which is the least efficient in 
readying a location plan. When all three have made their requests, the 
malls decide which stores to let in. Because of the name recognition that 
both Big Giant and Titan have with the potential customers, a mall would 
take either (or both) of those stores before it took Frieda’s. Thus, Frieda’s 
does not get one of the two spaces in Urban Mall if all three stores re-
quest those spaces; this is true even though Frieda’s moves first.

 (a) Draw the game tree for this mall location game.
 (b) Illustrate the rollback pruning process on your game tree and use 

the pruned tree to find the rollback equilibrium. Describe the equi-
librium by using the (complete) strategies employed by each de-
partment store. What are the payoffs to each store at the rollback 
equilibrium outcome?

 S10. (Optional ) Consider the following ultimatum bargaining game, which 
has been studied in laboratory experiments. The Proposer moves first, 
and proposes a split of $10 between himself and the Responder. Any 
whole-dollar split may be proposed. For example, the Proposer may offer 
to keep the whole $10 for himself, he may propose to keep $9 for himself 
and give $1 to the Responder, $8 to himself and $2 to the Responder, and 
so on. (Note that the Proposer therefore has eleven possible choices.) 
After seeing the split, the Responder can choose to accept the split or re-
ject it. If the Responder accepts, both players get the proposed amounts. 
If she rejects, both players get $0.

 (a) Write out the game tree for this game.
 (b) How many complete strategies does each player have?

e x e r C i s e s   8 5

6841D CH03 UG.indd   85 12/18/14   3:10 PM



 (c) What is the rollback equilibrium to this game, assuming the players 
care only about their cash payoffs?

 (d) Suppose Rachel the Responder would accept any offer of $3 or 
more, and reject any offer of $2 or less. Suppose Pete the Proposer 
knows Rachel’s strategy, and he wants to maximize his cash payoff. 
What strategy should he use?

 (e) Rachel’s true payoff (her “utility”) might not be the same as her cash 
payoff. What other aspects of the game might she care about? Given 
your answer, propose a set of payoffs for Rachel that would make 
her strategy optimal.

 (f) In laboratory experiments, players typically do not play the rollback 
equilibrium. Proposers typically offer an amount between $2 and $5 
to the Responder. Responders often reject offers of $3, $2, and espe-
cially $1. Explain why you think this might occur.

UNSOLVED ExERCISES

 U1. “In a sequential-move game, the player who moves first is sure to win.” Is 
this statement true or false? State the reason for your answer in a few brief 
sentences, and give an example of a game that illustrates your answer.

 U2. In each of the following games, how many pure strategies (complete 
plans of action) are available to each player? List all of the pure strategies 
for each player.
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0, 4, 4

2, 1, 1

(c)
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 U3. For each of the games illustrated in Exercise U2, identify the rollback 
equilibrium outcome and the complete equilibrium strategy for each 
player.

 U4. Two distinct proposals, A and B, are being debated in Washington. Con-
gress likes proposal A, and the president likes proposal B. The proposals 
are not mutually exclusive; either or both or neither may become law. 
Thus there are four possible outcomes, and the rankings of the two sides 
are as follows, where a larger number represents a more favored outcome:
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Outcome Congress President 

A becomes law 4 1 

B becomes law 1 4 

Both A and B become law 3 3 

Neither (status quo prevails) 2 2 
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 (a) The moves in the game are as follows. First, Congress decides whether 
to pass a bill and whether the bill is to contain A or B or both. Then 
the president decides whether to sign or veto the bill. Congress does 
not have enough votes to override a veto. Draw a tree for this game 
and find the rollback equilibrium.

 (b) Now suppose the rules of the game are changed in only one respect: 
the president is given the extra power of a line-item veto. Thus, if 
Congress passes a bill containing both A and B, the president may 
choose not only to sign or veto the bill as a whole, but also to veto 
just one of the two items. Show the new tree and find the rollback 
equilibrium.

 (c) Explain intuitively why the difference between the two equilibria 
arises.

 U5. Two players, Amy and Beth, play the following game with a jar contain-
ing 100 pennies. The players take turns; Amy goes first. Each time it is 
a player’s turn, she takes between 1 and 10 pennies out of the jar. The 
player whose move empties the jar wins.

 (a) If both players play optimally, who will win the game? Does this 
game have a first-mover advantage? Explain your reasoning.

 (b) What are the optimal strategies (complete plans of action) for each 
player?

 U6. Consider a slight variant to the game in Exercise U5. Now the player 
whose move empties the jar loses.

 (a) Does this game have a first-mover advantage?
 (b) What are the optimal strategies for each player?

 U7. Kermit and Fozzie play a game with two jars, each containing 100 pen-
nies. The players take turns; Kermit goes first. Each time it is a player’s 
turn, he chooses one of the jars and removes anywhere from 1 to 10 pen-
nies from it. The player whose move leaves both jars empty wins. (Note 
that when a player empties the second jar, the first jar must already have 
been emptied in some previous move by one of the players.)

 (a)  Does this game have a first-mover advantage or a second-mover ad-
vantage? Explain which player can guarantee victory, and how he 
can do it. (Hint: Simplify the game by starting with a smaller number 
of pennies in each jar, and see if you can generalize your finding to 
the actual game.)

 (b)  What are the optimal strategies (complete plans of action) for each 
player? (Hint: First think of a starting situation in which both jars 
have equal numbers of pennies. Then consider starting positions in 
which the two jars differ by 1 to 10 pennies. Finally, consider starting 
positions in which the jars differ by more than 10 pennies.)
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 U8. Modify Exercise S8 so that there are now four lions.
 (a) Draw the game tree, with payoffs, for this four-player game.
 (b) What is the rollback equilibrium to this game? Make sure to de-

scribe the strategies, not just the payoffs.
 (c) Is the additional lion good or bad for the slave? Explain.

 U9. To give Mom a day of rest, Dad plans to take his two children, Bart and 
Cassie, on an outing on Sunday. Bart prefers to go to the amusement 
park (A), whereas Cassie prefers to go to the science museum (S). Each 
child gets 3 units of utility from his/her more preferred activity and only 
2 units of utility from his/her less preferred activity. Dad gets 2 units of 
utility for either of the two activities.

To choose their activity, Dad plans first to ask Bart for his preference, 
then to ask Cassie after she hears Bart’s choice. Each child can choose ei-
ther the amusement park (A) or the science museum (S). If both children 
choose the same activity, then that is what they will all do. If the children 
choose different activities, Dad will make a tie-breaking decision. As the 
parent, Dad has an additional option: he can choose the amusement 
park, the science museum, or his personal favorite, the mountain hike 
(M). Bart and Cassie each get 1 unit of utility from the mountain hike, 
and Dad gets 3 units of utility from the mountain hike.

Because Dad wants his children to cooperate with one another, he 
gets 2 extra units of utility if the children choose the same activity (no 
matter which one of the two it is).

 (a) Draw the game tree, with payoffs, for this three-person game.
 (b) What is the rollback equilibrium to this game? Make sure to de-

scribe the strategies, not just the payoffs.
 (c) How many different complete strategies does Bart have? Explain.
 (d) How many complete strategies does Cassie have? Explain.

 U10. (Optional—more difficult) Consider the Survivor game tree illustrated in 
Figure 3.11. We might not have guessed exactly the values Rich estimated 
for the various probabilities, so let’s generalize this tree by considering 
other possible values. In particular, suppose that the probability of win-
ning the immunity challenge when Rich chooses Continue is x for Rich, 
y for Kelly, and 1  x  y for Rudy; similarly, the probability of winning 
when Rich gives up is z for Kelly and 1  z for Rudy. Further, suppose 
that Rich’s chance of being picked by the jury is p if he has won immu-
nity and has voted Rudy off the island; his chance of being picked is q 
if Kelly has won immunity and has voted Rudy off the island. Continue 
to assume that if Rudy wins immunity, he keeps Rich with probability 1, 
and that Rudy wins the game with probability 1 if he ends up in the final 
two. Note that in the example of Figure 3.11, we had x  0.45, y  0.5,  
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z  0.9, p  0.4, and q  0.6. (In general, the variables p and q need not 
sum to 1, though this happened to be true in Figure 3.11.)

 (a) Find an algebraic formula, in terms of x, y, z, p, and q, for the prob-
ability that Rich wins the million dollars if he chooses Continue. 
(Note: Your formula might not contain all of these variables.)

 (b) Find a similar algebraic formula for the probability that Rich wins 
the million dollars if he chooses Give Up. (Again, your formula 
might not contain all of the variables.)

 (c) Use these results to find an algebraic inequality telling us under 
what circumstances Rich should choose Give Up.

 (d) Suppose all the values are the same as in Figure 3.11 except for z. 
How high or low could z be so that Rich would still prefer to Give 
Up? Explain intuitively why there are some values of z for which 
Rich is better off choosing Continue.

 (e) Suppose all the values are the same as in Figure 3.11 except for p 
and q. Assume that since the jury is more likely to choose a “nice” 
person who doesn’t vote Rudy off, we should have p . 0.5 . q. For 
what values of the ratio (p q)should Rich choose Give Up? Explain 
intuitively why there are some values of p and q for which Rich is 
better off choosing Continue.
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44
■

Simultaneous-Move Games:

Discrete Strategies

Recall from chapter 2 that games are said to have simultaneous moves 
if players must move without knowledge of what their rivals have cho-
sen to do. It is obviously so if players choose their actions at exactly 
the same time. A game is also simultaneous when players choose their  

actions in isolation, with no information about what other players have done or 
will do, even if the choices are made at different hours of the clock. (For this rea-
son,  simultaneous-move games have imperfect information in the sense we de-
fined in Chapter 2, Section 2.D.) This chapter focuses on games that have such 
purely simultaneous interactions among players. We consider a variety of types 
of simultaneous games, introduce a solution concept called Nash equilibrium 
for these games, and study games with one equilibrium, many equilibria, or no 
equilibrium at all.

Many familiar strategic situations can be described as simultaneous-move 
games. The various producers of television sets, stereos, or automobiles make 
decisions about product design and features without knowing what rival firms 
are doing about their own products. Voters in U.S. elections simultaneously 
cast their individual votes; no voter knows what the others have done when she 
makes her own decision. The interaction between a soccer goalie and an oppos-
ing striker during a penalty kick requires both players to make their decisions 
 simultaneously—the goalie cannot afford to wait until the ball has actually been 
kicked to decide which way to go, because then it would be far too late.

When a player in a simultaneous-move game chooses her action, she obviously 
does so without any knowledge of the choices made by other players. She also  
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cannot look ahead to how they will react to her choice, because they act simul-
taneously and do not know what she is choosing. Rather, each player must fig-
ure out what others are choosing to do at the same time that the others are 
figuring out what she is choosing to do. This circularity makes the analysis 
of simultaneous-move games somewhat more intricate than the analysis of  
sequential-move games, but the analysis is not difficult. In this chapter, we 
will develop a simple concept of equilibrium for such games that has consid-
erable explanatory and predictive power.

1 DEPICTING SIMULTANEOUS-MOVE GAMES
WITH DISCRETE STRATEGIES

In Chapters 2 and 3, we emphasized that a strategy is a complete plan of ac-
tion. But in a purely simultaneous-move game, each player can have at most 
one opportunity to act (although that action may have many component parts); 
if a player had multiple opportunities to act, that would be an element of se-
quentiality. Therefore, there is no real distinction between strategy and action 
in  simultaneous-move games, and the terms are often used as synonyms in this 
context. There is only one complication. A strategy can be a probabilistic choice 
from the basic actions initially specified. For example, in sports, a player or team 
may deliberately randomize its choice of action to keep the opponent guessing. 
Such probabilistic strategies are called mixed strategies, and we consider them 
in Chapter 7. In this chapter, we confine our attention to the basic initially spec-
ified actions, which are called pure strategies.

In many games, each player has available to her a finite number of dis-
crete pure strategies—for example, Dribble, Pass, or Shoot in basketball. In 
other games, each player’s pure strategy can be any number from a continuous 
range—for example, the price charged for a product by a firm.1 This distinction 
makes no difference to the general concept of equilibrium in simultaneous-
move games, but the ideas are more easily conveyed with discrete strategies; so-
lution of games with continuous strategies needs slightly more advanced tools. 
Therefore, in this chapter, we restrict the analysis to the simpler case of discrete 
pure strategies and then take up continuously variable strategies in Chapter 5.

Simultaneous-move games with discrete strategies are most often de-
picted with the use of a game table (also called a game matrix or payoff table). 
The table is called the normal form or the strategic form of the game. Games 
with any number of players can be illustrated by using a game table, but its  

1 In fact, prices must be denominated in the minimum unit of coinage—for example, whole cents—
and can therefore take on only a finite number of discrete values. But this unit is usually so small 
that it makes more sense to think of the price as a continuous variable.
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dimensions must equal the number of players. For a two-player game, the table 
is two-dimensional and appears similar to a spreadsheet. The row and column 
headings of the table are the strategies available to the first and second players, 
respectively. The size of the table, then, is determined by the numbers of strat-
egies available to the players.2 Each cell within the table lists the payoffs to all 
players that arise under the configuration of strategies that placed players into 
that cell. Games with three players require three-dimensional tables; we consider 
them later in this chapter.

We illustrate the concept of a payoff table for a simple game in Figure 4.1. 
The game here has no special interpretation, so we can develop the concepts 
without the distraction of a “story.” The players are named Row and Column. 
Row has four choices (strategies or actions) labeled Top, High, Low, and Bottom; 
Column has three choices labeled Left, Middle, and Right. Each selection of Row 
and Column generates a potential outcome of the game. Payoffs associated with 
each outcome are shown in the cell corresponding to that row and that column. 
By convention, of the two payoff numbers, the first is Row’s payoff and the sec-
ond is Column’s. For example, if Row chooses High and Column chooses Right, 
the payoffs are 6 to Row and 4 to Column. For additional convenience, we show 
everything pertaining to Row—player name, strategies, and payoffs—in black, 
and everything pertaining to Column in blue.

Next we consider a second example with more of a story attached. Figure 
4.2 represents a very simplified version of a single play in American football. Of-
fense attempts to move the ball forward to improve its chances of kicking a field 
goal. It has four possible strategies: a run and one of three different-length passes 
(short, medium, and long). Defense can adopt one of three strategies to try to 
keep Offense at bay: a run defense, a pass defense, or a blitz of the quarterback.  

d e p i C t i n g  s i m u lta n e o u s - m o v e  g a m e s  w i t h  d i s C r e t e  s t r at e g i e s   9 3

    

    

Left Middle

COLUMN

Top 

High 

3, 1

4, 5 3, 0

2, 3

Right

6, 4

Low 2, 2 5, 4 12, 3

Bottom 5, 6 4, 5 9, 7

10, 2

ROW 

FIGURE 4.1  representing a simultaneous-move game in a table

2 If each firm can choose its price at any number of cents in a range that extends over a dollar, each 
has 100 distinct discrete strategies, and the table becomes 100 by 100. That is surely too unwieldy to 
analyze. Algebraic formulas with prices as continuous variables provide a simpler approach, not a 
more complicated one as some readers might fear. We develop this “Algebra is our friend” method 
in Chapter 5.
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Offense tries to gain yardage while Defense tries to prevent it from doing so. Sup-
pose we have enough information about the underlying strengths of the two 
teams to work out the probabilities of completing different plays and to deter-
mine the average gain in yardage that could be expected under each combina-
tion of strategies. For example, when Offense chooses the Medium Pass and 
Defense counters with its Pass defense, we estimate Offense’s payoff to be a gain 
of 4.5 yards, or 14.5.3 Defense’s “payoff” is a loss of 4.5 yards, or 24.5. The other 
cells similarly show our estimates of each team’s gain or loss of yardage.

Note that the payoffs sum to 0 in every cell of this table: when the offense 
gains 5 yards, the defense loses 5 yards, and when the offense loses 2 yards, the 
defense gains 2 yards. This pattern is quite common in sports contexts, where 
the interests of the two sides are exactly the opposite of each other. As noted 
in Chapter 2, we call this a zero-sum (or sometimes constant-sum) game. You 
should remember that the definition of a zero-sum game is that the payoffs sum 
to the same constant across cells, whether that number is 0, 6, or 1,000. (In Sec-
tion 4.7, we describe a game where the two players’ payoffs sum to 100.) The key 
feature of any zero-sum game is that one player’s loss is the other player’s gain.

2 NASH EQUILIBRIUM

To analyze simultaneous games, we need to consider how players choose their 
actions. Return to the game table in Figure 4.1. Focus on one specific outcome—

    

    

Run Pass

DEFENSE

Run 

Short Pass 

2, –2

6, –6 5.6, –5.6

5, –5

Blitz

10.5, –10.5

Medium Pass 6, –6 4.5, –4.5 1, –1

Long Pass 10, –10 3, –3 –2, 2

13, –13

OFFENSE 

FIGURE 4.2  a single play in american Football

3 Here is how the payoffs for this case were constructed. When Offense chooses the Medium Pass 
and Defense counters with its Pass defense, our estimate is that with probability 50% the pass  
will be completed for a gain of 15 yards, with probability 40% the pass will fall incomplete (0 yards), 
and with probability 10% the pass will be intercepted with a loss of 30 yards; this makes an average 
of 0.5 3 15 1 0.4 3 0 1 0.1 3 (230) 5 4.5 yards. The numbers in the table were constructed by a 
small panel of expert neighbors and friends convened by Dixit on one fall Sunday afternoon. They 
received a liquid consultancy fee.
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namely, the one where Row chooses Low and Column chooses Middle; payoffs 
there are 5 to Row and 4 to Column. Each player wants to pick an action that 
yields her the highest payoff, and in this outcome each indeed makes such a 
choice, given what her opponent chooses. Given that Row is choosing Low, can 
Column do any better by choosing something other than Middle? No, because 
Left would give her the payoff 2, and Right would give her 3, neither of which is 
better than the 4 she gets from Middle. Thus, Middle is Column’s best response 
to Row’s choice of Low. Conversely, given that Column is choosing Middle, can 
Row do better by choosing something other than Low? Again no, because the 
payoffs from switching to Top (2), High (3), or Bottom (4) would all be no better 
than what Row gets with Low (5). Thus, Low is Row’s best response to Column’s 
choice of Middle.

The two choices, Low for Row and Middle for Column, have the property 
that each is the chooser’s best response to the other’s action. If they were mak-
ing these choices, neither would want to switch to anything different on her 
own. By the definition of a noncooperative game, the players are making their 
choices independently; therefore such unilateral changes are all that each 
player can contemplate. Because neither wants to make such a change, it is 
natural to call this state of affairs an equilibrium. This is exactly the concept of 
Nash equilibrium.

To state it a little more formally, a Nash equilibrium4 in a game is a list of 
strategies, one for each player, such that no player can get a better payoff by 
switching to some other strategy that is available to her while all the other play-
ers adhere to the strategies specified for them in the list.

A. Some Further Explanation of the Concept of Nash Equilibrium

To understand the concept of Nash equilibrium better, we take another look 
at the game in Figure 4.1. Consider now a cell other than (Low, Middle)—say, 
the one where Row chooses High and Column chooses Left. Can this be a Nash 
equilibrium? No, because, if Column is choosing Left, Row does better to choose 
Bottom and get the payoff 5 rather than to choose High, which gives her only 4. 
Similarly, (Bottom, Left) is not a Nash equilibrium, because Column can do bet-
ter by switching to Right, thereby improving her payoff from 6 to 7.

n a s h  e q u i l i b r i u m   9 5

4 This concept is named for the mathematician and economist John Nash, who developed it in his 
doctoral dissertation at Princeton in 1949. Nash also proposed a solution to cooperative games, 
which we consider in Chapter 17. He shared the 1994 Nobel Prize in economics with two other game 
theorists, Reinhard Selten and John Harsanyi; we will treat some aspects of their work in Chapters 
8, 9, and 13. Sylvia Nasar’s biography of Nash, A Beautiful Mind (New York: Simon & Schuster, 1998), 
was the (loose) basis for a movie starring Russell Crowe. Unfortunately, the movie’s attempt to ex-
plain the concept of Nash equilibrium fails. We explain this failure in Exercise S13 of this chapter 
and in Exercise S14 of Chapter 7.
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The definition of Nash equilibrium does not require equilibrium choices to 
be strictly better than other available choices. Figure 4.3 is the same as Figure 
4.1 except that Row’s payoff from (Bottom, Middle) is changed to 5, the same as 
that from (Low, Middle). It is still true that, given Column’s choice of Middle, Row 
could not do any better than she does when choosing Low. So neither player has a 
reason to change her action when the outcome is (Low, Middle), and that quali-
fies it for a Nash equilibrium.5

More important, a Nash equilibrium does not have to be jointly best for the 
players. In Figure 4.1, the strategy pair (Bottom, Right) gives payoffs (9, 7), which 
are better for both players than the (5, 4) of the Nash equilibrium. However, 
playing independently, they cannot sustain (Bottom, Right). Given that Column 
plays Right, Row would want to deviate from Bottom to Low and get 12 instead 
of 9. Getting the jointly better payoffs of (9, 7) would require cooperative action 
that made such “cheating” impossible. We examine this type of behavior later in 
this chapter and in more detail in Chapter 10. For now, we merely point out the 
fact that a Nash equilibrium may not be in the joint interests of the  players.

To reinforce the concept of Nash equilibrium, look at the football game 
of Figure 4.2. If Defense is choosing the Pass defense, then the best choice for 
Offense is Short Pass (payoff of 5.6 versus 5, 4.5, or 3). Conversely, if Offense is 
choosing the Short Pass, then Defense’s best choice is the Pass  defense—it holds 
Offense down to 5.6 yards, whereas the Run defense and the Blitz would be ex-
pected to concede 6 and 10.5 yards, respectively. (Remember that the entries in 
each cell of a zero-sum game are the Row player’s payoffs; therefore the best choice 
for the Column player is the one that yields the smallest number, not the largest.) 
In this game, the strategy combination (Short Pass, Pass defense) is a Nash equilib-
rium, and the resulting payoff to Offense is 5.6 yards.

    

    

Left Middle

COLUMN

Top 

High 

3, 1

4, 5 3, 0

2, 3

Right

6, 4

Low 2, 2 5, 4 12, 3

Bottom 5, 6 5, 5 9, 7

10, 2

ROW

FIGURE 4.3  variation on game of Figure 4.1 with a tie in payoffs

5 But note that (Bottom, Middle) with the payoffs of (5, 5) is not itself a Nash equilibrium. If Row was 
choosing Bottom, Column’s own best choice would not be Middle; she could do better by choosing 
Right. In fact, you can check all the other cells in the table to verify that none of them can be a Nash 
equilibrium.
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How does one find Nash equilibria in games? One can always check every 
cell to see if the strategies that generate it satisfy the definition of a Nash equi-
librium. Such a systematic analysis is foolproof, but tedious and unmanageable 
except in simple games or with the use of a good computer program to check 
cells for equilibria. Luckily, there are other methods, applicable to special types 
of games, that not only find Nash equilibria more quickly when they apply, but 
also give us a better understanding of the process of thinking by which beliefs 
and then choices are formed. We develop such methods in later sections.

B. Nash Equilibrium as a System of Beliefs and Choices

Before we proceed with further study and use of the Nash equilibrium concept, 
we should try to clarify something that may have bothered some of you. We said 
that, in a Nash equilibrium, each player chooses her “best response” to the oth-
er’s choice. But the two choices are made simultaneously. How can one respond 
to something that has not yet happened, at least when one does not know what 
has happened?

People play simultaneous-move games all the time and do make choices. 
To do so, they must find a substitute for actual knowledge or observation of the 
others’ actions. Players could make blind guesses and hope that they turn out 
to be inspired ones, but luckily there are more systematic ways to try to figure 
out what the others are doing. One method is experience and observation—if 
the players play this game or similar games with similar players all the time, 
they may develop a pretty good idea of what the others do. Then choices that 
are not best will be unlikely to persist for long. Another method is the logical 
process of thinking through the others’ thinking. You put yourself in the posi-
tion of other players and think what they are thinking, which of course includes 
their putting themselves in your position and thinking what you are thinking. 
The logic seems circular, but there are several ways of breaking into the circle, 
and we demonstrate these ways by using specific examples in the sections that 
follow. Nash equilibrium can be thought of as a culmination of this process of 
thinking about thinking, where each player has correctly figured out the others’ 
choice.

Whether by observation or logical deduction or some other method, you, the game 
player, acquire some notion of what the others are choosing in simultaneous-move 
games. It is not easy to find a word to describe the process or its outcome. It is not 
anticipation, nor is it forecasting, because the others’ actions do not lie in the future 
but occur simultaneously with your own. The word most frequently used by game 
theorists is belief. This word is not perfect either, because it seems to connote more 
confidence or certainty than is intended; in fact, in Chapter 7, we allow for the pos-
sibility that beliefs are held with some uncertainty. But for lack of a better word, it 
will have to suffice.

n a s h  e q u i l i b r i u m   9 7
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This concept of belief also relates to our discussion of uncertainty in Chap-
ter 2, Section 2.D. There we introduced the concept of strategic uncertainty. 
Even when all the rules of a game—the strategies available to all players and the 
payoffs for each as functions of the strategies of all—are known without any un-
certainty external to the game, such as weather, each player may be uncertain 
about what actions the others are taking at the same time. Similarly, if past ac-
tions are not observable, each player may be uncertain about what actions the 
others took in the past. How can players choose in the face of this strategic un-
certainty? They must form some subjective views or estimates about the others’ 
actions. That is exactly what the notion of belief captures.

Now think of Nash equilibrium in this light. We defined it as a configura-
tion of strategies such that each player’s strategy is her best response to that of 
the others. If she does not know the actual choices of the others but has beliefs 
about them, in Nash equilibrium those beliefs would have to be correct—the 
others’ actual actions should be just what you believe them to be. Thus, we can 
define Nash equilibrium in an alternative and equivalent way: it is a set of strat-
egies, one for each player, such that (1) each player has correct beliefs about the 
strategies of the others and (2) the strategy of each is the best for herself, given 
her beliefs about the strategies of the others.6

This way of thinking about Nash equilibrium has two advantages. First, the 
concept of “best response” is no longer logically flawed. Each player is choosing 
her best response, not to the as yet unobserved actions of the others, but only to 
her own already formed beliefs about their actions. Second, in Chapter 7, where 
we allow mixed strategies, the randomness in one player’s strategy may be bet-
ter interpreted as uncertainty in the other players’ beliefs about this player’s ac-
tion. For now, we proceed by using both interpretations of Nash equilibrium in 
parallel.

You might think that formation of correct beliefs and calculation of best 
responses is too daunting a task for mere humans. We discuss some criticisms 
of this kind, as well as empirical and experimental evidence concerning Nash 
equilibrium, in Chapter 5 for pure strategies and Chapter 7 for mixed strategies. 
For now, we simply say that the proof of the pudding is in the eating. We develop 
and illustrate the Nash equilibrium concept by applying it. We hope that seeing 
it in use will prove a better way to understand its strengths and drawbacks than 
would an abstract discussion at this point.

6 In this chapter we consider only Nash equilibria in pure strategies—namely, the ones initially 
listed in the specification of the game, and not mixtures of two or more of them. Therefore, in such 
an equilibrium, each player has certainty about the actions of the others; strategic uncertainty is re-
moved. When we consider mixed strategy equilibria in Chapter 7, the strategic uncertainty for each 
player will consist of the probabilities with which the various strategies are played in the other play-
ers’ equilibrium mixtures. 
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3 DOMINANCE

Some games have a special property that one strategy is uniformly better than 
or worse than another. When this is the case, it provides one way in which the 
search for Nash equilibrium and its interpretation can be simplified.

The well-known game of the prisoners’ dilemma illustrates this concept well. 
Consider a story line of the type that appears regularly in the television program 
Law and Order. Suppose that a Husband and Wife have been arrested under the 
suspicion that they were conspirators in the murder of a young woman. Detec-
tives Green and Lupo place the suspects in separate detention rooms and inter-
rogate them one at a time. There is little concrete evidence linking the pair to the 
murder, although there is some evidence that they were involved in kidnapping 
the victim. The detectives explain to each suspect that they are both looking at 
jail time for the kidnapping charge, probably 3 years, even if there is no confes-
sion from either of them. In addition, the Husband and Wife are told individu-
ally that the detectives “know” what happened and “know” how one had been 
coerced by the other to participate in the crime; it is implied that jail time for a 
solitary confessor will be significantly reduced if the whole story is committed 
to paper. (In a scene common to many similar programs, a yellow legal pad and 
a pencil are produced and placed on the table at this point.) Finally, they are told 
that, if both confess, jail terms could be negotiated down but not as much as they 
would be if there were one confession and one denial.

Both Husband and Wife are then players in a two-person, simultaneous-move 
game in which each has to choose between confessing and not confessing to the 
crime of murder. They both know that no confession leaves them each with a  
3-year jail sentence for involvement with the kidnapping. They also know that, if 
one of them confesses, he or she will get a short sentence of 1 year for cooperating 
with the police, while the other will go to jail for a minimum of 25 years. If both 
confess, they figure that they can negotiate for jail terms of 10 years each.

The choices and outcomes for this game are summarized by the game table in 
Figure 4.4. The strategies Confess and Deny can also be called Defect and Cooper-
ate to capture their roles in the relationship between the two players; thus Defect 

d o m i n a n C e   9 9

WIFE

Confess (Defect) 

Confess (Defect) Deny (Cooperate)

Deny (Cooperate) 

1 yr, 25 yr10 yr, 10 yr

3 yr, 3 yr25 yr, 1 yr
HUSBAND  

FIGURE 4.4  prisoners’ dilemma
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means to defect from any tacit arrangement with the spouse, and Cooperate 
means to take the action that helps the spouse (not cooperate with the cops).

Payoffs here are the lengths of the jail sentences associated with each out-
come, so low numbers are better for each player. In that sense, this example dif-
fers from those of most of the games that we analyze, in which large payoffs are 
good rather than bad. We take this opportunity to alert you that “large is good” is 
not always true. When payoff numbers indicate players’ rankings of outcomes, 
people often use 1 for the best alternative and successively higher numbers for 
successively worse ones. Also, in the table for a zero-sum game that shows only 
one player’s bigger-is-better payoffs, smaller numbers are better for the other. 
In the prisoners’ dilemma here, smaller numbers are better for both. Thus, if 
you ever write a payoff table where large numbers are bad, you should alert the 
reader by pointing it out clearly. And when reading someone else’s example, be 
aware of the possibility.

Now consider the prisoners’ dilemma game in Figure 4.4 from the Hus-
band’s perspective. He has to think about what the Wife will choose. Suppose 
he believes that she will confess. Then his best choice is to confess; he gets a 
sentence of only 10 years, while denial would have meant 25 years. What if he 
believes the Wife will deny? Again, his own best choice is to confess; he gets only 
1 year instead of the 3 that his own denial would bring in this case. Thus, in this 
special game, Confess is better than Deny for the Husband regardless of his be-
lief about the Wife’s choice. We say that, for the Husband, the strategy Confess is 
a dominant strategy or that the strategy Deny is a dominated strategy. Equiv-
alently, we could say that the strategy Confess dominates the strategy Deny or 
that the strategy Deny is dominated by the strategy Confess.

If an action is clearly best for a player, no matter what the others might be 
doing, then there is compelling reason to think that a rational player would 
choose it. And if an action is clearly bad for a player, no matter what the others 
might be doing, then there is equally compelling reason to think that a rational 
player would avoid it. Therefore, dominance, when it exists, provides a compel-
ling basis for the theory of solutions to simultaneous-move games.

A. Both Players Have Dominant Strategies

In the preceding prisoners’ dilemma, dominance should lead the Husband to 
choose Confess. Exactly the same logic applies to the Wife’s choice. Her own 
strategy Confess dominates her own strategy Deny; so she also should choose 
Confess. Therefore, (Confess, Confess) is the outcome predicted for this game. 
Note that it is a Nash equilibrium. (In fact it is the only Nash equilibrium.) Each 
player is choosing his or her own best strategy.

In this special game, the best choice for each is independent of whether 
their beliefs about the other are correct—this is the meaning of dominance—
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but if each of them attributes to the other the same rationality as he or she prac-
tices, then both of them should be able to form correct beliefs. And the actual 
action of each is the best response to the actual action of the other. Note that the 
fact that Confess dominates Deny for both players is completely independent of 
whether they are actually guilty, as in many episodes of Law and Order, or are 
being framed, as happened in the movie L.A. Confidential. It only depends on 
the pattern of payoffs dictated by the various sentence lengths.

Any game with the same general payoff pattern as that illustrated in Figure 
4.4 is given the generic label “prisoners’ dilemma.” More specifically, a prison-
ers’ dilemma has three essential features. First, each player has two strategies: to 
cooperate with one’s rival (deny any involvement in the crime, in our example) 
or to defect from cooperation (confess to the crime, here). Second, each player 
also has a dominant strategy (to confess or to defect from cooperation). Finally, 
the dominance solution equilibrium is worse for both players than the nonequi-
librium situation in which each plays the dominated strategy (to cooperate 
with rivals).

Games of this type are particularly important in the study of game theory for 
two reasons. The first is that the payoff structure associated with the prisoners’ 
dilemma arises in many quite varied strategic situations in economic, social, 
political, and even biological competitions. This wide-ranging applicability makes 
it an important game to study and to understand from a strategic standpoint. The 
whole of Chapter 10 and sections in several other chapters deal with its study.

The second reason that prisoners’ dilemma games are integral to any dis-
cussion of games of strategy is the somewhat curious nature of the equilibrium 
outcome achieved in such games. Both players choose their dominant strate-
gies, but the resulting equilibrium outcome yields them payoffs that are lower 
than they could have achieved if they had each chosen their dominated strate-
gies. Thus, the equilibrium outcome in the prisoners’ dilemma is actually a bad 
outcome for the players. There is another outcome that they both prefer to the 
equilibrium outcome; the problem is how to guarantee that someone will not 
cheat. This particular feature of the prisoners’ dilemma has received consider-
able attention from game theorists who have asked an obvious question: What 
can players in a prisoners’ dilemma do to achieve the better outcome? We leave 
this question to the reader momentarily, as we continue the discussion of simul-
taneous games, but return to it in detail in Chapter 10.

B. One Player Has a Dominant Strategy

When a rational player has a dominant strategy, she will use it, and the other 
player can safely believe this. In the prisoners’ dilemma, it applies to both play-
ers. In some other games, it applies only to one of them. If you are playing in a 
game in which you do not have a dominant strategy but your opponent does, 

d o m i n a n C e   1 0 1
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you can assume that she will use her dominant strategy, and so you can choose 
your equilibrium action (your best response) accordingly.

We illustrate this case by using a game frequently played between Congress, 
which is responsible for fiscal policy (taxes and government expenditures), and 
the Federal Reserve (Fed), which is in charge of monetary policy (primarily, in-
terest rates).7 In a version that simplifies the game to its essential features, the 
Congress’s fiscal policy can have either a balanced budget or a deficit, and the 
Fed can set interest rates either high or low. In reality, the game is not clearly 
 simultaneous, nor is who has the first move obvious if choices are sequential. 
We consider the simultaneous-move version here, and in Chapter 6, we will 
study how the outcomes differ for different rules of the game.

Almost everyone wants lower taxes. But there is no shortage of good claims 
on government funds: defense, education, health care, and so on. There are also 
various politically powerful special interest groups—including farmers and in-
dustries hurt by foreign competition—who want government subsidies. There-
fore, Congress is under constant pressure both to lower taxes and to increase 
spending. But such behavior runs the budget into deficit, which can lead to 
higher inflation. The Fed’s primary task is to prevent inflation. However, it also 
faces political pressure for lower interest rates from many important groups, 
especially homeowners who benefit from lower mortgage rates. Lower interest 
rates lead to higher demand for automobiles, housing, and capital investment 
by firms, and all this demand can cause higher inflation. The Fed is generally 
happy to lower interest rates, but only so long as inflation is not a threat. And 
there is less threat of inflation when the government’s budget is in balance. 
With all this in mind, we construct the payoff matrix for this game in Figure 4.5.

Congress likes best (payoff 4) the outcome with a budget deficit and low in-
terest rates. This pleases all the immediate political constituents. It may entail 
trouble for the future, but political time horizons are short. For the same reason, 
Congress likes worst (payoff 1) the outcome with a balanced budget and high 

FEDERAL RESERVE

Budget balance 

Low interest rates High interest rates

Budget deficit 

1, 33, 4

2, 24, 1
CONGRESS 

FIGURE 4.5  game of Fiscal and monetary policies

7 Similar games are played in many other countries with central banks that have operational in-
dependence in the choice of monetary policy. Fiscal policies may be chosen by different political 
entities—the executive or the legislature—in different countries.
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interest rates. Of the other two outcomes, it prefers (payoff 3) the outcome with 
a balanced budget and low interest rates; this outcome pleases the important 
home-owning middle classes, and with low interest rates, less expenditure is 
needed to service the government debt, so the balanced budget still has room 
for many other items of expenditure or for tax cuts.

The Fed likes worst (payoff 1) the outcome with a budget deficit and low inter-
est rates, because this combination is the most inflationary. It likes best (payoff 4) 
the outcome with a balanced budget and low interest rates, because this combi-
nation can sustain a high level of economic activity without much risk of infla-
tion. Comparing the other two outcomes with high interest rates, the Fed prefers 
the one with a balanced budget because it reduces the risk of inflation.

We look now for dominant strategies in this game. The Fed does better by 
choosing low interest rates if it believes that Congress is opting for a balanced 
budget (Fed’s payoff 4 rather than 3), but it does better choosing high interest 
rates if it believes that Congress is choosing to run a budget deficit (Fed’s payoff 
2 rather than 1). The Fed, then, does not have a dominant strategy. But Congress 
does. If Congress believes that the Fed is choosing low interest rates, it does bet-
ter for itself by choosing a budget deficit rather than a balanced budget (Con-
gress’s payoff 4 instead of 3). If Congress believes that the Fed is choosing high 
interest rates, again it does better for itself by choosing a budget deficit rather 
than a balanced budget (Congress’s payoff 2 instead of 1). Choosing to run a 
budget deficit is then Congress’s dominant strategy.

The choice for Congress is now clear. No matter what it believes the Fed is 
doing, Congress will choose to run a budget deficit. The Fed can now take this 
choice into account when making its own decision. The Fed should believe 
that Congress will choose its dominant strategy (budget deficit) and therefore 
choose the best strategy for itself, given this belief. That means that the Fed 
should choose high interest rates.

In this outcome, each side gets payoff 2. But an inspection of Figure 4.5 
shows that, just as in the prisoners’ dilemma, there is another outcome (namely, 
a balanced budget and low interest rates) that can give both players higher 
payoffs (namely, 3 for Congress and 4 for the Fed). Why is that outcome not 
achievable as an equilibrium? The problem is that Congress would be tempted  
to deviate from its stated strategy and sneakily run a budget deficit. The Fed, 
knowing this temptation and that it would then get its worst outcome (payoff 
1), deviates also to its high interest rate strategy. In Chapters 6 and 9, we con-
sider how the two sides can get around this difficulty to achieve their mutually 
preferred outcome. But we should note that, in most countries and at many 
times, the two policy authorities are indeed stuck in the bad outcome; the fis-
cal policy is too loose, and the monetary policy has to be tightened to keep 
inflation down.

d o m i n a n C e   1 0 3

6841D CH04 UG.indd   103 12/18/14   3:10 PM



1 0 4   [ C h . 4 ]  s i m u lta n e o u s - m o v e  g a m e s : d i s C r e t e  s t r at e g i e s

C. Successive Elimination of Dominated Strategies

The games considered so far have had only two pure strategies available to each 
player. In such games, if one strategy is dominant, the other is dominated; so 
choosing the dominant strategy is equivalent to eliminating the dominated one. 
In larger games, some of a player’s strategies may be dominated even though 
no single strategy dominates all of the others. If players find themselves in a 
game of this type, they may be able to reach an equilibrium by removing domi-
nated strategies from consideration as possible choices. Removing dominated 
strategies reduces the size of the game, and then the “new” game may have an-
other dominated strategy for the same player or for her opponent that can also 
be  removed. Or the “new” game may even have a dominant strategy for one of 
the players. Successive or iterated elimination of dominated strategies uses 
this process of removal of dominated strategies and reduction in the size of a 
game until no further reductions can be made. If this process ends in a unique 
outcome, then the game is said to be dominance solvable; that outcome is the 
Nash equilibrium of the game, and the strategies that yield it are the equilibrium 
strategies for each player.

We can use the game of Figure 4.1 to provide an example of this process. 
Consider first Row’s strategies. If any one of Row’s strategies always provides 
worse payoffs for Row than another of her strategies, then that strategy is 
dominated and can be eliminated from consideration for Row’s equilibrium 
choice. Here, the only dominated strategy for Row is High, which is dominated 
by Bottom; if Column plays Left, Row gets 5 from Bottom and only 4 from  
High; if Column plays Middle, Row gets 4 from Bottom and only 3 from High; 
and, if Column plays Right, Row gets 9 from Bottom and only 6 from High. So 
we can eliminate High. We now turn to Column’s choices to see if any of them 
can be eliminated. We find that Column’s Left is now dominated by Right (with 
similar reasoning, 1 , 2, 2 , 3, and 6 , 7). Note that we could not say this be-
fore Row’s High was eliminated; against Row’s High, Column would get 5 from 
Left but only 4 from Right. Thus, the first step of eliminating Row’s High makes 
possible the second step of eliminating Column’s Left. Then, within the re-
maining set of strategies (Top, Low, and Bottom for Row, and Middle and Right 
for Column), Row’s Top and Bottom are both dominated by his Low. When 
Row is left with only Low, Column chooses his best response—namely, Middle.

The game is thus dominance solvable, and the outcome is (Low, Middle) 
with payoffs (5, 4). We identified this outcome as a Nash equilibrium when we 
first illustrated that concept by using this game. Now we see in better detail the 
thought process of the players that leads to the formation of correct beliefs. A 
rational Row will not choose High. A rational Column will recognize this, and 
thinking about how her various strategies perform for her against Row’s remaining 
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strategies, will not choose Left. In turn, Row will recognize this, and therefore will 
not choose either Top or Bottom. Finally, Column will see through all this, and 
choose Middle.

Other games may not be dominance solvable, or successive elimination 
of dominated strategies may not yield a unique outcome. Even in such cases, 
some elimination may reduce the size of the game and make it easier to solve by 
using one or more of the techniques described in the following sections. Thus 
eliminating dominated strategies can be a useful step toward solving a large 
 simultaneous-play game, even when their elimination does not completely 
solve the game.

Thus far in our consideration of iterated elimination of dominated strate-
gies, all the payoff comparisons have been unambiguous. What if there are some 
ties? Consider the variation on the preceding game that is shown in Figure 4.3. 
In that version of the game, High (for Row) and Left (for Column) also are elimi-
nated. And, at the next step, Low still dominates Top. But the dominance of Low 
over Bottom is now less clear-cut. The two strategies give Row equal payoffs 
when played against Column’s Middle, although Low does give Row a higher 
payoff than Bottom when played against Column’s Right. We say that, from 
Row’s perspective at this point, Low weakly dominates Bottom. In contrast, Low 
strictly dominates Top, because it gives strictly higher payoffs than does Top 
when played against both of Column’s strategies, Middle and Right, under con-
sideration at this point.

And now, a word of warning. Successive elimination of weakly dominated 
strategies can get rid of some Nash equilibria. Consider the game illustrated in 
Figure 4.6, where we introduce Rowena as the row player and Colin as the col-
umn player.8 For Rowena, Up is weakly dominated by Down; if Colin plays Left, 
then Rowena gets a better payoff by playing Down than by playing Up, and, 
if Colin plays Right, then Rowena gets the same payoff from her two strategies.  

d o m i n a n C e   1 0 5

Left Right

COLIN

Up 

Down 

0, 0

1, 1 1, 1

1, 1
ROWENA

FIGURE 4.6  elimination of weakly dominated strategies

8 We use these names in the hope that they will aid you in remembering which player chooses the 
row and which chooses the column. We acknowledge Robert Aumann, who shared the Nobel Prize 
with Thomas Schelling in 2005 (and whose ideas will be prominent in Chaper 9), for inventing this 
clever naming idea.

6841D CH04 UG.indd   105 12/18/14   3:10 PM



1 0 6   [ C h . 4 ]  s i m u lta n e o u s - m o v e  g a m e s : d i s C r e t e  s t r at e g i e s

Similarly, for Colin, Right weakly dominates Left. Dominance solvability then 
tells us that (Down, Right) is a Nash equilibrium. That is true, but (Down, Left) 
and (Up, Right) also are Nash equilibria. Consider (Down, Left). When Rowena 
is playing Down, Colin cannot improve his payoff by switching to Right, and, 
when Colin is playing Left, Rowena’s best response is clearly to play Down. A 
similar reasoning verifies that (Up, Right) also is a Nash equilibrium.

Therefore, if you use weak dominance to eliminate some strategies, it is a 
good idea to use other methods (such as the one described in the next section) 
to see if you have missed any other equilibria. The iterated dominance solu-
tion seems to be a reasonable outcome to predict as the likely Nash equilib-
rium of this simultaneous-play game, but it is also important to consider the 
significance of multiple equilibria as well as of the other equilibria themselves. 
We will address these issues in later chapters, taking up a discussion of multi-
ple equilibria in Chapter 5 and the interconnections between sequential- and 
simultaneous-move games in Chapter 6.

4 BEST-RESPONSE ANALYSIS

Many simultaneous-move games have no dominant strategies and no domi-
nated strategies. Others may have one or several dominated strategies, but it-
erated elimination of dominated strategies will not yield a unique outcome. In 
such cases, we need a next step in the process of finding a solution to the game. 
We are still looking for a Nash equilibrium in which every player does the best 
she can, given the actions of the other player(s), but we must now rely on subtler 
strategic thinking than the simple elimination of dominated strategies  requires.

Here we develop another systematic method for finding Nash equilibria that 
will prove very useful in later analysis. We begin without imposing a require-
ment of correctness of beliefs. We take each player’s perspective in turn and ask 
the following question: For each of the choices that the other player(s) might be 
making, what is the best choice for this player? Thus, we find the best responses 
of each player to all available strategies of the others. In mathematical terms, we 
find each player’s best-response strategy depending on, or as a function of, the 
other players’ available strategies.

Let’s return to the game played by Row and Column and reproduce it as Figure 
4.7. We’ll first consider Row’s responses. If Column chooses Left, Row’s best re-
sponse is Bottom, yielding 5. We show this best response by circling that payoff in 
the game table. If Column chooses Middle, Row’s best response is Low (also yield-
ing 5). And if Column chooses Right, Row’s best choice is again Low (now yield-
ing 12). Again, we show Row’s best choices by circling the appropriate payoffs. 
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Similarly, Column’s best responses are shown by circling her payoffs: 3 (Middle as 
best response to Row’s Top), 5 (Left to Row’s High), 4 (Middle to Row’s Low), and 7 
(Right to Row’s Bottom).9 We see that one cell—namely, (Low, Middle)—has both 
its payoffs circled. Therefore, the strategies Low for Row and Middle for Column 
are simultaneously best responses to each other. We have found the Nash equilib-
rium of this game. (Again.)

Best-response analysis is a comprehensive way of locating all possible 
Nash equilibria of a game. You should improve your understanding of it by try-
ing it out on the other games that have been used in this chapter. The cases of 
dominance are of particular interest. If Row has a dominant strategy, that same 
strategy is her best response to all of Column’s strategies; therefore her best re-
sponses are all lined up horizontally in the same row. Similarly, if Column has a 
dominant strategy, her best responses are all lined up vertically in the same col-
umn. You should see for yourself how the Nash equilibria in the Husband–Wife 
prisoners’ dilemma shown in Figure 4.4 and the Congress–Federal Reserve game 
depicted in Figure 4.5 emerge from such an analysis.

There will be some games for which best-response analysis does not find 
a Nash equilibrium, just as dominance solvability sometimes fails. But in 
this case we can say something more specific than can be said when domi-
nance fails. When best-response analysis of a discrete strategy game does not 

b e s t - r e s p o n s e  a n a ly s i s   1 0 7

    

    

Left Middle

COLUMN

Top 

High 

3, 1

4, 5 3, 0

2, 3

Right

6, 4

Low 2, 2 5, 4 12, 3

Bottom 5, 6 4, 5 9, 7

10, 2

ROW 

FIGURE 4.7  best-response analysis

9 Alternatively and equivalently, one could mark in some way the choices that are not made. For ex-
ample, in Figure 4.3, Row will not choose Top, High, or Bottom as responses to Column’s Right; one 
could show this by drawing slashes through Row’s payoffs in these cases, respectively, 10, 6, and 9. 
When this is done for all strategies of both players, (Low, Middle) has both of its payoffs unslashed; 
it is then the Nash equilibrium of the game. The alternatives of circling choices that are made and 
slashing choices that are not made stand in a conceptually similar relation to each other, as do the 
alternatives of showing chosen branches by arrows and pruning unchosen branches for sequential-
move games. We prefer the first alternative in each case, because the resulting picture looks cleaner 
and tells the story better.
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find a Nash equilibrium, then the game has no equilibrium in pure strategies.  
We address games of this type in Section 7 of this chapter. In Chapter 5, we will 
extend best- response analysis to games where the players’ strategies are con-
tinuous  variables—for example, prices or advertising expenditures. Moreover, 
we will construct best-response curves to help us find Nash equilibria, and we 
will see that such games are less likely—by virtue of the continuity of strategy 
choices—to have no equilibrium.

5 THREE PLAYERS

So far, we have analyzed only games between two players. All of the methods of 
analysis that have been discussed, however, can be used to find the pure-strategy 
Nash equilibria of any simultaneous-play game among any number of players. 
When a game is played by more than two players, each of whom has a relatively 
small number of pure strategies, the analysis can be done with a game table, as 
we did in the first four sections of this chapter.

In Chapter 3, we described a game among three players, each of whom had 
two pure strategies. The three players, Emily, Nina, and Talia, had to choose 
whether to contribute toward the creation of a flower garden for their small 
street. We assumed that the garden was no better when all three contributed 
than when only two contributed and that a garden with just one contribu-
tor was so sparse that it was as bad as no garden at all. Now let us suppose in-
stead that the three players make their choices simultaneously and that there is 
a somewhat richer variety of possible outcomes and payoffs. In particular, the 
size and splendor of the garden will now differ according to the exact number 
of contributors; three contributors will produce the largest and best garden, two 
contributors will produce a medium garden, and one contributor will produce a 
small garden.

Suppose Emily is contemplating the possible outcomes of the street-garden  
game. There are six possible choices for her to consider. Emily can choose ei-
ther to contribute or not to contribute when both Nina and Talia contribute 
or when neither of them contributes or when just one of them contributes. 
From her perspective, the best possible outcome, with a rating of 6, would be 
to take advantage of her good-hearted neighbors and to have both Nina and  
Talia contribute while she does not. Emily could then enjoy a medium-sized 
garden without putting up her own hard-earned cash. If both of the others 
contribute and Emily also contributes, she gets to enjoy a large, very splendid 
garden but at the cost of her own contribution; she rates this outcome  second 
best, or 5.
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At the other end of the spectrum are the outcomes that arise when neither 
Nina nor Talia contributes to the garden. If that is the case, Emily would again 
prefer not to contribute, because she would foot the bill for a public garden that 
everyone could enjoy; she would rather have the flowers in her own yard. Thus, 
when neither of the other players is contributing, Emily ranks the outcome in 
which she contributes as a 1 and the outcome in which she does not as a 2.

In between these cases are the situations in which either Nina or Talia con-
tributes to the flower garden but not both of them. When one of them contrib-
utes, Emily knows that she can enjoy a small garden without contributing; she 
also feels that the cost of her contribution outweighs the increase in benefit that 
she gets from being able to increase the size of the garden. Thus, she ranks the 
outcome in which she does not contribute but still enjoys the small garden as a 
4 and the outcome in which she does contribute, thereby providing a medium 
garden, as a 3. Because Nina and Talia have the same views as Emily on the costs 
and benefits of contributions and garden size, each of them orders the differ-
ent outcomes in the same way—the worst outcome being the one in which each 
contributes and the other two do not, and so on.

If all three women decide whether to contribute to the garden without know-
ing what their neighbors will do, we have a three-person simultaneous-move 
game. To find the Nash equilibrium of the game, we then need a game table. For 
a three-player game, the table must be three-dimensional, and the third player’s 
strategies must correspond to the new dimension. The easiest way to add a third 
dimension to a two-dimensional game table is to add pages. The first page of the 
table shows payoffs for the third player’s first strategy, the second page shows 
payoffs for the third player’s second strategy, and so on.

We show the three-dimensional table for the street-garden game in Figure 
4.8. It has two rows for Emily’s two strategies, two columns for Nina’s two strate-
gies, and two pages for Talia’s two strategies. We show the pages side by side so 
that you can see everything at the same time. In each cell, payoffs are listed for 

t h r e e  p l ay e r s   1 0 9

EMILY 

Don't

NINA

5, 5, 5

6, 3, 3

3, 6, 3

4, 4, 1Don't 

Contribute 

Contribute

EMILY 

Don't

NINA

3, 3, 6

4, 1, 4

1, 4, 4

2, 2, 2Don't 

Contribute 

Contribute

Contribute 

 TALIA chooses: 

Don’t Contribute 

FIGURE 4.8  street–garden game
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the row player first, the column player second, and the page player third; in this 
case, the order is Emily, Nina, Talia.

Our first test should be to determine whether there are dominant strategies 
for any of the players. In one-page game tables, we found this test to be simple; 
we just compared the outcomes associated with one of a player’s strategies with 
the outcomes associated with another of her strategies. In practice this com-
parison required, for the row player, a simple check within columns of the sin-
gle page of the table and vice versa for the column player. Here we must check  
in both pages of the table to determine whether any player has a dominant 
strategy.

For Emily, we compare the two rows of both pages of the table and note 
that, when Talia contributes, Emily has a dominant strategy not to contribute, 
and, when Talia does not contribute, Emily also has a dominant strategy not 
to contribute. Thus, the best thing for Emily to do, regardless of what either of 
the other players does, is not to contribute. Similarly, we see that Nina’s domi-
nant strategy—in both pages of the table—is not to contribute. When we check 
for a dominant strategy for Talia, we have to be a bit more careful. We must 
compare outcomes that keep Emily’s and Nina’s behavior constant, checking 
Talia’s payoffs from choosing Contribute versus Don’t Contribute. That is, we 
compare cells across pages of the table—the top-left cell in the first page (on 
the left) with the top-left cell in the second page (on the right), and so on. As 
for the first two players, this process indicates that Talia also has a dominant 
strategy not to contribute.

Each player in this game has a dominant strategy, which must therefore be 
her equilibrium pure strategy. The Nash equilibrium of the street-garden game 
entails all three players choosing not to contribute to the street garden and get-
ting their second-worst payoffs; the garden is not planted, but no one has to 
contribute either.

Notice that this game is yet another example of a prisoners’ dilemma. 
There is a unique Nash equilibrium in which all players receive a payoff of 2. 
Yet, there is another outcome in the game—in which all three neighbors con-
tribute to the garden—that for all three players yields higher payoffs of 5. Even 
though it would be beneficial to each of them for all to pitch in to build the 
garden, no one has the individual incentive to do so. As a result, gardens of 
this type are either not planted at all or paid for through tax dollars—because 
the town government can require its citizens to pay such taxes. In Chapter 11, 
we will encounter more such dilemmas of collective action and study some 
methods for resolving them.

The Nash equilibrium of the game can also be found using best-response 
analysis, as shown in Figure 4.9. Because each player has Don’t Contribute as 
her dominant strategy, all of Emily’s best responses are on her Don’t Contribute 
row, all of Nina’s best responses are on her Don’t Contribute column, and all of 
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Talia’s best responses are on her Don’t Contribute page. The cell at the bottom 
right has all three best responses; therefore, it gives us the Nash equilibrium.

6 MULTIPLE EQUILIBRIA IN PURE STRATEGIES

Each of the games considered in preceding sections has had a unique pure-strategy 
Nash equilibrium. In general, however, games need not have unique Nash equilib-
ria. We illustrate this result by using a class of games that have many applications. 
As a group, they may be labeled coordination games. The players in such games 
have some (but not always completely) common interests. But, because they act 
independently (by virtue of the nature of noncooperative games), the coordination 
of actions needed to achieve a jointly preferred outcome is problematic.

A. Will Harry Meet Sally? Pure Coordination

To illustrate this idea, picture two undergraduates, Harry and Sally, who meet 
in their college library.10 They are attracted to each other and would like to con-
tinue the conversation, but they have to go off to their separate classes. They 
arrange to meet for coffee after the classes are over at 4:30. Sitting separately in 
class, each realizes that in the excitement they forgot to fix the place to meet. 
There are two possible choices: Starbucks and Local Latte. Unfortunately, these 
locations are on opposite sides of the large campus, so it is not possible to try 
both. And Harry and Sally have not exchanged cell-phone numbers, so they 
can’t send messages. What should each do?

Figure 4.10 illustrates this situation as a game and shows the payoff matrix. 
Each player has two choices: Starbucks and Local Latte. The payoffs for each are 
1 if they meet and 0 if they do not. Best-response analysis quickly reveals that the 

m u lt i p l e  e q u i l i b r i a  i n  p u r e  s t r at e g i e s   1 1 1

10 The names come from the 1989 movie When Harry Met Sally, starring Meg Ryan and Billy Crystal, 
with its classic line “I’ll have what she’s having.”

EMILY 

Don't

NINA

5, 5, 5

6, 3, 3

3, 6, 3

4, 4, 1Don't 

Contribute 

Contribute

EMILY 

Don't

NINA

3, 3, 6

4, 1, 4

1, 4, 4

2, 2, 2Don't 

Contribute 

Contribute

Contribute 

 TALIA chooses: 

Don’t Contribute 

FIGURE 4.9  best-response analysis in the street–garden game
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game has two Nash equilibria, one where both choose Starbucks and the other 
where both choose Local Latte. It is important for both that they achieve one of 
the equilibria, but which one is immaterial because the two yield equal payoffs. 
All that matters is that they coordinate on the same action; it does not matter 
which action. That is why the game is said to be one of pure coordination.

But will they coordinate successfully? Or will they end up in different cafés, 
each thinking that the other has let him or her down? Alas, that risk exists. Harry 
might think that Sally will go to Starbucks because she said something about the 
class to which she was going and that class is on the Starbucks side of the cam-
pus. But Sally may have the opposite belief about what Harry will do. When there 
are multiple Nash equilibria, if the players are to select one successfully, they need 
some way to coordinate their beliefs or expectations about each other’s actions.

The situation is similar to that of the heroes of the “Which tire?” game in 
Chapter 1, where we labeled the coordination device a focal point. In the pres-
ent context, one of the two cafés may be generally known as the student 
hangout. But it is not enough that Harry knows this to be the case. He must 
know that Sally knows, and that she knows that he knows, and so on. In other 
words, their expectations must converge on the focal point. Otherwise Harry 
might be doubtful about where Sally will go because he does not know what she 
is thinking about where he will go, and similar doubts may arise at the third or 
fourth or higher level of thinking about thinking.11

When one of us (Dixit) posed this question to students in his class, the fresh-
men generally chose Starbucks and the juniors and seniors generally chose the 
local café in the campus student center. These responses are understandable—
freshmen, who have not been on campus long, focus their expectations on a na-

Starbucks Local Latte

SALLY

Starbucks

Local Latte

1, 1

0, 0 1, 1

0, 0
HARRY

FIGURE 4.10  pure Coordination

11 Thomas Schelling presented the classic treatment of coordination games and developed the con-
cept of a focal point in his book The Strategy of Conflict (Cambridge: Harvard University Press, 1960); 
see pp. 54–58, 89–118. His explanation of focal points included the results garnered when he posed 
several questions to his students and colleagues. The best-remembered of these is “Suppose you 
have arranged to meet someone in New York City on a particular day, but have failed to arrange a 
specific place or time, and have no way of communicating with the other person. Where will you 
go and at what time?” Fifty years ago when the question was first posed, the clock at Grand Central 
Station was the usual focal place; now it might be the stairs at TKTS in Times Square. The focal time 
remains twelve noon.
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tionwide chain that is known to everyone, whereas juniors and seniors know the 
local hangouts, which they now regard as superior, and they expect their peers 
to believe likewise.

If one café had an orange decor and the other a crimson decor, then in 
Princeton the former may serve as a focal point because orange is the Princeton 
color, whereas at Harvard crimson may be a focal point for the same reason. If 
one person is a Princeton student and the other a Harvard student, they may 
fail to meet at all, either because each thinks that his or her color “should” get 
priority or because each thinks that the other will be inflexible and so tries to ac-
commodate him or her. More generally, whether players in coordination games 
can find a focal point depends on their having some commonly known point of 
contact, whether historical, cultural, or linguistic.

B. Will Harry Meet Sally? And Where? Assurance

Now let’s change the game payoffs a little. The behavior of juniors and seniors 
suggests that our pair may not be quite indifferent about which café they both 
choose. The coffee may be better at one or the ambiance better at one. Or they 
may want to choose the one that is not the general student hangout, to avoid 
the risk of running into former boyfriends or girlfriends. Suppose they both pre-
fer Local Latte; so the payoff of each is 2 when they meet there versus 1 when 
they meet at Starbucks. The new payoff matrix is shown in  Figure 4.11.

Again, there are two Nash equilibria. But in this version of the game, each 
prefers the equilibrium where both choose Local Latte. Unfortunately, their 
mere liking of that outcome is not guaranteed to bring it about. First of all (and 
as always in our analysis), the payoffs have to be common knowledge—both 
have to know the entire payoff matrix, both have to know that both know, and so 
on. Such detailed knowledge about the game can arise if the two discussed and 
agreed on the relative merits of the two cafés but simply forgot to decide defi-
nitely to meet at Local Latte. Even then, Harry might think that Sally has some 
other reason for choosing Starbucks, or he may think that she thinks that he 
does, and so on. Without genuine convergence of expectations about actions, 
they may choose the worse equilibrium or, worse still, they may fail to coordi-
nate actions and get 0 each.

m u lt i p l e  e q u i l i b r i a  i n  p u r e  s t r at e g i e s   1 1 3

Starbucks Local Latte

SALLY

Starbucks 

Local Latte 

1, 1

0, 0 2, 2

0, 0
HARRY 

FIGURE 4.11  assurance
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To repeat, players in the game illustrated in Figure 4.11 can get the preferred 
equilibrium outcome only if each has enough certainty or assurance that the 
other is choosing the appropriate action. For this reason, such games are called 
assurance games.12

In many real-life situations of this kind, such assurance is easily obtained, 
given even a small amount of communication between the players. Their inter-
ests are perfectly aligned; if one of them says to the other, “I am going to Local 
Latte,” the other has no reason to doubt the truth of this statement and will fol-
low to get the mutually preferred outcome. That is why we had to construct the 
story with the two students isolated in different classes with no means of com-
munication. If the players’ interests conflict, truthful communication becomes 
more problematic. We examine this problem further when we consider strategic 
manipulation of information in games in Chapter 8.

In larger groups, communication can be achieved by scheduling meetings 
or by making announcements. These devices work only if everyone knows that 
everyone else is paying attention to them, because successful coordination re-
quires the desired equilibrium to be a focal point. The players’ expectations must 
converge on it; everyone should know that everyone knows that . . . everyone is  
choosing it. Many social institutions and arrangements play this role. Meetings 
where the participants sit in a circle facing inward ensure that everyone sees ev-
eryone else paying attention. Advertisements during the Super Bowl, especially 
when they are proclaimed in advance as major attractions, assure each viewer 
that many others are viewing them also. That makes such ads especially attrac-
tive to companies making products that are more desirable for any one buyer 
when many others are buying them, too; such products include those produced 
by the computer, telecommunication, and Internet industries.13

C. Will Harry Meet Sally? And Where? Battle of the Sexes

Now let’s introduce another complication to the café-choice game. Both players 
want to meet but prefer different cafés. So Harry might get a payoff of 2 and Sally 

12 The classic example of an assurance game usually offered is the stag hunt described by the  
eighteenth-century French philosopher Jean-Jacques Rousseau. Several people can successfully 
hunt a stag, thereby getting a large quantity of meat, if they collaborate. If any one of them is sure 
that all of the others will collaborate, he also stands to benefit by joining the group. But if he is un-
sure whether the group will be large enough, he will do better to hunt for a smaller animal, a hare, 
on his own. However, it can be argued that Rousseau believed that each hunter would prefer to go 
after a hare regardless of what the others were doing, which would make the stag hunt a multiperson 
prisoners’ dilemma, not an assurance game. We discuss this example in the context of collective ac-
tion in Chapter 11. 
13 Michael Chwe develops this theme in Rational Ritual: Culture, Coordination, and Common 
Knowledge (Princeton: Princeton University Press, 2001).
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a payoff of 1 from meeting at Starbucks, and the other way around from meeting 
at Local Latte. This payoff matrix is shown in Figure 4.12.

This game is called the battle of the sexes. The name derives from the story 
concocted for this payoff structure by game theorists in the sexist 1950s. A hus-
band and wife were supposed to choose between going to a boxing match and a 
ballet, and (presumably for evolutionary genetic reasons) the husband was sup-
posed to prefer the boxing match and the wife the ballet. The name has stuck 
and we will keep it, but our example—where either player could easily have 
some non-gender-based reason to prefer either of the two cafés—should make 
it clear that it does not necessarily have sexist connotations.

What will happen in this game? There are still two Nash equilibria. If Harry 
believes that Sally will choose Starbucks, it is best for him to do likewise, and the 
other way around. For similar reasons, Local Latte also is a Nash equilibrium. To 
achieve either of these equilibria and avoid the outcomes where the two go to 
different cafés, the players need a focal point, or convergence of expectations, 
exactly as in the pure-coordination and assurance games. But the risk of coordi-
nation failure is greater in the battle of the sexes. The players are initially in quite 
symmetric situations, but each of the two Nash equilibria gives them asym-
metric payoffs, and their preferences between the two outcomes are in conflict. 
Harry prefers the outcome where they meet in Starbucks, and Sally prefers to 
meet in Local Latte. They must find some way of breaking the symmetry.

In an attempt to achieve his or her preferred equilibrium, each player may 
try to act tough and follow the strategy leading to the better equilibrium. In 
Chapter 9, we consider in detail such advance devices, called strategic moves, 
that players in such games can adopt to try to achieve their preferred outcomes. 
Or each may try to be nice, leading to the unfortunate situation where Harry 
goes to Local Latte because he wants to please Sally, only to find that she has 
chosen to please him and gone to Starbucks, like the couple choosing Christmas 
presents for each other in O. Henry’s short story titled “The Gift of the Magi.” Al-
ternatively, if the game is repeated, successful coordination may be negotiated 
and maintained as an equilibrium. For example, the two can arrange to alter-
nate between the cafés. In Chapter 10, we examine such tacit cooperation in re-
peated games in the context of a prisoners’ dilemma.

m u lt i p l e  e q u i l i b r i a  i n  p u r e  s t r at e g i e s   1 1 5

Starbucks Local Latte

SALLY

Starbucks 

Local Latte 

2, 1

0, 0 1, 2

0, 0
HARRY 

FIGURE 4.12  battle of the sexes
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D. Will James Meet Dean? Chicken

Our final example in this section is a slightly different kind of coordination 
game. In this game, the players want to avoid, not choose, actions with the same 
labels. Further, the consequences of one kind of coordination failure are far 
more drastic than those of the other kind.

The story comes from a game that was supposedly played by American 
teenagers in the 1950s. Two teenagers take their cars to opposite ends of 
Main Street, Middle-of-Nowhere, USA, at midnight and start to drive toward 
each other. The one who swerves to prevent a collision is the “chicken,” and 
the one who keeps going straight is the winner. If both maintain a straight 
course, there is a collision in which both cars are damaged and both players 
injured.14

The payoffs for chicken depend on how negatively one rates the “bad” 
outcome—being hurt and damaging your car in this case—against being labeled 
chicken. As long as words hurt less than crunching metal, a reasonable payoff 
table for the 1950s version of chicken is found in Figure 4.13. Each player most 
prefers to win, having the other be chicken, and each least prefers the crash of 
the two cars. In between these two extremes, it is better to have your rival be 
chicken with you (to save face) than to be chicken by yourself.

This story has four essential features that define any game of chicken. 
First, each player has one strategy that is the “tough” strategy and one that is 
the “weak” strategy. Second, there are two pure-strategy Nash equilibria. These 
are the outcomes in which exactly one of the players is chicken, or weak. Third, 
each player strictly prefers that equilibrium in which the other player chooses 
chicken, or weak. Fourth, the payoffs when both players are tough are very bad 
for both players. In games such as this one, the real game becomes a test of how 
to achieve one’s preferred equilibrium.

We are now back in a situation similar to that discussed for the  
battle-of-the-sexes game. One expects most real-life chicken games to be 
even worse as battles than most battles of the sexes—the benefit of win-
ning is larger, as is the cost of the crash, and so all the problems of conflict of  

14 A slight variant was made famous by the 1955 James Dean movie Rebel Without a Cause. There, 
two players drove their cars in parallel, very fast, toward a cliff. The first to jump out of his car before 
it went over the cliff was the chicken. The other, if he left too late, risked going over the cliff in his 
car to his death. The characters in the film referred to this as a “chicky game.” In the mid-1960s, the 
British philosopher Bertrand Russell and other peace activists used this game as an analogy for the 
nuclear arms race between the United States and the USSR, and the game theorist Anatole Rapoport 
gave a formal game-theoretic statement. Other game theorists have chosen to interpret the arms 
race as a prisoners’ dilemma or as an assurance game. For a review and interesting discussion, see 
Barry O’Neill, “Game Theory Models of Peace and War,” in The Handbook of Game Theory, vol. 2, ed. 
Robert J. Aumann and Sergiu Hart (Amsterdam: North Holland, 1994), pp. 995–1053.
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interest and asymmetry between the players are aggravated. Each player will want  
to try to influence the outcome. It may be the case that one player will try to cre-
ate an aura of toughness that everyone recognizes so as to intimidate all rivals.15 
Another possibility is to come up with some other way to convince your rival 
that you will not be chicken, by making a visible and irreversible commitment 
to going straight. (In Chapter 9, we consider just how to make such commitment 
moves.) In addition, both players also want to try to prevent the bad (crash) out-
come if at all possible.

As with the battle of the sexes, if the game is repeated, tacit coordination is 
a better route to a solution. That is, if the teenagers played the game every Sat-
urday night at midnight, they would have the benefit of knowing that the game 
had both a history and a future when deciding their equilibrium strategies.  
In such a situation, they might logically choose to alternate between the two 
equilibria, taking turns being the winner every other week. (But if the others 
found out about this deal, both players would lose face.)

There is one final point, arising from these coordination games, that must 
be addressed. The concept of Nash equilibrium requires each player to have the 
correct belief about the other’s choice of strategy. When we look for Nash equi-
libria in pure strategies, the concept requires each to be confident about the oth-
er’s choice. But our analysis of coordination games shows that thinking about 
the other’s choice in such games is fraught with strategic uncertainty. How can 
we incorporate such uncertainty in our analysis? In Chapter 7, we introduce the 
concept of a mixed strategy, where actual choices are made randomly among 
the available actions. This approach generalizes the concept of Nash equilib-
rium to situations where the players may be unsure about each other’s actions.

m u lt i p l e  e q u i l i b r i a  i n  p u r e  s t r at e g i e s   1 1 7

DEAN

Swerve (Chicken) 

Swerve (Chicken) Straight (Tough)

Straight (Tough) 

0, 0

1, –1

–1, 1

–2, –2
JAMES 

FIGURE 4.13  Chicken

15 Why would a potential rival play chicken against someone with a reputation for never giving in? 
The problem is that participation in chicken, as in lawsuits, is not really voluntary. Put another way, 
choosing whether to play chicken is itself a game of chicken. As Thomas Schelling says, “If you are 
publicly invited to play chicken and say you would rather not, then you have just played [and lost]” 
(Arms and Influence, New Haven: Yale University Press, 1965, p. 118).
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7 NO EQUILIBRIUM IN PURE STRATEGIES

Each of the games considered so far has had at least one Nash equilibrium in pure 
strategies. Some of these games, such as those in Section 6, had more than one 
equilibrium, whereas games in earlier sections had exactly one. Unfortunately, 
not all games that we come across in the study of strategy and game theory will 
have such easily definable outcomes in which players always choose one par-
ticular action as an equilibrium strategy. In this section, we will look at games in 
which there is not even one pure-strategy Nash equilibrium—games in which 
none of the players would consistently choose one strategy as that player’s equi-
librium action.

A simple example of a game with no equilibrium in pure strategies is that 
of a single point in a tennis match. Imagine a match between the two all-time 
best women players—Martina Navratilova and Chris Evert.16 Navratilova at the  
net has just volleyed a ball to Evert on the baseline, and Evert is about to attempt 
a passing shot. She can try to send the ball either down the line (DL; a hard, 
straight shot) or crosscourt (CC; a softer, diagonal shot). Navratilova must like-
wise prepare to cover one side or the other. Each player is aware that she must 
not give any indication of her planned action to her opponent, knowing that 
such information will be used against her. Navratilova would move to cover the 
side to which Evert is planning to hit or Evert would hit to the side that Navrati-
lova is not planning to cover. Both must act in a fraction of a second, and both 
are equally good at concealing their intentions until the last possible moment; 
therefore their actions are effectively simultaneous, and we can analyze the 
point as a two-player simultaneous-move game.

Payoffs in this tennis-point game are given by the fraction of times a player 
wins the point in any particular combination of passing shot and covering play. 
Given that a down-the-line passing shot is stronger than a crosscourt shot and 
that Evert is more likely to win the point when Navratilova moves to cover the 
wrong side of the court, we can work out a reasonable set of payoffs. Suppose 
Evert is successful with a down-the-line passing shot 80% of the time if Navrati-
lova covers crosscourt; Evert is successful with the down-the-line shot only 50% 
of the time if Navratilova covers down the line. Similarly, Evert is successful with 

16 For those among you who remember only the latest phenom who shines for a couple of years and 
then burns out, here are some amazing facts about these two women, who were at the top levels 
of the game for almost two decades and ran a memorable rivalry all that time. Navratilova was a 
left-handed serve-and-volley player. In grand-slam tournaments, she won 18 singles titles, 31 dou-
bles, and 7 mixed doubles. In all tournaments, she won 167, a record. Evert, a right-handed base-
liner, had a record win-loss percentage (90% wins) in her career and 150 titles, of which 18 were 
for singles in grand-slam tournaments. She probably invented (and certainly popularized) the two-
handed backhand that is now so common. From 1973 to 1988, the two played each other 80 times, 
and Navratilova ended up with a slight edge, 43–37.
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her crosscourt passing shot 90% of the time if Navratilova covers down the line. 
This success rate is higher than when Navratilova covers crosscourt, in which 
case Evert wins only 20% of the time.

Clearly, the fraction of times that Navratilova wins this tennis point is just 
the difference between 100% and the fraction of time that Evert wins. Thus, the 
game is zero-sum (even though the two payoffs technically sum to 100), and we 
can represent all the necessary information in the payoff table with just the pay-
off to Evert in each cell. Figure 4.14 shows the payoff table and the fraction of 
time that Evert wins the point against Navratilova in each of the four possible 
combinations of their strategy choices.

The rules for solving simultaneous-move games tell us to look first for domi-
nant or dominated strategies and then to use best-response analysis to find a 
Nash equilibrium. It is a useful exercise to verify that no dominant strategies 
exist here. Going on to best-response analysis, we find that Evert’s best response 
to DL is CC, and her best response to CC is DL. By contrast, Navratilova’s best 
response to DL is DL, and her best response to CC is CC. None of the cells in 
the table is a Nash equilibrium, because someone always prefers to change her 
strategy. For example, if we start in the upper-left cell of the table, we find that 
Evert prefers to deviate from DL to CC, increasing her own payoff from 50% to 
90%. But in the lower-left cell of the table, we find that Navratilova prefers to 
switch from DL to CC, raising her payoff from 10% to 80%. As you can verify, 
Evert similarly prefers to deviate from the lower-right cell, and Navratilova pre-
fers to deviate from the upper-right cell. In every cell, one player always wants 
to change her play, and we cycle through the table endlessly without finding an 
equilibrium.

An important message is contained in the absence of a Nash equilibrium in 
this game and similar ones. What is important in games of this type is not what 
players should do, but what players should not do. In particular, each player 
should neither always nor systematically pick the same shot when faced with 
this situation. If either player engages in any determinate behavior of that type, 
the other can take advantage of it. (So if Evert consistently went crosscourt with 
her passing shot, Navratilova would learn to cover crosscourt every time and 
would thereby reduce Evert’s chances of success with her crosscourt shot.) The 
most reasonable thing for players to do here is to act somewhat unsystematically,  

n o  e q u i l i b r i u m  i n  p u r e  s t r at e g i e s   1 1 9

DL CC

NAVRATILOVA

DL 

CC 

50, 50

90, 10 20, 80

80, 20
EVERT 

FIGURE 4.14  no equilibrium in pure strategies
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hoping for the element of surprise in defeating their opponents. An unsystem-
atic approach entails choosing each strategy part of the time. (Evert should be 
using her weaker shot with enough frequency to guarantee that Navratilova can-
not predict which shot will come her way. She should not, however, use the two 
shots in any set pattern, because that, too, would cause her to lose the element 
of surprise.) This approach, in which players randomize their actions, is known 
as mixing strategies and is the focus of Chapter 7. The game illustrated in Figure 
4.14 may not have an equilibrium in pure strategies, but it can still be solved by 
looking for an equilibrium in mixed strategies, as we do in Chapter 7, Section 1.

SUMMARY

In simultaneous-move games, players make their strategy choices without knowl-
edge of the choices being made by other players. Such games are illustrated by 
game tables, where cells show payoffs to each player and the dimensionality of 
the table equals the number of players. Two-person zero-sum games may be il-
lustrated in shorthand with only one player’s payoff in each cell of the game table.

Nash equilibrium is the solution concept used to solve simultaneous-move 
games; such an equilibrium consists of a set of strategies, one for each player, 
such that each player has chosen her best response to the other’s choice. Nash 
equilibrium can also be defined as a set of strategies such that each player has 
correct beliefs about the others’ strategies, and certain strategies are best for 
each player given beliefs about the other’s strategies. Nash equilibria can be 
found by searching for dominant strategies, by successive elimination of domi-
nated strategies, or with best-response analysis.

There are many classes of simultaneous games. Prisoners’ dilemma games 
appear in many contexts. Coordination games, such as assurance, chicken, and 
battle of the sexes, have multiple equilibria, and the solution of such games 
 requires players to achieve coordination by some means. If a game has no equi-
librium in pure strategies, we must look for an equilibrium in mixed strategies, 
the analysis of which is presented in Chapter 7.

KEY TERMS

assurance game (114) convergence of expectations (113)
battle of the sexes (115) coordination game (111)
belief (97) dominance solvable (104)
best response (95) dominant strategy (100)
best-response analysis (107) dominated strategy (100)
chicken (116) focal point (112)
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game matrix (92) prisoners’ dilemma (99)
game table (92) pure coordination game (112)
iterated elimination of  pure strategy (92)
     dominated strategies (104) strategic form (92)
mixed strategy (92) successive elimination of
Nash equilibrium (95)      dominated strategies (104)
normal form (92)
payoff table (92)

SOLVED EXERCISES

 S1. Find all Nash equilibria in pure strategies for the following games. First 
check for dominant strategies. If there are none, solve using iterated 
elimination of dominated strategies. Explain your reasoning.

Left Right

COLIN

Up 

Down 

4, 0

2, 2 1, 3

3, 1
ROWENA

(a)

    

Left Right

COLIN

Up 

Down 

2, 4

6, 5

1, 0

4, 2
ROWENA

(b)

    

    

Left Middle

COLIN

Up 

Straight 

1, 5

2, 4 4, 2

2, 4

Right

3, 3

Down 1, 5 3, 3 3, 3

5, 1

ROWENA

(c)

e x e r C i s e s   1 2 1
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Left Middle

COLIN

(d)

Up 

Straight 

5, 2

6, 1 1, 6

1, 6

Right

2, 5

Down 1, 6 0, 7 0, 7

3, 4

ROWENA

 S2. For each of the four games in Exercise S1, identify whether the game is 
zero-sum or non-zero-sum. Explain your reasoning.

 S3. Another method for solving zero-sum games, important because it was  
developed long before Nash developed his concept of equilibrium for  
non-zero-sum games, is the minimax method. To use this method, as-
sume that no matter which strategy a player chooses, her rival will 
choose to give her the worst possible payoff from that strategy. For each 
zero-sum game identified in Exercise S2, use the minimax method to 
find the game’s equilibrium strategies by doing the following:

 (a) For each row strategy, write down the minimum possible payoff to  
Rowena (the worst that Colin can do to her in each case). For each 
column strategy, write down the minimum possible payoff to Colin 
(the worst that Rowena can do to him in each case).

 (b) For each player, determine the strategy (or strategies) that gives 
each player the best of these worst payoffs. This is called a “mini-
max” strategy for each player.

  (Because this is a zero-sum game, players’ best responses do indeed in-
volve minimizing each other’s payoff, so these minimax strategies are the 
same as the Nash equilibrium strategies. John von Neumann proved the 
existence of a minimax equilibrium in zero-sum games in 1928, more than 
20 years before Nash generalized the theory to include zero-sum games.)

 S4. Find all Nash equilibria in pure strategies in the following non-zero-sum 
games. Describe the steps that you used in finding the equilibria.

Left Right

COLIN

Up 

Down 

3, 2

4, 1 1, 4

2, 3
ROWENA

(a)
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Left Right

COLIN

Up 

Down 

1, 1

1, 0

0, 1

1, 1
ROWENA

(b)

Left Middle

COLIN

Up 

Straight 

0, 1 2, 39, 0

5, 9 1, 77, 3

7, 5 3, 510, 10

Right

Down 

ROWENA

(c)

West Center

COLIN

North 

Up 

2, 3 7, 48, 2

3, 0 6, 44, 5

10, 4 3, 96, 1

East

Down 
ROWENA

4, 5 5, 22, 3South 

(d)

 S5. Consider the following game table:

    

    

North South

COLIN

Earth 

Water 

1, 3

1, 2 1, 2

3, 1

East

2, 3

Wind 3, 2 2, 1 1, 3

Fire 2, 0 3, 0 1, 1

0, 2

West

1, 1

0, 3

2, 2

1, 1

ROWENA

e x e r C i s e s   1 2 3
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 (a) Does either Rowena or Colin have a dominant strategy? Explain why 
or why not.

 (b) Use iterated elimination of dominated strategies to reduce the game 
as much as possible. Give the order in which the eliminations occur 
and give the reduced form of the game.

 (c) Is this game dominance solvable? Explain why or why not.
 (d) State the Nash equilibrium (or equilibria) of this game.

 S6. “If a player has a dominant strategy in a simultaneous-move game, then 
she is sure to get her best possible outcome.” True or false? Explain and 
give an example of a game that illustrates your answer.

 S7. An old lady is looking for help crossing the street. Only one person is 
needed to help her; if more people help her, this is no better. You and I 
are the two people in the vicinity who can help; we have to choose simul-
taneously whether to do so. Each of us will get pleasure worth a 3 from 
her success (no matter who helps her). But each one who goes to help 
will bear a cost of 1, this being the value of our time taken up in helping. 
If neither player helps, the payoff for each player is zero. Set this up as a 
game. Write the payoff table, and find all pure-strategy Nash equilibria.

 S8. A university is contemplating whether to build a new lab or a new theater 
on campus. The science faculty would rather see a new lab built, and the 
humanities faculty would prefer a new theater. However, the funding for 
the project (whichever it may turn out to be) is contingent on unanimous 
support from the faculty. If there is disagreement, neither project will go 
forward, leaving each group with no new building and their worst payoff. 
The meetings of the two separate faculty groups on which proposal to 
support occur simultaneously, with payoffs given in the following table:

HUMANITIES FACULTY

Lab 

Lab Theater

Theater 

0, 04, 2

1, 50, 0
SCIENCE FACULTY 

 
 (a) What are the pure-strategy Nash equilibria of this game?
 (b) Which game described in this chapter is most similar to this game? 

Explain your reasoning.
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 S9. Suppose two game-show contestants, Alex and Bob, each separately 
select one of three doors numbered 1, 2, and 3. Both players get dollar 
prizes if their choices match, as indicated in the following table:

1 2

BOB

1 

2 

10, 10 0, 00, 0

0, 0 0, 015, 15

0, 0 15, 150, 0

3

3 

ALEX

 (a) What are the Nash equilibria of this game? Which, if any, is likely to 
emerge as the (focal) outcome? Explain.

 (b) Consider a slightly changed game in which the choices are again 
just numbers, but the two cells with (15, 15) in the table become (25, 
25). What is the expected (average) payoff to each player if each flips 
a coin to decide whether to play 2 or 3? Is this better than focusing 
on both of them choosing 1 as a focal equilibrium? How should you 
account for the risk that Alex might do one thing while Bob does the 
other?

 S10. Marta has three sons: Arturo, Bernardo, and Carlos. She discovers a bro-
ken lamp in her living room and knows that one of her sons must have 
broken it at play. Carlos was actually the culprit, but Marta doesn’t know 
this. She cares more about finding out the truth than she does about 
punishing the child who broke the lamp, so Marta announces that her 
sons are to play the following game.

Each child will write down his name on a piece of paper and write 
down either “Yes, I broke the lamp,” or “No, I didn’t break the lamp.” If at 
least one child claims to have broken the lamp, she will give the normal al-
lowance of $2 to each child who claims to have broken the lamp, and $5 to 
each child who claims not to have broken the lamp. If all three children 
claim not to have broken the lamp, none of them receives any allowance 
(each receives $0).

 (a) Write down the game table. Make Arturo the row player, Bernardo 
the column player, and Carlos the page player.

 (b) Find all the Nash equilibria of this game.
 (c) There are multiple Nash equilibria of this game. Which one would 

you consider to be a focal point?

e x e r C i s e s   1 2 5
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 S11. Consider a game in which there is a prize worth $30. There are three con-
testants, Larry, Curly, and Moe. Each can buy a ticket worth $15 or $30 or 
not buy a ticket at all. They make these choices simultaneously and in-
dependently. Then, knowing the ticket-purchase decisions, the game or-
ganizer awards the prize. If no one has bought a ticket, the prize is not 
awarded. Otherwise, the prize is awarded to the buyer of the highest-cost 
ticket if there is only one such player or is split equally between two or 
three if there are ties among the highest-cost ticket buyers. Show this 
game in strategic form, using Larry as the row player, Curly as the column 
player, and Moe as the page player. Find all pure-strategy Nash equilibria.

 S12. Anne and Bruce would like to rent a movie, but they can’t decide what 
kind of movie to choose. Anne wants to rent a comedy, and Bruce wants 
to rent a drama. They decide to choose randomly by playing “Evens or 
Odds.” On the count of three, each of them shows one or two fingers. If 
the sum is even, Anne wins and they rent the comedy; if the sum is odd, 
Bruce wins and they rent the drama. Each of them earns a payoff of 1 for 
winning and 0 for losing “Evens or Odds.”

 (a) Draw the game table for “Evens or Odds.”
 (b) Demonstrate that this game has no Nash equilibrium in pure  

strategies.

 S13. In the film A Beautiful Mind, John Nash and three of his graduate-school 
colleagues find themselves faced with a dilemma while at a bar. There are 
four brunettes and a single blonde available for them to approach. Each 
young man wants to approach and win the attention of one of the young 
women. The payoff to each of winning the blonde is 10; the payoff of 
winning a brunette is 5; the payoff from ending up with no girl is 0. The 
catch is that if two or more young men go for the blonde, she rejects all 
of them, and then the brunettes also reject the men because they don’t 
want to be second choice. Thus, each player gets a payoff of 10 only if he 
is the sole suitor for the blonde.

 (a) First consider a simpler situation in which there are only two young 
men instead of four. (There are two brunettes and one blonde, but 
these women merely respond in the manner just described and are 
not active players in the game.) Show the payoff table for the game, 
and find all of the pure-strategy Nash equilibria of the game.

 (b) Now show the (three-dimensional) table for the case in which there 
are three young men (and three brunettes and one blonde who are 
not active players). Again, find all of the Nash equilibria of the game.

 (c) Without the use of a table, give all of the Nash equilibria for the case 
in which there are four young men (as well as four brunettes and a 
blonde).
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 (d)  (Optional) Use your results to parts (a), (b), and (c) to generalize 
your analysis to the case in which there are n young men. Do not at-
tempt to write down an n-dimensional payoff table; merely find the 
payoff to one player when k of the others choose Blonde and (n 2 
k 2 1) choose Brunette, for k 5 0, 1, . . . (n 2 1). Can the outcome 
specified in the movie as the Nash equilibrium of the game—that all 
of the young men choose to go for brunettes—ever really be a Nash 
equilibrium of the game?

 
UNSOLVED EXERCISES

 U1. Find all Nash equilibria in pure strategies for the following games. First 
check for dominated strategies. If there are none, solve using iterated 
elimination of dominated strategies.

    

Left Right

COLIN

(a)

Up 

Down 

3, 1

5, 2 2, 3

4, 2
ROWENA

Left Middle

COLIN

(b)

Up 

Straight 

2, 9

6, 4 9, 2

5, 5

Right

5, 3

Down 4, 3 2, 7 7, 1

6, 2

ROWENA

Left Middle

COLIN

Up 

Straight 

5, 3

6, 2 4, 4

3, 5

Right

3, 5

Down 1, 7 6, 2 2, 6

2, 6

ROWENA

(c)

e x e r C i s e s   1 2 7
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North South

COLIN

Up 

High 

6, 4

7, 3 3, 7

7, 3

East

4, 6

Low 8, 2 6, 4 3, 7

Down 3, 7 5, 5 4, 6

5, 5

West

5, 5

2, 8

5, 5

6, 4

ROWENA

(d)

 U2. For each of the four games in Exercise U1, identify whether the game is 
zero-sum or non-zero-sum. Explain your reasoning.

 U3. As in Exercise S3 above, use the minimax method to find the Nash equi-
libria for the zero-sum games identified in Exercise U2.

 U4. Find all Nash equilibria in pure strategies in the following games. De-
scribe the steps that you used in finding the equilibria.

    

Left Right

COLIN

(a)

Up 

Down 

1, –1

2, –2 3, –3

4, –4
ROWENA

    

Left Right

COLIN

(b)

Up 

Down 

0, 0

0, 0 1, 1

0, 0
ROWENA

    

Left Right

COLIN

(c)

Up 

Down 

1, 3

4, 0 3, 1

2, 2
ROWENA
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Left Middle

COLIN

(d)

Up 

Straight 

5, 3

1, 2 6, 3

7, 2

Right

1, 4

Down 4, 2 6, 4 3, 5

2, 1

ROWENA

 U5. Use successive elimination of dominated strategies to solve the following 
game. Explain the steps you followed. Show that your solution is a Nash  
equilibrium.

Left Middle

COLIN

Up 

Down 

4, 3

5, 0 5, –1

2, 7

Right

–4, –2

0, 4
ROWENA

 U6. Find all of the pure-strategy Nash equilibria for the following game. De-
scribe the process that you used to find the equilibria. Use this game 
to explain why it is important to describe an equilibrium by using the 
strategies employed by the players, not merely by the payoffs received in 
equilibrium.

Left Center

COLIN

Up 

Level 

1, 2 1, 02, 1

0, 5 7, 41, 2

–1, 1 5, 23, 0

Right

Down 

ROWENA

 U7. Consider the following game table:

Left Center

COLIN

Top 

Middle 

4,    3, 1    , 2

3, 5 2, 32,     

    , 3 4, 23, 4

Right

Bottom 

ROWENA

e x e r C i s e s   1 2 9
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 (a) Complete the payoffs of the game table above so that Colin has a 
dominant strategy. State which strategy is dominant and explain 
why. (Note: There are many equally correct answers.)

 (b) Complete the payoffs of the game table above so that neither player 
has a dominant strategy, but also so that each player does have a 
dominated strategy. State which strategies are dominated and ex-
plain why. (Again, there are many equally correct answers.)

 U8. The Battle of the Bismarck Sea (named for that part of the southwest-
ern Pacific Ocean separating the Bismarck Archipelago from Papua New 
Guinea) was a naval engagement played between the United States and 
Japan during World War II. In 1943, a Japanese admiral was ordered to 
move a convoy of ships to New Guinea; he had to choose between a rainy 
northern route and a sunnier southern route, both of which required 
three days’ sailing time. The Americans knew that the convoy would sail 
and wanted to send bombers after it, but they did not know which route 
it would take. The Americans had to send reconnaissance planes to scout 
for the convoy, but they had only enough reconnaissance planes to ex-
plore one route at a time. Both the Japanese and the Americans had to 
make their decisions with no knowledge of the plans being made by the 
other side.

If the convoy was on the route that the Americans explored first, 
they could send bombers right away; if not, they lost a day of bomb-
ing. Poor weather on the northern route would also hamper bombing. 
If the Americans explored the northern route and found the Japanese 
right away, they could expect only two (of three) good bombing days; if 
they explored the northern route and found that the Japanese had gone 
south, they could also expect two days of bombing. If the Americans 
chose to explore the southern route first, they could expect three full 
days of bombing if they found the Japanese right away but only one day 
of bombing if they found that the Japanese had gone north.

 (a) Illustrate this game in a game table.
 (b) Identify any dominant strategies in the game and solve for the Nash 

equilibrium.

 U9. Two players, Jack and Jill, are put in separate rooms. Then each is told the 
rules of the game. Each is to pick one of six letters: G, K, L, Q, R, or W. If 
the two happen to choose the same letter, both get prizes as follows:

Letter G K L Q R W

Jack’s Prize 3 2 6 3 4 5

Jill’s Prize 6 5 4 3 2 1
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If they choose different letters, each gets 0. This whole schedule is revealed 
to both players, and both are told that both know the schedules, and so on.

 (a) Draw the table for this game. What are the Nash equilibria in pure 
strategies?

 (b) Can one of the equilibria be a focal point? Which one? Why?

 U10. Three friends (Julie, Kristin, and Larissa) independently go shopping for 
dresses for their high-school prom. On reaching the store, each girl sees 
only three dresses worth considering: one black, one lavender, and one 
yellow. Each girl furthermore can tell that her two friends would consider 
the same set of three dresses, because all three have somewhat similar 
tastes.

Each girl would prefer to have a unique dress, so a girl’s utility is 0 if 
she ends up purchasing the same dress as at least one of her friends. All 
three know that Julie strongly prefers black to both lavender and yellow, 
so she would get a utility of 3 if she were the only one wearing the black 
dress, and a utility of 1 if she were either the only one wearing the lav-
ender dress or the only one wearing the yellow dress. Similarly, all know 
that Kristin prefers lavender and secondarily prefers yellow, so her utility 
would be 3 for uniquely wearing lavender, 2 for uniquely wearing yellow, 
and 1 for uniquely wearing black. Finally, all know that Larissa prefers 
yellow and secondarily prefers black, so she would get 3 for uniquely 
wearing yellow, 2 for uniquely wearing black, and 1 for uniquely wearing 
lavender.

 (a)  Provide the game table for this three-player game. Make Julie the 
row player, Kristin the column player, and Larissa the page player.

 (b)  Identify any dominated strategies in this game, or explain why there 
are none.

 (c)  What are the pure-strategy Nash equilibria in this game?

 U11. Bruce, Colleen, and David are all getting together at Bruce’s house on Fri-
day evening to play their favorite game, Monopoly. They all love to eat 
sushi while they play. They all know from previous experience that two 
orders of sushi are just the right amount to satisfy their hunger. If they 
wind up with less than two orders, they all end up going hungry and don’t 
enjoy the evening. More than two orders would be a waste, because they 
can’t manage to eat a third order and the extra sushi just goes bad. Their 
favorite restaurant, Fishes in the Raw, packages its sushi in such large 
containers that each individual person can feasibly purchase at most one 
order of sushi. Fishes in the Raw offers takeout, but unfortunately doesn’t 
deliver.

e x e r C i s e s   1 3 1
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Suppose that each player enjoys $20 worth of utility from having 
enough sushi to eat on Friday evening, and $0 from not having enough to 
eat. The cost to each player of picking up an order of sushi is $10.

Unfortunately, the players have forgotten to communicate about 
who should be buying sushi this Friday, and none of the players has a 
cell phone, so they must each make independent decisions of whether to 
buy (B) or not buy (N) an order of sushi. 

 (a) Write down this game in strategic form.
 (b) Find all the Nash equilibria in pure strategies.
 (c) Which equilibrium would you consider to be a focal point? Explain 

your reasoning.

 U12. Roxanne, Sara, and Ted all love to eat cookies, but there’s only one left 
in the package. No one wants to split the cookie, so Sara proposes the  
following extension of “Evens or Odds” (see Exercise S12) to determine  
who gets to eat it. On the count of three, each of them will show one or 
two fingers, they’ll add them up, and then divide the sum by 3. If the re-
mainder is 0, Roxanne gets the cookie, if the remainder is 1, Sara gets it, 
and if it is 2, Ted gets it. Each of them receives a payoff of 1 for winning 
(and eating the cookie) and 0 otherwise.

 (a) Represent this three-player game in normal form, with Roxanne 
as the row player, Sara as the column player, and Ted as the page 
player.

  (b) Find all the pure-strategy Nash equilibria of this game. Is this game 
a fair mechanism for allocating cookies? Explain why or why not.

 U13. (Optional) Construct the payoff matrix for your own two-player game 
that satisfies the following requirements. First, each player should have 
three strategies. Second, the game should not have any dominant strat-
egies. Third, the game should not be solvable using minimax. Fourth, 
the game should have exactly two pure-strategy Nash equilibria. Provide 
your game matrix, and then demonstrate that all of the above conditions 
are true. 

1 3 2   [ C h . 4 ]  s i m u lta n e o u s - m o v e  g a m e s : d i s C r e t e  s t r at e g i e s
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55
■

Simultaneous-Move Games: 

Continuous Strategies, 

Discussion, and Evidence

T he discussion of simultaneous-move games  in Chapter 4 focused on 
games in which each player had a discrete set of actions from which to 
choose. Discrete strategy games of this type include sporting contests in 
which a small number of well-defined plays can be used in a given situa-

tion—soccer penalty kicks, in which the kicker can choose to go high or low, to 
a corner or the center, for example. Other examples include coordination and 
prisoners’ dilemma games in which players have only two or three available 
strategies. Such games are amenable to analysis with the use of a game table, at 
least for situations with a reasonable number of players and available actions.

Many simultaneous-move games differ from those considered so far; they en-
tail players choosing strategies from a wide range of possibilities. Games in which 
manufacturers choose prices for their products, philanthropists choose charita-
ble contribution amounts, or contractors choose project bid levels are examples 
in which players have a virtually infinite set of choices. Technically, prices and 
other dollar amounts do have a minimum unit, such as a cent, and so there is ac-
tually only a finite and discrete set of price strategies. But in practice the unit is 
very small, and allowing the discreteness would require us to give each player too 
many distinct strategies and make the game table too large; therefore, it is simpler 
and better to regard such choices as continuously variable real numbers. When 
players have such a large range of actions available, game  tables become virtu-
ally useless as analytical tools; they become too unwieldy to be of practical use. 
For these games we need a different solution technique. We  present the analytical 
tools for handling such continuous  strategy games in the first part of this chapter.
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This chapter also takes up some broader matters relevant to behavior in 
simultaneous-move games and to the concept of Nash equilibrium. We review 
the empirical evidence on Nash equilibrium play that has been collected both 
from the laboratory and from real-life situations. We also present some theoretical 
criticisms of the Nash equilibrium concept and rebuttals of these criticisms. You 
will see that game-theoretic predictions are often a reasonable starting point for 
understanding actual behavior, with some caveats.

1 PURE STRATEGIES THAT ARE CONTINUOUS VARIABLES

In Chapter 4, we developed the method of best-response analysis for finding 
all pure-strategy Nash equilibria of simultaneous-move games. Now we extend 
that method to games in which each player has available a continuous range 
of choices—for example, firms setting the prices of their products. To calculate 
best responses in this type of game, we find, for each possible value of one firm’s 
price, the value of the other firm’s price that is best for it (maximizes its payoff). 
The continuity of the sets of strategies allows us to use algebraic formulas to 
show how strategies generate payoffs and to show the best responses as curves 
in a graph, with each player’s price (or any other continuous strategy) on one of 
the axes. In such an illustration, the Nash equilibrium of the game occurs where 
the two curves meet. We develop this idea and technique by using two stories.

A. Price Competition

Our first story is set in a small town, Yuppie Haven, which has two restaurants, 
Xavier’s Tapas Bar and Yvonne’s Bistro. To keep the story simple, we assume that 
each place has a set menu. Xavier and Yvonne have to set the prices of their re-
spective menus. Prices are their strategic choices in the game of competing with 
each other; each bistro’s goal is to set prices to maximize profit, the payoff in 
this game. We suppose that they must get their menus printed separately with-
out knowing the other’s prices, so the game has simultaneous moves.1 Because 
prices can take any value within an (almost) infinite range, we start with general 
or algebraic symbols for them. We then find best-response rules that we use to 
solve the game and to determine equilibrium prices. Let us call Xavier’s price Px 
and Yvonne’s price Py.

1 In reality, the competition extends over time, so each can observe the other’s past choices. This 
repetition of the game introduces new considerations, which we cover in Chapter 10.
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In setting its price, each restaurant has to calculate the consequences for 
its profit. To keep things relatively simple, we put the two restaurants in a very 
symmetric relationship, but readers with a little more mathematical skill can 
do a similar analysis by using much more general numbers or even algebraic 
symbols. Suppose the cost of serving each customer is $8 for each restaura-
teur. Suppose further that experience or market surveys have shown that, when 
Xavier’s price is Px and Yvonne’s price is Py, the number of their respective custom-
ers, respectively Qx and Qy (measured in hundreds per month), are given by the 
equations2

Qx  44  2Px  Py,
Qy  44  2Py  Px.

The key idea in these equations is that, if one restaurant raises its price by $1 
(say, Yvonne increases Py by $1), its sales will go down by 200 per month (Qy 
changes by 2) and those of the other restaurant will go up by 100 per month 
(Qx changes by 1). Presumably, 100 of Yvonne’s customers switch to Xavier’s and 
another 100 stay at home.

Xavier’s profit per week (in hundreds of dollars per week), call it Px—the 
Greek letter P (pi) is the traditional economic symbol for profit—is given by the 
product of the net revenue per customer (price less cost or Px  8) and the num-
ber of customers served:

Px  (Px  8) Qx  (Px  8) (44  2Px  Py).

By multiplying out and rearranging the terms on the right-hand side of the pre-
ceding expression, we can write profit as a function of increasing powers of Px:

 Px   –8(44  Py)   (16  44  Py)Px – 2(Px)2

   –8(44 Py)  (60  Py)Px – 2(Px)2.

Xavier sets his price Px to maximize this payoff. Doing so for each possible level 
of Yvonne’s price Py gives us Xavier’s best-response rule; we can then graph it.

Many simple illustrative examples where one real number (such as the 
price) is chosen to maximize another real number that depends on it (such as 
the profit or the payoff) have a similar form. (In mathematical jargon, we would 
describe the second number as a function of the first.) In the appendix to this 
chapter, we develop a simple general technique for performing such maximiza-
tion; you will find many occasions to use it. Here we just state the formula.

p u r e  s t r at e g i e s  t h at  a r e  C o n t i n u o u s  va r i a b l e s   1 3 5

2 Readers who know some economics will recognize that the equations linking quantities to prices 
are demand functions for the two products X and Y. The quantity demanded of each product is de-
creasing in its own price (demands are downward sloping) and increasing in the price of the other 
product (the two are substitutes).
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The function we want to maximize takes the general form 

Y  A  BX  CX 2

where we have used the descriptor Y for the number we want to maximize and 
X for the number we want to choose to maximize that Y. In our specific example, 
profit, Px, would be represented by Y, and the price, Px, by X. Similarly, although 
in any specific problem the terms A, B, and C  in the equation above would be 
known numbers, we have denoted them by general algebraic symbols so that 
our formula can be applied across a wide variety of similar problems. (The tech-
nical term for the terms A, B, and C is parameters, or algebraic constants.) Be-
cause most of our applications involve nonnegative X entities, such as prices, 
and the maximization of the Y entity, we require B . 0 and C . 0. Then the for-
mula giving the choice of X to maximize Y in terms of the known parameters A, 
B, and C  is simply X  B (2C ). Observe that A does not appear in the formula, 
although it will of course affect the value of Y that results.

Comparing the general function in the equation above and the specific ex-
ample of the profit function in the pricing game on the previous page, we have3

B  60  Py and C  2.

Therefore, Xavier’s choice of price to maximize his profit will satisfy the formula 
B (2C ) and will be

Px = 15  0.25Py. 

This equation determines the value of Px that maximizes Xavier’s profit, given a 
particular value of Yvonne’s price, Py. In other words, it is exactly what we want, 
the rule for Xavier’s best response.

Yvonne’s best-response rule can be found similarly. Because the costs and 
sales of the two restaurants are entirely symmetric, the equation is obviously 
going to be

Py  15  0.25Px.

Both rules are used in the same way to develop best-response graphs. If Xavier 
sets a price of 16, for example, then Yvonne plugs this value into her best-response 
rule to find Py  15  0.25(16)  19; similarly, Xavier’s best response to Yvonne’s 
Py  16 is Px  19, and each restaurant’s best response to the other’s price of 4 is 
16, that to 8 is 17, and so on.

Figure 5.1 shows the graphs of these two best-response relations. Owing  
to the special features of our example—namely, the linear relation between  

3 Although Py, chosen by Yvonne, is a variable in the full game, here we are considering only a part 
of the game, namely Xavier’s best response, where he regards Yvonne’s choice as outside his control 
and therefore like a constant. 
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quantity sold and prices charged, and the constant cost of producing each meal—
each of the two best-response curves is a straight line. For other specifications 
of demands and costs, the curves can be other than straight, but the method 
of obtaining them is the same—namely, first holding one restaurant’s price  
(say, Py) fixed and finding the value of the other’s price (say, Px) that maximizes 
the second restaurant’s profit, and then the other way around.

The point of intersection of the two best-response curves is the Nash equilib-
rium of the pricing game between the two restaurants. That point represents the 
pair of prices, one for each firm, that are best responses to each other. The specific 
values for each restaurant’s pricing strategy in equilibrium can be found algebra-
ically by solving the two best-response rules jointly for Px and Py. We deliberately 
chose our example to make the equations linear, and the solution is easy. In this 
case, we simply substitute the expression for Px into the expression for Py to find

Py  15  0.25Px  15  0.25(15  0.25Py)  18.75  0.0625 Py.

This last equation simplifies to Py  20. Given the symmetry of the problem, it 
is simple to determine that Px  20 also.4 Thus, in equilibrium, each restaurant 
charges $20 for its menu and makes a profit of $12 on each of the 2,400 customers 
[2,400  (44  2  20  20) hundred] that it serves each month, for a total profit 
of $28,800 per month.

p u r e  s t r at e g i e s  t h at  a r e  C o n t i n u o u s  va r i a b l e s   1 3 7
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FIGURE 5.1  best-response Curves and equilibrium in the restaurant pricing game

4 Without this symmetry, the two best-response equations will be different, but given our other 
specifications, still linear. So it is not much harder to solve the nonsymmetric case. You will have a 
chance to do so in Exercise S2 at the end of this chapter.
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B. Some Economics of Oligopoly

Our main purpose in presenting the restaurant pricing example was to illus-
trate how the Nash equilibrium can be found in a game where the strategies 
are continuous variables, such as prices. But it is interesting to take a further 
look into this situation and to explain some of the economics behind pricing 
strategies and profits when a small number of firms (here just two) compete. In 
the jargon of economics, such competition is referred to as oligopoly, from the 
Greek words for “a small number of sellers.”

Begin by observing that each firm’s best-response curve slopes upward. Spe-
cifically, when one restaurant raises its price by $1, the other’s best response is 
to raise its own price by 0.25, or 25 cents. When one restaurant raises its price, 
some of its customers switch to the other restaurant, and its rival can then profit 
from these new customers by raising its price part of the way. Thus, a restaurant 
that raises its price is also helping to increase its rival’s profit. In Nash equilib-
rium, where each restaurant chooses its price independently and out of concern 
for its own profit, it does not take into account this benefit that it conveys to 
the other. Could they get together and cooperatively agree to raise their prices, 
thereby raising both of their profits? Yes. Suppose the two restaurants charged 
$24 each. Then each would make a profit of $16 on each of the 2,000 customers 
[2,000  (44  2  24  24) hundred] that it would serve each month, for a total 
profit of $32,000 per month.

This pricing game is exactly like the prisoners’ dilemma game presented 
in Chapter 4, but now the strategies are continuous variables. In the story in 
Chapter 4, the Husband and Wife were each tempted to cheat the other and 
confess to the police; but, when they both did so, both ended up with lon-
ger prison sentences (worse outcomes). In the same way, the more profitable 
price of $24 is not a Nash equilibrium. The separate calculations of the two 
restaurants will lead them to undercut such a price. Suppose that Yvonne 
somehow starts by charging $24. Using the best-response formula, we see 
that Xavier will then charge 15  0.25  24  21. Then Yvonne will come back 
with her best response to that: 15  0.25  21  20.25. Continuing this pro-
cess, the prices of both will converge toward the Nash equilibrium price of 
$20.

But what price is jointly best for the two restaurants? Given the symmetry, 
suppose both charge the same price P. Then the profit of each will be

Px  Py  (P  8)(44  2P  P)  (P  8)(44  P)   352  52P  P 2.

The two can choose P to maximize this expression. Using the formula provided 
in Section 1.A, we see that the solution is P  522  26. The resulting profit for 
each restaurant is $32,400 per month.
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In the jargon of economics, such collusion to raise prices to the jointly opti-
mal level is called a cartel. The high prices hurt consumers, and regulatory agen-
cies of the U.S. government often try to prevent the formation of cartels and to 
make firms compete with one another. Explicit collusion over price is illegal, but 
it may be possible to maintain tacit collusion in a repeated prisoners’ dilemma; 
we examine such repeated games in Chapter 10.5

Collusion need not always lead to higher prices. In the preceding ex-
ample, if one restaurant lowers its price, its sales increase, in part because it 
draws some customers away from its rival because the products (meals) of 
the two restaurants are substitutes for each other. In other contexts, two firms 
may be selling products that are complements to each other—for example, 
hardware and software. In that case, if one firm lowers its price, the sales 
of both firms increase. In a Nash equilibrium, where the firms act indepen-
dently, they do not take into account the benefit that would accrue to each 
of them if they both lowered their prices. Therefore, they keep prices higher 
than they would if they were able to coordinate their actions. Allowing them 
to cooperate would lead to lower prices and thus be beneficial to the consum-
ers as well.

Competition need not always involve the use of prices as the strategic 
variables. For example, fishing fleets may compete to bring a larger catch to 
market; this is quantity competition as opposed to the price competition con-
sidered in this section. We consider quantity competition later in this chapter 
and in several of the end-of-chapter exercises.

C. Political Campaign Advertising

Our second example is one drawn from politics. It requires just a little more 
mathematics than we normally use, but we explain the intuition behind the cal-
culations in words and with a graph.

Consider an election contested by two parties or candidates. Each is try-
ing to win votes away from the other by advertising—either positive ads that 
highlight the good things about oneself or negative ads that emphasize the bad 
things about the opponent. To keep matters simple, suppose the voters start 
out entirely ignorant and unconcerned and form opinions solely as a result of 
the ads. (Many people would claim that this is a pretty accurate description 
of U.S. politics, but more advanced analyses in political science do recognize 
that there are informed and strategic voters. We address the behavior of such 

p u r e  s t r at e g i e s  t h at  a r e  C o n t i n u o u s  va r i a b l e s   1 3 9

5 Firms do try to achieve explicit collusion when they think they can get away with it. An entertain-
ing and instructive story of one such episode is in The Informant, by Kurt Eichenwald (New York: 
Broadway Books, 2000).
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voters in detail in Chapter 15.) Even more simply, suppose the vote share of a 
party equals its share of the total campaign advertising that is done. Call the 
parties or candidates L and R; when L spends $x million on advertising and R 
spends $y million, L will get a share x(xy) of the votes and R will get y(xy).  
Once again, readers who get interested in this application can find more general 
treatments in specialized political science writings.

Raising money to pay for these ads includes a cost: money to send letters 
and make phone calls; time and effort of the candidates, party leaders, and ac-
tivists; the future political payoff to large contributors; and possible future po-
litical costs if these payoffs are exposed and lead to scandals. For simplicity of 
analysis, let us suppose all these costs are proportional to the direct campaign 
expenditures x and y. Specifically, let us suppose that party L’s payoff is mea-
sured by its vote percentage minus its advertising expenditure, 100x(x  y)  x. 
Similarly party R’s payoff is 100y(x  y)y.

Now we can find the best responses. Because we cannot do so without cal-
culus, we derive the formula mathematically and then explain in words its gen-
eral meaning intuitively. For a given strategy x of party L, party R chooses y to 
maximize its payoff. The calculus first-order condition is found by holding x 
fixed and setting the derivative of 100y(x  y)  y with respect to y equal to 0. It 
is 100x(x  y)2  1  0, or y  10x  x . Figure 5.2 shows its graph and that of 
the analogous best-response function of party L—namely, x  10y  y.

Look at the best-response curve of party R. As the value of party L’s x in-
creases, party R’s y increases for a while and then decreases. If the other party is 
advertising very little, then one’s own ads have a high reward in the form of votes, 
and it pays to respond to a small increase in the other party’s expenditures by 
spending more oneself to compete harder. But if the other party already spends 

Party 
R’s ad, y

($ millions)

Party L’s ad, x 
($ millions) 

25 

Party L’s 
best response 

Party R’s
best response

Nash 
equilibrium 

   25 

0 100 

100 

FIGURE 5.2  best responses and nash equilibrium in the Campaign advertising game
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a great deal on ads, then one’s own ads get only a small return in relation to their 
cost, so it is better to respond to the other party’s increase in spending by scaling 
back.

As it happens, the two parties’ best-response curves intersect at their 
peak points. Again, some algebraic manipulation of the equations for the two 
curves yields us exact values for the equilibrium values of x and y. You should 
verify that here x and y are each equal to 25, or $25 million. (This is presumably 
a congressional election; Senate and presidential elections cost much more 
these days.)

As in the pricing game, we have a prisoners’ dilemma. If both parties cut 
back on their ads in equal proportions, their vote shares would be entirely un-
affected, but both would save on their expenditures and so both would have a 
larger payoff. Unlike a producers’ cartel for substitute products (which keeps 
prices high and hurts consumers), a politicians’ cartel to advertise less would 
probably benefit voters and society, like a producers’ cartel for complements 
would lead to lower prices and benefit consumers. We could all benefit from 
finding ways to resolve this particular prisoners’ dilemma. In fact, Congress 
has been trying to do just that for several years and has imposed some par-
tial curbs, but political competition seems too fierce to permit a full or lasting 
resolution.

What if the parties are not symmetrically situated? Two kinds of asymme-
tries can arise. One party (say, R) may be able to advertise at a lower cost, be-
cause it has favored access to the media. Or R’s advertising dollars may be more 
effective than L’s—for example, L’s vote share may be x(x  2y), while R’s vote 
share is 2y(x  2y).

In the first of these cases, R exploits its cheaper access to advertising by 
choosing a higher level of expenditures y for any given x for party L—that 
is, R’s best-response curve in Figure 5.2 shifts upward. The Nash equilibrium 
shifts to the northwest along L’s unchanged best-response curve. Thus, R ends 
up advertising more and L ends up advertising less than before. It is as if the 
advantaged party uses its muscle and the disadvantaged party gives up to some 
extent in the face of this adversity.

In the second case, both parties’ best-response curves shift in more com-
plex ways. The outcome is that both spend equal amounts, but less than the 25 
that they spent in the symmetric case. In our example where R’s dollars are twice 
as effective as L’s, it turns out that their common expenditure level is 2009   
22.2 , 25. (Thus the symmetric case is the one of most intense competition.) 
When R’s spending is more effective, it is also true that the best-response curves 
are asymmetric in such a way that the new Nash equilibrium, rather than being 
at the peak points of the two best-response curves, is on the downward part of L’s 
best-response curve and on the upward part of R’s best-response curve. That is 
to say, although both parties spend the same dollar amount, the favored party, 
R, spends more than the amount that would bring forth the maximum response 
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from party L, and the underdog party, L, spends less than the amount that 
would bring forth the maximum response from party R. We include an optional 
exercise (Exercise U12) in this chapter that lets the mathematically advanced 
students derive these results.

D. General Method for Finding Nash Equilibria

Although the strategies (prices or campaign expenditures) and payoffs (profits 
or vote shares) in the two previous examples are specific to the context of com-
petition between firms or political parties, the method for finding the Nash equi-
librium of a game with continuous strategies is perfectly general. Here we state 
its steps so that you can use it as a recipe for solving other games of this kind.

Suppose the players are numbered 1, 2, 3, . . . Label their strategies x, y, z, . . . in  
that order, and their payoffs by the corresponding upper-case letters X, Y, Z, . . . The  
payoff of each is in general a function of the choices of all; label the respective 
functions F, G , H, . . . Construct payoffs from the information about the game, 
and write them as

X  F(x, y, z, . . . ), Y  G(x, y, z, . . . ), Z  H(x, y, z, . . . ).

Using this general format to describe our example of price competition between 
two players (firms) makes the strategies x and y become the prices Px and Py. The 
payoffs X and Y are the profits Px and Py. The functions F and G are the quadratic 
formulas

Px   8(44  Py)  (16  44  Py)Px  2(Px),

and similarly for Py.
In the general approach, player 1 regards the strategies of players 2, 3, . . . as 

outside his control, and chooses his own strategy to maximize his own payoff. 
Therefore, for each given set of values of y, z, . . . , player 1’s choice of x maxi-
mizes X  F(x, y, z, . . . ). If you use calculus, the condition for this maximiza-
tion is that the derivative of X with respect to x holding y, z, . . . constant (the 
partial derivative) equals 0. For special functions, simple formulas are available, 
such as the one we stated and used above for the quadratic. And even if an alge-
bra or calculus formulation is too difficult, computer programs can tabulate or 
graph best-response functions for you. Whatever method you use, you can find 
an equation for player 1’s optimal choice of x for given y, z, . . . that is player 1’s  
best-response function. Similarly, you can find the best-response functions for 
each of the other players.

The best-response functions are equal in number to the number of the strat-
egies in the game and can be solved simultaneously while regarding the strategy 
variables as the unknowns. The solution is the Nash equilibrium we seek. Some 
games may have multiple solutions, yielding multiple Nash equilibria. Other 
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games may have no solution, requiring further analysis, such as inclusion of 
mixed strategies.

2 CRITICAL DISCUSSION OF THE NASH EQUILIBRIUM CONCEPT

Although Nash equilibrium is the primary solution concept for simultaneous 
games, it has been subject to several theoretical criticisms. In this section, we 
briefly review some of these criticisms and some rebuttals, in each case by using 
an example.6 Some of the criticisms are mutually contradictory, and some can 
be countered by thinking of the games themselves in a better way. Others tell 
us that the Nash equilibrium concept by itself is not enough and suggest some 
augmentations or relaxations of it that have better properties. We develop one 
such alternative here and point to some others that appear in later chapters. We 
believe our presentation will leave you with renewed but cautious confidence 
in using the Nash equilibrium concept. But some serious doubts remain unre-
solved, indicating that game theory is not yet a settled science. Even this should 
give encouragement to budding game theorists, because it shows that there is 
a lot of room for new thinking and new research in the subject. A totally settled 
science would be a dead science.

We begin by considering the basic appeal of the Nash equilibrium concept. 
Most of the games in this book are noncooperative, in the sense that every player 
takes her action independently. Therefore, it seems natural to suppose that, if 
her action is not the best according to her own value system (payoff scale), given 
what everyone else does, then she will change it. In other words, it is appealing 
to suppose that every player’s action will be the best response to the actions of 
all the others. Nash equilibrium has just this property of “simultaneous best re-
sponses”; indeed, that is its very definition. In any purported final outcome that 
is not a Nash equilibrium, at least one player could have done better by switch-
ing to a different action.

This consideration led Nobel laureate Roger Myerson to rebut those criti-
cisms of the Nash equilibrium that were based on the intuitive appeal of playing 
a different strategy. His rebuttal simply shifted the burden of proof onto the critic. 
“When asked why players in a game should behave as in some Nash equilibrium,” 
he said, “my favorite response is to ask ‘Why not?’ and to let the challenger specify 
what he thinks the players should do. If this specification is not a Nash equilib-
rium, then . . . we can show that it would destroy its own validity if the players be-
lieved it to be an accurate description of each other’s behavior.”7

C r i t i C a l  d i s C u s s i o n  o f  t h e  n a s h  e q u i l i b r i u m  C o n C e p t   1 4 3

6 David M. Kreps, Game Theory and Economic Modelling (Oxford: Clarendon Press, 1990), gives an 
excellent in-depth discussion.
7 Roger Myerson, Game Theory (Cambridge, Mass.: Harvard University Press, 1991), p. 106.
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A. The Treatment of Risk in Nash Equilibrium

Some critics argue that the Nash equilibrium concept does not pay due atten-
tion to risk. In some games, people might find strategies different from their Nash 
equilibrium strategies to be safer and might therefore choose those strategies. We 
offer two examples of this kind. The first comes from John Morgan, an econom-
ics professor at the University of California, Berkeley; Figure 5.3 shows the game 
table.

Best-response analysis quickly reveals that this game has a unique Nash 
equilibrium—namely, (A, A), yielding the payoffs (2, 2). But you may think, as 
did several participants in an experiment conducted by Morgan, that playing C 
has a lot of appeal, for the following reasons. It guarantees you the same payoff 
as you would get in the Nash equilibrium—namely, 2; whereas if you play your 
Nash equilibrium strategy A, you will get a 2 only if the other player also plays A. 
Why take that chance? What is more, if you think the other player might use this 
rationale for playing C, then you would be making a serious mistake by playing 
A; you would get only a 0 when you could have gotten a 2 by playing C.

Myerson would respond, “Not so fast. If you really believe that the other 
player would think this way and play C, then you should play B to get the payoff 
3. And if you think the other person would think this way and play B, then your 
best response to B should be A. And if you think the other person would figure 
this out, too, you should be playing your best response to A—namely, A. Back to 
the Nash equilibrium!” As you can see, criticizing Nash equilibrium and rebut-
ting the criticisms is itself something of an intellectual game, and quite a fasci-
nating one. 

The second example comes from David Kreps, an economist at Stanford 
Business School, and is even more dramatic. The payoff matrix is in Figure 5.4. 
Before doing any theoretical analysis of this game, you should pretend that you 
are actually playing the game and that you are player A. Which of the two ac-
tions would you choose?

Keep in mind your answer to the preceding question and let us proceed 
to analyze the game. If we start by looking for dominant strategies, we see that 

A B

COLUMN

A

B

2, 2 3, 1 0, 2

1, 3 2, 2 3, 2

2, 0 2, 3 2, 2

C

C

ROW

FIGURE 5.3  a game with a questionable nash equilibrium
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player A has no dominant strategy but player B does. Playing Left guarantees 
B a payoff of 10, no matter what A does, versus the payoff of 9.9 earned from 
playing Right (also no matter what A does). Thus, player B should play Left. 
Given that player B is going to go Left, player A does better to go Down. The 
unique pure-strategy Nash equilibrium of this game is (Down, Left); each player 
achieves a payoff of 10 at this outcome.

The problem that arises here is that many, but not all, people assigned to 
be Player A would not choose to play Down. (What did you choose?) This is 
true for those who have been students of game theory for years as well as for 
those who have never heard of the subject. If A has any doubts about either 
B’s payoffs or B’s rationality, then it is a lot safer for A to play Up than to play 
her Nash equilibrium strategy of Down. What if A thought the payoffs were as 
illustrated in Figure 5.4 but in reality B’s payoffs were the reverse—the 9.9 pay-
off went with Left and the 10 payoff went with Right? What if the 9.9 payoff 
were only an approximation and the exact payoff was actually 10.1? What if 
B was a player with a substantially different value system or was not a truly 
rational player and might choose the “wrong” action just for fun? Obviously, 
our assumptions of perfect information and rationality can really be crucial to 
the analysis that we use in the study of strategy. Doubts about players can alter 
equilibria from those that we would normally predict and can call the reason-
ableness of the Nash equilibrium concept into question.

However, the real problem with many such examples is not that the Nash 
equilibrium concept is inappropriate but that the examples illustrate it in an in-
appropriately simplistic way. In this example, if there are any doubts about B’s 
payoffs, then this fact should be made an integral part of the analysis. If A does 
not know B’s payoffs, the game is one of asymmetric information (which we won’t 
have the tools to discuss until Chapter 8). But this particular example is a rela-
tively simple game of that kind, and we can figure out its equilibrium very easily.

Suppose A thinks there is a probability p that B’s payoffs from Left and Right 
are the reverse of those shown in Figure 5.4; so (1  p) is the probability that 
B’s payoffs are as stated in that figure. Because A must take her action without 
knowing what B’s actual payoffs are, she must choose her strategy to be “best 
on average.” In this game, the calculation is simple because in each case B has 

C r i t i C a l  d i s C u s s i o n  o f  t h e  n a s h  e q u i l i b r i u m  C o n C e p t   1 4 5

  

Left Right

B

Up

Down

9, 10

10, 10 –1000, 9.9

8, 9.9
A

FIGURE 5.4  disastrous nash equilibrium?
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a dominant strategy; the only problem for A is that in the two different cases 
different strategies are dominant for B. With probability (1  p), B’s dominant 
strategy is Left (the case shown in the figure), and with probability p, it is Right 
(the opposite case). Therefore, if A chooses Up, then with probability (1  p) 
he will meet B playing Left and so get a payoff of 9; with probability p, he will 
meet B playing Right and so get a payoff of 8. Thus, A’s statistical or probability-
weighted average payoff from playing Up is 9(1  p)  8p. Similarly, A’s statis-
tical average payoff from playing Down is 10(1  p)  1,000p. Therefore, it is 
better for A to choose Up if

9(1  p)  8p . 10(1  p)  1,000p,  or  p . 11,009.

Thus, even if there is only a very slight chance that B’s payoffs are the opposite 
of those in Figure 5.4, it is optimal for A to play Up. In this case, analysis based 
on rational behavior, when done correctly, contradicts neither the intuitive sus-
picion nor the experimental evidence after all.

In the preceding calculation, we supposed that, facing an uncertain pros-
pect of payoffs, player A would calculate the statistical average payoffs from her 
different actions and would choose that action which yields her the highest sta-
tistical average payoff. This implicit assumption, though it serves the purpose in 
this example, is not without its own problems. For example, it implies that a per-
son faced with two situations, one having a 50–50 chance of winning or losing 
$10 and the other having a 50–50 chance of winning $10,001 and losing $10,000, 
should choose the second situation, because it yields a statistical average win-
ning of 50 cents (¹−2  10,001  ¹−2  10,000), whereas the first yields 0 (¹−2  10  
¹−2  10). But most people would think that the second situation carries a much 
bigger risk and would therefore prefer the first situation. This difficulty is quite 
easy to resolve. In the appendix to Chapter 7, we show how the construction of 
a scale of payoffs that is suitably nonlinear in money amounts enables the deci-
sion maker to allow for risk as well as return. Then, in Chapter 8, we show how 
the concept can be used for understanding how people respond to the presence 
of risk in their lives—for example, by sharing the risk with others or by buying 
insurance.

B. Multiplicity of Nash Equilibria

Another criticism of the Nash equilibrium concept is based on the observa-
tion that many games have multiple Nash equilibria. Thus, the argument goes, 
the concept fails to pin down outcomes of games sufficiently precisely to give 
unique predictions. This argument does not automatically require us to aban-
don the Nash equilibrium concept. Rather, it suggests that if we want a unique 
prediction from our theory, we must add some criterion for deciding which one 
of the multiple Nash equilibria we want to select.

6841D CH05 UG.indd   146 12/18/14   3:11 PM



In Chapter 4, we studied many games of coordination with multiple equilib-
ria. From among these equilibria, the players may be able to select one as a focal 
point if they have some common social, cultural, or historical knowledge. Con-
sider the following coordination game, played by students at Stanford University. 
One player was assigned the city of Boston and the other was assigned San Fran-
cisco. Each was then given a list of nine other U.S. cities—Atlanta, Chicago, Dallas, 
Denver, Houston, Los Angeles, New York, Philadelphia, and Seattle—and asked to 
choose a subset of those cities. The two chose simultaneously and independently. 
If and only if their choices divided up the nine cities completely and without any 
overlap between them, both got a prize. Despite the existence of 512 different Nash 
equilibria, when both players were Americans or long-time U.S. residents, more 
than 80% of the time they chose a unique equilibrium based on geography. The 
student assigned Boston chose all the cities east of the Mississippi, and the student 
assigned San Francisco chose all the cities west of the Mississippi. Such coordina-
tion was much less likely when one or both students were non-U.S. residents. In 
such pairs, the choices were sometimes made alphabetically, but with much less 
coordination on the same dividing point.8 

The features of the game itself, combined with shared cultural back-
ground, can help player expectations to converge. As another example of 
multiplicity of equilibria, consider a game where two players write down, si-
multaneously and independently, the share that each wants from a total prize 
of $100. If the amounts that they write down add up to $100 or less, each 
player receives what she wrote. If the two add up to more than $100, neither 
gets anything. For any x, one player writing x and the other writing (100  x) 
is a Nash equilibrium. Thus, the game has an (almost) infinite range of Nash 
equilibria. But, in practice, 5050 emerges as a focal point. This social norm of 
equality or fairness seems so deeply ingrained as to be almost an instinct; play-
ers who choose 50 say that it is the obvious answer. To be a true focal point, not 
only should it be obvious to each, but everyone should know that it is obvious 
to each, and everyone should know that . . . ; in other words, its obviousness 
should be common knowledge. That need not always be the case, as we see 
when we consider a situation in which one player is a woman from an enlight-
ened and egalitarian society who believes that 5050 is obvious and the other is 
a man from a patriarchal society who believes it is obvious that, in any matter of 
division, a man should get three times as much as a woman. Then each will do 
what is obvious to her or him, and they will end up with nothing, because nei-
ther’s obvious solution is obvious as common knowledge to both.

The existence of focal points is often a matter of coincidence, and creat-
ing them where none exist is basically an art that requires a lot of attention to 

C r i t i C a l  d i s C u s s i o n  o f  t h e  n a s h  e q u i l i b r i u m  C o n C e p t   1 4 7

8 See David Kreps, A Course in Microeconomic Theory (Princeton: Princeton University Press, 1990), 
pp. 392–93, 414–15.
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the historical and cultural context of a game and not merely its mathematical  
description. This bothers many game theorists, who would prefer the outcome 
to depend only on an abstract specification of a game—players and their strate-
gies should be identified by numbers without any external associations. We dis-
agree. We think that historical and cultural contexts are just as important to a 
game as is its purely mathematical description, and, if such context helps in se-
lecting a unique outcome from multiple Nash equilibria, that is all to the better.

In Chapter 6, we will see that sequential-move games can have multiple 
Nash equilibria. There, we will introduce the requirement of credibility that en-
ables us to select a particular equilibrium; it turns out that this one is in fact 
the rollback equilibrium of Chapter 3. In more complex games with information 
asymmetries or additional complications, other restrictions called refinements 
have been developed to identify and rule out Nash equilibria that are unreason-
able in some way. In Chapter 8, we will consider one such refinement process 
that selects an outcome called a perfect Bayesian equilibrium. The motivation 
for each refinement is often specific to a particular type of game. A refinement 
stipulates how players update their information when they observe what moves 
other players made or failed to make. Each such stipulation is often perfectly rea-
sonable in its context, and in many games it is not difficult to eliminate most of 
the Nash equilibria and therefore to narrow down the ambiguity in prediction.

The opposite of the criticism that some games may have too many Nash 
equilibria is that some games may have none at all. We saw an example of this 
in Chapter 4 in Section 4.7 and said that, by extending the concept of strat-
egy to random mixtures, Nash equilibrium could be restored. In Chapter 7, we 
will explain and consider Nash equilibria in mixed strategies. In higher reaches 
of game theory, there are more esoteric examples of games that have no Nash 
equilibrium in mixed strategies either. However, this added complication is not 
relevant for the types of analysis and applications that we deal with in this book, 
so we do not attempt to address it here.

C. Requirements of Rationality for Nash Equilibrium

Remember that Nash equilibrium can be regarded as a system of the strategy 
choices of each player and the belief that each player holds about the other 
players’ choices. In equilibrium, (1) the choice of each should give her the best 
payoff given her belief about the others’ choices, and (2) the belief of each player 
should be correct—that is, her actual choices should be the same as what this 
player believes them to be. These seem to be natural expressions of the require-
ments of the mutual consistency of individual rationality. If all players have 
common knowledge that they are all rational, how can any one of them ratio-
nally believe something about others’ choices that would be inconsistent with a 
rational response to her own actions?
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To begin to address this question, we consider the three-by-three game in 
Figure 5.5. Best-response analysis quickly reveals that it has only one Nash 
equilibrium—namely, (R2, C2), leading to payoffs (3, 3). In this equilibrium, Row 
plays R2 because she believes that Column is playing C2. Why does she believe 
this? Because she knows Column to be rational, Row must simultaneously be-
lieve that Column believes that Row is choosing R2, because C2 would not be 
Column’s best choice if she believed Row would be playing either R1 or R3. Thus, 
the claim goes, in any rational process of formation of beliefs and responses, be-
liefs would have to be correct.

The trouble with this argument is that it stops after one round of thinking 
about beliefs. If we allow it to go far enough, we can justify other choice combi-
nations. We can, for example, rationally justify Row’s choice of R1. To do so, we 
note that R1 is Row’s best choice if she believes Column is choosing C3. Why 
does she believe this? Because she believes that Column believes that Row is 
playing R3. Row justifies this belief by thinking that Column believes that Row 
believes that Column is playing C1, believing that Row is playing R1, believing 
in turn . . . This is a chain of beliefs, each link of which is perfectly  rational.

Thus, rationality alone does not justify Nash equilibrium. There are more 
sophisticated arguments of this kind that do justify a special form of Nash equi-
librium in which players can condition their strategies on a publicly observable 
randomization device. But we leave that to more advanced treatments. In the 
next section, we develop a simpler concept that captures what is logically im-
plied by the players’ common knowledge of their rationality alone.

3 RATIONALIZABILIT Y

What strategy choices in games can be justified on the basis of rationality 
alone? In the matrix of Figure 5.5, we can justify any pair of strategies, one for 
each player, by using the same type of logic that we used in Section 2.C. In other 
words, we can justify any one of the nine logically conceivable combinations. 

r at i o n a l i z a b i l i t y   1 4 9

C1 C2

COLUMN

R1

R2

0, 7 2, 5 7, 0

5, 2 3, 3 5, 2

7, 0 2, 5 0, 7

C3

R3

ROW

FIGURE 5.5  Justifying Choices by Chains of beliefs and responses
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Thus, rationality alone does not give us any power to narrow down or predict 
outcomes at all. Is this a general feature of all games? No. For example, if a strat-
egy is dominated, rationality alone can rule it out of consideration. And when 
players recognize that other players, being rational, will not play dominated 
strategies, iterated elimination of dominated strategies can be performed on 
the basis of common knowledge of rationality. Is this the best that can be done? 
No. Some more ruling out of strategies can be done, by using a property slightly 
stronger than being dominated in pure strategies. This property identifies strat-
egies that are never a best response. The set of strategies that survive elimina-
tion on this ground are called rationalizable, and the concept itself is known as 
rationalizability.

Why introduce this additional concept, and what does it do for us? As for 
why, it is useful to know how far we can narrow down the possible outcomes of 
a game based on the players’ rationality alone, without invoking correctness of 
expectations about the other player’s actual choice. It is sometimes possible to 
figure out that the other player will not choose some available action or actions, 
even when it is not possible to pin down the single action that she will choose. As 
for what it achieves, that depends on the context. In some cases rationalizability 
may not narrow down the outcomes at all. This was so in the three-by-three ex-
ample of Figure 5.5. In some cases, it narrows down the possibilities to some ex-
tent, but not all the way down to the Nash equilibrium if the game has a unique 
one, or to the set of Nash equilibria if there are several. An example of such a 
situation is the four-by-four enlargement of the previous example, considered 
in Section 3.A below. In some other cases, the narrowing down may go all the 
way to the Nash equilibrium; in these cases, we have a more powerful justifica-
tion for the Nash equilibrium that relies on rationality alone, without assuming  
correctness of expectations. The quantity competition example of Section 3.B 
below is an example in which the rationalizability argument takes us all the way 
to the game’s unique Nash equilibrium.

A. Applying the Concept of Rationalizability

Consider the game in Figure 5.6, which is the same as Figure 5.5 but with an 
additional strategy for each player.9 We just indicated that nine of the strategy 
combinations that pick one of the first three strategies for each of the players 
can be justified by a chain of beliefs about each other’s beliefs. That remains 
true in this enlarged matrix. But can R4 and C4 be justified in this way?

9 This example comes from Douglas Bernheim, “Rationalizable Strategic Behavior,” Econometrica, 
vol. 52, no. 4 (July 1984), pp. 1007–1028, an article that originally developed the concept of ratio-
nalizability. See also Andreu Mas-Colell, Michael Whinston, and Jerry Green, Microeconomic Theory 
(New York: Oxford University Press, 1995), pp. 242–45.
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Could Row ever believe that Column would play C4? Such a belief would 
have to be justified by Column’s beliefs about Row’s choice. What might Column 
believe about Row’s choice that would make C4 Column’s best response? 
Nothing. If Column believes that Row would play R1, then Column’s best choice 
is C1. If Column believes that Row will play R2, then Column’s best choice is C2. 
If Column believes that Row will play R3, then C3 is Column’s best choice. And, 
if Column believes that Row will play R4, then C1 and C3 are tied for her best 
choice. Thus, C4 is never a best response for Column.10 This means that Row, 
knowing Column to be rational, can never attribute to Column any belief about 
Row’s choice that would justify Column’s choice of C4. Therefore, Row should 
never believe that Column would choose C4.

Note that, although C4 is never a best response, it is not dominated by any 
of C1, C2, and C3. For Column, C4 does better than C1 against Row’s R3, better 
than C2 against Row’s R4, and better than C3 against Row’s R1. If a strategy is 
dominated, it also can never be a best response. Thus, “never a best response” is 
a more general concept than “dominated.” Eliminating strategies that are never 
a best response may be possible even when eliminating dominated strategies is 
not. So eliminating strategies that are never a best response can narrow down the 
set of possible outcomes more than can elimination of dominated strategies.11

The elimination of “never best response” strategies can also be carried out 
iteratively. Because a rational Row can never believe that a rational Column 
will play C4, a rational Column should foresee this. Because R4 is Row’s best 
response only against C4, Column should never believe that Row will play R4. 

r at i o n a l i z a b i l i t y   1 5 1

C1 C2

COLUMN

R1

R2

0, 7 7, 02, 5

5, 2 5, 23, 3

7, 0 0, 72, 5

C3

R3
ROW

0, 0 0, 0

0, 1

0, 1

0, 1

C4

10, –10, –2R4

FIGURE 5.6  rationalizable strategies

10 Note that in each case the best choice is strictly better than C4 for Column. Thus, C4 is never even 
tied for a best response. We can distinguish between weak and strong senses of never being a best re-
sponse just as we distinguished between weak and strong dominance. Here, we have the strong sense.
11 When one allows for mixed strategies, as we will do in Chapter 7, there arises the possibility of a 
pure strategy being dominated by a mixture of other pure strategies. With such an expanded defi-
nition of a dominated strategy, iterated elimination of strictly dominated strategies turns out to be 
equivalent to rationalizability. The details are best left for a more advanced course in game theory.
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Thus, R4 and C4 can never figure in the set of rationalizable strategies. The 
concept of rationalizability does allow us to narrow down the set of possible 
outcomes of this game to this extent.

If a game has a Nash equilibrium, it is rationalizable and in fact can be sus-
tained by a simple one-round system of beliefs, as we saw in Section 2.C above. 
But, more generally, even if a game does not have a Nash equilibrium, it may 
have rationalizable outcomes. Consider the two-by-two game obtained from 
Figure 5.5 or Figure 5.6 by retaining just the strategies R1 and R3 for Row and C1 
and C3 for Column. It is easy to see that it has no Nash equilibrium in pure strat-
egies. But all four outcomes are rationalizable with the use of exactly the chain 
of beliefs, constructed earlier, that went around and around these strategies.

Thus, the concept of rationalizability provides a possible way of solving 
games that do not have a Nash equilibrium. And more important, the concept 
tells us how far we can narrow down the possibilities in a game on the basis of 
rationality alone.

B. Rationalizability Can Take Us All the Way to Nash Equilibrium

In some games, iterated elimination of never-best-response strategies can nar-
row things down all the way to Nash equilibrium. Note we said can, not must. 
But if it does, that is useful because in these games we can strengthen the case 
for Nash equilibrium by arguing that it follows purely from the players’ rational 
thinking about each other’s thinking. Interestingly, one class of games that can 
be solved in this way is very important in economics. This class consists of com-
petition between firms that choose the quantities that they produce, knowing 
that the total quantity that is put on the market will determine the price.

We illustrate a game of this type in the context of a small coastal town. It has 
two fishing boats that go out every evening and return the following morning 
to put their night’s catch on the market. The game is played out in an era before 
modern refrigeration, so all the fish has to be sold and eaten the same day. Fish are 
quite plentiful in the ocean near the town, so the owner of each boat can decide 
how much to catch each night. But each knows that, if the total that is brought to 
the market is too large, the glut of fish will mean a low price and low profits.

Specifically, we suppose that, if one boat brings R barrels and the other 
brings S barrels of fish to the market, the price P (measured in ducats per barrel) 
will be P  60  (R  S ). We also suppose that the two boats and their crews 
are somewhat different in their fishing efficiency. Fishing costs the first boat 30 
ducats per barrel and the second boat 36 ducats per barrel.

Now we can write down the profits of the two boat owners, U and V, in terms 
of their strategies R and S:

 U  [(60  R  S )  30]R  (30  S ) R  R 2,
 V  [(60  R  S )  36]S  (24  R ) S  S 2.
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With these payoff expressions, we construct best-response curves and find the 
Nash equilibrium. As in our price competition example from Section 1, each 
player’s payoff is a quadratic function of his own strategy, holding the strategy 
of the other player constant. Therefore, the same mathematical methods we de-
velop there and in the appendix to this chapter can be applied.

The first boat’s best response R should maximize U for each given value of 
the other boat’s S. With the use of calculus, this means that we should differenti-
ate U with respect to R, holding S fixed, and set the derivative equal to 0, which 
gives

 (30  R)  2R  0;  so  R  15  S−2.

The noncalculus approach uses the result that the U-maximizing value of  
R  B(2C ), where in this case B  30  S and C  1. This gives R  (30  S )2, 
or R  15  S2.

Similarly, the best-response equation of the second boat is found by choos-
ing S to maximize V for each fixed R, yielding

 
S � ;    so    S � 12 �     .

2
24 � R

2
R

The Nash equilibrium is found by solving the two best-response equations 
jointly for R and S, which is easy to do.12 So we just state the results: quantities 
are R  12 and S  6; price is P  42; and profits are U  144 and V  36.

Figure 5.7 shows the two fishermen’s best-response curves (labeled BR1 and 
BR2 with the equations displayed) and the Nash equilibrium (labeled N with 
its coordinates displayed) at the intersection of the two curves. Figure 5.7 also 
shows how the players’ beliefs about each other’s choices can be narrowed down 
by iteratively eliminating strategies that are never best responses.

What values of S can the first owner rationally believe the second owner will 
choose? That depends on what the second owner thinks the first owner will pro-
duce. But no matter what this might be, the whole range of the second owner’s 
best responses is between 0 and 12. So the first owner cannot rationally believe 
that the second owner will choose anything else; all negative choices of S (obvi-
ously) and all choices of S greater than 12 (less obviously) are eliminated. Simi-
larly, the second owner cannot rationally think that the first owner will produce 
anything less than 0 or greater than 15.

Now take this to the second round. When the first owner has restricted the 
second owner’s choices of S to the range between 0 and 12, her own choices of 
R are restricted to the range of best responses to S’s range. The best response to  

r at i o n a l i z a b i l i t y   1 5 3

12 Although they are incidental to our purpose, some interesting properties of the solution are worth 
pointing out. The quantities differ because the costs differ; the more efficient (lower-cost) boat gets 
to sell more. The cost and quantity differences together imply even bigger differences in the result-
ing profits. The cost advantage of the first boat over the second is only 20%, but it makes four times 
as much profit as the second boat.
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S  0 is R  15, and the best response to S  12 is R  15  122  9. Because BR1 
has a negative slope throughout, the whole range of R allowed at this round of 
thinking is between 9 and 15. Similarly, the second owner’s choice of S is restricted 
to the range of best responses to R between 0 and 15—namely, values between  
S  12 and S  12  152  4.5. Figure 5.7 shows these restricted ranges on the axes.

The third round of thinking narrows the ranges further. Because R must be 
at least 9 and BR2 has a negative slope, S can be at most the best response to 
9—namely, S  12  92  7.5. In the second round, S was already shown to be 
at least 4.5. Thus, S is now restricted to be between 4.5 and 7.5. Similarly, because 
S must be at least 4.5, R can be at most 15  4.52  12.75. In the second round, 
R was shown to be at least 9, so now it is restricted to the range from 9 to 12.75.

This succession of rounds can be carried on as far as you like, but it is al-
ready evident that the successive narrowing of the two ranges is converging on 
the Nash equilibrium, R  12 and S  6. Thus, the Nash equilibrium is the only 
outcome that survives the iterated elimination of strategies that are never best 
responses.13 We know that in general the rationalizability argument need not 
narrow down the outcomes of a game to its Nash equilibria, so this is a special 
feature of this example. Actually, the process works for an entire class of games; 

30 
S 

12 

7.5 

4.5 

9 15 

N = (12, 6) 

BR1: R = 15 –     

BR2: S = 12 – 

12.75 24 R 

2
S

2
R

FIGURE 5.7  nash equilibrium through rationalizability

13 This example can also be solved by iteratively eliminating dominated strategies, but proving 
dominance is harder and needs more calculus, whereas the never-best-response property is obvious 
from Figure 5.7, so we use the simpler argument.
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it will work for any game that has a unique Nash equilibrium at the intersection 
of downward-sloping best-response curves.14

This argument should be carefully distinguished from an older one based 
on a succession of best responses. The old reasoning proceeded as follows. Start 
at any strategy for one of the players—say, R  18. Then the best response of 
the other is S  12  182  3. The best response of R to S  3 is R  15  32  
13.5. In turn, the best response of S to R  13.5 is 12  13.52  5.25. Then, in its 
turn, the best R against this S is R  15  5.252  12.375. And so on.

The chain of best responses in the old argument also converges to the Nash 
equilibrium. But the argument is flawed. The game is played once with simul-
taneous moves. It is not possible for one player to respond to what the other 
player has chosen, then have the first player respond back again, and so on. If 
such dynamics of actual play were allowed, would the players not foresee that 
the other is going to respond and so do something different in the first place?

The rationalizability argument is different. It clearly incorporates the fact 
that the game is played only once and with simultaneous moves. All the think-
ing regarding the chain of best responses is done in advance, and all the succes-
sive rounds of thinking and responding are purely conceptual. Players are not 
responding to actual choices but are merely calculating those choices that will 
never be made. The dynamics are purely in the minds of the players.

4 EMPIRICAL EVIDENCE CONCERNING NASH EQUILIBRIUM

In Chapter 3, when we considered empirical evidence on sequential-move 
games and rollback, we presented empirical evidence from observations on 
games actually played in the world, as well as games deliberately constructed 
for testing the theory in the laboratory. There we pointed out the different merits 
and drawbacks of the two methods for assessing the validity of rollback equilib-
rium predictions. Similar issues arise in securing and interpreting the evidence 
on Nash equilibrium play in simultaneous-move games.

Real-world games are played for substantial stakes, often by experienced 
players who have the knowledge and the incentives to employ good strategies. 
But these situations include many factors beyond those considered in the the-
ory. In particular, in real-life situations, it is difficult to observe the quantitative 
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14 A similar argument works with upward-sloping best-response curves, such as those in the pricing 
game of Figure 5.1, for narrowing the range of best responses starting at low prices. Narrowing from 
the higher end is possible only if there is some obvious starting point. This starting point might be 
a very high price that can never be exceeded for some externally enforced reason—if, for example, 
people simply do not have the money to pay prices beyond a certain level.
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payoffs that players would have earned for all possible combinations of strate-
gies. Therefore, if their behavior does not bear out the predictions of the theory, 
we cannot tell whether the theory is wrong or whether some other factors over-
whelm the strategic considerations.

Laboratory experiments attempt to control for other factors in an attempt 
to provide cleaner tests of the theory. But they bring in inexperienced players 
and provide them with little time and relatively weak incentives to learn the 
game and play it well. Confronted with a new game, most of us would initially 
flounder and try things out at random. Thus, the first several plays of the game 
in an experimental setting may represent this learning phase and not the equi-
librium that experienced player would learn to play. Experiments often control 
for inexperience and learning by discarding several initial plays from their data, 
but the learning phase may last longer than the one morning or one afternoon 
that is the typical limit of laboratory sessions.

A. Laboratory Experiments

Researchers have conducted numerous laboratory experiments in the past three 
decades to test how people act when placed in certain interactive strategic situa-
tions. In particular, such research asks, “Do participants play their Nash equilib-
rium strategies?” Reviewing this work, Douglas Davis and Charles Holt conclude 
that, in relatively simple single-move games with a unique Nash equilibrium, 
the equilibrium “has considerable drawing power . . . after some repetitions with 
different partners.”15 But the theory’s success is more mixed in more complex 
situations, such as when multiple Nash equilibria exist, when emotional factors 
modify payoffs beyond the stated cash amounts, when the calculations for find-
ing a Nash equilibrium are more complex, or when the game is repeated with 
fixed partners. We will briefly consider the performance of Nash equilibrium in 
several of these circumstances.

I. CHOOSING AMONG MULTIPLE EQUILIBRIA  In Section 2.B above, we presented examples 
demonstrating that focal points sometimes emerge to help players choose 
among multiple Nash equilibria. Players may not manage to coordinate 100% 
of the time, but circumstances often enable players to achieve much more co-
ordination than would be experienced by random choices across possible 
equilibrium strategies. Here we present a coordination game designed with an 
interesting trade-off: the equilibrium with the highest payoff to all players also 
happens to be the riskiest one to play, in the sense of Section 2.A above.

John Van Huyck, Raymond Battalio, and Richard Beil describe a 16-player 
game in which each player simultaneously chooses an “effort” level between 1 

15 Douglas D. Davis and Charles A. Holt, Experimental Economics (Princeton: Princeton University 
Press, 1993), Chapter 2.
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and 7. Individual payoffs depend on group “output,” a function of the minimum 
effort level chosen by anyone in the group, minus the cost of one’s individual ef-
fort. The game has exactly seven Nash equilibria in pure strategies; any outcome 
in which all players choose the same effort level is an equilibrium. The high-
est possible payoff ($1.30 per player) occurs when all subjects choose an effort 
level of 7, while the lowest equilibrium payoff ($0.70 per player) occurs when all 
subjects choose an effort level of 1. The highest-payoff equilibrium is a natural   
candidate for a focal point, but in this case there is a risk to choosing the highest 
effort; if just one other player chooses a lower effort level than you, then your 
extra effort is wasted. For example, if you play 7 and at least one other person 
chooses 1, you get a payoff of just $0.10, far worse than the worst equilibrium 
payoff of $0.70. This makes players nervous about whether others will choose 
maximum effort, and as a result, large groups typically fail to coordinate on 
the best equilibrium. A few players inevitably choose lower than the maxi-
mum effort, and in repeated rounds play converges toward the lowest-effort  
equilibrium.16

II. EMOTIONS AND SOCIAL NORMS  In Chapter 3, we saw several examples in sequential-
move games where players were more generous to each other than Nash equi-
librium would predict. Similar observations occur in simultaneous-move games 
such as the prisoners’ dilemma game. One reason may be that the players’  
payoffs are different from those assumed by the experimenter: in addition to 
cash, their payoffs may also include the experience of emotions such as empa-
thy, anger, or guilt. In other words, the players’ value systems may have internal-
ized some social norms of niceness and fairness that have proved useful in the 
larger social context and that therefore carry over to their behavior in the ex-
perimental game.17 Seen through this lens, these observations do not show any 
deficiency of the Nash equilibrium concept itself, but they do warn us against 
using the concept under naive or mistaken assumptions about people’s payoffs. 
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16 See John B. Van Huyck, Raymond C. Battalio, and Richard O. Beil, “Tacit Coordination Games, 
Strategic Uncertainty, and Coordination Failure,” American Economic Review, vol. 80, no. 1 (March 
1990), pp. 234–48. Subsequent research has suggested methods that can promote coordination on 
the best equilibrium. Subhasish Dugar, “Non-monetary Sanction and Behavior in an Experimental 
Coordination Game,” Journal of Economic Behavior & Organization, vol. 73, no. 3 (March 2010), pp. 
377–86, shows that players gradually manage to coordinate on the highest-payoff outcome merely 
by allowing players, between rounds, to express the numeric strength of their disapproval for each 
other player’s decision. Roberto A. Weber, “Managing Growth to Achieve Efficient Coordination in 
Large Groups,” American Economic Review, vol. 96, no. 1 (March 2006), pp. 114–26, shows that start-
ing with a small group and slowly adding additional players can sustain the highest-payoff equilib-
rium, suggesting that a firm may do well to expand slowly and make sure that employees understand 
the corporate culture of cooperation.
17 The distinguished game theorist Jörgen Weibull argues this position in detail in “Testing Game 
Theory,” in Advances in Understanding Strategic Behaviour: Game Theory, Experiments and Bounded 
Rationality: Essays in Honour of Werner Güth, ed. Steffen Huck (Basingstoke, UK: Palgrave MacMil-
lan, 2004), pp. 85–104.
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It might be a mistake, for example, to assume that players are always driven by 
the selfish pursuit of money.

III. COGNITIVE ERRORS  As we saw in the experimental evidence on rollback equilib-
rium in Chapter 3, players do not always fully think through the entire game 
before playing, nor do they always expect other players to do so. Behavior in a 
game known as the travelers’ dilemma illustrates a similar limitation of Nash 
equilibrium in simultaneous-move games. In this game, two travelers purchase 
identical souvenirs while on vacation, and the airline loses both of their bags on 
the return trip. The airline announces to the two players that it intends to reim-
burse them for their losses, but it does not know the exact amount to reimburse. 
It knows the correct amount is between $80 and $200 per person, so it designs 
a game as follows. Each player may submit a claim between $80 and $200. The 
airline will reimburse both players at an amount equal to the lower of the two 
claims submitted. In addition, if the two claims differ, the airline will pay a re-
ward of $5 to the person making the smaller claim and deduct a penalty of $5 
from the reimbursement of the person making the larger claim.

With these rules, irrespective of the actual value of the lost luggage, each 
player has an incentive to undercut the other’s claim. In fact, it turns out that 
the only Nash equilibrium, and indeed the only rationalizable outcome, is for 
both players to report the minimum number of $80. However, in the laboratory, 
players rarely claim $80; instead they claim amounts much closer to $200. (Real 
payoff amounts in the laboratory are typically in cents rather than in dollars.) In-
terestingly, if the penalty/reward parameter is increased by a factor of 10, from $5 
to $50, behavior conforms much more closely to the Nash equilibrium, with re-
ported amounts generally near $80. Thus, behavior in this experiment varies tre-
mendously with a parameter that does not affect the Nash equilibrium at all; the 
unique equilibrium is $80, regardless of the size of the penalty/reward amount.

To explain these results from their laboratory, Monica Capra and her co-
authors employed a theoretical model called quantal-response equilibrium 
(QRE), originally proposed by Richard McKelvey and Thomas Palfrey. This 
model’s mathematics are beyond the scope of this text, but its main contribu-
tion is that it allows for the possibility that players make errors, with the prob-
ability of a given error being much smaller for costly mistakes than for mistakes 
that reduce one’s payoff by very little. Furthermore, the model incorporates 
players who expect each other to make errors in this way. It turns out that 
quantal-response analysis can explain the data quite well. Reporting a high 
claim is not very costly when the penalty is only $5, so players are more will-
ing to report values near $200—especially knowing that their rivals are likely to 
behave similarly, so the payoff to reporting a high number can be quite large. 
However, with a penalty/reward of $50 instead of $5, reporting a high claim be-
comes quite costly, so players are very unlikely to expect each other to make 
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such a mistake. This expectation pushes behavior toward the Nash equilibrium 
claim of $80. Building on this success, quantal-response equilibrium has be-
come a very active area of game-theoretic research.18

IV. COMMON KNOWLEDGE OF RATIONALIT Y  We just saw that to better explain experimen-
tal results, QRE allows for the possibility that players may not believe that oth-
ers are perfectly rational. Another way to explain data from experiments is to 
allow for the possibility that different players engage in different levels of rea-
soning. A strategic guessing game that is often used in classrooms or laborato-
ries asks each participant to choose a number between 0 and 100. Typically, the 
players are handed cards on which to write their names and a choice, so this 
game is a simultaneous-move game. When the cards are collected, the average 
of the numbers is calculated. The person whose choice is closest to a specified  
fraction—say two-thirds—of the average is the winner. The rules of the game 
(this whole procedure) are announced in advance.

The Nash equilibrium of this game is for everyone to choose 0. In fact, the 
game is dominance solvable. Even if everyone chooses 100, half of the average 
can never exceed 67, so for each player, any choice above 67 is dominated by 
67.19 But all players should rationally figure this out, so the average can never ex-
ceed 67 and two-thirds of it can never exceed 44, and so any choice above 44 is 
dominated by 44. The iterated elimination of dominated strategies goes on until 
only 0 is left.

However, when a group actually plays this game for the first time, the win-
ner is not a person who plays 0. Typically, the winning number is somewhere 
around 15 or 20. The most commonly observed choices are 33 and 22, suggest-
ing that a large number of players perform one or two rounds of iterated domi-
nance without going further. That is, “level-1” players imagine that all other 
players will choose randomly, with an average of 50, so they best-respond with 
a choice of two-thirds of this amount, or 33. Similarly, “level-2” players imagine 
that everyone else will be a “level-1” player, and so they best-respond by playing 
two-thirds of 33, or 22. Note that all of these choices are far from the Nash equi-
librium of 0. It appears that many players follow a limited number of steps of 
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18 See Kaushik Basu, “The Traveler’s Dilemma,” Scientific American, vol. 296, no. 6 (June 2007),  
pp. 90–95. The experiments and modeling can be found in C. Monica Capra, Jacob K. Goeree,  
Rosario Gomez, and Charles A. Holt, “Anomalous Behavior in a Traveler’s Dilemma?” American Eco-
nomic Review, vol. 89, no. 3 (June 1999), pp. 678–90. Quantal-response equilibrium (QRE) was first 
proposed by Richard D. McKelvey and Thomas R. Palfrey, “Quantal Response Equilibria for Normal 
Form Games,” Games and Economic Behavior, vol. 10, no. 1 (July 1995), pp. 6–38.
19 If you factor in your own choice, the calculation is strengthened. Suppose there are N players. 
In the “worst-case scenario,” where all the other (N  1) players choose 100 and you choose x, the 
average is [x  (N  1)100]N. Then your best choice is two-thirds of this, so x  (23)[x  (N  
1)100]N, or x  100(2N  2)(3N  2). If N  10, then x  (1828)100  64 (approximately). So any 
choice above 64 is dominated by 64. The same reasoning applies to the successive rounds.
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iterated elimination of dominated strategies, in some cases because they expect 
others to be limited in their number of rounds of thinking.20

V. LEARNING AND MOVING TOWARD EQUILIBRIUM  What happens when the strategic guessing 
game is repeated with the same group of players? In classroom experiments, we 
find that the winning number can easily drop 50% in each subsequent round, as 
the students expect all their classmates to play numbers as low as the previous 
round’s winning number or lower. By the third round of play, winning numbers 
tend to be as low as 5 or less.

How should one interpret this result? Critics would say that, unless the exact 
Nash equilibrium is reached, the theory is refuted. Indeed, they would argue, if 
you have good reason to believe that other players will not play their Nash equi-
librium strategies, then your best choice is not your Nash equilibrium strategy 
either. If you can figure out how others will deviate from their Nash equilibrium 
strategies, then you should play your best response to what you believe they are 
choosing. Others would argue that theories in social science can never hope for 
the kind of precise prediction that we expect in sciences such as physics and 
chemistry. If the observed outcomes are close to the Nash equilibrium, that is a 
vindication of the theory. In this case, the experiment not only produces such a 
vindication, but illustrates the process by which people gather experience and 
learn to play strategies close to Nash equilibrium. We tend to agree with this lat-
ter viewpoint.

Interestingly, we have found that people learn somewhat faster by observ-
ing others play a game than by playing it themselves. This may be because, as 
observers, they are free to focus on the game as a whole and think about it ana-
lytically. Players’ brains are occupied with the task of making their own choices, 
and they are less able to take the broader perspective.

We should clarify the concept of gaining experience by playing the game. 
The quotation from Davis and Holt at the start of this section spoke of “rep-
etitions with different partners.” In other words, experience should be gained 
by playing the game frequently, but with different opponents each time. How-
ever, for any learning process to generate outcomes increasingly closer to the 
Nash equilibrium, the whole population of learners needs to be stable. If nov-
ices keep appearing on the scene and trying new experimental strategies, then 
the original group may unlearn what they had learned by playing against one 
another.

20 You will analyze similar games in Exercises S12 and U11. For a summary of results from large-
scale experiments run in European newspapers with thousands of players, see Rosemarie Nagel, 
Antoni Bosch-Domènech, Albert Satorra, and Juan Garcia-Montalvo, “One, Two, (Three), Infinity: 
Newspaper and Lab Beauty-Contest Experiments,” American Economic Review, vol. 92, no. 5 (De-
cember 2002), pp. 1687–1701.
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If a game is played repeatedly between two players or even among the same 
small group of known players, then any pair is likely to play each other repeat-
edly. In such a situation, the whole repeated game becomes a game in its own 
right. It can have very different Nash equilibria from those that simply repeat the 
Nash equilibrium of a single play. For example, tacit cooperation may emerge 
in repeated prisoners’ dilemmas, owing to the expectation that any temporary 
gain from cheating will be more than offset by the subsequent loss of trust. If 
games are repeated in this way, then learning about them must come from play-
ing whole sets of the repetitions frequently, against different partners each time.

B. Real-World Evidence

While the field does not allow for as much direct observation as the laboratory 
does, observations outside the laboratory can also provide valuable evidence 
about the relevance of Nash equilibrium. Conversely, Nash equilibrium often pro-
vides a valuable starting point for social scientists to make sense of the real world.

I. APPLICATIONS OF NASH EQUILIBRIUM  One of the earliest applications of the Nash 
equilibrium concept to real-world behavior was in the area of international re-
lations. Thomas Schelling pioneered the use of game theory to explain phenom-
ena such as the escalation of arms races, even between countries that have no 
intention of attacking each other, and the credibility of deterrent threats. Subse-
quent applications in this area have included the questions of when and how a 
country can credibly signal its resolve in diplomatic negotiations or in the face 
of a potential war. Game theory began to be used systematically in economics 
and business in the mid-1970s, and such applications continue to proliferate.21

As we saw earlier in this chapter, price competition is one important ap-
plication of Nash equilibrium. Other strategic choices by firms include product 
quality, investment, R&D, and so on. The theory has also helped us to under-
stand when and how the established firms in an industry can make credible 
commitments to deter new competition—for example, to wage a destructive 
price war against any new entrant. Game-theoretic models, based on the Nash 
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21 For those who would like to see more applications, here are some suggested sources. Thomas 
Schelling’s The Strategy of Conflict (Cambridge, Mass.: Harvard University Press, 1960) and Arms 
and Influence (New Haven: Yale University Press, 1966) are still required for all students of game 
theory. The classic textbook on game-theoretic treatment of industries is Jean Tirole, The Theory of 
Industrial Organization (Cambridge, Mass.: MIT Press, 1988). In political science, an early classic is 
William H. Riker, Liberalism Against Populism (San Francisco: W. H. Freeman, 1982). For advanced-
level surveys of research, see several articles in The Handbook of Game Theory with Economic Ap-
plications, ed. Robert J. Aumann and Sergiu Hart (Amsterdam: North-Holland/Elsevier Science  
B. V., 1992, 1994, 2002), particularly Barry O’Neill, “Game Theory Models of Peace and War,” in vol-
ume 2, and Kyle Bagwell and Asher Wolinsky, “Game Theory and Industrial Organization,” and Jeff-
rey Banks, “Strategic Aspects of Political Systems,” both of which are in volume 3.
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equilibrium concept and its dynamic generalizations, fit the data for many 
major industries, such as automobile manufacturers, reasonably well. They 
also give us a better understanding of the determinants of competition than the 
older models, which assumed perfect competition and estimated supply and 
demand curves.22

Pankaj Ghemawat, a professor at the IESE Business School in Barcelona, has 
developed a number of case studies of individual firms or industries, supported 
by statistical analysis of the data. His game-theoretic models are remarkably 
successful in improving our understanding of several initially puzzling observed 
business decisions on pricing, capacity, innovation, and so on. For example, 
DuPont constructed an enormous amount of manufacturing capacity for tita-
nium dioxide in the 1970s. It added capacity in excess of the projected growth in 
worldwide demand over the next decade. At first glance, this choice looked like 
a terrible strategy because the excess capacity could lead to lower market prices 
for this commodity. However, DuPont successfully foresaw that, by having ex-
cess capacity in reserve, it could punish competitors who cut prices by increas-
ing its production and driving prices even lower in the future. This ability made 
it a price leader in the industry, and it enjoyed high profit margins. The strategy 
worked quite well, with DuPont continuing to be a worldwide leader in titanium 
dioxide 40 years later.23

More recently, game theory has become the tool of choice for the study of 
political systems and institutions. As we shall see in Chapter 15, game theory 
has shown how voting and agenda setting in committees and elections can be 
strategically manipulated in pursuit of one’s ultimate objectives. Part Four of 
this book will develop other applications of Nash equilibrium in auctions, vot-
ing, and bargaining. We also develop our own case study of the Cuban missile 
crisis in Chapter 14.

Some critics remain unpersuaded of the value of Nash equilibrium, claim-
ing that the same understanding of these phenomena can be obtained using 
previously known general principles of economics, political science, and so on. 
In one sense they are right. A few of these analyses existed before Nash equilib-
rium came along. For example, the equilibrium of the interaction between two 
price-setting firms, which we developed in Section 1 of this chapter, was known 
in economics for more than 100 years. One can think of Nash equilibrium as just 
a general formulation of that equilibrium concept for all games. Some theories 

22 For simultaneous-move models of price competition, see Timothy F. Bresnahan, “Empiri-
cal Studies of Industries with Market Power,” in Handbook of Industrial Organization, vol. 2, ed.  
Richard L. Schmalensee and Robert D. Willig (Amsterdam: North-Holland/Elsevier, 1989),  
pp. 1011–57. For models of entry, see Steven Berry and Peter Reiss, “Empirical Models of Entry and 
Market Structure,” in Handbook of Industrial Organization, vol. 3, ed. Mark Armstrong and Robert 
Porter (Amsterdam: North-Holland/Elsevier, 2007), pp. 1845–86.
23 Pankaj Ghemawat, “Capacity Expansion in the Titanium Dioxide Industry,” Journal of Industrial 
Economics, vol. 33, no. 2 (December 1894), pp. 145–63. For more examples, see Pankaj Ghemawat, 
Games Businesses Play: Cases and Models (Cambridge, Mass.: MIT Press, 1997).
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of strategic voting date to the eighteenth century, and some notions of credibil-
ity can be found in history as far back as Thucydides’ Peloponnesian War. How-
ever, what Nash equilibrium does is to unify all these applications and thereby 
facilitate the development of new ones.

Furthermore, the development of game theory has also led directly to a 
wealth of new ideas and applications that did not exist before—for example, 
how the existence of a second-strike capability reduces the fear of surprise at-
tack, how different auction rules affect bidding behavior and seller revenues, 
how governments can successfully manipulate fiscal and monetary policies to 
achieve reelection even when voters are sophisticated and aware of such at-
tempts, and so on. If these examples had all been amenable to previously known 
approaches, they would have been discovered long ago.

II. REAL-WORLD ExAMPLES OF LEARNING  We conclude by offering an interesting illustra-
tion of equilibrium and the learning process in the real-world game of major-
league baseball. In this game, the stakes are high and players play more than 
100 games per year, creating strong motivation and good opportunities to learn. 
Stephen Jay Gould discovered this beautiful example.24 The best batting aver-
ages recorded in a baseball season declined over most of the twentieth century. 
In particular, the number of instances of a player averaging .400 or better used 
to be much more frequent than they are now. Devotees of baseball history often 
explain this decline by invoking nostalgia: “There were giants in those days.” A 
moment’s thought should make one wonder why there were no corresponding 
pitching giants who would have kept batting averages low. But Gould demol-
ishes such arguments in a more systematic way. He points out that we should 
look at all batting averages, not just the top ones. The worst batting averages are 
not as bad as they used to be; there are also many fewer .150 hitters in the major 
leagues than there used to be. He argues that this overall decrease in variation is 
a standardization or stabilization effect:

When baseball was very young, styles of play had not become sufficiently 
regular to foil the antics of the very best. Wee Willie Keeler could “hit ’em 
where they ain’t” (and compile an average of .432 in 1897) because fielders 
didn’t yet know where they should be. Slowly, players moved toward opti-
mal methods of positioning, fielding, pitching, and batting—and variation 
inevitably declined. The best [players] now met an opposition too finely 
honed to its own perfection to permit the extremes of achievement that 
characterized a more casual age. [emphasis added]

In other words, through a succession of adjustments of strategies to counter one 
another, the system settled down into its (Nash) equilibrium.

24 Stephen Jay Gould, “Losing the Edge,” in The Flamingo’s Smile: Reflections in Natural History 
(New York: W. W. Norton & Company, 1985), pp. 215–29.
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Gould marshals decades of hitting statistics to demonstrate that such a de-
crease in variation did indeed occur, except for occasional “blips.” And indeed 
the blips confirm his thesis, because they occur soon after an equilibrium is dis-
turbed by an externally imposed change. Whenever the rules of the game are al-
tered (the strike zone is enlarged or reduced, the pitching mound is lowered, or 
new teams and many new players enter when an expansion takes place) or the 
technology changes (a livelier ball is used or perhaps, in the future, aluminum 
bats are allowed), the preceding system of mutual best responses is thrown out 
of equilibrium. Variation increases for a while as players experiment, and some 
succeed while others fail. Finally, a new equilibrium is attained, and variation 
goes down again. That is exactly what we should expect in the framework of 
learning and adjustment to a Nash equilibrium.

Michael Lewis’s 2003 book Moneyball (later made into a movie starring Brad 
Pitt) describes a related example of movement toward equilibrium in base-
ball. Instead of focusing on the strategies of individual players, it focuses on 
the teams’ back-office strategies of which players to hire. The book documents 
Oakland A’s general manager Billy Beane’s decision to use “sabermetrics” in hir-
ing decisions—that is, paying close attention to baseball statistics based on the 
theory of maximizing runs scored and minimizing runs given up to opponents. 
These decisions involved paying more attention to attributes undervalued 
by the market, such as a player’s documented ability to earn walks. Such deci-
sions arguably led to the A’s becoming a very strong team, going to the playoffs 
in five out of seven seasons, despite having less than half the payroll of larger-
market teams such as the New York Yankees. Beane’s innovative payroll strate-
gies have subsequently been adopted by other teams, such as the Boston Red 
Sox, who, under general manager Theo Epstein, managed to break the “curse 
of the Bambino” in 2004 and win their first World Series in 86 years. Over the 
course of a decade, nearly a dozen teams decided to hire full-time sabermetri-
cians, with Beane noting in September 2011 that he was once again “fighting 
uphill” against larger teams that had learned to best-respond to his strategies. 
Real-world games often involve innovation followed by gradual convergence to 
equilibrium; the two examples from baseball both give evidence of moving to-
ward equilibrium, although full convergence may sometimes take years or even 
decades to complete.25

We take up additional evidence about other game-theoretic predictions at 
appropriate points in later chapters. For now, the experimental and empirical 
evidence that we have presented should make you cautiously optimistic about 
using Nash equilibrium, especially as a first approach. On the whole, we be-
lieve you should have considerable confidence in using the Nash equilibrium  

25 Susan Slusser, “Michael Lewis on A’s ‘Moneyball’ Legacy,” San Francisco Chronicle, September 18, 
2011, p. B-1. The original book is Michael Lewis, Moneyball: The Art of Winning an Unfair Game (New 
York: W. W. Norton & Company, 2003).
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concept when the game in question is played frequently by players from a rea-
sonably stable population and under relatively unchanging rules and conditions. 
When the game is new or is played just once and the players are inexperienced, 
you should use the equilibrium concept more cautiously and should not be sur-
prised if the outcome that you observe is not the equilibrium that you calcu-
late. But even then, your first step in the analysis should be to look for a Nash  
equilibrium; then you can judge whether it seems a plausible outcome and, if 
not, proceed to the further step of asking why not.26 Often the reason will be 
your misunderstanding of the players’ objectives, not the players’ failure to play 
the game correctly giving their true objectives.

SUMMARY

When players in a simultaneous-move game have a continuous range of actions 
to choose, best-response analysis yields mathematical best-response rules that 
can be solved simultaneously to obtain Nash equilibrium strategy choices. The 
best-response rules can be shown on a diagram in which the intersection of the 
two curves represents the Nash equilibrium. Firms choosing price or quantity 
from a large range of possible values and political parties choosing campaign 
advertising expenditure levels are examples of games with continuous strategies.

Theoretical criticisms of the Nash equilibrium concept have argued that 
the concept does not adequately account for risk, that it is of limited use because 
many games have multiple equilibria, and that it cannot be justified on the 
basis of rationality alone. In many cases, a better description of the game and 
its payoff structure or a refinement of the Nash equilibrium concept can lead to 
better predictions or fewer potential equilibria. The concept of rationalizability 
relies on the elimination of strategies that are never a best response to obtain a 
set of rationalizable outcomes. When a game has a Nash equilibrium, that out-
come will be rationalizable, but rationalizability also allows one to predict equi-
librium outcomes in games that have no Nash equilibria.

The results of laboratory tests of the Nash equilibrium concept show that 
a common cultural background is essential for coordinating in games with 
multiple equilibria. Repeated play of some games shows that players can learn 
from experience and begin to choose strategies that approach Nash equilibrium 
choices. Further, predicted equilibria are accurate only when the experiment-
ers’ assumptions match the true preferences of players. Real-world applications 
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26 In an article probing the weaknesses of Nash equilibrium in experimental data and proposing 
QRE-style alternative models for dealing with them, two prominent researchers write, “we will be 
the first to admit that we begin the analysis of a new strategic problem by considering the equilib-
ria derived from standard game theory before considering” other possibilities. Jacob K. Goeree and 
Charles A. Holt, “Ten Little Treasures of Game Theory and Ten Intuitive Contradictions,” American 
Economic Review, vol. 91, no. 5 (December 2001), pp. 1402–22.
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of game theory have helped economists and political scientists, in particular, 
to understand important consumer, firm, voter, legislative, and government  
behaviors.

KEY TERMS

best-response curve (137) rationalizability (150)
best-response rule (134) rationalizable (150)
continuous strategy (133) refinement (148)
never a best response (150)
quantal-response
     equilibrium (QRE) (158)

SOLVED ExERCISES

 S1. In the political campaign advertising game in Section 1.B, party L chooses 
an advertising budget, x (millions of dollars), and party R similarly chooses 
an advertising budget, y (millions of dollars). We showed there that the 
best-response rules in that game are y  10x  x for party R and x  
10y  y for party L. 

 (a)  What is party R’s best response if party L spends $16 million?
 (b) Use the specified best-response rules to verify that the Nash equilib-

rium advertising budgets are x  y  25, or $25 million.

 S2. The restaurant pricing game illustrated in Figure 5.1 defines customer 
demand functions for meals at Xavier’s (Qx) and Yvonne’s (Qy) as Qx  44 
 2Px  Py, and Qy  44  2Py  Px. Profits for each firm depend in ad-
dition on their costs of serving each customer. Suppose that Yvonne’s is 
able to reduce its costs to a mere $2 per customer by completely elimi-
nating the wait staff (customers pick up their orders at the counter, and 
a few remaining employees bus the tables). Xavier’s continues to incur a 
cost of $8 per customer.

 (a) Recalculate the best-response rules and the Nash equilibrium prices 
for the two firms, given the change in the cost conditions.

 (b) Graph the two best-response curves and describe the differences 
between your graph and Figure 5.1. In particular, which curve has 
moved and by how much? Explain why these changes occurred in 
the diagram.

 S3. Yuppietown has two food stores, La Boulangerie, which sells bread, and 
La Fromagerie, which sells cheese. It costs $1 to make a loaf of bread and 
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$2 to make a pound of cheese. If La Boulangerie’s price is P1 dollars per 
loaf of bread and La Fromagerie’s price is P2 dollars per pound of cheese, 
their respective weekly sales, Q1 thousand loaves of bread and Q2 thou-
sand pounds of cheese, are given by the following equations:

Q1  14  P1  0.5P2, Q2  19  0.5P1  P2.

 (a) For each store, write its profit as a function of P1 and P2 (in the ex-
ercises that follow, we will call this “the profit function” for brev-
ity). Then find their respective best-response rules. Graph the  
best-response curves, and find the Nash equilibrium prices in this 
game.

 (b) Suppose that the two stores collude and set prices jointly to maxi-
mize the sum of their profits. Find the joint profit-maximizing 
prices for the stores.

 (c) Provide a short intuitive explanation for the differences between the 
Nash equilibrium prices and those that maximize joint profit. Why 
is joint profit maximization not a Nash equilibrium?

 (d) In this problem, bread and cheese are mutual complements. They 
are often consumed together; that is why a drop in the price of one in-
creases the sales of the other. The products in our bistro example in 
Section 1.A are substitutes for each other. How does this difference 
explain the differences among your findings for the best-response 
rules, the Nash equilibrium prices, and the joint profit-maximizing 
prices in this question, and the corresponding entities in the bistro 
example in the text?

 S4. The game illustrated in Figure 5.3 has a unique Nash equilibrium in pure 
strategies. However, all nine outcomes in that game are rationalizable. 
Confirm this assertion, explaining your reasoning for each outcome.

 S5. For the game presented in Exercise S5 in Chapter 4, what are the ratio-
nalizable strategies for each player? Explain your reasoning.

 S6. Section 3.B of this chapter describes a fishing game played in a small 
coastal town. When the response rules for the two boats have been de-
rived, rationalizability can be used to justify the Nash equilibrium in the 
game. In the description in the text, we take the process of narrowing 
down strategies that can never be best responses through three rounds. 
By the third round, we know that R (the number of barrels of fish brought 
home by boat 1) must be at least 9, and that S (the number of barrels of 
fish brought home by boat 2) must be at least 4.5. The narrowing process 
in that round restricted R to the range between 9 and 12.75 while restrict-
ing S to the range between 4.5 and 7.5. Take this process of narrowing 
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through one additional (fourth) round and show the reduced ranges of R 
and S that are obtained at the end of the round.

 S7. Two carts selling coconut milk (from the coconut) are located at 0 and 
1, 1 mile apart on the beach in Rio de Janeiro. (They are the only two  
coconut-milk carts on the beach.) The carts—Cart 0 and Cart 1—charge 
prices p0 and p1, respectively, for each coconut. One thousand beach-
goers buy coconut milk, and these customers are uniformly distributed 
along the beach between carts 0 and 1. Each beachgoer will purchase 
one coconut milk in the course of her day at the beach, and in addition 
to the price, each will incur a transport cost of 0.5  d 2, where d is the 
distance (in miles) from her beach blanket to the coconut cart. In this 
system, Cart 0 sells to all of the beachgoers located between 0 and x, and 
Cart 1 sells to all of the beachgoers located between x and 1, where x is 
the location of the beachgoer who pays the same total price if she goes to 
0 or 1. Location x is then defined by the expression:

p0  0.5x 2  p1  0.5(1  x)2.

The two carts will set their prices to maximize their bottom-line profit 
figures, B; profits are determined by revenue (the cart’s price times its 
number of customers) and cost (each cart incurs a cost of $0.25 per coco-
nut times the number of coconuts sold).

 (a) For each cart, determine the expression for the number of custom-
ers served as a function of p0 and p1. (Recall that Cart 0 gets the cus-
tomers between 0 and x, or just x, while Cart 1 gets the customers 
between x and 1, or 1  x. That is, cart 0 sells to x customers, where 
x is measured in thousands, and cart 1 sells to (1  x) thousand.)

 (b) Write the profit functions for the two carts. Find the two best-response 
rules for each cart as a function of their rival’s price.

 (c) Graph the best-response rules, and then calculate (and show on 
your graph) the Nash equilibrium price level for coconut milk on 
the beach.

 S8. Crude oil is transported across the globe in enormous tanker ships called 
Very Large Crude Carriers (VLCCs). By 2001, more than 92% of all new 
VLCCs were built in South Korea and Japan. Assume that the price of new 
VLCCs (in millions of dollars) is determined by the function P  180  Q,  
where Q  qKorea  qJapan. (That is, assume that only Japan and Korea 
produce VLCCs, so they are a duopoly.) Assume that the cost of building 
each ship is $30 million in both Korea and Japan. That is, cKorea  cJapan  
30, where the per-ship cost is measured in millions of dollars. 

 (a) Write the profit functions for each country in terms of qKorea and qJapan 
and either cKorea or cJapan. Find each country’s best-response function.
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 (b) Using the best-response functions found in part (a), solve for the 
Nash equilibrium quantity of VLCCs produced by each country per 
year. What is the price of a VLCC? How much profit is made in each 
country?

 (c) Labor costs in Korean shipyards are actually much lower than in 
their Japanese counterparts. Assume now that the cost per ship in 
Japan is $40 million and that in Korea it is only $20 million. Given 
cKorea  20 and cJapan  40, what is the market share of each coun-
try (that is, the percentage of ships that each country sells relative 
to the total number of ships sold)? What are the profits for each  
country?

 S9. Extending the previous problem, suppose China decides to enter the 
VLCC construction market. The duopoly now becomes a triopoly, so that 
although price is still P  180  Q, quantity is now given by Q  qKorea  
qJapan  qChina. Assume that all three countries have a per-ship cost of $30 
million: cKorea  cJapan  cChina  30.

 (a) Write the profit functions for each of the three countries in terms of 
qKorea, qJapan, and qChina, and cKorea, cJapan, or cChina. Find each country’s 
best-response rule.

 (b) Using your answer to part (a), find the quantity produced, the mar-
ket share captured [see Exercise S8, part (c)], and the profits earned 
by each country. This will require the solution of three equations in 
three unknowns.

 (c) What happens to the price of a VLCC in the new triopoly relative to 
the duopoly situation in Exercise S8, part (b)? Why?

 S10. Monica and Nancy have formed a business partnership to provide con-
sulting services in the golf industry. They each have to decide how much 
effort to put into the business. Let m be the amount of effort put into the 
business by Monica, and n be the amount of effort put in by Nancy.

The joint profits of the partnership are given by 4m  4n  mn, in 
tens of thousands of dollars, and the two partners split these profits 
equally. However, they must each separately incur the costs of their own 
effort; the cost to Monica of her effort is m2, while the cost to Nancy of 
her effort is n2 (both measured in tens of thousands of dollars). Each 
partner must make her effort decision without knowing what effort deci-
sion the other player has made.

 (a)  If Monica and Nancy each put in effort of m  n  1, then what are 
their payoffs?

 (b)  If Monica puts in effort of m  1, then what is Nancy’s best  
response?

 (c)  What is the Nash equilibrium to this game?
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 S11. Nash equilibrium through rationalizability can be achieved in games 
with upward-sloping best-response curves if the rounds of eliminating 
never-best-response strategies begin with the smallest possible values. 
Consider the pricing game between Xavier’s Tapas Bar and Yvonne’s Bis-
tro that is illustrated in Figure 5.1. Use Figure 5.1 and the best-response 
rules from which it is derived to begin rationalizing the Nash equilib-
rium in that game. Start with the lowest possible prices for the two firms 
and describe (at least) two rounds of narrowing the set of rationalizable 
prices toward the Nash equilibrium.

 S12. A professor presents the following game to Elsa and her 49 classmates. 
Each of them simultaneously and privately writes down a number be-
tween 0 and 100 on a piece of paper, and they all hand in their numbers. 
The professor then computes the mean of these numbers and defines X 
to be the mean of the students’ numbers. The student who submits the 
number closest to one-half of X wins $50. If multiple students tie, they 
split the prize equally. 

 (a) Show that choosing the number 80 is a dominated strategy.
 (b) What would the set of best responses be for Elsa if she knew that all 

of her classmates would submit the number 40? That is, what is the 
range of numbers for which each number in the range is closer to 
the winning number than 40?

 (c) What would the set of best responses be for Elsa if she knew that all 
of her classmates would submit the number 10?

 (d) Find a symmetric Nash equilibrium to this game. That is, what 
number is a best response to everyone else submitting that same 
number?

 (e) Which strategies are rationalizable in this game?

UNSOLVED ExERCISES

 U1. Diamond Trading Company (DTC), a subsidiary of De Beers, is the domi-
nant supplier of high-quality diamonds for the wholesale market. For sim-
plicity, assume that DTC has a monopoly on wholesale diamonds. The 
quantity that DTC chooses to sell thus has a direct impact on the whole-
sale price of diamonds. Let the wholesale price of diamonds (in hundreds 
of dollars) be given by the following inverse demand function: P  120  
QDTC. Assume that DTC has a cost of 12 (hundred dollars) per high-quality 
diamond. 

 (a) Write DTC’s profit function in terms of QDTC, and solve for DTC’s 
profit-maximizing quantity. What will be the wholesale price of dia-
monds at that quantity? What will DTC’s profit be?
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Frustrated with DTC’s monopoly, several diamond mining interests 
and large retailers collectively set up a joint venture called Adamantia to 
act as a competitor to DTC in the wholesale market for diamonds. The 
wholesale price is now given by P  120  QDTC  QADA. Assume that Ad-
amantia has a cost of 12 (hundred dollars) per high-quality diamond.

 (b) Write the best-response functions for both DTC and Adamantia. 
What quantity does each wholesaler supply to the market in equi-
librium? What wholesale price do these quantities imply? What will 
the profit of each supplier be in this duopoly situation?

 (c) Describe the differences in the market for wholesale diamonds 
under the duopoly of DTC and Adamantia relative to the monopoly 
of DTC. What happens to the quantity supplied in the market and 
the market price when Adamantia enters? What happens to the col-
lective profit of DTC and Adamantia?

 U2. There are two movie theaters in the town of Harkinsville: Modern Multi-
plex, which shows first-run movies, and Sticky Shoe, which shows movies 
that have been out for a while at a cheaper price. The demand for movies 
at Modern Multiplex is given by QMM  14  PMM  PSS, while the de-
mand for movies at Sticky Shoe is QSS  8  2PSS + PMM, where prices are 
in dollars and quantities are measured in hundreds of moviegoers. Mod-
ern Multiplex has a per-customer cost of $4, while Sticky Shoe has a per-
customer cost of only $2.

 (a) From the demand equations alone, what indicates whether Mod-
ern Multiplex and Sticky Shoe offer services that are substitutes or  
complements?

 (b) Write the profit function for each theater in terms of PSS and PMM. 
Find each theater’s best-response rule.

 (c) Find the Nash equilibrium price, quantity, and profit for each  
theater.

 (d) What would each theater’s price, quantity, and profit be if the two 
decided to collude to maximize joint profits in this market? Why 
isn’t the collusive outcome a Nash equilibrium?

 U3. Fast forward a decade beyond the situation in Exercise S3. Yuppietown’s 
demand for bread and cheese has decreased, and the town’s two food 
stores, La Boulangerie and La Fromagerie, have been bought out by a 
third company: L’Épicerie. It still costs $1 to make a loaf of bread and $2 
to make a pound of cheese, but the quantities of bread and cheese sold 
(Q1 and Q2 respectively, measured in thousands) are now given by the 
equations: 

Q1  8  P1  0.5P2, Q2  16  0.5P1  P2. 
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Again, P1 is the price in dollars of a loaf of bread, and P2 is the price in 
dollars of a pound of cheese.

 (a) Initially, L’Épicerie runs La Boulangerie and La Fromagerie as if they 
were separate firms, with independent managers who each try to 
maximize their own profit. What are the Nash equilibrium quanti-
ties, prices, and profits for the two divisions of L’Épicerie, given the 
new quantity equations?

 (b) The owners of L’Épicerie think that they can make more total profit 
by coordinating the pricing strategies of the two Yuppietown divi-
sions of their company. What are the joint-profit-maximizing prices 
for bread and cheese under collusion? What quantities do La Bou-
langerie and La Fromagerie sell of each good, and what is the profit 
that each division earns separately?

 (c) In general, why might companies sell some of their goods at prices 
below cost? That is, explain a rationale of loss leaders, using your 
answer from part (b) as an illustration. 

 U4. The coconut-milk carts from Exercise S7 set up again the next day. Nearly 
everything is exactly the same as in Exercise S7: the carts are in the same 
locations, the number and distribution of beachgoers is identical, and 
the demand of the beachgoers for exactly one coconut milk each is un-
changed. The only difference is that it is a particularly hot day, so that 
now each beachgoer incurs a higher transport cost of 0.6d 2. Again, Cart 0 
sells to all of the beachgoers located between 0 and x, and Cart 1 sells to 
all of the beachgoers located between x and 1, where x is the location of 
the beachgoer who pays the same total price if she goes to 0 or 1. How-
ever, now location x is defined by the expression:

p0  0.6x2  p1  0.6(1  x)2.

Again, each cart has a cost of $0.25 per coconut sold.
 (a) For each cart, determine the expression for the number of custom-

ers served as a function of p0 and p1. (Recall that Cart 0 gets the cus-
tomers between 0 and x, or just x, while Cart 1 gets the customers 
between x and 1, or 1  x. That is, Cart 0 sells to x customers, where 
x is measured in thousands, and Cart 1 sells to (1  x) thousand.)

 (b) Write out profit functions for the two carts and find the two 
best-response rules.

 (c) Calculate the Nash equilibrium price level for coconuts on the 
beach. How does this price compare with the price found in Exercise 
S7? Why?

 U5. The game illustrated in Figure 5.4 has a unique Nash equilibrium in pure 
strategies. Find that Nash equilibrium, and then show that it is also the 
unique rationalizable outcome in that game.
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 U6. What are the rationalizable strategies of the game “Evens or Odds” from 
Exercise S12 in Chapter 4?

 U7. In the fishing-boat game of Section 3.B, we showed how it is possible 
for there to be a uniquely rationalizable outcome in continuous strate-
gies that is also a Nash equilibrium. However, this is not always the case; 
there may be many rationalizable strategies, and not all of them will nec-
essarily be part of a Nash equilibrium. 

Returning to the political advertising game of Exercise S1, find the set 
of rationalizable strategies for party L. (Due to their symmetric payoffs, 
the set of rationalizable strategies will be the same for party R.) Explain 
your reasoning. 

 U8. Intel and AMD, the primary producers of computer central processing 
units (CPUs), compete with one another in the mid-range chip category 
(among other categories). Assume that global demand for mid-range 
chips depends on the quantity that the two firms make, so that the price 
(in dollars) for mid-range chips is given by P  210  Q, where Q  qIn-

tel  qAMD and where the quantities are measured in millions. Each mid-
range chip costs Intel $60 to produce. AMD’s production process is more 
streamlined; each chip costs them only $48 to produce.

 (a) Write the profit function for each firm in terms of qIntel and qAMD. 
Find each firm’s best-response rule.

 (b) Find the Nash equilibrium price, quantity, and profit for each firm.
 (c) (Optional) Suppose Intel acquires AMD, so that it now has two sep-

arate divisions with two different production costs. The merged firm 
wishes to maximize total profits from the two divisions. How many 
chips should each division produce? (Hint: You may need to think 
carefully about this problem, rather than blindly applying mathe-
matical techniques.) What is the market price and the total profit to 
the firm?

 U9. Return to the VLCC triopoly game of Exercise S9. In reality, the three coun-
tries do not have identical production costs. China has been gradually  
entering the VLCC construction market for several years, and its produc-
tion costs started out rather high due to lack of experience. 

 (a) Solve for the triopoly quantities, market shares, price, and profits for 
the case where the per-ship costs are $20 million for Korea, $40 mil-
lion for Japan, and $60 million for China (cKorea  20, cJapan  40, and 
cChina  60).

After it gains experience and adds production capacity, China’s per-ship 
cost will decrease dramatically. Because labor is even cheaper in China 
than in Korea, eventually the per-ship cost will be even lower in China 
than it is in Korea.

e x e r C i s e s   1 7 3
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 (b) Repeat part (a) with the adjustment that China’s per-ship cost is $16 
million (c Korea  20, c Japan  40, and c China  16).

 U10. Return to the story of Monica and Nancy from Exercise S10. After some 
additional professional training, Monica is more productive on the job, 
so that the joint profits of their company are now given by 5m  4n  mn,  
in tens of thousands of dollars. Again, m is the amount of effort put into 
the business by Monica, n is the amount of effort put in by Nancy, and 
the costs are m2 and n2 to Monica and Nancy respectively (in tens of 
thousands of dollars). 

The terms of their partnership still require that the joint profits be 
split equally, despite the fact that Monica is more productive. Assume 
that their effort decisions are made simultaneously. 

 (a)  What is Monica’s best response if she expects Nancy to put in an ef-
fort of n  4−3 ?

 (b)  What is the Nash equilibrium to this game?
 (c)  Compared to the old Nash equilibrium found in Exercise S10, part 

(c), does Monica now put in more, less, or the same amount of ef-
fort? What about Nancy?

 (d)  What are the final payoffs to Monica and Nancy in the new Nash 
equilibrium (after splitting the joint profits and accounting for their 
costs of effort)? How do they compare to the payoffs to each of them 
under the old Nash equilibrium? In the end, who receives more ben-
efit from Monica’s additional training?

 U11. A professor presents a new game to Elsa and her 49 classmates (similar 
to the situation in Exercise S12). As before, each of the students simul-
taneously and privately writes down a number between 0 and 100 on a 
piece of paper, and the professor computes the mean of these numbers 
and calls it X. This time the student who submits the number closest to  
2−3  (X  9) wins $50. Again, if multiple students tie, they split the prize 
equally. 

 (a) Find a symmetric Nash equilibrium to this game. That is, what num-
ber is a best response to everyone else submitting the same number?

 (b) Show that choosing the number 5 is a dominated strategy. (Hint: 
What would class average X have to be for the target number to be 5?)

 (c) Show that choosing the number 90 is a dominated strategy.
 (d) What are all of the dominated strategies?
 (e) Suppose Elsa believes that none of her classmates will play the 

dominated strategies found in part (d). Given these beliefs, what 
strategies are never a best response for Elsa?

1 7 4   [ C h . 5 ]  s i m u lta n e o u s - m o v e  g a m e s

6841D CH05 UG.indd   174 12/18/14   3:11 PM



 (f) Which strategies do you think are rationalizable in this game? Ex-
plain your reasoning.

 U12. (Optional—requires calculus) Recall the political campaign advertising 
example from Section 1.C concerning parties L and R. In that example, 
when L spends $x million on advertising and R spends $y million, L gets 
a share x(x  y) of the votes and R gets a share y(x  y). We also men-
tioned that two types of asymmetries can arise between the parties in 
that model. One party—say, R—may be able to advertise at a lower cost 
or R’s advertising dollars may be more effective in generating votes than 
L’s . To allow for both possibilities, we can write the payoff functions of 
the two parties as

  

These payoff functions show that R has an advantage in the relative ef-
fectiveness of its ads when k is high and that R has an advantage in the 
cost of its ads when c is low.

 (a) Use the payoff functions to derive the best-response functions for R 
(which chooses y) and L (which chooses x).

 (b) Use your calculator or your computer to graph these best-response 
functions when k  1 and c  1. Compare the graph with the one for 
the case in which k  1 and c  0.8. What is the effect of having an 
advantage in the cost of advertising?

 (c) Compare the graph from part (b), when k  1 and c  1 with the one 
for the case in which k  2 and c  1. What is the effect of having an 
advantage in the effectiveness of advertising dollars?

 (d) Solve the best-response functions that you found in part (a), jointly 
for x and y, to show that the campaign advertising expenditures in 
Nash equilibrium are

  

 (e) Let k  1 in the equilibrium spending-level equations and show 
how the two equilibrium spending levels vary with changes in c 
(that is, interpret the signs of dxdc and dydc). Then let c  1 and 
show how the two equilibrium spending levels vary with changes in 
k (that is, interpret the signs of dxdk and dydk). Do your answers 
support the effects that you observed in parts (b) and (c) of this  
exercise?
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Appendix:
Finding a Value to Maximize a Function

Here we develop in a simple way the method for choosing a variable X to obtain the 
maximum value of a variable that is a function of it, say Y  F(X). Our applications 
will mostly be to cases where the function is quadratic, such as Y  A BX  CX 2. 
For such functions we derive the formula X  B(2C) that was stated and used in the 
chapter. We develop the general idea using calculus, and then offer an alternative 
approach that does not use calculus but applies only to the quadratic function.27

The calculus method tests a value of X for optimality by seeing what hap-
pens to the value of the function for other values on either side of X. If X does 
indeed maximize Y  F(X), then the effect of increasing or decreasing X should 
be a drop in the value of Y. Calculus gives us a quick way to perform such a test.

Figure 5A.1 illustrates the basic idea. It shows the graph of a function Y  
F(X), where we have used a function of the type that fits our application, even 
though the idea is perfectly general. Start at any point P with coordinates (X, Y) 
on the graph. Consider a slightly different value of X, say (X  h). Let k be the re-
sulting change in Y  F(X), so the point Q with coordinates (X  h, Y  k) is also 
on the graph. The slope of the chord joining P to Q is the ratio kh. If this ratio is 
positive, then h and k have the same sign; as X increases, so does Y. If the ratio is 
negative, then h and k have opposite signs; as X increases, Y decreases. 

If we now consider smaller and smaller changes h in X, and the correspond-
ing smaller and smaller changes k in Y, the chord PQ will approach the tangent 
to the graph at P. The slope of this tangent is the limiting value of the ratio kh. It 
is called the derivative of the function Y  F(X) at the point X. Symbolically, it is 
written as F 9(X) or dYdX. Its sign tells us whether the function is increasing or 
decreasing at precisely the point X. 

For the quadratic function in our application, Y  A  BX  CX 2 and

Y  k  A  B(X  h)  C(X  h)2.

Therefore, we can find an expression for k as follows:

 k   [A  B(X  h)  C(X  h)2]  (A  BX  CX 2)

   Bh  C [(X  h)2  X 2] 

   Bh  C(X 2  2Xh  h 2  X 2)

   (B  2CX)h  Ch2.
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27 Needless to say, we give only the briefest, quickest treatment, leaving out all issues of functions 
that don’t have derivatives, functions that are maximized at an extreme point of the interval over 
which they are defined, and so on. Some readers will know all we say here; some will know much 
more. Others who want to find out more should refer to any introductory calculus textbook.
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Then k h  (B  2CX )  Ch. In the limit as h goes to zero, k h  (B  2CX ). 
This last expression is then the derivative of our function.

Now we use the derivative to find a test for optimality. Figure 5A.2 illus-
trates the idea. The point M yields the highest value of Y  F(X). The function 
increases as we approach the point M from the left and decreases after we have 
passed to the right of M. Therefore the derivative F 9(X) should be positive for 
values of X smaller than M and negative for values of X larger than M. By conti-
nuity, the derivative precisely at M should be 0. In ordinary language, the graph 
of the function should be flat where it peaks.

In our quadratic example, the derivative is: F9(X)  B  2CX. Our optimality 
test implies that the function is optimized when this is 0, or at X  B(2C). This 
is exactly the formula given in the chapter.

One additional check needs to be performed. If we turn the whole figure 
upside down, M is the minimum value of the upside-down function, and at this 
trough the graph will also be flat. So for a general function F(X), setting F 9(X)  
0 might yield an X that gives its minimum rather than the maximum. How do we 
distinguish the two possibilities?

At a maximum, the function will be increasing to its left and decreasing to 
its right. Therefore the derivative will be positive for values of X smaller than the 
purported maximum, and negative for larger values. In other words, the deriva-
tive, itself regarded as a function of X, will be decreasing at this point. A decreas-
ing function has a negative derivative. Therefore, the derivative of the derivative, 
what is called the second derivative of the original function, written as F99(X) or 
d2YdX2, should be negative at a maximum. Similar logic shows that the second  

Y 

k 

h 

X 

Q 

P  

Y � F(X) 

tangent chord 

Y 

Y� k 

X X � h 

 

FIGURE 5a.1  derivative of a function illustrated
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derivative should be positive at a minimum; that is what distinguishes the two 
cases.

For the derivative F9(X)  B  2CX of our quadratic example, applying the 
same h, k procedure to F 9(X) as we did to F(X) shows F99(X)  2C. This is neg-
ative so long as C is positive, which we assumed when stating the problem in the 
chapter. The test F 9(X)  0 is called the first-order condition for maximization of 
F(X), and F99(X) , 0 is the second-order condition.

To fix the idea further, let us apply it to the specific example of Xavier’s best 
response that we considered in the chapter. We had the expression

Px  8(44  Py)   (16  44  Py)Px  2(Px)2.

This is a quadratic function of Px (holding the other restaurant’s price, Py, fixed). 
Our method gives its derivative:

The first-order condition for Px to maximize Px is that this derivative should be 
0. Setting it equal to 0 and solving for Px gives the same equation as derived in 
Section 1.A. (The second-order condition is d 2PxdP 2

x , 0, which is satisfied 
because the second-order derivative is just –4.)

FIGURE 5a.2  optimum of a function
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We hope you will regard the calculus method as simple enough and that you 
will have occasion to use it again in a few places later, for example, in Chapter 11 
on collective action. But if you find it too difficult, here is a noncalculus alter-
native method that works for quadratic functions. Rearrange terms to write the 
function as

In the final form of the expression, X appears only in the last term, where a 
square involving it is being subtracted (remember C . 0). The whole expression 
is maximized when this subtracted term is made as small as possible, which 
happens when X  B(2C). Voila! 

This method of “completing the square” works for quadratic functions and 
therefore will suffice for most of our uses. It also avoids calculus. But we must 
admit it smacks of magic. Calculus is more general and more methodical. It re-
pays a little study many times over.

� A �           �           � BX � CX 2

� A �          � C  

� A �          � C
B
2C

� X  
2

B 2

4C 2

B
C

� 2  � X 2B 2

4C

B 2

4C
.

B 2

4C
B 2

4C

Y � A � BX � CX 2
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6666
■

Combining Sequential and 

Simultaneous Moves

In Chapter 3, we considered games of purely sequential moves; Chapters 4 
and 5 dealt with games of purely simultaneous moves. We developed con-
cepts and techniques of analysis appropriate to the pure game types—trees 
and rollback equilibrium for sequential moves, payoff tables and Nash equi-

librium for simultaneous moves. In reality, however, many strategic situations 
contain elements of both types of interaction. Also, although we used game  
trees (extensive forms) as the sole method of illustrating sequential-move 
games and game tables (strategic forms) as the sole method of illustrating 
 simultaneous-move games, we can use either form for any type of game.

In this chapter, we examine many of these possibilities. We begin by show-
ing how games that combine sequential and simultaneous moves can be solved 
by combining trees and payoff tables and by combining rollback and Nash equi-
librium analysis in appropriate ways. Then we consider the effects of changing 
the nature of the interaction in a particular game. Specifically, we look at the ef-
fects of changing the rules of a game to convert sequential play into simultane-
ous play and vice versa and of changing the order of moves in sequential play. 
This topic gives us an opportunity to compare the equilibria found by using the 
concept of rollback, in a sequential-move game, with those found by using the 
Nash equilibrium concept, in the simultaneous version of the same game. From 
this comparison, we extend the concept of Nash equilibria to sequential-play 
games. It turns out that the rollback equilibrium is a special case, usually called 
a refinement, of these Nash equilibria.
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1 GAMES WITH BOTH SIMULTANEOUS AND SEQUENTIAL MOVES

As mentioned several times thus far, most real games that you will encoun-
ter will be made up of numerous smaller components. Each of these compo-
nents may entail simultaneous play or sequential play, so the full game requires 
you to be familiar with both. The most obvious examples of strategic interac-
tions containing both sequential and simultaneous parts are those between 
two (or more) players over an extended period of time. You may play a num-
ber of different simultaneous-play games against your roommate during your 
year together: Your action in any one of these games is influenced by the his-
tory of your interactions up to then and by your expectations about the inter-
actions to come. Also, many sporting events, interactions between competing 
firms in an industry, and political relationships are sequentially linked series of  
simultaneous-move games. Such games are analyzed by combining the tools 
presented in Chapter 3 (trees and rollback) and in Chapters 4 and 5 (payoff 
tables and Nash equilibria).1 The only difference is that the actual analysis be-
comes more complicated as the number of moves and interactions increases.

A. Two-Stage Games and Subgames

Our main illustrative example for such situations includes two would-be telecom 
giants, CrossTalk and GlobalDialog. Each can choose whether to invest $10 bil-
lion in the purchase of a fiber-optic network. They make their investment deci-
sions simultaneously. If neither chooses to make the investment, that is the end 
of the game. If one invests and the other does not, then the investor has to make 
a pricing decision for its telecom services. It can choose either a high price, 
which will attract 60 million customers, from each of whom it will make an op-
erating profit of $400, or a low price, which will attract 80 million customers, 
from each of whom it will make an operating profit of $200. If both firms acquire 
fiber-optic networks and enter the market, then their pricing choices become a 
second simultaneous-move game. Each can choose either the high or the low 
price. If both choose the high price, they will split the total market equally; so 
each will get 30 million customers and an operating profit of $400 from each. 
If both choose the low price, again they will split the total market equally; so 
each will get 40 million customers and an operating profit of $200 from each. 
If one chooses the high price and the other the low price, then the low-price 

1 Sometimes the simultaneous part of the game will have equilibria in mixed strategies; then, the 
tools we develop in Chapter 7 will be required. We mention this possibility in this chapter where rel-
evant and give you an opportunity to use such methods in exercises for the later chapters.
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firm will get all the 80 million customers at that price, and the high-price firm 
will get nothing.

The interaction between CrossTalk and GlobalDialog forms a two-stage 
game. Of the four combinations of the simultaneous-move choices at the first 
(investment) stage, one ends the game, two lead to a second-stage (pricing) de-
cision by just one player, and the fourth leads to a simultaneous-move (pricing) 
game at the second stage. We show this game pictorially in Figure 6.1.

Regarded as a whole, Figure 6.1 illustrates a game tree, but one that is more 
complex than the trees in Chapter 3. You can think of it as an elaborate “tree 
house” with multiple levels. The levels are shown in different parts of the same 
two-dimensional figure, as if you are looking down at the tree from a helicopter 
positioned directly above it.

The first-stage game is represented by the payoff table in the top-left quad-
rant of Figure 6.1. You can think of it as the first floor of the tree house. It has 
four “rooms.” The room in the northwest corner corresponds to the “Don’t in-
vest” first-stage moves of both firms. If the firms’ decisions take the game to this 
room, there are no further choices to be made, so we can think of it being like a 
terminal node of a tree in Chapter 3 and show the payoffs in the cell of the table; 

    

    

    

  

Don’t Invest

GLOBALDIALOG

Don’t 

First stage: 
investment game 

Second stage:
GlobalDialog’s pricing decision

High

Low
Invest 

GLOBAL-
DIALOG0, 0

2, 0 1, 2 

0, 4 

14

6CROSS- 
TALK  

High Low

GLOBALDIALOG

High 

Second stage: 
pricing game 

Second stage: 
CrossTalk’s pricing decision 

High 

Low 
Low 

CROSS- 
TALK 2, 2

6, –10

–10, 6

14 

–2, –2
6 CROSS- 

TALK  

FIGURE 6.1  two-stage game Combining sequential and simultaneous moves
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both firms get 0. However, all of the other combinations of actions for the two 
firms lead to rooms that lead to further choices; so we cannot yet show the 
payoffs in those cells. Instead, we show branches leading to the second floor. 
The northeast and southwest rooms show only the payoff to the firm that has not 
invested; the branches leading from each of these rooms take us to single-firm 
pricing decisions in the second stage. The southeast room leads to a multiroom 
second-floor structure within the tree house, which represents the second-stage 
pricing game that is played if both firms have invested in the first stage. This 
second-floor structure has four rooms corresponding to the four combinations 
of the two firms’ pricing moves.

All of the second-floor branches and rooms are like terminal nodes of a 
game tree, so we can show the payoffs in each case. Payoffs here consist of each 
firm’s operating profits minus the previous investment costs; payoff values are 
written in billions of dollars.

Consider the branch leading to the southwest corner of Figure 6.1. The game 
arrives in that corner if CrossTalk is the only firm that has invested. Then, if it 
chooses the high price, its operating profit is $400  60 million  $24 billion; 
after subtracting the $10 billion investment cost, its payoff is $14 billion, which 
we write as 14. In the same corner, if CrossTalk chooses the low price, then its 
operating profit is $200  80 million  $16 billion, yielding the payoff 6 after ac-
counting for its original investment. In this situation, GlobalDialog’s payoff is 0, 
as shown in the southwest room of the first floor of our tree. Similar calculations 
for the case in which GlobalDialog is the only firm to invest give us the payoffs 
shown in the northeast corner of Figure 6.1; again, the payoff of 0 for CrossTalk 
is shown in the northeast room of the first-stage game table.

If both firms invest, both play the second-stage pricing game illustrated in 
the southeast corner of the figure. When both choose the high price in the sec-
ond stage, each gets operating profit of $400  30 million (half of the market), 
or $12 billion; after subtracting the $10 billion investment cost, each is left with 
a net profit of $2 billion, or a payoff of 2. If both firms choose the low price in 
the second stage, each gets operating profit of $200  40 million  $8 billion,  
and, after subtracting the $10 billion investment cost, each is left with a net loss 
of $2 billion, or a payoff of 2. Finally, if one firm charges the high price and the 
other firm the low price, then the low-price firm has operating profit of $200  
80 million  $16 billion, leading to the payoff 6, while the high-price firm gets no 
operating profit and simply loses its $10 billion investment, for a payoff of 10.

As with any multistage game in Chapter 3, we must solve this game backward, 
starting with the second-stage game. In the two single-firm decision problems, 
we see at once that the high-price policy yields the higher payoff. We highlight 
this by showing that payoff in a larger-size type.

The second-stage pricing game has to be solved by using methods developed 
in Chapter 4. It is immediately evident, however, that this game is a prisoners’ 
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dilemma. Low is the dominant strategy for each firm; so the outcome is the room 
in the southeast corner of the second-stage game table; each firm gets payoff 
2.2 Again, we show these payoffs in a larger type size to highlight the fact that 
they are the payoffs obtained in the second-stage equilibrium.

Rollback now tells us that each first-stage configuration of moves should 
be evaluated by looking ahead to the equilibrium of the second-stage game (or 
the optimum second-stage decision) and the resulting payoffs. We can therefore 
substitute the payoffs that we have just calculated into the previously empty or 
partly empty rooms on the first floor of our tree house. This substitution gives us 
a first floor with known payoffs, shown in Figure 6.2.

Now we can use the methods of Chapter 4 to solve this simultaneous-move 
game. You should immediately recognize the game in Figure 6.2 as a chicken 
game. It has two Nash equilibria, each of which entails one firm choosing Invest 
and the other choosing Don’t. The firm that invests makes a huge profit; so each 
firm prefers the equilibrium in which it is the investor while the other firm stays 
out. In Chapter 4, we briefly discussed the ways in which one of the two equilib-
ria might get selected. We also pointed out the possibility that each firm might 
try to get its preferred outcome, with the result that both of them invest and both 
lose money. Indeed, this is what seems to have happened in the real-life play of 
this game. In Chapter 7, we investigate this type of game further, showing that it 
has a third Nash equilibrium, in mixed strategies.

Analysis of Figure 6.2 shows that the first-stage game in our example does 
not have a unique Nash equilibrium. This problem is not too serious, because 
we can leave the solution ambiguous to the extent that was done in the preced-
ing paragraph. Matters would be worse if the second-stage game did not have 
a unique equilibrium. Then it would be essential to specify the precise process 
by which an outcome gets selected so that we could figure out the second-stage 
payoffs and use them to roll back to the first stage.

    

Don’t Invest

GLOBALDIALOG

Don’t 

Invest 

0, 0

14, 0 –2, –2

0, 14
CROSSTALK 

 

FIGURE 6.2  First-stage investment game (after substituting Rolled-back Payoffs from the 
equilibrium of the second stage)

2 As is usual in a prisoners’ dilemma, if the firms could successfully collude and charge high prices, 
both could get the higher payoff of 2. But this outcome is not an equilibrium because each firm is 
tempted to cheat to try to get the much higher payoff of 6. 
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The second-stage pricing game shown in the table in the bottom-right quad-
rant of Figure 6.1 is one part of the complete two-stage game. However, it is also 
a full-fledged game in its own right, with a fully specified structure of players, 
strategies, and payoffs. To bring out this dual nature more explicitly, it is called a 
subgame of the full game.

More generally, a subgame is the part of a multimove game that begins at 
a particular node of the original game. The tree for a subgame is then just that 
part of the tree for the full game that takes this node as its root, or initial, node. A 
multimove game has as many subgames as it has decision nodes.

B. Configurations of Multistage Games

In the multilevel game illustrated in Figure 6.1, each stage consists of a 
simultaneous-move game. However, that may not always be the case. 
Simultaneous and sequential components may be mixed and matched in any 
way. We give two more examples to clarify this point and to reinforce the ideas 
introduced in the preceding section.

The first example is a slight variation of the CrossTalk–GlobalDialog game. 
Suppose one of the firms—say, GlobalDialog—has already made the $10 billion 
investment in the fiber-optic network. CrossTalk knows of this investment and 
now has to decide whether to make its own investment. If CrossTalk does not 
invest, then GlobalDialog will have a simple pricing decision to make. If Cross-
Talk invests, then the two firms will play the second-stage pricing game already 
described. The tree for this multistage game has conventional branches at the  
initial node and has a simultaneous-move subgame starting at one of the nodes 
to which these initial branches lead. The complete tree is shown in Figure 6.3.

High Low

GLOBALDIALOG

High 

Second stage: 
pricing game 

Second stage:
GlobalDialog’s

pricing decision

High

Low

Low 

2, 2

6, –10

–10, 6

0, 14

–2, –2

0, 6

Invest 

Don’t 

CROSS- 
TALK 

CROSS- 
TALK 

FIGURE 6.3  two-stage game when one Firm has already invested
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When the tree has been set up, it is easy to analyze the game. We show the 
rollback analysis in Figure 6.3 by using large type for the equilibrium payoffs 
that result from the second-stage game or decision and a thicker branch for 
CrossTalk’s first-stage choice. In words, CrossTalk figures out that, if it invests, 
the ensuing prisoners’ dilemma of pricing will leave it with payoff 2, whereas 
staying out will get it 0. Thus, it prefers the latter. GlobalDialog gets 14 instead of 
the 2 that it would have gotten if CrossTalk had invested, but CrossTalk’s con-
cern is to maximize its own payoff and not to ruin GlobalDialog deliberately.

This analysis does raise the possibility, though, that GlobalDialog may try 
to get its investment done quickly before CrossTalk makes its decision so as 
to ensure its most preferred outcome from the full game. And CrossTalk may 
try to beat GlobalDialog to the punch in the same way. In Chapter 9, we study 
some methods, called strategic moves, that may enable players to secure such 
advantages.

Our second example comes from football. Before each play, the coach for 
the offense chooses the play that his team will run; simultaneously, the coach 
for the defense sends his team out with instructions on how they should align 
themselves to counter the offense. Thus, these moves are simultaneous. Sup-
pose the offense has just two alternatives, a safe play and a risky play, and the 
defense may align itself to counter either of them. If the offense has planned 
to run the risky play and the quarterback sees the defensive alignment that will 
counter it, he can change the play at the line of scrimmage. And the defense, 
hearing the change, can respond by changing its own alignment. Thus, we have 
a simultaneous-move game at the first stage, and one of the combination of 
choices of moves at this stage leads to a sequential-move subgame. Figure 6.4 
shows the complete tree.

This is a zero-sum game in which the offense’s payoffs are measured in the 
number of yards that it expects to gain, and the defense’s payoffs are exactly the 
opposite, measured in the number of yards it expects to give up. The safe play 
for the offense gets it 2 yards, even if the defense is ready for it; if the defense 
is not ready for it, the safe play does not do much better, gaining 6 yards. The 
risky play, if it catches the defense unready to cover it, gains 30 yards. But if the 
defense is ready for the risky play, the offense loses 10 yards. We show this set of 
payoffs of 10 for the offense and 10 for the defense at the terminal node where 
the offense does not change the play. If the offense changes the play (back to 
safe), the payoffs are (2, 2) if the defense responds and (6, 6) if it does not; 
these payoffs are the same as those that arise when the offense plans the safe 
play from the start.

We show the chosen branches in the sequential subgame as thick lines in 
Figure 6.4. It is easy to see that, if the offense changes its play, the defense will re-
spond to keep its payoff at 2 rather than 6 and that the offense should change 
the play to get 2 rather than 10. Rolling back, we should put the resulting set of 
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payoffs, (2, 2), in the bottom-right cell of the simultaneous-move game of the 
first stage. Then we see that this game has no Nash equilibrium in pure strate-
gies. The reason is the same as that in the tennis game of Chapter 4, Section 7; 
one player (defense) wants to match the moves (align to counter the play that the 
offense is choosing) while the other (offense) wants to unmatch the moves (catch 
the defense in the wrong alignment). In Chapter 7, we show how to calculate the 
mixed-strategy equilibrium of such a game. It turns out that the offense should 
choose the risky play with probability 18, or 12.5%.

2 CHANGING THE ORDER OF MOVES IN A GAME

The games considered in preceding chapters were presented as either sequen-
tial or simultaneous in nature. We used the appropriate tools of analysis to pre-
dict equilibria in each type of game. In Section 1 of this chapter, we discussed 
games with elements of both sequential and simultaneous play. These games 
required both sets of tools to find solutions. But what about games that could be 
played either sequentially or simultaneously? How would changing the play of 
a particular game and thus changing the appropriate tools of analysis alter the 
expected outcomes?

The task of turning a sequential-play game into a simultaneous one requires 
changing only the timing or observability with which players make their choices 
of moves. Sequential-move games become simultaneous if the players cannot 
observe moves made by their rivals before making their own choices. In that 

Safe Risky

DEFENSE TO COVER

DEFENSE

Safe 

First stage: 
coaches choose alignment 

OFFENSE

Change
play

Don’t

Respond

Don’t

Risky 

2, –2

30, –30 1, 2 

6, –6

2, –2

 

–10, 10

6, –6

OFFENSE 
TO PLAY 

FIGURE 6.4  simultaneous-move First stage Followed by sequential moves
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case, we would analyze the game by searching for a Nash equilibrium rather 
than for a rollback equilibrium. Conversely, a simultaneous-move game could 
become sequential if one player were able to observe the other’s move before 
choosing her own.

Any changes to the rules of the game can also change its outcomes. Here, we 
illustrate a variety of possibilities that arise owing to changes in different types 
of games.

A. Changing Simultaneous-Move Games into Sequential-Move Games

I. FIRST-MOVER ADVANTAGE  A first-mover advantage may emerge when the rules of a 
game are changed from simultaneous to sequential play. At a minimum, if the 
simultaneous-move version has multiple equilibria, the sequential-move ver-
sion enables the first mover to choose his preferred outcome. We illustrate such 
a situation with the use of chicken, the game in which two teenagers drive to-
ward each other in their cars, both determined not to swerve. We reproduce the 
strategic form of Figure 4.14 from Chapter 4 in Figure 6.5a and two extensive 
forms, one for each possible ordering of play, in Figure 6.5b and c.

Under simultaneous play, the two outcomes in which one player swerves (is 
“chicken”) and the other goes straight (is “tough”) are both pure-strategy Nash 
equilibria. Without specification of some historical, cultural, or other conven-
tion, neither has a claim to be a focal point. Our analysis in Chapter 4 suggested 
that coordinated play could help the players in this game, perhaps through an 
agreement to alternate between the two equilibria.

When we alter the rules of the game to allow one of the players the oppor-
tunity to move first, there are no longer two equilibria. Rather, we see that the 
second mover’s equilibrium strategy is to choose the action opposite that cho-
sen by the first mover. Rollback then shows that the first mover’s equilibrium 
strategy is Straight. We see in Figure 6.5b and c that allowing one person to move 
first and to be observed making the move results in a single rollback equilib-
rium in which the first mover gets a payoff of 1, while the second mover gets a 
payoff of 1. The actual play of the game becomes almost irrelevant under such 
rules, which may make the sequential version uninteresting to many observers. 
Although teenagers might not want to play such a game with the rule change, 
the strategic consequences of the change are significant.

II. SECOND-MOVER ADVANTAGE  In other games, a second-mover advantage may emerge 
when simultaneous play is changed into sequential play. This result can be il-
lustrated using the tennis game of Chapter 4. Recall that, in that game, Evert is 
planning the location of her return while Navratilova considers where to cover. 
The version considered earlier assumed that both players were skilled at dis-
guising their intended moves until the very last moment so that they moved at 
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FIGURE 6.5  Chicken in simultaneous-Play and sequential-Play versions

JAMES, DEAN

0, 0
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1, –1
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(b) Sequential play: James moves first
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0, 0

–1, 1

1, –1
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(c) Sequential play: Dean moves first

Swerve 

Swerve 

Straight 

Straight 

Swerve

Straight

 JAMES 
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DEAN

Swerve (Chicken) 

Swerve (Chicken)

(a) Simultaneous play

Straight (Tough)
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essentially the same time. If Evert’s movement as she goes to hit the ball belies 
her shot intentions, however, then Navratilova can react and move second in the 
game. In the same way, if Navratilova leans toward the side that she intends to 
cover before Evert actually hits her return, then Evert is the second mover.

The simultaneous-play version of this game has no equilibrium in pure 
strategies. In each ordering of the sequential version, however, there is a unique 
rollback equilibrium outcome; the equilibrium differs, depending on who 
moves first. If Evert moves first, then Navratilova chooses to cover whichever di-
rection Evert chooses and Evert opts for a down-the-line shot. Each player is ex-
pected to win the point half the time in this equilibrium. If the order is reversed, 
Evert chooses to send her shot in the opposite direction from that which Navra-
tilova covers; so Navratilova should move to cover crosscourt. In this case, Evert 
is expected to win the point 80% of the time. The second mover does better by 
being able to respond optimally to the opponent’s move. You should be able to 
draw game trees similar to those in Figure 6.5b and c that illustrate exactly these 
outcomes.

We return to the simultaneous version of this game in Chapter 7. There 
we show that it does have a Nash equilibrium in mixed strategies. In that equi-
librium, Evert succeeds on average 62% of the time. Her success rate in the 
mixed-strategy equilibrium of the simultaneous game is thus better than the 
50% that she gets by moving first but is worse than the 80% that she gets by 
moving second in the two sequential-move versions.

III. BOTH PLAYERS MAY DO BET TER  That a game may have a first-mover or a second-mover 
advantage, which is suppressed when moves have to be simultaneous but 
emerges when an order of moves is imposed, is quite intuitive. Somewhat 
more surprising is the possibility that both players may do better under one 
set of rules of play than under another. We illustrate this possibility by using 
the game of monetary and fiscal policies played by the Federal Reserve and  
Congress. In Chapter 4, we studied this game with simultaneous moves; 
we reproduce the payoff table (Figure 4.5) as Figure 6.6a and show the two 
 sequential-move versions as Figure 6.6b and c. For brevity, we write the strate-
gies as Balance and Deficit instead of Budget Balance and Budget Deficit for 
Congress and as High and Low instead of High Interest Rates and Low Interest 
Rates for the Fed.

In the simultaneous-move version, Congress has a dominant strategy (Defi-
cit), and the Fed, knowing this, chooses High, yielding payoffs of 2 to both play-
ers. Almost the same thing happens in the sequential version where the Fed 
moves first. The Fed foresees that, for each choice it might make, Congress 
will respond with Deficit. Then High is the better choice for the Fed, yielding 2  
instead of 1.
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FED, CONGRESS

4, 3

1, 4

3, 1

2, 2

(b) Sequential moves: Fed moves first

Balance 

Balance 

Deficit 

Deficit 

Low

High

CONGRESS 

CONGRESS 

FED

CONGRESS, FED

3, 4

1, 3

4, 1

2, 2

(c) Sequential moves: Congress moves first

Low

Low

High

High

Balance 

Deficit 

FED

FED

CONGRESS 

FEDERAL RESERVE

Budget balance 

Low interest rates

(a) Simultaneous moves

High interest rates

Budget deficit 

1, 33, 4

2, 24, 1
CONGRESS 

FIGURE 6.6  three versions of the monetary–Fiscal Policy game
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But the sequential-move version where Congress moves first is different. 
Now Congress foresees that, if it chooses Deficit, the Fed will respond with 
High, whereas, if it chooses Balance, the Fed will respond with Low. Of these two  
developments, Congress prefers the latter, where it gets payoff 3 instead of 2. 
Therefore, the rollback equilibrium with this order of moves is for Congress to 
choose a balanced budget and the Fed to respond with low interest rates. The 
resulting payoffs, 3 for Congress and 4 for the Fed, are better for both players 
than those of the other two versions.

The difference between the two outcomes is even more surprising because 
the better outcome obtained in Figure 6.6c results from Congress choosing Bal-
ance, which is its dominated strategy in Figure 6.6a. To resolve the apparent 
paradox, one must understand more precisely the meaning of dominance. For 
Deficit to be a dominant strategy, it must be better than Balance from Congress’s 
perspective for each given choice of the Fed. This type of comparison between 
Deficit and Balance is relevant in the simultaneous-move game because there 
Congress must make a decision without knowing the Fed’s choice. Congress 
must think through, or formulate a belief about, the Fed’s action and choose 
its best response to that. In our example, this best response is always Deficit for 
Congress. The concept of dominance is also relevant with sequential moves if 
Congress moves second, because then it knows what the Fed has already done 
and merely picks its best response, which is always Deficit. However, if Congress 
moves first, it cannot take the Fed’s choice as given. Instead, it must recognize 
how the Fed’s second move will be affected by its own first move. Here it knows 
that the Fed will respond to Deficit with High and to Balance with Low. Con-
gress is then left to choose between these two alternatives; its most preferred 
outcome of Deficit and Low becomes irrelevant because it is precluded by the 
Fed’s response.

The idea that dominance may cease to be a relevant concept for the first 
mover reemerges in Chapter 9. There we consider the possibility that one player 
or the other may deliberately change the rules of a game to become the first 
mover. Players can alter the outcome of the game in their favor in this way.

Suppose that the two players in our current example could choose the order 
of moves in the game. In this case, they would agree that Congress should move 
first. Indeed, when budget deficits and inflation threaten, the chairs of the Fed-
eral Reserve in testimony before various congressional committees often offer 
such deals; they promise to respond to fiscal discipline by lowering interest 
rates. But it is often not enough to make a verbal deal with the other player. The 
technical requirements of a first move—namely, that it be observable to the 
second mover and not reversible thereafter—must be satisfied. In the context 
of macroeconomic policies, it is fortunate that the legislative process of fiscal 
policy in the United States is both very visible and very slow, whereas monetary 
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policy can be changed quite quickly in a meeting of the Federal Reserve Board. 
Therefore, the sequential play where Congress moves first and the Fed moves 
second is quite realistic.

IV. NO CHANGE IN OUTCOME  So far, we have encountered only games that yield differ-
ent outcomes when played sequentially instead of simultaneously. But certain 
games have the same outcomes in both types of play and regardless of the order 
of moves. This result generally arises only when both or all players have domi-
nant strategies. We show that it holds for the prisoners’ dilemma.

Consider the prisoners’ dilemma game of Chapter 4, in which a husband 
and wife are being questioned regarding their roles in a crime. The Nash equilib-
rium of that simultaneous-play game is for each player to confess (or to defect 
from cooperating with the other). But how would play transpire if one spouse 
made an observable choice before the other chose at all? Using rollback on a 
game tree similar to that in Figure 6.5b (which you can draw on your own as a 
check of our analysis) would show that the second player does best to confess if 
the first has already confessed (10 years rather than 25 years in jail), and the sec-
ond player also does best to confess if the first has denied (1 year rather than 3 
years in jail). Given these choices by the second player, the first player does best 
to confess (10 years rather than 25 years in jail). The equilibrium entails 10 years 
of jail for both spouses regardless of which one moves first. Thus, the equilib-
rium is the same in all three versions of this game!

B. Other Changes in the Order of Moves

The preceding section presented various examples in which the rules of the 
game were changed from simultaneous play to sequential play. We saw how 
and why such rule changes can change the outcome of a game. The same ex-
amples also serve to show what happens if the rules are changed in the op-
posite  direction, from sequential to simultaneous moves. Thus, if a first- or a 
second-mover advantage exists with sequential play, it can be lost under simul-
taneous play. And if a specific order benefits both players, then losing the order 
can hurt both.

The same examples also show us what happens if the rules are changed 
to reverse the order of play while keeping the sequential nature of a game un-
changed. If there is a first-mover or a second-mover advantage, then the player 
who shifts from moving first to moving second may benefit or lose accordingly, 
with the opposite change for the other player. And if one order is in the com-
mon interests of both, then an externally imposed change of order can benefit 
or hurt them both.
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3 CHANGE IN THE METHOD OF ANALYSIS

Game trees are the natural way to display sequential-move games, and payoff 
tables are the natural representation of simultaneous-move games. However, 
each technique can be adapted to the other type of game. Here we show how to 
translate the information contained in one illustration to an illustration of the 
other type. In the process, we develop some new ideas that will prove useful in 
subsequent analysis of games.

A. Illustrating Simultaneous-Move Games by Using Trees

Consider the game of the passing shot in tennis as originally described in Chap-
ter 4, where the action is so quick that moves are truly simultaneous, as shown 
in Figure 6.5a. But suppose we want to show the game in extensive form—that 
is, by using a tree rather than in a table as in Figure 4.14. We show how this can 
be done in Figure 6.7.

To draw the tree in the figure, we must choose one player—say, Evert—to 
make her choice at the initial node of the tree. The branches for her two choices, 
DL and CC, then end in two nodes, at each of which Navratilova makes her 
choices. However, because the moves are actually simultaneous, Navratilova 
must choose without knowing what Evert has picked. That is, she must choose 
without knowing whether she is at the node following Evert’s DL branch or the 
one following Evert’s CC branch. Our tree diagram must in some way show this 
lack of information on Navratilova’s part.

EVERT, NAVRATILOVA

50, 50

Information 
set 

80, 20

90, 10

20, 80

EVERT 

DL

CC

DL

CC

DL 

CC 

NAVRATILOVA

NAVRATILOVA

FIGURE 6.7  simultaneous-move tennis game shown in extensive Form
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We illustrate Navratilova’s strategic uncertainty about the node from which 
her decision is being made by drawing an oval to surround the two relevant 
nodes. (An alternative is to connect them by a dotted line; a dotted line is 
used to distinguish it from the solid lines that represent the branches of the 
tree.) The nodes within this oval or balloon are called an information set for 
the player who moves there. Such a set indicates the presence of imperfect in-
formation for the player; she cannot distinguish between the nodes in the set, 
given her available information (because she cannot observe the row player’s 
move before making her own). As such, her strategy choice from within a single 
information set must specify the same move at all the nodes contained in it. 
That is, Navratilova must choose either DL at both the nodes in this informa-
tion set or CC at both of them. She cannot choose DL at one and CC at the 
other, as she could in Figure 6.5b, where the game had sequential moves and 
she moved second.

Accordingly, we must adapt our definition of strategy. In Chapter 3, we de-
fined a strategy as a complete plan of action, specifying the move that a player 
would make at each node where the rules of the game specified that it was her 
turn to move. We should now more accurately redefine a strategy as a complete 
plan of action, specifying the move that a player would make at each informa-
tion set at whose nodes the rules of the game specify that it is her turn to move.

The concept of an information set is also relevant when a player faces ex-
ternal uncertainty about some conditions that affect his decision, rather than 
about another player’s moves. For example, a farmer planting a crop is uncertain 
about the weather during the growing season, although he knows the probabili-
ties of various alternative possibilities from past experience or meteorological 
forecasts. We can regard the weather as a random choice of an outside player, 
Nature, who has no payoffs but merely chooses according to known probabili-
ties.3 We can then enclose the various nodes corresponding to Nature’s moves 
into an information set for the farmer, constraining the farmer’s choice to be the 
same at all of these nodes. Figure 6.8 illustrates this situation.

Using the concept of an information set, we can formalize the concepts of 
perfect and imperfect information in a game, which we introduced in Chapter 2  
(Section 2.D). A game has perfect information if it has neither strategic nor ex-
ternal uncertainty, which will happen if it has no information sets enclosing two 
or more nodes. Thus, a game has perfect information if all of its information sets 
consist of singleton nodes.

Although this representation is conceptually simple, it does not provide any 
simpler way of solving the game. Therefore, we use it only occasionally, where 

3 Some people believe that Nature is actually a malevolent player who plays a zero-sum game with 
us, so its payoffs are higher when ours are lower. For example, it is more likely to rain if we have 
forgotten to bring an umbrella. We understand such thinking, but it does not have real statistical 
support.
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it conveys some point more simply. Some examples of game illustrations using 
information sets can be found later in Chapters 8 and 14.

B. Showing and Analyzing Sequential-Move Games in Strategic Form

Consider now the sequential-move game of monetary and fiscal policy from 
Figure 6.6c, in which Congress has the first move. Suppose we want to show it in 
normal or strategic form—that is, by using a payoff table. The rows and the col-
umns of the table are the strategies of the two players. We must therefore begin 
by specifying the strategies.

For Congress, the first mover, listing its strategies is easy. There are just 
two moves—Balance and Deficit—and they are also the two strategies. For the 
second mover, matters are more complex. Remember that a strategy is a com-
plete plan of action, specifying the moves to be made at each node where it is a 
player’s turn to move. Because the Fed gets to move at two nodes (and because 
we are supposing that this game actually has sequential moves and so the two 
nodes are not confounded into one information set) and can choose either Low 
or High at each node, there are four combinations of its choice patterns. These 
combinations are (1) Low if Balance, High if Deficit (we write this as “L if B, H if 
D” for short); (2) High if Balance, Low if Deficit (“H if B, L if D” for short); (3) Low 
always; and (4) High always.

We show the resulting two-by-four payoff matrix in Figure 6.9. The last two 
columns are no different from those for the two-by-two payoff matrix for the 

NATURE 

Cacti

Rice

Cacti

Rice

FARMER

Cacti

Rice

FARMER

FARMER

Dry 

p = 0.2

Mild 

p = 0.5

p = 0.3

Wet 

Farmer’s 
information 
set

FIGURE 6.8  nature and information sets
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game under simultaneous-move rules (Figure 6.6a). This is because, if the Fed 
is choosing a strategy in which it makes the same move always, it is just as if the 
Fed were moving without taking into account what Congress had done; it is as 
if their moves were simultaneous. But calculation of the payoffs for the first two 
columns, where the Fed’s second move does depend on Congress’s first move, 
needs some care.

To illustrate, consider the cell in the first row and the second column. Here 
Congress is choosing Balance, and the Fed is choosing “H if B, L if D.” Given 
Congress’s choice, the Fed’s actual choice under this strategy is High. Then the 
payoffs are those for the Balance and High combination—namely, 1 for Con-
gress and 3 for the Fed.

Best-response analysis quickly shows that the game has two pure-strategy 
Nash equilibria, which we show by shading the cells gray. One is in the top-left 
cell, where Congress’s strategy is Balance and the Fed’s is “L if B, H if D,” and so 
the Fed’s actual choice is L. This outcome is just the rollback equilibrium of the 
sequential-move game. But there is another Nash equilibrium in the bottom-right 
cell, where Congress chooses Deficit and the Fed chooses “High always.” As al-
ways in a Nash equilibrium, neither player has a clear reason to deviate from the 
strategies that lead to this outcome. Congress would do worse by switching to Bal-
ance, and the Fed could do no better by switching to any of its other three strate-
gies, although it could do just as well with “L if B, H if D.”

The sequential-move game, when analyzed in its extensive form, produced 
just one rollback equilibrium. But when analyzed in its normal or strategic form, 
it has two Nash equilibria. What is going on?

The answer lies in the different nature of the logic of Nash and rollback 
analyses. Nash equilibrium requires that neither player have a reason to deviate, 
given the strategy of the other player. However, rollback does not take the strat-
egies of later movers as given. Instead, it asks what would be optimal to do if the 
opportunity to move actually arises.

In our example, the Fed’s strategy of “High always” does not satisfy the cri-
terion of being optimal if the opportunity to move actually arises. If Congress 
chose Deficit, then High is indeed the Fed’s optimal response. However, if 
Congress chose Balance and the Fed had to respond, it would want to choose 

L if B, H if D H if B, L if D

FED

Balance 

Deficit 

3, 4 1, 3 3, 4 1, 3

2, 2 4, 1 4, 1 2, 2

Low always High always

CONGRESS 

FIGURE 6.9  sequential-move game of monetary and Fiscal Policy in strategic Form
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Low, not High. So “High always” does not describe the Fed’s optimal response 
in all possible configurations of play and cannot be a rollback equilibrium.  
But the logic of Nash equilibrium does not impose such a test, instead regard-
ing the Fed’s “High always” as a strategy that Congress could legitimately take 
as given. If it does so, then Deficit is Congress’s best response. And, conversely, 
“High always” is one best response of the Fed to Congress’s Deficit (although it is 
tied with “L if B, H if D”). Thus, the pair of strategies “Deficit” and “High always” 
are mutual best responses and constitute a Nash equilibrium, although they do 
not constitute a rollback equilibrium.

We can therefore think of rollback as a further test, supplementing the re-
quirements of a Nash equilibrium and helping to select from among multiple 
Nash equilibria of the strategic form. In other words, it is a refinement of the 
Nash equilibrium concept.

To state this idea somewhat more precisely, recall the concept of a subgame. 
At any one node of the full game tree, we can think of the part of the game that 
begins there as a subgame. In fact, as successive players make their choices, 
the play of the game moves along a succession of nodes, and each move can 
be thought of as starting a subgame. The equilibrium derived by using rollback 
corresponds to one particular succession of choices in each subgame and gives 
rise to one particular path of play. Certainly, other paths of play are consistent 
with the rules of the game. We call these other paths off-equilibrium paths, and 
we call any subgames that arise along these paths off-equilibrium subgames,  
for short.

With this terminology, we can now say that the equilibrium path of play 
is itself determined by the players’ expectations of what would happen if they 
chose a different action—if they moved the game to an off-equilibrium path 
and started an off-equilibrium subgame. Rollback requires that all players 
make their best choices in every subgame of the larger game, whether or not the 
subgame lies along the path to the ultimate equilibrium outcome.

Strategies are complete plans of action. Thus, a player’s strategy must 
specify what she will do in each eventuality, or each and every node of the 
game, whether on or off the equilibrium path, where it is her turn to act. 
When one such node arrives, only the plan of action starting there—namely, 
the part of the full strategy that pertains to the subgame starting at that 
node—is pertinent. This part is called the continuation of the strategy for 
that subgame. Rollback requires that the equilibrium strategy be such that 
its continuation in every subgame is optimal for the player whose turn it is to 
act at that node, whether or not the node and the subgame lie on the equilib-
rium path of play.

Return to the monetary policy game with Congress moving first, and con-
sider the second Nash equilibrium that arises in its strategic form. Here the 
path of play is for Congress to choose Deficit and the Fed to choose High. 
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On the equilibrium path, High is indeed the Fed’s best response to Deficit.  
Congress’s choice of Balance would be the start of an off-equilibrium path. It 
leads to a node where a rather trivial subgame starts—namely, a decision by the 
Fed. The Fed’s purported equilibrium strategy “High always” asks it to choose 
High in this subgame. But that is not optimal; this second equilibrium is specify-
ing a nonoptimal choice for an off-equilibrium subgame.

In contrast, the equilibrium path of play for the Nash equilibrium in the 
upper-left corner of Figure 6.9 is for Congress to choose Balance and the Fed to 
follow with Low. The Fed is responding optimally on the equilibrium path. The 
off-equilibrium path would have Congress choosing Deficit, and the Fed, given 
its strategy of “L if B, H if D,” would follow with High. It is optimal for the Fed 
to respond to Deficit with High, so the strategy remains optimal off the equilib-
rium path, too.

The requirement that continuation of a strategy remain optimal under all 
circumstances is important because the equilibrium path itself is the result of 
players’ thinking strategically about what would happen if they did something 
different. A later player may try to achieve an outcome that she would prefer by 
threatening the first mover that certain actions would be met with dire responses 
or by promising that certain other actions would be met with nice responses. 
But the first mover will be skeptical of the credibility of such threats and prom-
ises. The only way to remove that doubt is to check if the stated responses would 
actually be optimal if the need arose. If the responses are not optimal, then the 
threats or promises are not credible, and the responses would not be observed 
along the equilibrium path of play.

The equilibrium found by using rollback is called a subgame-perfect equi-
librium (SPE). It is a set of strategies (complete plans of action), one for each 
player, such that, at every node of the game tree, whether or not the node lies 
along the equilibrium path of play, the continuation of the same strategy in the 
subgame starting at that node is optimal for the player who takes the action 
there. More simply, an SPE requires players to use strategies that constitute a 
Nash equilibrium in every subgame of the larger game.

In fact, as a rule, in games with finite trees and perfect information, where 
players can observe every previous action taken by all other players so that 
there are no multiple nodes enclosed in one information set, rollback finds the 
unique (except for trivial and exceptional cases of ties) subgame-perfect equi-
librium of the game. Consider: If you look at any subgame that begins at the 
last decision node for the last player who moves, the best choice for that player 
is the one that gives her the highest payoff. But that is precisely the action cho-
sen with the use of rollback. As players move backward through the game tree, 
rollback eliminates all unreasonable strategies, including incredible threats 
or promises, so that the collection of actions ultimately selected is the SPE.  
Therefore, for the purposes of this book, subgame perfectness is just a fancy 
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name for rollback. At more advanced levels of game theory, where games include 
complex information structures and information sets, subgame perfectness be-
comes a richer notion.

4 THREE-PLAYER GAMES

We have restricted the discussion so far in this chapter to games with two play-
ers and two moves each. But the same methods also work for some larger and 
more general examples. We now illustrate this by using the street–garden game 
of Chapter 3. Specifically, we (1) change the rules of the game from sequen-
tial to simultaneous moves and then (2) keep the moves sequential but show 
and analyze the game in its strategic form. First we reproduce the tree of that  
sequential-move game (Figure 3.6) as Figure 6.10 here and remind you of the 
rollback equilibrium.

The equilibrium strategy of the first mover (Emily) is simply a move, “Don’t 
contribute.” The second mover chooses from among four possible strategies 
(choice of two responses at each of two nodes) and chooses the strategy “Don’t 
contribute (D) if Emily has chosen her Contribute, and Contribute (C) if Emily 
has chosen her Don’t contribute,” or, more simply, “D if C, C if D,” or even 

NINA

TALIA 

TALIA 

TALIA 

TALIA 

EMILY 

NINA

c

Contrib
ute 

Contribute
Contribute 

ContributeDon’t 

Don’t

Don’t 

Contribute 

Don’t 

Contribute 

Don’t 

Contribute 

Don’t 

Don’t

d 

e 

f 

g 

b

a 

3, 3, 3

3, 3, 4

3, 4, 3

1, 2, 2

4, 3, 3

2, 1, 2

2, 2, 1

2, 2, 2

PAYOFFS 

FIGURE 6.10  the street–garden game with sequential moves
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more simply “DC.” Talia has 16 available strategies (choice of two responses at 
each of four nodes), and her equilibrium strategy is “D following Emily’s C and  
Nina’s C, C following their CD, C following their DC, and D following their DD,” 
or “DCCD” for short.

Remember, too, the reason for these choices. The first mover has the oppor-
tunity to choose Don’t, knowing that the other two will recognize that the nice 
garden won’t be forthcoming unless they contribute and that they like the nice 
garden sufficiently strongly that they will contribute.

Now we change the rules of the game to make it a simultaneous-move game. 
(In Chapter 4, we solved a simultaneous-move version with somewhat different 
payoffs; here we keep the payoffs the same as in Chapter 3.) The payoff matrix is 
in Figure 6.11. Best-response analysis shows very easily that there are four Nash 
equilibria.

In three of the Nash equilibria of the simultaneous-move game, two players 
contribute, while the third does not. These equilibria are similar to the rollback 
equilibrium of the sequential-move game. In fact, each one corresponds to the 
rollback equilibrium of the sequential game with a particular order of play. Fur-
ther, any given order of play in the sequential-move version of this game leads 
to the same simultaneous-move payoff table.

But there is also a fourth Nash equilibrium here, where no one contributes. 
Given the specified strategies of the other two—namely, Don’t contribute—any 
one player is powerless to bring about the nice garden and therefore chooses 
not to contribute as well. Thus, in the change from sequential to simultaneous 
moves, the first-mover advantage has been lost. Multiple equilibria arise, only 
one of which retains the original first mover’s high payoff.

Next we return to the sequential-move version—Emily first, Nina sec-
ond, and Talia third—but show the game in its normal or strategic form. In the  
sequential-move game, Emily has 2 pure strategies, Nina has 4, and Talia has 16; 
so this means constructing a payoff table that is 2 by 4 by 16. With the use of 

FIGURE 6.11  the street–garden game with simultaneous moves

EMILY 

Don't

NINA

3, 3, 3

4, 3, 3

3, 4, 3

2, 2, 1Don't 

Contribute 

Contribute

EMILY 

Don't

NINA

3, 3, 4

2, 1, 2

1, 2, 2

2, 2, 2Don't 

Contribute 

Contribute

Contribute 

 TALIA chooses: 

Don’t Contribute 
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the same conventions as we used for three-player tables in Chapter 4, this par-
ticular game would require a table with 16 “pages” of two-by-four payoff tables. 
That would look too messy; so we opt instead for a reshuffling of the players. 
Let Talia be the row player, Nina be the column player, and Emily be the page 
player. Then “all” that is required to illustrate this game is the 16 by 4 by 2 game 
table shown in Figure 6.12. The order of payoffs still corresponds to our earlier 
convention in that they are listed row, column, page player; in our example, that 
means the payoffs are now listed in the order Talia, Nina, and Emily.

As in the monetary–fiscal policy game between the Fed and Con-
gress, there are multiple Nash equilibria in the simultaneous street–garden  

FIGURE 6.12  street–garden game in strategic Form
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NINA

Contribute 
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TALIA CC CD DC DD CC CD DC DD
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game. (In Exercise S8, we ask you to find them all.) But there is only one  
subgame-perfect equilibrium, corresponding to the rollback equilibrium found 
in Figure 6.11. Although best-response analysis does find all of the Nash equilib-
ria, iterated elimination of dominated strategies can reduce the number of rea-
sonable equilibria for us here. This process works because elimination identifies 
those strategies that include noncredible components (such as “High always” 
for the Fed in Section 3.B). As it turns out, such elimination can take us all the 
way to the unique subgame-perfect equilibrium.

In Figure 6.12, we start with Talia and eliminate all of her (weakly) dominated 
strategies. This step eliminates all but the strategy listed in the eleventh row of 
the table, DCCD, which we have already identified as Talia’s rollback equilibrium 
strategy. Elimination can continue with Nina, for whom we must compare out-
comes from strategies across both pages of the table. To compare her CC to CD, 
for example, we look at the payoffs associated with CC in both pages of the table 
and compare these payoffs with the similarly identified payoffs for CD. For Nina, 
the elimination process leaves only her strategy DC; again, this is the rollback 
equilibrium strategy found for her above. Finally, Emily has only to compare the 
two remaining cells associated with her choice of Don’t and Contribute; she gets 
the highest payoff when she chooses Don’t and so makes that choice. As before, 
we have identified her rollback equilibrium strategy.

The unique subgame-perfect outcome in the game table in Figure 6.12 
thus corresponds to the cell associated with the rollback equilibrium strategies  
for each player. Note that the process of iterated elimination that leads us to this 
subgame-perfect equilibrium is carried out by considering the players in reverse 
order of the actual play of the game. This order conforms to the order in which 
player actions are considered in rollback analysis and therefore allows us to elimi-
nate exactly those strategies, for each player, that are not consistent with rollback. 
In so doing, we eliminate all of the Nash equilibria that are not subgame-perfect.

SUMMARY

Many games include multiple components, some of which entail simultaneous 
play and others of which entail sequential play. In two-stage (and multistage) 
games, a “tree house” can be used to illustrate the game; this construction 
 allows the identification of the different stages of play and the ways in which 
those stages are linked together. Full-fledged games that arise in later stages of 
play are called subgames of the full game.

Changing the rules of a game to alter the timing of moves may or may not 
alter the equilibrium outcome of a game. Simultaneous-move games that are 
changed to make moves sequential may have the same outcome (if both players 
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have dominant strategies), may have a first-mover or second-mover advantage, 
or may lead to an outcome in which both players are better off. The sequential 
version of a simultaneous game will generally have a unique rollback equilib-
rium even if the simultaneous version has no equilibrium or multiple equilibria. 
Similarly, a sequential-move game that has a unique rollback equilibrium may 
have several Nash equilibria when the rules are changed to make the game a 
 simultaneous-move game.

Simultaneous-move games can be illustrated in a game tree by collecting de-
cision nodes in information sets when players make decisions without knowing 
at which specific node they find themselves. Similarly, sequential-move games 
can be illustrated by using a game table; in this case, each player’s full set of 
strategies must be carefully identified. Solving a sequential-move game from its 
strategic form may lead to many possible Nash equilibria. The number of po-
tential equilibria can be reduced by using the criteria of credibility to eliminate 
some strategies as possible equilibrium strategies. This process leads to the 
 subgame-perfect equilibrium (SPE) of the sequential-move game. These solution 
processes also work for games with additional players.

KEY TERMS

continuation (198) off-equilibrium subgame (198)
credibility (199) subgame (185)
information set (195) subgame-perfect equilibrium (SPE) (199)
off-equilibrium path (198)

SOLVED EXERCISES

 S1.  Consider the simultaneous-move game with two players that has no Nash 
equilibrium in pure strategies, illustrated in Figure 4.13 in Chapter 4.  
If the game were transformed into a sequential-move game, would you 
expect that game to exhibit a first-mover advantage, a second-mover ad-
vantage, or neither? Explain your reasoning. 

 S2. Consider the game represented by the game tree below. The first mover, 
Player 1, may move either Up or Down, after which Player 2 may move 
either Left or Right. Payoffs for the possible outcomes appear below. Re-
express this game in strategic (table) form. Find all of the pure-strategy 
Nash equilibria in the game. If there are multiple equilibria, indicate 
which one is subgame-perfect. For those equilibria that are not sub-
game-perfect, identify the reason (the source of the lack of credibility).
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 S3. Consider the Airbus–Boeing game in Exercise S4 in Chapter 3. Show that 
game in strategic form and locate all of the Nash equilibria. Which one 
of the equilibria is subgame-perfect? For those equilibria that are not  
subgame-perfect, identify the source of the lack of credibility.

 S4. Return to the two-player game tree in part (a) of Exercise S2 in Chapter 3.
 (a) Write the game in strategic form, making Scarecrow the row player 

and Tinman the column player. 
 (b) Find the Nash equilibrium.

 S5. Return to the two-player game tree in part (b) of Exercise S2 in Chapter 3.
 (a) Write the game in strategic form. (Hint: Refer to your answer to Exer-

cise S2 of Chapter 3.) Find all of the Nash equilibria. There will be 
many.

 (b) For the equilibria that you found in part (a) that are not subgame-
perfect, identify the credibility problems.

 S6. Return to the three-player game tree in part (c) of Exercise S2 in Chapter 3. 
 (a) Draw the game table. Make Scarecrow the row player, Tinman the col-

umn player, and Lion the page player. (Hint: Refer to your answer to 
Exercise S2 of Chapter 3.) Find all of the Nash equilibria. There will be 
many.

 (b) For the equilibria that you found in part (a) that are not subgame- 
perfect, identify the credibility problems.

 S7.  Consider a simplified baseball game played between a pitcher and a bat-
ter. The pitcher chooses between throwing a fastball or a curve, while the 
batter chooses which pitch to anticipate. The batter has an advantage 

2, 4

4, 1

Left

2

2

1 

Right
Up 

3, 3

1, 2

Left
Down 

Right
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if he correctly anticipates the type of pitch. In this constant-sum game, 
the batter’s payoff is the probability that the batter will get a base hit. The 
pitcher’s payoff is the probability that the batter fails to get a base hit, 
which is simply one minus the payoff of the batter. There are four poten-
tial outcomes:

 (i) If a pitcher throws a fastball, and the batter guesses fastball, the 
probability of a hit is 0.300.

 (ii) If the pitcher throws a fastball, and the batter guesses curve, the 
probability of a hit is 0.200.

 (iii) If the pitcher throws a curve, and the batter guesses curve, the prob-
ability of a hit is 0.350.

 (iv) If the pitcher throws a curve, and the batter guesses fastball, the 
probability of a hit is 0.150.

Suppose that the pitcher is “tipping” his pitches. This means that the 
pitcher is holding the ball, positioning his body, or doing something else 
in a way that reveals to the batter which pitch he is going to throw. For 
our purposes, this means that the pitcher-batter game is a sequential 
game in which the pitcher announces his pitch choice before the batter 
has to choose his strategy. 

 (a)  Draw this situation, using a game tree.
 (b)  Suppose that the pitcher knows he is tipping his pitches but can’t 

stop himself from doing so. Thus, the pitcher and batter are playing 
the game you just drew. Find the rollback equilibrium of this game.

 (c)  Now change the timing of the game, so that the batter has to reveal 
his action (perhaps by altering his batting stance) before the pitcher 
chooses which pitch to throw. Draw the game tree for this situation, 
and find the rollback equilibrium.

Now assume that the tips of each player occur so quickly that neither 
opponent can react to them, so that the game is in fact simultaneous. 

 (d) Draw a game tree to represent this simultaneous game, indicating  
information sets where appropriate.

 (e) Draw the game table for the simultaneous game. Is there a Nash 
equilibrium in pure strategies? If so, what is it?

 S8. The street–garden game analyzed in Section 4 of this chapter has a 
16-by-4-by-2 game table when the sequential-move version of the game 
is expressed in strategic form, as in Figure 6.12. There are many Nash 
equilibria to be found in this table.

 (a) Use best-response analysis to find all of the Nash equilibria in the 
table in Figure 6.12.

 (b) Identify the subgame-perfect equilibrium from among your set of all 
Nash equilibria. Other equilibrium outcomes look identical to the  
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subgame-perfect one—they entail the same payoffs for each of the 
three players—but they arise after different combinations of strat-
egies. Explain how this can happen. Describe the credibility prob-
lems that arise in the nonsubgame-perfect equilibria.

 S9. As it appears in the text, Figure 6.1 represents the two-stage game be-
tween CrossTalk and GlobalDialog with a combination of tables and 
trees. Instead, represent the entire two-stage game in a single, very large 
game tree. Be careful to label which player makes the decision at each 
node, and remember to draw information sets between nodes where 
necessary. 

 S10. Recall the mall location game in Exercise S9 in Chapter 3. That three-
player sequential game has a game tree that is similar to the one for the 
street–garden game, shown in Figure 6.10.

 (a) Draw the tree for the mall location game. How many strategies does 
each store have? 

 (b) Illustrate the game in strategic form and find all of the pure-strategy 
Nash equilibria in the game.

 (c) Use iterated dominance to find the subgame-perfect equilibrium. 
(Hint: Reread the last two paragraphs of Section 4.)

S11. The rules of the mall location game, analyzed in Exercise S10 above, spec-
ify that when all three stores request space in Urban Mall, the two big-
ger (more prestigious) stores get the available spaces. The original version 
of the game also specifies that the firms move sequentially in requesting 
mall space.

 (a)  Suppose that the three firms make their location requests simulta-
neously. Draw the payoff table for this version of the game and find 
all of the Nash equilibria. Which one of these equilibria do you think 
is most likely to be played in practice? Explain.

Now suppose that when all three stores simultaneously request 
Urban Mall, the two spaces are allocated by lottery, giving each store an 
equal chance of getting into Urban Mall. With such a system, each would 
have a two-thirds probability (or a 66.67% chance) of getting into Urban 
Mall when all three had requested space there, and a one-third probabil-
ity (33.33% chance) of being alone in the Rural Mall.

 (b)  Draw the game table for this new version of the simultaneous-play 
mall location game. Find all of the Nash equilibria of the game. 
Which one of these equilibria do you think is most likely to be 
played in practice? Explain.

 (c)  Compare and contrast the equilibria found in part (b) with the equi-
libria found in part (a). Do you get the same Nash equilibria? Why or 
why not?
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 S12. Return to the game of Monica and Nancy in Exercise S10 of Chapter 5. 
Assume that Monica and Nancy choose their effort levels sequentially in-
stead of simultaneously. Monica commits to her choice of effort first, and 
on observing this decision, Nancy commits to her own effort.

 (a)  What is the subgame-perfect equilibrium to the game where the 
joint profits are 4m 1 4n 1 mn, the effort costs to Monica and 
Nancy are m2 and n2, respectively, and Monica commits to an effort 
level first?

 (b)  Compare the payoffs of Monica and Nancy with those found in  
Exercise S10 of Chapter 5. Does this game have a first-mover or a 
second-mover advantage? Explain.

 S13. Extending Exercise S12, Monica and Nancy need to decide which (if ei-
ther) of them will commit to an effort level first. To do this, each of them 
simultaneously writes on a separate slip of paper whether or not she will 
commit first. If they both write “yes” or they both write “no,” they choose 
effort levels simultaneously, as in Exercise S10 in Chapter 5. If Monica 
writes “yes” and Nancy writes “no,” then Monica commits to her move 
first, as in Exercise S12. If Monica writes “no” and Nancy writes “yes,” 
then Nancy commits to her move first.

 (a)  Use the payoffs to Monica and Nancy in Exercise S12 above as well 
as in Exercise S10 in Chapter 5 to construct the game table for the 
first-stage paper-slip decision game. (Hint: Note the symmetry of 
the game.)

 (b) Find the pure-strategy Nash equilibria of this first-stage game. 

UNSOLVED EXERCISES

 U1. Consider a game in which there are two players, A and B. Player A moves 
first and chooses either Up or Down. If A chooses Up, the game is over, 
and each player gets a payoff of 2. If A moves Down, then B gets a turn 
and chooses between Left and Right. If B chooses Left, both players get 0; 
if B chooses Right, A gets 3 and B gets 1.

 (a) Draw the tree for this game, and find the subgame-perfect  
equilibrium.

 (b) Show this sequential-play game in strategic form, and find all of the 
Nash equilibria. Which is or are subgame-perfect? Which is or are 
not? If any are not, explain why.

 (c) What method of solution could be used to find the subgame-perfect 
equilibrium from the strategic form of the game? (Hint: Refer to the 
last two paragraphs of Section 4.)
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 U2. Return to the two-player game tree in part (a) of Exercise U2 in Chapter 3. 
 (a) Write the game in strategic form, making Albus the row player and  

Minerva the column player. Find all of the Nash equilibria.
 (b) For the equilibria you found in part (a) of this exercise that are not  

subgame-perfect, identify the credibility problems.

 U3. Return to the two-player game tree in part (b) of Exercise U2 in Chapter 3.
 (a) Write the game in strategic form. Find all of the Nash equilibria.
 (b) For the equilibria you found in part (a) that are not subgame-perfect,  

identify the credibility problems.

 U4. Return to the two-player game tree in part (c) of Exercise U2 in Chapter 3.
 (a) Draw the game table. Make Albus the row player, Minerva the  

column player, and Severus the page player. Find all of the Nash  
equilibria.

 (b) For the equilibria you found in part (a) that are not subgame-perfect,  
identify the credibility problems.

 U5. Consider the cola industry, in which Coke and Pepsi are the two dominant 
firms. (To keep the analysis simple, just forget about all the others.) The 
market size is $8 billion. Each firm can choose whether to advertise. Ad-
vertising costs $1 billion for each firm that chooses it. If one firm advertises 
and the other doesn’t, then the former captures the whole market. If both 
firms advertise, they split the market 50:50 and pay for the advertising. If 
neither advertises, they split the market 50:50 but without the expense of 
advertising.

 (a) Write the payoff table for this game, and find the equilibrium when 
the two firms move simultaneously.

 (b) Write the game tree for this game (assume that it is played sequen-
tially), with Coke moving first and Pepsi following.

 (c) Is either equilibrium in parts (a) and (b) better from the joint per-
spective of Coke and Pepsi? How could the two firms do better?

 U6. Along a stretch of a beach are 500 children in five clusters of 100 each. 
(Label the clusters A, B, C, D, and E in that order.) Two ice-cream vendors 
are deciding simultaneously where to locate. They must choose the exact 
location of one of the clusters.

If there is a vendor in a cluster, all 100 children in that cluster will buy 
an ice cream. For clusters without a vendor, 50 of the 100 children are 
willing to walk to a vendor who is one cluster away, only 20 are willing to 
walk to a vendor two clusters away, and no children are willing to walk 
the distance of three or more clusters. The ice cream melts quickly, so the 
walkers cannot buy for the nonwalkers.
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If the two vendors choose the same cluster, each will get a 50% share 
of the total demand for ice cream. If they choose different clusters, then 
those children (locals or walkers) for whom one vendor is closer than the 
other will go to the closer one, and those for whom the two are equidis-
tant will split 50% each. Each vendor seeks to maximize her sales.

 (a) Construct the five-by-five payoff table for the vendor location  
game; the entries stated here will give you a start and a check on 
your calculations:

If both vendors choose to locate at A, each sells 85 units.

If the first vendor chooses B and the second chooses C, the first 
sells 150 and the second sells 170.

If the first vendor chooses E and the second chooses B, the first 
sells 150 and the second sells 200.

 (b) Eliminate dominated strategies as far as possible.
 (c) In the remaining table, locate all pure-strategy Nash equilibria.
 (d) If the game is altered to one with sequential moves, where the first 

vendor chooses her location first and the second vendor follows, 
what are the locations and the sales that result from the subgame-
perfect equilibrium? How does the change in the timing of moves 
here help players resolve the coordination problem in part (c)?

 U7. Return to the game among the three lions in the Roman Colosseum in 
Exercise S8 in Chapter 3.

 (a)  Write out this game in strategic form. Make Lion 1 the row player, 
Lion 2 the column player, and Lion 3 the page player.

 (b)  Find the Nash equilibria for the game. How many did you find?
 (c)  You should have found Nash equilibria that are not subgame-perfect.  

For each of those equilibria, which lion is making a noncredible 
threat? Explain.

 U8. Now assume that the mall location game (from Exercises S9 in Chapter 3 
and S10 in this chapter) is played sequentially but with a different order 
of play: Big Giant, then Titan, then Frieda’s.

 (a) Draw the new game tree. 
 (b) What is the subgame-perfect equilibrium of the game? How does 

it compare to the subgame-perfect equilibrium for Exercise S9 in  
Chapter 3?

 (c) Now write the strategic form for this new version of the game.
 (d) Find all of the Nash equilibria of the game. How many are there? 

How does this compare with the number of equilibria from Exercise 
S10 in this chapter?
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 U9. Return to the game of Monica and Nancy in Exercise U10 of Chapter 5.  
Assume that Monica and Nancy choose their effort levels sequentially  
instead of simultaneously. Monica commits to her choice of effort first. 
On observing this decision, Nancy commits to her own effort.

 (a)  What is the subgame-perfect equilibrium to the game where the 
joint profits are 5m 1 4n 1 mn, the effort costs to Monica and 
Nancy are m2 and n2, respectively, and Monica commits to an effort 
level first?

 (b)  Compare the payoffs of Monica and Nancy with those found in  
Exercise U10 of Chapter 5. Does this game have a first-mover or  
second-mover advantage?

 (c)  Using the same joint profit function as in part (a), find the subgame-
perfect equilibrium for the game where Nancy must commit first to 
an effort level.

 U10. In an extension of Exercise U9, Monica and Nancy need to decide which (if 
either) of them will commit to an effort level first. To do this, each of them 
simultaneously writes on a separate slip of paper whether or not she will 
commit first. If they both write “yes” or they both write “no,” they choose 
effort levels simultaneously, as in Exercise U10 in Chapter 5. If Monica 
writes “yes” and Nancy writes “no,” they play the game in part (a) of Exer-
cise U9 above. If Monica writes “no” and Nancy writes “yes,” they play the 
game in part (c).

 (a) Use the payoffs to Monica and Nancy in parts (b) and (c) in Exercise 
U9 above, as well as those in Exercise U10 in Chapter 5, to construct 
the game table for the first-stage paper-slip decision game. 

 (b) Find the pure-strategy Nash equilibria of this first-stage game. 

 U11. In the faraway town of Saint James two firms, Bilge and Chem, compete 
in the soft-drink market (Coke and Pepsi aren’t in this market yet). They 
sell identical products, and since their good is a liquid, they can easily 
choose to produce fractions of units. Since they are the only two firms 
in this market, the price of the good (in dollars), P, is determined by P  
(30  QB  QC), where QB is the quantity produced by Bilge and QC is the 
quantity produced by Chem (each measured in liters). At this time both 
firms are considering whether to invest in new bottling equipment that 
will lower their variable costs. 

 (i) If firm j decides not to invest, its cost will be C j  Qj
22, where j 

stands for either B (Bilge) or C (Chem).
 (ii) If a firm decides to invest, its cost will be C j = 20 + Qj

26, where j 
stands for either B (Bilge) or C (Chem). This new cost function re-
flects the fixed cost of the new machines (20) as well as the lower 
variable costs.
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The two firms make their investment choices simultaneously, but 
the payoffs in this investment game will depend on the subsequent duo-
poly games that arise. The game is thus really a two-stage game: decide 
to invest, and then play a duopoly game.

 (a) Suppose both firms decide to invest. Write the profit functions in 
terms of QB and QC for the two firms. Use these to find the Nash 
equilibrium of the quantity-setting game. What are the equilibrium 
quantities and profits for both firms? What is the market price? 

 (b) Now suppose both firms decide not to invest. What are the equilib-
rium quantities and profits for both firms? What is the market price? 

 (c)  Now suppose that Bilge decides to invest, and Chem decides not 
to invest. What are the equilibrium quantities and profits for both 
firms? What is the market price? 

 (d)  Write out the two-by-two game table of the investment game be-
tween the two firms. Each firm has two strategies: Investment and No  
Investment. The payoffs are simply the profits found in parts (a), 
(b), and (c). (Hint: Note the symmetry of the game.) 

 (e) What is the subgame-perfect equilibrium of the overall two-stage 
game?

 U12. Two French aristocrats, Chevalier Chagrin and Marquis de Renard, fight 
a duel. Each has a pistol loaded with one bullet. They start 10 steps apart 
and walk toward each other at the same pace, 1 step at a time. After each 
step, either may fire his gun. When one shoots, the probability of scoring 
a hit depends on the distance. After k steps it is k5, and so it rises from 
0.2 after the first step to 1 (certainty) after 5 steps, at which point they 
are right up against one another. If one player fires and misses while the 
other has yet to fire, the walk must continue even though the bulletless 
one now faces certain death; this rule is dictated by the code of the aris-
tocracy. Each gets a payoff of 1 if he himself is killed and 1 if the other is 
killed. If neither or both are killed, each gets 0.

This is a game with five sequential steps and simultaneous moves 
(shoot or not shoot) at each step. Find the rollback (subgame-perfect) 
equilibrium of this game.

Hint: Begin at step 5, when the duelists are right up against one an-
other. Set up the two-by-two table for the simultaneous-move game at this 
step, and find its Nash equilibrium. Now move back to step 4, where the 
probability of scoring a hit is 45, or 0.8, for each. Set up the two-by-two  
table for the simultaneous-move game at this step, correctly specifying 
in the appropriate cell what happens in the future. For example, if one 
shoots and misses, but the other does not shoot, then the other will wait 
until step 5 and score a sure hit. If neither shoots, then the game will go 
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to the next step, for which you have already found the equilibrium. Using 
all this information, find the payoffs in the two-by-two table of step 4, 
and find the Nash equilibrium at this step. Work backward in the same 
way through the rest of the steps to find the Nash equilibrium strategies 
of the full game.

 U13. Describe an example of business competition that is similar in structure 
to the duel in Exercise U12.
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■

Simultaneous-Move Games: 

Mixed Strategies

In our study  of simultaneous-move games in Chapter 4, we came across a 
class of games that the solution methods described there could not solve; in 
fact, games in that class have no Nash equilibria in pure strategies. To predict 
outcomes for such games, we need an extension of our concepts of strategies 

and equilibria. This is to be found in the randomization of moves, which is the 
focus of this chapter.

Consider the tennis-point game from the end of Chapter 4. This game is zero 
sum; the interests of the two tennis players are exactly opposite. Evert wants to 
hit her passing shot to whichever side—down the line (DL) or crosscourt (CC)—
is not covered by Navratilova, whereas Navratilova wants to cover the side to 
which Evert hits her shot. In Chapter 4, we pointed out that in such a situation, 
any systematic choice by Evert will be exploited by Navratilova to her own ad-
vantage and therefore to Evert’s disadvantage. Conversely, Evert can exploit any 
systematic choice by Navratilova. To avoid being thus exploited, each player 
wants to keep the other guessing, which can be done by acting unsystematically 
or randomly. 

However, randomness doesn’t mean choosing each shot half the time or al-
ternating between the two. The latter would itself be a systematic action open 
to exploitation, and a 60–40 or 75–25 random mix may be better than 50–50 de-
pending on the situation. In this chapter, we develop methods for calculating 
the best mix and discuss how well this theory helps us understand actual play in 
such games.
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Our method for calculating the best mix can also be applied to non-zero-sum 
games. However, in such games the players’ interests can partially coincide, 
so when player B exploits A’s systematic choice to her own advantage, it is not 
necessarily to A’s disadvantage. Therefore, the logic of keeping the other player 
guessing is weaker or even absent altogether in non-zero-sum games. We will 
discuss whether and when mixed-strategy equilibria make sense in such games.

We start this chapter with a discussion of mixing in two-by-two games 
and with the most direct method for calculating best responses and finding a  
mixed-strategy equilibrium. Many of the concepts and methods we develop in 
Section 2 continue to be valid in more general games, and Sections 6 and 7 ex-
tend these methods to games where players may have more than two pure strat-
egies. We conclude with some general observations about how to mix strategies 
in practice and with some evidence on whether mixing is observed in reality. 

1 WHAT IS A MIXED STRATEGY?

When players choose to act unsystematically, they pick from among their pure 
strategies in some random way. In the tennis-point game, Navratilova and Evert 
each choose from two initially given pure strategies, DL and CC. We call a ran-
dom mixture of these two pure strategies a mixed strategy.

Such mixed strategies cover a whole continuous range. At one extreme, DL 
could be chosen with probability 1 (for sure), meaning that CC is never chosen 
(probability 0); this “mixture” is just the pure strategy DL. At the other extreme, 
DL could be chosen with probability 0 and CC with probability 1; this “mixture” 
is the same as pure CC. In between is the whole set of possibilities: DL chosen 
with probability 75% (0.75) and CC with probability 25% (0.25); or both chosen 
with probabilities 50% (0.5) each; or DL with probability 13 (33.33 . . . %) and 
CC with probability 23 (66.66 . . . %); and so on.1

The payoffs from a mixed strategy are defined as the corresponding  
probability-weighted averages of the payoffs from its constituent pure strategies. 
For example, in the tennis game of Section 7 of Chapter 4, against Navratilova’s  
DL, Evert’s payoff from DL is 50 and from CC is 90. Therefore, the payoff of Evert’s 

1 When a chance event has just two possible outcomes, people often speak of the odds in favor of or 
against one of the outcomes. If the two possible outcomes are labeled A and B, and the probability of 
A is p so that the probability of B is (1 2 p), then the ratio p(1 2 p) gives the odds in favor of A, and 
the reverse ratio (1 − p)p gives the odds against A. Thus, when Evert chooses CC with probability 
0.25 (25%), the odds against her choosing CC are 3 to 1, and the odds in favor of it are 1 to 3. This 
terminology is often used in betting contexts, so those of you who misspent your youth in that way 
will be more familiar with it. However, this usage does not readily extend to situations in which three 
or more outcomes are possible, so we avoid its use here.
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mixture (0.75 DL, 0.25 CC) against Navratilova’s DL is 0.75 3 50 1 0.25 3 90 5  
37.5 1 22.5 5 60. This is Evert’s expected payoff from this particular mixed  
strategy.2

The probability of choosing one or the other pure strategy is a continuous 
variable that ranges from 0 to 1. Therefore, mixed strategies are just special kinds 
of continuously variable strategies like those we studied in Chapter 5. Each pure 
strategy is an extreme special case where the probability of choosing that pure 
strategy equals 1.

The notion of Nash equilibrium also extends easily to include mixed strate-
gies. Nash equilibrium is defined as a list of mixed strategies, one for each player, 
such that the choice of each is her best choice, in the sense of yielding the high-
est expected payoff for her, given the mixed strategies of the others. Allowing 
for mixed strategies in a game solves the problem of possible nonexistence of 
Nash equilibrium, which we encountered for pure strategies, automatically and 
almost entirely. Nash’s celebrated theorem shows that, under very general cir-
cumstances (which are broad enough to cover all the games that we meet in this 
book and many more besides), a Nash equilibrium in mixed strategies exists.

At this broadest level, therefore, incorporating mixed strategies into our 
analysis does not entail anything different from the general theory of continu-
ous strategies developed in Chapter 5. However, the special case of mixed strate-
gies does bring with it several special conceptual as well as methodological mat-
ters and therefore deserves separate study. 

2 MIXING MOVES 

We begin with the tennis example of Section 7 of Chapter 4, which did not have 
a Nash equilibrium in pure strategies. We show how the extension to mixed 
strategies remedies this deficiency, and we interpret the resulting equilibrium as 
one in which each player keeps the other guessing.

A. The Benefit of Mixing 

We reproduce in Figure 7.1 the payoff matrix of Figure 4.14. In this game, if Evert 
always chooses DL, Navratilova will then cover DL and hold Evert’s payoff down 

2 Game theory assumes that players will calculate and try to maximize their expected payoffs when 
probabilistic mixtures of strategies or outcomes are included. We consider this further in the ap-
pendix to this chapter, but for now we proceed to use it, with just one important note. The word 
expected in “expected payoff” is a technical term from probability and statistics. It merely denotes 
a probability-weighted average. It does not mean this is the payoff that the player should expect in 
the sense of regarding it as her right or entitlement.
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to 50. Similarly, if Evert always chooses CC, Navratilova will choose to cover CC 
and hold Evert down to 20. If Evert can only choose one of her two basic (pure) 
strategies and Navratilova can predict that choice, Evert’s better (or less bad) 
pure strategy will be DL, yielding her a payoff of 50.

But suppose Evert is not restricted to using only pure strategies and can 
choose a mixed strategy, perhaps one in which the probability of playing DL on 
any one occasion is 75%, or 0.75; this makes her probability of playing CC 25%, 
or 0.25. Using the method outlined in Section 1, we can calculate Navratilova’s 
expected payoff against this mixture as 

     0.75 3 50 1 0.25 3 10 5 37.5 1 2.5 5 40 if she covers DL, and
 0.75 3 20 1 0.25 3 80 5 15 1 20 5 35 if she covers CC.

If Evert chooses this 75–25 mixture, the expected payoffs show that Navratilova 
can best exploit it by covering DL. 

When Navratilova chooses DL to best exploit Evert’s 75–25 mix, her choice 
works to Evert’s disadvantage because this is a zero-sum game. Evert’s expected 
payoffs are

 0.75 3 50 1 0.25 3 90 5 37.5 1 22.5 5 60 if Navratilova covers DL, and
        0.75 3 80 1 0.25 3 20 5 60 1 5 5 65 if Navratilova covers CC.

By choosing DL, Navratilova holds Evert down to 60 rather than 65. But notice 
that Evert’s payoff with the mixture is still better than the 50 she would get by 
playing purely DL or the 20 she would get by playing purely CC.3 

The 75–25 mix, while improving Evert’s expected payoff relative to her pure 
strategies, does leave Evert’s strategy open to some exploitation by Navratilova. 
By choosing to cover DL she can hold Evert down to a lower expected payoff 
than when she chooses CC. Ideally, Evert would like to find a mix that would 

  

DL CC

NAVRATILOVA

DL

CC

50, 50

90, 10 20, 80

80, 20
EVERT

FIGURE 7.1  no equilibrium in Pure strategies

3 Not every mixed strategy will perform better than the pure strategies. For example, if Evert mixes 
50–50 between DL and CC, Navratilova can hold Evert’s expected payoff down to 50, exactly the 
same as from pure DL. And a mixture that attaches a probability of less than 30% to DL will be worse 
for Evert than pure DL. We ask you to verify these statements as a useful exercise to acquire the skill 
of calculating expected payoffs and comparing strategies.
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be exploitation proof—a mix that would leave Navratilova no obvious choice of 
pure strategy to use against it. Evert’s exploitation-proof mixture must have the 
property that Navratilova gets the same expected payoff against it by covering 
DL or CC; it must keep Navratilova indifferent between her two pure strategies. 
We call this the opponent’s indifference property; it is the key to mixed-strategy 
equilibria in non-zero-sum games, as we see later in this chapter.

To find the exploitation-proof mix requires taking a more general approach 
to describing Evert’s mixed strategy so that we can solve algebraically for the ap-
propriate mixture probabilities. For this approach, we denote the probability of 
Evert choosing DL by the algebraic symbol p, so the probability of choosing CC 
is 1 2 p . We refer to this mixture as Evert’s p-mix for short. 

Against the p-mix, Navratilova’s expected payoffs are

         50p 1 10(1 2 p) if she covers DL, and
 20p 1 80(1 2 p) if she covers CC.

For Evert’s strategy, her p-mix, to be exploitation proof, these two expected 
payoffs for Navratilova should be equal. That implies 50p 1 10(1 2 p) 5 
20p 1 80(1 2 p); or 30p 5 70(1 2 p); or 100p 5 70; or p 5 0.7. Thus, Evert’s  
exploitation-proof mix uses DL with probability 70% and CC with probabil-
ity 30%. With these mixture probabilities, Navratilova gets the same expected 
payoff from each of her pure strategies and therefore cannot exploit any one 
of them to her advantage (or Evert’s disadvantage in this zero-sum game). And 
Evert’s expected payoff from this mixed strategy is

 50 3 0.7 1 90 3 0.3 5 35 1 27 5 62 if Navratilova covers DL, and also
              80 3 0.7 1 20 3 0.3 5 56 1 6 5 62 if Navratilova covers CC.

This expected payoff is better than the 50 that Evert would get if she used 
the pure strategy DL and better than the 60 from the 75–25 mixture. We now 
know this mixture is exploitation proof, but is it Evert’s optimal or equilibrium  
mixture?

B. Best Responses and Equilibrium 

To find the equilibrium mixtures in this game, we return to the method of best-
response analysis originally described in Chapter 4 and extended to games with 
continuous strategies in Chapter 5. Our first task is to identify Evert’s best re-
sponse to—her best choice of p for—each of Navratilova’s possible strategies. 
Since those strategies can also be mixed, they are similarly described by the 
probability with which she covers DL. Label this q, so 1 2 q is the probability 
that Navratilova covers CC. We refer to Navratilova’s mixed strategy as her q-mix 
and now look for Evert’s best choice of p at each of Navratilova’s possible choices 
of q.
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Using Figure 7.1, we see that Evert’s p-mix gets her the expected payoff

 50p 1 90(1 2 p) if Navratilova chooses DL, and
                                 80p 1 20(1 2 p) if Navratilova chooses CC.

Therefore against Navratilova’s q-mix, Evert’s expected payoff is

 [50p 1 90(1 2 p)]q 1 [80p 1 20(1 2 p)] (1 2 q) .

Rearranging the terms, Evert’s expected payoff becomes

[50q 1 80(1 2 q)]p 1 [90q 1 20(1 2 q)] (1 2 p)  
5 [90q 1 20(1 2 q)] 1 [50q 1 80(1 2 q) 2 90q 2 20(1 2 q)]p
5 [20 1 70q] 1 [60 2 100q]p 

and we use this expected payoff to help us find Evert’s best response values of p.
We are trying to identify the p that maximizes Evert’s payoff at each value of 

q, so the key question is how her expected payoff expression varies with p. What 
matters is the coefficient on p: [60 2 100q ]. Specifically, it matters whether that 
coefficient is positive (in which case Evert’s expected payoff increases as p in-
creases) or negative (in which case Evert’s expected payoff decreases as p in-
creases). Clearly, the sign of the coefficient depends on q, the critical value of q 
being the one that makes 60 2 100q 5 0. That q value is 0.6.

When Navratilova’s q , 0.6, [60 2 100q ] is positive, Evert’s expected payoff 
increases as p increases, and her best choice is p 5 1, or the pure strategy DL. 
Similarly, when Navratilova’s q . 0.6, Evert’s best choice is p 5 0, or the pure-
strategy CC. If Navratilova’s q 5 0.6, Evert gets the same expected payoff regard-
less of p, and any mixture between DL and CC is just as good as any other; any p 
from 0 to 1 can be a best response. We summarize this for future reference:

If q , 0.6, best response is p 5 1 (pure DL).
If q 5 0.6, any p-mix is a best response.
If q . 0.6, best response is p 5 0 (pure CC).

As a quick confirmation of intuition, observe that when q is low (Navratilova is 
sufficiently unlikely to cover DL), Evert should choose DL, and when q is high 
(Navratilova is sufficiently likely to cover DL), Evert should choose CC. The exact 
sense of “sufficiently,” and therefore the switching point q 5 0.6, of course de-
pends on the specific payoffs in the example.4

We said earlier that mixed strategies are just a special kind of continuous 
strategy, with the probability being the continuous variable. Now we have found 
Evert’s best p corresponding to each of Navratilova’s choices of q. In other words, 

4 If, in some numerical problem you are trying to solve, the expected payoff lines for the pure strate-
gies do not intersect, that would indicate that one pure strategy was best for all of the opponent’s 
mixtures. Then this player’s best response would always be that pure strategy.
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we have found Evert’s best-response rule, and we can graph it exactly as we did 
in Chapter 5. 

We show this graph in the left-hand panel of Figure 7.2, with q on the hori-
zontal axis and p on the vertical axis. Both are probabilities, limited to the range 
from 0 to 1. For q less than 0.6, p is at its upper limit of 1; for q greater than 0.6, 
p is at its lower limit of 0. At q 5 0.6, all values of p between 0 and 1 are equally 
“best” for Evert; therefore the best response is the vertical line between 0 and 1. 
This is a new flavor of best-response graph; unlike the steadily rising or falling 
lines or curves of Chapter 5, it is flat over two intervals of q and jumps down in a 
step at the point where the two intervals meet. But conceptually it is just like any 
other best-response graph.

Similarly, Navratilova’s best-response rule—her best q-mix corresponding to 
each of Evert’s p-mixes—can be calculated; we leave this for you to do so you 
can consolidate your understanding of the idea and the algebra. You should also 
check the intuition of Navratilova’s choices as we did for Evert. We just state the 
result:

If p , 0.7, best response is q 5 0 (pure CC).
If p 5 0.7, any q-mix is a best response.
If p . 0.7, best response is q 5 1 (pure DL).

This best-response rule for Navratilova is graphed in the middle panel of Fig-
ure 7.2. 

The right-hand panel in Figure 7.2 combines the other two panels by reflect-
ing the left graph across the diagonal (p 5 q line) so that p is on the horizontal 
axis and q on the vertical axis and then superimposing this graph on the middle 
graph. Now the blue and black curves meet at exactly one point, where p 5 0.7 
and q 5 0.6. Here each player’s mixture choice is a best response to the other’s 
choice, so the pair constitutes a Nash equilibrium in mixed strategies.

This representation of best-response rules includes pure strategies as spe-
cial cases corresponding to the extreme values of p and q. So we can see that the 
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0
0 1

1

0.6
0

0 1
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FIGURE 7.2  Best responses and equilibrium in the tennis Point
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best-response curves do not have any points in common at any of the sides of 
the square where each value of p and q equals either 0 or 1; this shows us that 
the game does not have any pure-strategy equilibria, as we checked directly in 
Section 7 of Chapter 4. The mixed-strategy equilibrium in this example is the 
unique Nash equilibrium in the game. 

You can also calculate Navratilova’s exploitation-proof choice of q using the 
same method as we used in Section 2.A for finding Evert’s exploitation-proof p. 
You will get the answer q 5 0.6. Thus, the two exploitation-proof choices are in-
deed best responses to each other, and they are the Nash equilibrium mixtures 
for the two players. 

In fact, if all you want to do is to find a mixed-strategy equilibrium of a  
zero-sum game where each player has just two pure strategies, you don’t have to 
go through the detailed construction of best-response curves, graph them, and 
look for their intersection. You can write down the exploitation-proofness equa-
tions from Section 2.A for each player’s mixture and solve them. If the solution 
has both probabilities between 0 and 1, you have found what you want. If the 
solution includes a probability that is negative, or greater than 1, then the game 
does not have a mixed-strategy equilibrium; you should go back and look for a 
pure-strategy equilibrium. For games where a player has more than two pure 
strategies, we examine solution techniques in Sections 6 and 7.

3 NASH EQUILIBRIUM AS A SYSTEM OF BELIEFS AND RESPONSES

When the moves in a game are simultaneous, neither player can respond to 
the other’s actual choice. Instead, each takes her best action in light of what 
she thinks the other might be choosing at that instant. In Chapter 4, we called 
such thinking a player’s belief about the other’s strategy choice. We then inter-
preted Nash equilibrium as a configuration where such beliefs are correct, so 
each chooses her best response to the actual actions of the other. This concept 
proved useful for understanding the structures and outcomes of many impor-
tant types of games, most notably the prisoners’ dilemma, coordination games, 
and chicken.

However, in Chapter 4 we considered only pure-strategy Nash equilibria. 
Therefore, a hidden assumption went almost unremarked—namely, that each 
player was sure or confident in her belief that the other would choose a particu-
lar pure strategy. Now that we are considering more general mixed strategies, 
the concept of belief requires a corresponding reinterpretation.

Players may be unsure about what others might be doing. In the coordina-
tion game in Chapter 4, in which Harry wanted to meet Sally, he might be un-
sure whether she would go to Starbucks or Local Latte, and his belief might 
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be that there was a 50–50 chance that she would go to either one. And in the 
tennis example, Evert might recognize that Navratilova was trying to keep her 
(Evert) guessing and would therefore be unsure of which of the available actions 
Navratilova would play. In Chapter 2, Section 4, we labeled this as strategic un-
certainty, and in Chapter 4 we mentioned that such uncertainty can give rise to 
mixed-strategy equilibria. Now we develop this idea more fully.

It is important, however, to distinguish between being unsure and having 
incorrect beliefs. For example, in the tennis example, Navratilova cannot be sure 
of what Evert is choosing on any one occasion. But she can still have correct 
beliefs about Evert’s mixture—namely, about the probabilities with which Evert 
chooses between her two pure strategies. Having correct beliefs about mixed ac-
tions means knowing or calculating or guessing the correct probabilities with 
which the other player chooses from among her underlying basic or pure ac-
tions. In the equilibrium of our example, it turned out that Evert’s equilibrium 
mixture was 70% DL and 30% CC. If Navratilova believes that Evert will play DL 
with 70% probability and CC with 30% probability, then her belief, although un-
certain, will be correct in equilibrium.

Thus, we have an alternative and mathematically equivalent way to define 
Nash equilibrium in terms of beliefs: each player forms beliefs about the prob-
abilities of the mixture that the other is choosing and chooses her own best re-
sponse to this. A Nash equilibrium in mixed strategies occurs when the beliefs 
are correct, in the sense just explained.

In the next section, we consider mixed strategies and their Nash equilibria 
in non-zero-sum games. In such games, there is no general reason that the other 
player’s pursuit of her own interests should work against your interests. There-
fore, it is not in general the case that you would want to conceal your intentions 
from the other player, and there is no general argument in favor of keeping the 
other player guessing. However, because moves are simultaneous, each player 
may still be subjectively unsure of what action the other is taking and therefore 
may have uncertain beliefs that in turn lead her to be unsure about how she 
should act. This can lead to mixed-strategy equilibria, and their interpretation in 
terms of subjectively uncertain but correct beliefs proves particularly important.

4 MIXING IN NON-ZERO-SUM GAMES 

The same mathematical method used to find mixed-strategy equilibria in zero-
sum games—namely, exploitation-proofness or the opponent’s indifference 
property—can be applied to non-zero-sum games as well, and it can reveal 
mixed-strategy equilibria in some of them. However, in such games the players’ 
interests may coincide to some extent. Therefore, the fact that the other player 
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will exploit your systematic choice of strategy to her advantage need not work 
out to your disadvantage, as was the case with zero-sum interactions. In a co-
ordination game of the kind we studied in Chapter 4, for example, the players 
are better able to coordinate if each can rely on the other’s acting systemati-
cally; random actions only increase the risk of coordination failure. As a result, 
mixed-strategy equilibria have a weaker rationale, and sometimes no rationale at 
all, in non-zero-sum games. Here we examine mixed-strategy equilibria in some 
prominent non-zero-sum games and discuss their relevance or lack thereof.

A. Will Harry Meet Sally? Assurance, Pure Coordination, and Battle of the Sexes

We illustrate mixing in non-zero-sum games by using the assurance version of 
the meeting game. For your convenience, we reproduce its table (Figure 4.11) as 
Figure 7.3. We consider the game from Sally’s perspective first. If she is confident 
that Harry will go to Starbucks, she also should go to Starbucks. If she is confi-
dent that Harry will go to Local Latte, so should she. But if she is unsure about 
Harry’s choice, what is her own best choice?

To answer this question, we must give a more precise meaning to the un-
certainty in Sally’s mind. (The technical term for this uncertainty, in the theory 
of probability and statistics, is her subjective uncertainty. In the context where 
the uncertainty is about another player’s action in a game, it is also strategic 
uncertainty; recall the distinctions we discussed in Chapter 2, Section 2.D.) We 
gain precision by stipulating the probability with which Sally thinks Harry will 
choose one café or the other. The probability of Harry’s choosing Local Latte can 
be any real number between 0 and 1 (that is, between 0% and 100%). We cover 
all possible cases by using algebra, letting the symbol p denote the probability 
(in Sally’s mind) that Harry chooses Starbucks; the variable p can take on any 
real value between 0 and 1. Then (1 2 p) is the probability (again in Sally’s mind) 
that Harry chooses Local Latte. In other words, we describe Sally’s strategic un-
certainty as follows: she thinks that Harry is using a mixed strategy, mixing the 
two pure strategies, Starbucks and Local Latte, in proportions or probabilities p 
and (1 2 p), respectively. We call this mixed strategy Harry’s p-mix, even though 
for the moment it is purely an idea in Sally’s mind.

Starbucks Local Latte

SALLY

Starbucks 

Local Latte 

1, 1

0, 0 2, 2

0, 0
HARRY 

FIGURE 7.3 assurance
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Given her uncertainty, Sally can calculate the expected payoffs from her ac-
tions when they are played against her belief about Harry’s p-mix. If she chooses 
Starbucks, it will yield her 1 3 p 1 0 3 (1 2 p) 5 p. If she chooses Local Latte, it 
will yield her 0 3 p 1 2 3 (1 2 p) 5 2 3 (1 2 p). When p is high, p . 2(1 2 p); so 
if Sally is fairly sure that Harry is going to Starbucks, then she does better by also 
going to Starbucks. Similarly, when p is low, p , 2(1 2 p); if Sally is fairly sure 
that Harry is going to Local Latte, then she does better by going to Local Latte. If 
p 5 2(1 2 p), or 3p 5 2, or p 5 23, the two choices give Sally the same expected 
payoff. Therefore, if she believes that p 5 23, she might be unsure about her 
own choice, so she might dither between the two.

Harry can figure this out, and that makes him unsure about Sally’s choice. 
Thus, Harry also faces subjective strategic uncertainty. Suppose in his mind 
Sally will choose Starbucks with probability q and Local Latte with probability 
(1 2 q). Similar reasoning shows that Harry should choose Starbucks if q . 23 
and Local Latte if q , 23. If q 5 23, he will be indifferent between the two ac-
tions and unsure about his own choice.

Now we have the basis for a mixed-strategy equilibrium with p 5 23 and 
q 5 23. In such an equilibrium, these p and q values are simultaneously the 
actual mixture probabilities and the subjective beliefs of each player about the 
other’s mixture probabilities. The correct beliefs sustain each player’s own indif-
ference between the two pure strategies and therefore each player’s willingness 
to mix between the two. This matches exactly the concept of a Nash equilibrium 
as a system of self-fulfilling beliefs and responses described in Section 3. 

The key to finding the mixed-strategy equilibrium is that Sally is willing to 
mix between her two pure strategies only if her subjective uncertainty about 
Harry’s choice is just right—that is, if the value of p in Harry’s p-mix is just right. 
Algebraically, this idea is borne out by solving for the equilibrium value of p 
by using the equation p 5 2(1 2 p), which ensures that Sally gets the same ex-
pected payoff from her two pure strategies when each is matched against Har-
ry’s p-mix. When the equation holds in equilibrium, it is as if Harry’s mixture 
probabilities are doing the job of keeping Sally indifferent. We emphasize the 
“as if” because in this game, Harry has no reason to keep Sally indifferent; the 
outcome is merely a property of the equilibrium. Still, the general idea is worth 
remembering: in a mixed-strategy Nash equilibrium, each person’s mixture 
probabilities keep the other player indifferent between her pure strategies. We 
derived this opponent’s indifference property in the zero-sum discussion above, 
and now we see that it remains valid even in non-zero-sum games.

However, the mixed-strategy equilibrium has some very undesirable prop-
erties in the assurance game. First, it yields both players rather low expected 
payoffs. The formulas for Sally’s expected payoffs from her two actions, p and 
2(1 2 p), both equal 23 when p 5 23. Similarly, Harry’s expected payoffs 
against Sally’s equilibrium q-mix for q 5 23 are also both 23. Thus, each player 
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gets 23 in the mixed-strategy equilibrium. In Chapter 4, we found two pure-
strategy equilibria for this game; even the worse of them (both choosing Star-
bucks) yields the players 1 each, and the better one (both choosing Local Latte) 
yields them 2 each.

The reason the two players fare so badly in the mixed-strategy equilibrium 
is that when they choose their actions independently and randomly, they create 
a significant probability of going to different places; when that happens, they 
do not meet, and each gets a payoff of 0. Harry and Sally fail to meet if one goes 
to Starbucks and the other goes to Local Latte or vice versa. The probability of 
this happening when both are using their equilibrium mixtures is 2 3 (23) 3 
(13) 5 49.5 Similar problems exist in the mixed-strategy equilibria of most  
non-zero-sum games.

A second undesirable property of the mixed-strategy equilibrium here 
is that it is very fragile. If either player departs ever so slightly from the exact 
values p 5 23 or q 5 23, the best choice of the other tips to one pure strat-
egy. Once one player chooses a pure strategy, then the other also does better by 
choosing the same pure strategy, and play moves to one of the two pure-strategy 
equilibria. This instability of mixed-strategy equilibria is also common to many 
non-zero-sum games. However, some important non-zero-sum games do have 
mixed-strategy equilibria that are not so fragile. One example considered later 
in this chapter and in Chapter 12 is the mixed-strategy equilibrium in the game 
chicken, which has an interesting evolutionary interpretation.

Given the analysis of the mixed-strategy equilibrium in the assurance ver-
sion of the meeting game, you can now probably guess the mixed-strategy 
equilibria for the related non-zero-sum meeting games. In the pure-coordination 
version (see Figure 4.10), the payoffs from meeting in the two cafés are the 
same, so the mixed-strategy equilibrium will have p 5 12 and q 5 12. In the  
battle-of-the-sexes variant (see Figure 4.12), Sally prefers to meet at Local Latte 
because her payoff is 2 rather than the 1 that she gets from meeting at Starbucks. 
Her decision hinges on whether her subjective probability of Harry’s going to 
Starbucks is greater than or less than 23. (Sally’s payoffs here are similar to 
those in the assurance version, so the critical p is the same.) Harry prefers to 
meet at Starbucks, so his decision hinges on whether his subjective probabil-
ity of Sally’s going to Starbucks is greater than or less than 13. Therefore, the 
mixed-strategy Nash equilibrium has p 5 23 and q 5 13. 

5 The probability that each chooses Starbucks in equilibrium is 23. The probability that each chooses 
Local Latte is 13. The probability that one chooses Starbucks while the other chooses Local Latte is 
(23) 3 (13). But that can happen two different ways (once when Harry chooses Starbucks and Sally 
chooses Local Latte, and again when the choices are reversed) so the total probability of not meeting 
is 2 3 (23) 3 (13). See the appendix to this chapter for more details on the algebra of probabilities. 
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B. Will James Meet Dean? Chicken

The non-zero-sum game of chicken also has a mixed-strategy equilibrium that 
can be found using the same method developed above, although its interpreta-
tions are slightly different. Recall that this is a game between James and Dean, 
who are trying to avoid a meeting; the game table, originally introduced in  
Figure 4.13, is reproduced here as Figure 7.4. 

If we introduce mixed strategies, James’s p-mix will entail a probability p of 
swerving and a probability 1 2 p of going straight. Against that p-mix, Dean gets 
0 3 p 2 1 3 (1 2 p) 5 p 2 1 if he chooses Swerve and 1 3 p 2 2 3 (1 2 p) 5 3p 
2 2 if he chooses Straight. Comparing the two, we see that Dean does better by 
choosing swerve when p 2 1 . 3p 2 2, or when 2p , 1, or when p , 12, that is, 
when p is low and James’s is more likely to choose Straight. Conversely, when p is 
high and James is more likely to choose Swerve, then Dean does better by choos-
ing Straight. If James’ p-mix has p exactly equal to 12, then Dean is indifferent 
between his two pure actions; he is therefore equally willing to mix between the 
two. Similar analysis of the game from James’s perspective when considering 
his options against Dean’s q-mix yields the same results. Therefore, p 5 12 and  
q 5 12 is a mixed-strategy equilibrium of this game. 

The properties of this equilibrium have some similarities but also some dif-
ferences when compared with the mixed-strategy equilibria of the meeting game. 
Here, each player’s expected payoff in the mixed-strategy equilibrium is low 
(212). This is bad, as was the case in the meeting game, but unlike in that game, 
the mixed-strategy equilibrium payoff is not worse for both players than either of 
the two pure-strategy equilibria. In fact, because player interests are somewhat 
opposed here, each player will do strictly better in the mixed-strategy equilibrium 
than in the pure-strategy equilibrium that entails his choosing Swerve.

This mixed-strategy equilibrium is again unstable, however. If James in-
creases his probability of choosing Straight to just slightly above 12, this 
change tips Dean’s choice to pure Swerve. Then (Straight, Swerve) becomes the 
pure-strategy equilibrium. If James instead lowers his probability of choosing 

DEAN

Swerve (Chicken) 

Swerve (Chicken) Straight (Tough)

Straight (Tough) 

0, 0

1, –1

–1, 1

–2, –2
JAMES 

FIGURE 7.4 Chicken
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Straight slightly below 12, Dean chooses Straight, and the game goes to the 
other pure-strategy equilibrium.6 

In this section, we found mixed-strategy equilibria in several non-zero-sum 
games by solving the equations that come from the opponent’s indifference 
property. We already know from Chapter 4 that these games also have other equi-
libria in pure strategies. Best-response curves can give a comprehensive picture, 
displaying all Nash equilibria at once. As you already know all of the equilibria 
from the two separate analyses, we do not spend time and space graphing the 
best-response curves here. We merely note that when there are two pure-strategy 
equilibria and one mixed-strategy equilibrium, as in the examples above, you 
will find that the best-response curves cross in three different places, one for 
each of the Nash equilibria. We also invite you to graph best-response curves for 
similar games at the end of this chapter, with full analyses presented (as usual) in 
the solutions to the solved exercises.

5 GENERAL DISCUSSION OF MIXED-STRATEGY EQUILIBRIA

Now that we have seen how to find mixed-strategy equilibria in both zero-sum 
and non-zero-sum games, it is worthwhile to consider some additional features 
of these equilibria. In particular, we highlight in this section some general prop-
erties of mixed-strategy equilibria. We also introduce you to some results that 
seem counterintuitive at first, until you fully analyze the game in question.

A. Weak Sense of Equilibrium

The opponent’s indifference property described in Section 2 implies that in a 
mixed-strategy equilibrium, each player gets the same expected payoff from 
each of her two pure strategies, and therefore also gets the same expected payoff 
from any mixture between them. Thus, mixed-strategy equilibria are Nash equi-
libria only in a weak sense. When one player is choosing her equilibrium mix, the 
other has no positive reason to deviate from her own equilibrium mix. But she 
would not do any worse if she chose another mix or even one of her pure strate-
gies. Each player is indifferent between her pure strategies, or indeed between 
any mixture of them, so long as the other player is playing her correct (equilib-
rium) mix. 

6 In Chapter 12, we consider a different kind of stability, namely evolutionary stability. The question 
in the evolutionary context is whether a stable mix of Straight and Swerve choosers can arise and 
persist in a population of chicken players. The answer is yes, and the proportions of the two types 
are exactly equal to the probabilities of playing each action in the mixed-strategy equilibrium. Thus, 
we derive a new and different motivation for that equilibrium in this game. 
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This seems to undermine the basis for mixed-strategy Nash equilibria as the 
solution concept for games. Why should a player choose her appropriate mixture 
when the other player is choosing her own? Why not just do the simpler thing by 
choosing one of her pure strategies? After all, the expected payoff is the same. 
The answer is that to do so would not be a Nash equilibrium; it would not be a 
stable outcome, because then the other player would deviate from her mixture. 
If Evert says to herself “When Navratilova is choosing her best mix (q 5 0.6), I get 
the same payoff from DL, CC, or any mixture. So why bother to mix; why don’t I 
just play DL?” then Navratilova can do better by switching to her pure strategy of 
covering DL. Similarly, if Harry chooses pure Starbucks in the assurance meet-
ing game, then Sally can get a higher payoff in equilibrium (1 instead of 23) by 
switching from her 50–50 mix to her pure Starbucks as well.

B. Counterintuitive Changes in Mixture Probabilities in Zero-Sum Games

Games with mixed-strategy equilibria may exhibit some features that seem 
counterintuitive at first glance. The most interesting of them is the change in the 
equilibrium mixes that follow a change in the structure of a game’s payoffs. To il-
lustrate, we return to Evert and Navratilova and their tennis point.

Suppose that Navratilova works on improving her skills covering down the 
line to the point where Evert’s success using her DL strategy against Navratilova’s 
covering DL drops to 30% from 50%. This improvement in Navratilova’s skill al-
ters the payoff table, including the mixed strategies for each player, from that 
illustrated in Figure 7.1. We present the new table in Figure 7.5.

The only change from the table in Figure 7.1 has occurred in the upper-left-
hand cell, where our earlier 50 for Evert is now a 30 and the 50 for Navratilova is 
now a 70. This change in the payoff table does not lead to a game with a pure-
strategy equilibrium because the players still have opposing interests; Navrati-
lova still wants their choices to coincide, and Evert still wants their choices to 
differ. We still have a game in which mixing will occur.

But how will the equilibrium mixes in this new game differ from those cal-
culated in Section 2? At first glance, many people would argue that Navratilova 
should cover DL more often now that she has gotten so much better at doing so.  
Thus, the assumption is that her equilibrium q-mix should be more heavily 

  

DL CC

NAVRATILOVA

DL

CC

30, 70

90, 10 20, 80

80, 20
EVERT

FIGURE 7.5 Changed Payoffs in the tennis Point
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weighted toward DL, and her equilibrium q should be higher than the 0.6 calcu-
lated before.

But when we calculate Navratilova’s q-mix by using the condition of Evert’s 
indifference between her two pure strategies, we get 30q 1 80(1 2 q) 5 90q 1 

20(1 2 q), or q 5 0.5. The actual equilibrium value for q, 50%, has exactly the op-
posite relation to the original q of 60% than what many people’s intuition predicts.

Although the intuition seems reasonable, it misses an important aspect of 
the theory of strategy: the interaction between the two players. Evert will also 
be reassessing her equilibrium mix after the change in payoffs, and Navratilova 
must take the new payoff structure and Evert’s behavior into account when de-
termining her new mix. Specifically, because Navratilova is now so much better 
at covering DL, Evert uses CC more often in her mix. To counter that, Navrati-
lova covers CC more often, too.

We can see this more explicitly by calculating Evert’s new mixture. Her equi-
librium p must equate Navratilova’s expected payoff from covering DL, 30p 1 90 
(1 2 p), with her expected payoff from covering CC, 80p 1 20(1 2 p). So we have 
30p 1 90(1 2 p) 5 80p 1 20(1 2 p), or 90 2 60p 5 20 1 60p, or 120p 5 70. Thus, 
Evert’s p must be 712, which is 0.583, or 58.3%. Comparing this new equilibrium 
p with the original 70% calculated in Section 2 shows that Evert has significantly 
decreased the number of times she sends her shot DL in response to Navratilova’s 
improved skills. Evert has taken into account the fact that she is now facing an op-
ponent with better DL coverage, and so she does better to play DL less frequently 
in her mixture. By virtue of this behavior, Evert makes it better for Navratilova 
also to decrease the frequency of her DL play. Evert would now exploit any other 
choice of mix by Navratilova, in particular a mix heavily favoring DL.

So is Navratilova’s skill improvement wasted? No, but we must judge it  
properly—not by how often one strategy or the other gets used but by the result-
ing payoffs. When Navratilova uses her new equilibrium mix with q 5 0.5, Evert’s 
success percentage from either of her pure strategies is (30 3 0.5) 1 (80 3 0.5) 5 
(90 3 0.5) 1 (20 3 0.5) 5 55. This is less than Evert’s success percentage of 62 in 
the original example. Thus, Navratilova’s average payoff also rises from 38 to 45, 
and she does benefit by improving her DL coverage.

Unlike the counterintuitive result that we saw when we considered Navrati-
lova’s strategic response to the change in payoffs, we see here that her response is 
absolutely intuitive when considered in light of her expected payoff. In fact, play-
ers’ expected payoff responses to changed payoffs can never be counterintuitive,  
although strategic responses, as we have seen, can be.7 The most interesting  

7 For a general theory of the effect that changing the payoff in a particular cell has on the equilib-
rium mixture and the expected payoffs in equilibrium, see Vincent Crawford and Dennis Small-
wood, “Comparative Statics of Mixed-Strategy Equilibria in Noncooperative Games,” Theory and 
Decision, vol. 16 (May 1984), pp. 225–32.
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aspect of this counterintuitive outcome in players’ strategic responses is the 
message that it sends to tennis players and to strategic game players more gen-
erally. The result here is equivalent to saying that Navratilova should improve 
her down-the-line coverage so that she does not have to use it so often.

Next, we present an even more general and more surprising result about 
changes in mixture probabilities. The opponent’s indifference condition means 
that each player’s equilibrium mixture probabilities depend only on the other 
player’s payoffs, not on her own. Consider the assurance game of Figure 7.3. 
Suppose Sally’s payoff from meeting in Local Latte increases from 2 to 3, while 
all other payoffs remain unchanged. Now, against Harry’s p-mix, Sally gets 1 3 
p 1 0 3 (1 2 p) 5 p if she chooses Starbucks, and 0 3 p 1 3 3 (1 2 p) 5 3 2 3p  
if she chooses Local Latte. Her indifference condition is p 5 3 2 3p, or 4p 5 3, 
or p 5 34, compared with the value of 23 we found earlier for Harry’s p-mix 
in the original game. The calculation of Harry’s indifference condition is un-
changed and yields q 5 23 for Sally’s equilibrium strategy. The change in Sally’s 
payoffs changes Harry’s mixture probabilities, not Sally’s! In Exercise S13, you 
will have the opportunity to prove that this is true quite generally: my equilib-
rium mixing proportions do not change with my own payoffs, only with my op-
ponent’s payoffs.

C. Risky and Safe Choices in Zero-Sum Games

In sports, some strategies are relatively safe; they do not fail disastrously even if 
anticipated by the opponent but do not do very much better even if unantici-
pated. Other strategies are risky; they do brilliantly if the other side is not pre-
pared for them but fail miserably if the other side is ready. In American foot-
ball, on third down with a yard to go, a run up the middle is safe and a long pass 
is risky. An interesting question arises because some third-and-one situations 
have more at stake than others. For example, making the play from your oppo-
nent’s 10-yard line has a much greater impact on a possible score than making 
the play from your own 20-yard line. The question is, when the stakes are higher, 
should you play the risky strategy more or less often than when the stakes are 
lower?

To make this concrete, consider the success probabilities shown in Figure 
7.6. (Note that, while in the tennis game we used percentages between 0 and 
100, here we use probabilities between 0 and 1.) The offense’s safe play is the 
run; the probability of a successful first down is 60% if the defense anticipates 
a run versus 70% if the defense anticipates a pass. The offense’s risky play is the 
pass because the success probability depends much more on what the defense 
does; the probability of success is 80% if the defense anticipates a run and only 
30% if it anticipates a pass.
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Suppose that when the offense succeeds with its play, it earns a payoff equal 
to V, and if the play fails the payoff is 0. The payoff V could be some number of 
points, such as three for a field-goal situation or seven for a touchdown situa-
tion. Alternatively, it could represent some amount of status or money that the 
team earns, perhaps V 5 100 for succeeding in a game-winning play in an ordi-
nary game or V 5 1,000,000 for clinching victory in the Super Bowl.8

The actual game table between Offense and Defense, illustrated in Figure 
7.7, contains expected payoffs to each player. Those expected payoffs average 
between the success payoff of V and the failure payoff of 0. For example, the ex-
pected payoff to the Offense of playing Run when the Defense expects Run is: 
0.6 3 V 1 0.4 3 0 5 0.6V. The zero-sum nature of the game means the Defense’s 
payoff in that cell is 20.6V. You can similarly compute the expected payoffs for 
each other cell of the table to verify that the payoffs shown below are correct.

In the mixed-strategy equilibrium, Offense’s probability p of choosing Run 
is determined by the opponent’s indifference property. The correct p therefore 
satisfies:

 p[20.6V ] 1 (1 2 p)[20.8V ] 5 p[20.7V ] 1 (1 2 p)[20.3V ].

Notice that we can divide both sides of this equation by V to eliminate V entirely 
from the calculation for p.9 Then the simplified equation becomes 20.6p 2 0.8  
(1 2 p) 5 20.7p 2 0.3 (1 2 p), or 0.1p 5 0.5 (1 2 p). Solving this reduced equa-
tion yields p 5 56, so Offense will play Run with high probability in its optimal 
mixture. This safer play is often called the “percentage play” because it is the 
normal play in such situations. The risky play (Pass) is played only occasionally 
to keep the opponent guessing or, in football commentators’ terminology, “to 
keep the defense honest.”

Run Pass

DEFENSE EXPECTS

Run

Pass

0.6

0.8 0.3

0.7
OFFENSE PLAYS

FIGURE 7.6  Probability of offense’s success on third down with one yard to go

8 Note that V is not necessarily a monetary amount; it can be an amount of utility that captures aver-
sion to risk. We investigate issues pertaining to risk in great detail in Chapter 8 and attitudes toward 
risk and expected utility in the appendix to that chapter.
9 This result comes from the fact that we can eliminate V entirely from the opponent’s indifference 
equation, so it does not depend on the particular success probabilities specified in Figure 7.6. The 
result is therefore quite general for mixed-strategy games where each payoff equals a success prob-
ability times a success value.
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The interesting part of this result is that the expression for p is completely 
independent of V. That is, the theory says that you should mix the percentage 
play and the risky play in exactly the same proportions on a big occasion as you 
would on a minor occasion. This result runs against the intuition of many peo-
ple. They think that the risky play should be engaged in less often when the oc-
casion is more important. Throwing a long pass on third down with a yard to go 
may be fine on an ordinary Sunday afternoon in October, but doing so in the 
Super Bowl is too risky.

So which is right: theory or intuition? We suspect that readers will be divided 
on this issue. Some will think that the sports commentators are wrong and will 
be glad to have found a theoretical argument to refute their claims. Others will 
side with the commentators and argue that bigger occasions call for safer play. 
Still others may think that bigger risks should be taken when the prizes are big-
ger, but even they will find no support in the theory, which says that the size of 
the prize or the loss should make no difference to the mixture probabilities.

On many previous occasions when discrepancies between theory and in-
tuition arose, we argued that the discrepancies were only apparent, that they 
were the result of failing to make the theory sufficiently general or rich enough 
to capture all the features of the situation that created the intuition, and that 
improving the theory removed the discrepancy. This one is different: the prob-
lem is fundamental to the calculation of payoffs from mixed strategies as 
probability-weighted averages or expected payoffs. And almost all of existing 
game theory has this starting point.10

Run Pass

DEFENSE

Run

Pass

0.6V, –0.6V

0.8V, –0.8V 0.3V, –0.3V

0.7V, –0.7V
OFFENSE

FIGURE 7.7  the third-and-one game

10 Vincent P. Crawford, “Equilibrium Without Independence,” Journal of Economic Theory, vol. 50, 
no. 1 (February 1990), pp. 127–54; and James Dow and Sergio Werlang, “Nash Equilibrium Under 
Knightian Uncertainty,” Journal of Economic Theory, vol. 64, no. 2 (December 1994), pp. 305–24, are 
among the few research papers that suggest alternative foundations for game theory. And our expo-
sition of this problem in the first edition of this book inspired an article that uses such new meth-
ods on it: Simon Grant, Atsushi Kaji, and Ben Polak, “Third Down and a Yard to Go: Recursive Ex-
pected Utility and the Dixit-Skeath Conundrum,” Economic Letters, vol. 73, no. 3 (December 2001),  
pp. 275–86. Unfortunately, it uses more advanced concepts than those available at the introductory 
level of this book.
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6 MIXING WHEN ONE PLAYER HAS THREE 
OR MORE PURE STRATEGIES

Our discussion of mixed strategies to this point has been confined to games in 
which each player has only two pure strategies, as well as mixes between them. 
In many strategic situations, each player has available a larger number of pure 
strategies, and we should be ready to calculate equilibrium mixes for those cases 
as well. However, these calculations get complicated quite quickly. For truly com-
plex games, we would turn to a computer to find the mixed-strategy equilibrium. 
But for some small games, it is possible to calculate equilibria by hand quite 
easily. The calculation process gives us a better understanding of how the equi-
librium works than can be obtained just from looking at a computer-generated  
solution. Therefore, in this section and the next one, we solve some larger 
games.

Here we consider zero-sum games in which one of the players has only two 
pure strategies, whereas the other has more. In such games, we find that the 
player who has three (or more) pure strategies typically uses only two of them in 
equilibrium. The others do not figure in his mix; they get zero probabilities. We 
must determine which ones are used and which ones are not.11

Our example is that of the tennis-point game augmented by giving Evert a 
third type of return. In addition to going down the line or crosscourt, she now 
can consider using a lob (a slower but higher and longer return). The equilib-
rium depends on the payoffs of the lob against each of Navratilova’s two defen-
sive stances. We begin with the case that is most likely to arise and then consider 
a coincidental or exceptional case.

A. A General Case

Evert now has three pure strategies in her repertoire: DL, CC, and Lob. We leave 
Navratilova with just two pure strategies, Cover DL or Cover CC. The payoff table 
for this new game can be obtained by adding a Lob row to the table in Figure 7.1. 
The result is shown in Figure 7.8. We have assumed that Evert’s payoffs from the 
Lob are between the best and the worst she can get with DL and CC, and not too 
different against Navratilova’s covering DL or CC. We have shown not only the pay-
offs from the pure strategies, but also those for Evert’s three pure strategies against  

11 Even when a player has only two pure strategies, he may not use one of them in equilibrium. The 
other player then generally finds one of his strategies to be better against the one that the first player 
does use. In other words, the equilibrium “mixtures” collapse to the special case of pure strategies. 
But when one or both players have three or more strategies, we can have a genuinely mixed-strategy 
equilibrium where some of the pure strategies go unused.
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Navratilova’s q-mix. [We do not show a row for Evert’s p-mix because we don’t need it.  
It would require two probabilities, say p1 for DL and p2 for CC, and then that for the 
Lob would be (1 2 p1 2 p2). We show you how to solve for equilibrium mixtures of 
this type in the following section.]

Technically, before we begin looking for a mixed-strategy equilibrium, we 
should verify that there is no pure-strategy equilibrium. This is easy to do, how-
ever, so we leave it to you and turn to mixed strategies.

We will use the logic of best responses to consider Navratilova’s optimal 
choice of q. In Figure 7.9 we show Evert’s expected payoffs (success percentages) 
from playing each of her pure strategies DL, CC, and Lob as the q in Navratilova’s 
q-mix varies over its full range from 0 to 1. These graphs are just those of Evert’s 
payoff expressions in the right-hand column of Figure 7.8. For each q, if Navra-
tilova were to choose that q-mix in equilibrium, Evert’s best response would be 
to choose the strategy that gives her (Evert) the highest payoff. We show this set 
of best-response outcomes for Evert with the thicker lines in Figure 7.9; in math-
ematical jargon this is the upper envelope of the three payoff lines. Navratilova 
wants to choose her own best possible q—the q that makes her own payoff as 
large as possible (thereby making Evert’s payoff as low as possible)—from this 
set of Evert’s best responses.

To be more precise about Navratilova’s optimal choice of q, we must calcu-
late the coordinates of the kink points in the line showing her worst-case (Evert’s 
best-case) outcomes. The value of q at the leftmost kink in this line makes Evert 
indifferent between DL and Lob. That q must equate the two payoffs from DL 
and Lob when used against the q-mix. Setting those two expressions equal gives 
us 50q 1 80(1 2 q) 5 70q 1 60(1 2 q), or q 5 2040 5 12 5 50%. Evert’s ex-
pected payoff at this point is 50 3 0.5 1 80 3 0.5 5 70 3 0.5 1 60 3 0.5 5 65. At 
the second (rightmost) kink, Evert is indifferent between CC and Lob. Thus, the 
q value at this kink is the one that equates the CC and Lob payoff expressions. 
Setting 90q 1 20(1 2 q) 5 70q 1 60(1 2 q), we find q 5 4060 5 23 5 66.7%. 

NAVRATILOVA

DL

CC

Lob

90, 10

70, 30 60, 40

20, 80
90q +

20(1 – q),
10q +

80(1 – q)

70q +
60(1 – q),

30q +
40(1 – q)

50q +
80(1 – q),

50q +
20(1 – q)

DL CC

50, 50 80, 20

q-mix

EVERT

FIGURE 7.8 Payoff table for tennis Point with lob
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Here, Evert’s expected payoff is 90 3 0.667 1 20 3 0.333 5 70 3 0.667 1 60 3 
0.333 5 66.67. Therefore, Navratilova’s best (or least bad) choice of q is at the left 
kink, namely q 5 0.5. Evert’s expected payoff is 65, so Navratilova’s is 35.

When Navratilova chooses q 5 0.5, Evert is indifferent between DL and Lob, 
and either of these choices gives her a better payoff than does CC. Therefore, 
Evert will not use CC at all in equilibrium. CC will be an unused strategy in her 
equilibrium mix.

Now we can proceed with the equilibrium analysis as if this were a game with 
just two pure strategies for each player: DL and CC for Navratilova, and DL and 
Lob for Evert. We are back in familiar territory. Therefore, we leave the calculation 
to you and just tell you the result. Evert’s optimal mixture in this game entails her 
using DL with probability 0.25 and Lob with probability 0.75. Evert’s expected pay-
off from this mixture, taken against Navratilova’s DL and CC, respectively, is 50 3 
0.25 1 70 3 0.75 5 80 3 0.25 1 60 3 0.75 5 65, as of course it should be.

We could not have started our analysis with this two-by-two game because 
we did not know in advance which of her three strategies Evert would not use. 
But we can be confident that in the general case, there will be one such strat-
egy. When the three expected payoff lines take the most general positions, they 
intersect pair by pair rather than all crossing at a single point. Then the upper 
envelope has the shape that we see in Figure 7.9. Its lowest point is defined by 
the intersection of the payoff lines associated with two of the three strategies. 
The payoff from the third strategy lies below the intersection at this point, so the 
player choosing among the three strategies does not use that third one.

0 0.5 1

90 

50 

70 

0.6670.6

80 

20 

60 

Evert’s 
success (%) 

Navratilova’s q-mix

When Evert 
plays 

DL, Lob, and CC 

FIGURE 7.9 diagrammatic solution for navratilova’s q-mix
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B. Exceptional Cases

The positions and intersections of the three lines of Figure 7.9 depend on the 
payoffs specified for the pure strategies. We chose the payoffs for that particular 
game to show a general configuration of the lines. But if the payoffs stand in very 
specific relationships to each other, we can get some exceptional configurations 
with different results. We describe the possibilities here but leave it to you to re-
draw the diagrams for these cases.

First, if Evert’s payoffs from Lob against Navratilova’s DL and CC are equal, 
then the line for Lob is horizontal, and a whole range of q-values make Navra-
tilova’s mixture exploitation-proof. For example, if the two payoffs in the Lob 
row of the table in Figure 7.8 are 70 each, then it is easy to calculate that the 
left kink in a revised Figure 7.9 would be at q 5 13 and the right kink at q 5 
57. For any q in the range from 13 to 57, Evert’s best response is Lob, and we 
get an unusual equilibrium in which Evert plays a pure strategy and Navratilova 
mixes. Further, Navratilova’s equilibrium mixture probabilities are indetermi-
nate within the range from q 5 13 to q 5 57.

Second, if Evert’s payoffs from Lob against Navratilova’s DL and CC are 
lower than those of Figure 7.8 by just the right amounts (or those of the other 
two strategies are higher by just the right amounts), all three lines can meet in 
one point. For example, if the payoffs of Evert’s Lob are 66 and 56 against Navra-
tilova’s DL and CC, respectively, instead of 70 and 60, then for q 5 0.6, Evert’s ex-
pected payoff from the Lob becomes 66 3 0.6 1 56 3 0.4 5 39.6 1 22.6 5 62, the 
same as that from DL and CC when q 5 0.6. Then Evert is indifferent among all 
three of her strategies when q 5 0.6 and is willing to mix among all three.

In this special case, Evert’s equilibrium mixture probabilities are not fully 
determinate. Rather, a whole range of mixtures, including some where all three 
strategies are used, can do the job of keeping Navratilova indifferent between 
her DL and CC and therefore willing to mix. However, Navratilova must use the 
mixture with q 5 0.6. If she does not, Evert’s best response will be to switch to 
one of her pure strategies, and this will work to Navratilova’s detriment. We do 
not dwell on the determination of the precise range over which Evert’s equilib-
rium mixtures can vary, because this case can only arise for exceptional combi-
nations of the payoff numbers and is therefore relatively unimportant.

Note that Evert’s payoffs from using her Lob against Navratilova’s DL and CC 
could be even lower than the values that make all three lines intersect at one 
point (for example, if the payoffs from Lob were 75 and 30 instead of 70 and 60 
as in Figure 7.8). Then Lob is never the best response for Evert even though it is 
not dominated by either DL or CC. This case of Lob being dominated by a mix-
ture of DL and CC is explained in the online appendix to this chapter.
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7 MIXING WHEN BOTH PLAYERS HAVE THREE STRATEGIES

When we consider games in which both players have three pure strategies and are 
considering mixing among all three, we need two variables to specify each mix.12 
The row player’s p-mix would put probability p1 on his first pure strategy and 
probability p2 on his second pure strategy. Then the probability of using the third 
pure strategy must equal 1 minus the sum of the probabilities of the other two. 
The same would be true for the column player’s q-mix. So when both players have 
three strategies, we cannot find a mixed-strategy equilibrium without doing two-
variable algebra. In many cases, however, such algebra is still manageable.

A. Full Mixture of All Strategies

Consider a simplified representation of a penalty kick in soccer. Suppose a 
right-footed kicker has just three pure strategies: kick to the left, right, or cen-
ter. (Left and right refer to the goalie’s left or right. For a right-footed kicker, 
the most natural motion would send the ball to the goalie’s right.) Then he 
can mix among these strategies, with probabilities denoted by pL, pR, and 
pC, respectively. Any two of them can be taken to be the independent vari-
ables and the third expressed in terms of them. If pL and pR are made the two  
independent-choice variables, then pC 5 1 2 pL 2 pR. The goalie also has 
three pure strategies—namely, move to the kicker’s left (the goalie’s own 
right), move to the kicker’s right, or continue to stand in the center—and can 
mix among them with probabilities qL, qR, and qC, two of which can be chosen  
independently.

As in Section 6.A, a best-response diagram for this game would require more 
than two dimensions. [Four, to be exact. The goalie would choose his two inde-
pendent variables, say (qL, qR), as his best response to the kicker’s two, (pL, pR), 
and vice versa.] Instead, we again use the principle of the opponent’s indiffer-
ence to focus on the mixture probabilities for one player at a time. Each player’s 
probabilities should be such that the other player is indifferent among all the 
pure strategies that constitute his mixture. This gives us a set of equations that 
can be solved for the mixture probabilities. In the soccer example, the kicker’s 
(pL, pR) would satisfy two equations expressing the requirement that the goal-
ie’s expected payoff from using his left should equal that from using his right 
and that the goalie’s expected payoff from using his right should equal that from 
using his center. (Then the equality of expected payoffs from left and center fol-
lows automatically and is not a separate equation.) With more pure strategies, 

12 More generally, if a player has N pure strategies, then her mix has (N 2 1) independent variables, 
or “degrees of freedom of choice.”
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the number of the probabilities to be solved for and the number of equations 
that they must satisfy also increase.

Figure 7.10 shows the game table for the interaction between Kicker and 
Goalie, with success percentages as payoffs for each player. (Unlike the evidence 
we present on European soccer later in this chapter, these are not real data but 
similar rounded numbers to simplify calculations.) Because the kicker wants to 
maximize the percentage probability that he successfully scores a goal and the 
goalie wants to minimize the probability that he lets the goal through, this is a 
zero-sum game. For example, if the kicker kicks to his left while the goalie moves 
to the kicker’s left (the top-left-corner cell), we suppose that the kicker still suc-
ceeds (in scoring) 45% of the time and the goalie therefore succeeds (in saving a 
goal) 55% of the time. But if the kicker kicks to his right and the goalie goes to 
the kicker’s left, then the kicker has a 90% chance of scoring; we suppose a 10% 
probability that he might kick wide or too high so the goalie is still “successful” 
10% of the time. You can experiment with different payoff numbers that you 
think might be more appropriate.

It is easy to verify that the game has no equilibrium in pure strategies. So sup-
pose the kicker is mixing with probabilities pL, pR, and pC 5 1 2 pL 2 pR. For each 
of the goalie’s pure strategies, this mixture yields the goalie the following payoffs:

Left:   55pL 1 15pC 1 5pR 5 55pL 1 15(1 2 pL 2 pR) 1 5pR

Center: 10pL 1 100pC 1 5pR 5 10pL 1 100(1 2 pL 2 pR) 1 5pR

Right: 10pL 1 15pC 1 40pR 5 10pL 1 15(1 2 pL 2 pR) 1 40pR.

The opponent’s indifference rule says that the kicker should choose pL and pR so 
that all three of these expressions are equal in equilibrium.

Equating the Left and Right expressions and simplifying, we have 45pL 5 
35pR, or pR 5 (97)pL. Next, equate the Center and Right expressions and sim-
plify by using the link between pL and pR just obtained. This gives

10p L 1 100 [1 2 pL 2 (9pL7)] 1 5(9pL7) 5 10pL 1 15[1 2 pL 2 (9pL7)] 1 40(9pL7),

or [85 1 120(97)] pL 5 85, which yields pL 5 0.355.

FIGURE 7.10 soccer Penalty Kick game

Left Center

GOALIE

Left

Center

45, 55 90, 10 90, 10

85, 15 0, 100 85, 15

95, 5 95, 5 60, 40

Right

Right

KICKER
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Then we get pR 5 0.355(97) 5 0.457, and finally pC 5 1 2 0.355 2 0.457 5 0.188. 
The goalie’s payoff from any of his pure strategies against this mixture can then 
be calculated by using any of the preceding three payoff lines; the result is 24.6.

The goalie’s mixture probabilities can be found by writing down and solv-
ing the equations for the kicker’s indifference among his three pure strategies 
against the goalie’s mixture. We will do this in detail for a slight variant of the 
same game in Section 7.B, so we omit the details here and just give you the an-
swer: qL 5 0.325, qR 5 0.561, and qC 5 0.113. The kicker’s payoff from any of his 
pure strategies when played against the goalie’s equilibrium mixture is 75.4. 
That answer is, of course, consistent with the goalie’s payoff of 24.6 that we cal-
culated before.

Now we can interpret the findings. The kicker does better with his pure Right 
than his pure Left, both when the goalie guesses correctly (60 . 45) and when he 
guesses incorrectly (95 . 90). (Presumably the kicker is left-footed and can kick 
harder to his right.) Therefore, the kicker chooses Right with greater probability 
and, to counter that, the goalie chooses Right with the highest probability, too. 
However, the kicker should not and does not choose his pure-strategy Right; if 
he did so, the goalie would then choose his own pure-strategy Right, too, and 
the kicker’s payoff would be only 60, less than the 75.4 that he gets in the mixed-
strategy equilibrium.

B. Equilibrium Mixtures with Some Strategies Unused

In the preceding equilibrium, the probabilities of using Center in the mix are 
quite low for each player. The (Center, Center) combination would result in 
a sure save and the kicker would get a really low payoff—namely, 0. There-
fore, the kicker puts a low probability on this choice. But then the goalie also 
should put a low probability on it, concentrating on countering the kicker’s 
more likely choices. But if the kicker gets a sufficiently high payoff from 
choosing Center when the goalie chooses Left or Right, then the kicker will 
choose Center with some positive probability. If the kicker’s payoffs in the 
Center row were lower, he might then choose Center with zero probability; 
if so, the goalie would similarly put zero probability on Center. The game 
would reduce to one with just two basic pure strategies, Left and Right, for 
each player.

We show such a variant of the soccer game in Figure 7.11. The only dif-
ference in payoffs between this variant and the original game of Figure 7.10 
is that the kicker’s payoffs from (Center, Left) and (Center, Right) have been 
lowered even further, from 85 to 70. This might be because this kicker has the 
habit of kicking too high and therefore missing the goal when aiming for the 
center. Let us try to calculate the equilibrium here by using the same meth-
ods as in Section 7.A. This time we do it from the goalie’s perspective: we try 
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to find his mixture probabilities qL, qR, and qC by using the condition that the 
kicker should be indifferent among all three of his pure strategies when played 
against this mixture.

The kicker’s payoffs from his pure strategies are

Left: 45qL 1 90qC 1 90qR 5 45qL 1 90(1 2 qL 2 qR) 1 90qR  
 5 45qL 1 90(1 2 qL)

Center: 70qL 1 0qC 1 70qR 5 70qL 1 70qR

Right: 95qL 1 95qC 1 60qR 5 95qL 1 95(1 2 qL 2 qR) 1 60 qR  
 5 95(1 2 qR) 1 60qR.

Equating the Left and Right expressions and simplifying, we have 90 2 45qL 5 
95 2 35qR, or 35qR 5 5 1 45qL. Next, equate the Left and Center expressions and 
simplify to get 90 2 45qL 5 70qL 1 70qR, or 115qL 1 70qR 5 90. Substituting for 
qR from the first of these equations (after multiplying through by 2 to get 70qR 5  
10 1 90qL) into the second yields 205qL 5 80, or qL 5 0.390. Then, using this 
value for qL in either of the equations gives qR 5 0.644. Finally, we use both of 
these values to obtain qC 5 1 2 0.390 2 0.644 5 20.034. Because probabilities 
cannot be negative, something has obviously gone wrong.

To understand what happens in this example, start by noting that Center 
is now a poorer strategy for the kicker than it was in the original version of the 
game, where his probability of choosing it was already quite low. But the logic 
of the opponent’s indifference, expressed in the equations that led to the solu-
tion, means that the kicker has to be kept willing to use this poor strategy. That 
can happen only if the goalie is using his best counter to the kicker’s Center—
namely, the goalie’s own Center—sufficiently infrequently. And in this example, 
that logic has to be carried so far that the goalie’s probability of Center has to 
become negative.

As pure algebra, the solution that we derived may be fine, but it violates the 
requirement of probability theory and real-life randomization that probabilities 
be nonnegative. The best that can be done in reality is to push the goalie’s prob-
ability of choosing Center as low as possible—namely, to zero. But that leaves 

Left Center

GOALIE

Left

Center

45, 55 90, 10 90, 10

70, 30 0, 100 70, 30

95, 5 95, 5 60, 40

Right

Right

KICKER

FIGURE 7.11 variant of soccer Penalty Kick game
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the kicker unwilling to use his own Center. In other words, we get a situation in 
which each player is not using one of his pure strategies in his mixture—that is, 
each is using it with zero probability.

Can there then be an equilibrium in which each player is mixing between 
his two remaining strategies—namely, Left and Right? If we regard this reduced 
two-by-two game in its own right, we can easily find its mixed-strategy equilib-
rium. With all the practice that you have had so far, it is safe to leave the details 
to you and to state the result:

Kicker’s mixture probabilities: pL 5 0.4375, pR 5 0.5625
Goalie’s mixture probabilities: qL 5 0.3750, qR 5 0.6250
Kicker’s expected payoff (success percentage): 73.13
Goalie’s expected payoff (success percentage): 26.87.

We found this result by simply removing the two players’ Center strategies 
from consideration on intuitive grounds. But we must check that it is a genuine 
equilibrium of the full three-by-three game. That is, we must check that neither 
player finds it desirable to bring in his third strategy, given the mixture of two 
strategies chosen by the other player.

When the goalie is choosing this particular mixture, the kicker’s payoff from 
pure Center is 0.375 3 70 1 0.625 3 70 5 70. This payoff is less than the 73.13 
that he gets from either of his pure Left or pure Right or any mixture between 
the two, so the kicker does not want to bring his Center strategy into play. When 
the kicker is choosing the two-strategy mixture with the preceding probabili-
ties, the goalie’s payoff from pure Center is 0.4375 3 10 1 0.5625 3 5 5 7.2. This 
number is (well) below the 26.87 that the goalie would get using his pure Left or 
pure Right or any mixture of the two. Thus, the goalie does not want to bring his 
Center strategy into play either. The equilibrium that we found for the two-by-
two game is indeed an equilibrium of the three-by-three game.

To allow for the possibility that some strategies may go unused in an equi-
librium mixture, we must modify or extend the “opponent’s indifference” princi-
ple. Each player’s equilibrium mix should be such that the other player is indif-
ferent among all the strategies that are actually used in his equilibrium mix. The 
other player is not indifferent between these and his unused strategies; he pre-
fers the ones used to the ones unused. In other words, against the opponent’s 
equilibrium mix, all of the strategies used in your own equilibrium mix should 
give you the same expected payoff, which in turn should be higher than what 
you would get from any of your unused strategies.

Which strategies will go unused in equilibrium? Answering that requires 
much trial and error as in our calculation above, or leaving it all to a computer 
program, and once you have understood the concept, it is safe to do the latter. 
For the general theory of mixed-strategy equilibria when players can have any 
number of possible strategies, see the online appendix to this chapter.
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8 HOW TO USE MIXED STRATEGIES IN PRACTICE

There are several important things to remember when finding or using a mixed 
strategy in a zero-sum game. First, to use a mixed strategy effectively in such 
a game, a player needs to do more than calculate the equilibrium percentages 
with which to use each of her actions. Indeed, in our tennis-point game, Evert 
cannot simply play DL seven-tenths of the time and CC three-tenths of the time 
by mechanically rotating seven shots down the line and three shots crosscourt. 
Why not? Because mixing your strategies is supposed to help you benefit from 
the element of surprise against your opponent. If you use a recognizable pattern 
of plays, your opponent is sure to discover it and exploit it to her advantage.

The lack of a pattern means that, after any history of choices, the probability 
of choosing DL or CC on the next turn is the same as it always was. If a run of 
several successive DLs happens by chance, there is no sense in which CC is now 
“due” on the next turn. In practice, many people mistakenly think otherwise, 
and therefore they alternate their choices too much compared with what a truly 
random sequence of choices would require: they produce too few runs of identi-
cal successive choices. However, detecting a pattern from observed actions is a 
tricky statistical exercise that the opponents may not be able to perform while 
playing the game. As we will see in Section 9, analysis of data from grand-slam 
tennis finals found that servers alternated their serves too much, but receivers 
were not able to detect and exploit this departure from true randomization.

The importance of avoiding predictability is clearest in ongoing interactions 
of a zero-sum nature. Because of the diametrically opposed interests of the play-
ers in such games, your opponent always benefits from exploiting your choice 
of action to the greatest degree possible. Thus, if you play the same game against 
each other on a regular basis, she will always be on the lookout for ways to break 
the code that you are using to randomize your moves. If she can do so, she has 
a chance to improve her payoffs in future plays of the game. But even in single-
meet (sometimes called one-shot) zero-sum games, mixing remains beneficial 
because of the benefit of tactical surprise.

Daniel Harrington, a winner of the World Series of Poker and author with 
Bill Robertie of an excellent series of books on how to play Texas Hold ’em tour-
naments, notes the importance of randomizing your strategy in poker in order 
to prevent opponents from reading what cards you’re holding and exploiting 
your behavior.13 Because humans often have trouble being unpredictable, he 

13 Poker is a game of incomplete information because each player holds private information about 
her cards. While we do not analyze the details of such games until Chapter 8, they may involve 
mixed-strategy equilibria (called semiseparating equilibria) where the random mixtures are specifi-
cally designed to prevent other players from using your actions to infer your private information.

6841D CH07 UG.indd   242 12/18/14   3:12 PM



h o W  t o  u s e  m i x e d  s t r at e g i e s  i n  P r a C t i C e   2 4 3

gives the following advice about how to implement a mixture between the pure 
strategies of calling and raising:

It’s hard to remember exactly what you did the last four or five times a given 
situation appeared, but fortunately you don’t have to. Just use the little ran-
dom number generator that you carry around with you all day. What’s that? 
You didn’t know you had one? It’s the second hand on your watch. If you 
know that you want to raise 80 percent of the time with a premium pair in 
early position and call the rest, just glance down at your watch and note the 
position of the second hand. Since 80 percent of 60 is 48, if the second hand 
is between 0 and 48, you raise, and if it’s between 48 and 60 you just call. The 
nice thing about this method is that even if someone knew exactly what you 
were doing, they still couldn’t read you!14

Of course, in using the second hand of a watch to implement a mixed strategy, it 
is important that your watch not be so accurate and synchronized that your op-
ponent can use the same watch and figure out what you are going to do!

So far, we have assumed that you are interested in implementing a mixed 
strategy in order to avoid possible exploitation by your opponent. But if your 
opponent is not playing his equilibrium strategy, you may want to try to exploit 
his mistake. A simple example is illustrated using an episode of The Simpsons 
in which Bart and Lisa play a game of rock-paper-scissors with each other. (In 
Exercise S10, we give a full description of this three-by-three game, and you will 
derive each player’s equilibrium mixture.) Just before they choose their strate-
gies, Bart thinks to himself, “Good ol’ Rock. Nothing beats Rock,” while Lisa 
thinks to herself, “Poor Bart. He always plays Rock.” Clearly, Lisa’s best response 
is the pure strategy Paper against this naive opponent; she need not use her 
equilibrium mix.

We have observed a more subtle example of exploitation when pairs of stu-
dents play a best-of-100 version of the tennis game in this chapter. As with pro-
fessional tennis players, our students often switch strategies too often, appar-
ently thinking that playing five DLs in a row doesn’t look “random” enough. To 
exploit this behavior, a Navratilova player could predict that after playing three 
DLs in a row, an Evert player is likely to switch to CC, and she can exploit this by 
switching to CC herself. She should do this more often than if she were random-
izing independently each round, but ideally not so often that the Evert player 
notices and starts learning to repeat her strategy in longer runs.

Finally, players must understand and accept the fact that the use of mixed 
strategies guards you against exploitation and gives the best possible expected 
payoff against an opponent who is making her best choices, but that it is only a 

14 Daniel Harrington and Bill Robertie, Harrington on Hold ’em: Expert Strategies for No-Limit Tour-
naments, Volume 1: Strategic Play (Henderson, Nev.: Two Plus Two Publishing, 2004), p. 53.
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probabilistic average. On particular occasions, you can get poor outcomes. For 
example, the long pass on third down with a yard to go, intended to keep the de-
fense honest, may fail on any specific occasion. If you use a mixed strategy in a 
situation in which you are responsible to a higher authority, therefore, you may 
need to plan ahead for this possibility. You may need to justify your use of such a 
strategy ahead of time to your coach or your boss, for example. They need to un-
derstand why you have adopted your mixture and why you expect it to yield you 
the best possible payoff on average, even though it might yield an occasional low 
payoff as well. Even such advance planning may not work to protect your “reputa-
tion,” though, and you should prepare yourself for criticism in the face of a bad 
outcome.

9 EVIDENCE ON MIXING

A. Zero-Sum Games

Early researchers who performed laboratory experiments were generally dismis-
sive of mixed strategies. To quote Douglas Davis and Charles Holt, “Subjects in 
experiments are rarely (if ever) observed flipping coins, and when told ex post 
that the equilibrium involves randomization, subjects have expressed surprise 
and skepticism.”15 When the predicted equilibrium entails mixing two or more 
pure strategies, experimental results do show some subjects in the group pur-
suing one of the pure strategies and others pursuing another, but this does not 
constitute true mixing by an individual player. When subjects play zero-sum 
games repeatedly, individual players often choose different pure strategies over 
time. But they seem to mistake alternation for randomization—that is, they 
switch their choices more often than true randomization would require.

Later research has found somewhat better evidence for mixing in zero-sum 
games. When laboratory subjects are allowed to acquire a lot of experience, they 
do appear to learn mixing in zero-sum games. However, departures from equi-
librium predictions remain significant. Averaged across all subjects, the empiri-
cal probabilities are usually rather close to those predicted by equilibrium, but 
many individual subjects play proportions far from those predicted by equilib-
rium. To quote Colin Camerer, “The overall picture is that mixed equilibria do 
not provide bad guesses about how people behave, on average.”16

15 Douglas D. Davis and Charles A. Holt, Experimental Economics (Princeton: Princeton University 
Press, 1993), p. 99.
16 For a detailed account and discussion, see Chapter 3 of Colin F. Camerer, Behavioral Game Theory 
(Princeton: Princeton University Press, 2003). The quote is from p. 468 of this book.
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An instance of randomization in practice comes from Malaya in the late 
1940s.17 The British army escorted convoys of food trucks to protect the trucks 
from communist terrorist attacks. The terrorists could either launch a large-
scale attack or create a smaller sniping incident intended to frighten the truck 
drivers and keep them from serving again. The British escort could be either 
concentrated or dispersed throughout the convoy. For the army, concentration 
was better to counter a full-scale attack, and dispersal was better against snip-
ing. For the terrorists, a full-scale attack was better if the army escort was dis-
persed, and sniping was better if the escort was concentrated. This zero-sum 
game has only a mixed-strategy equilibrium. The escort commander, who had 
never heard of game theory, made his decision as follows. Each morning, as 
the convoy was forming, he took a blade of grass and concealed it in one of his 
hands, holding both hands behind his back. Then he asked one of his troops to 
guess which hand held the blade, and he chose the form of the convoy accord-
ing to whether the man guessed correctly. Although the precise payoff numbers 
are difficult to judge and therefore we cannot say whether 50–50 was the right 
mixture, the officer had correctly figured out the need for true randomization 
and the importance of using a fresh randomization procedure every day to avoid 
falling into a pattern or making too much alternation between the choices.

The best evidence in support of mixed strategies in zero-sum games comes 
from sports, especially from professional sports, in which players accumulate a 
great deal of experience in such games, and their intrinsic desire to win is but-
tressed by large financial gains from winning.

Mark Walker and John Wooders examined the serve-and-return play of top-
level players at Wimbledon.18 They model this interaction as a game with two 
players, the server and the receiver, in which each player has two pure strategies. 
The server can serve to the receiver’s forehand or backhand, and the receiver 
can guess to which side the serve will go and move that way. Because serves are 
so fast at the top levels of men’s singles, the receiver cannot react after observing 
the actual direction of the serve; rather, the receiver must move in anticipation 
of the serve’s direction. Thus, this game has simultaneous moves. Further, be-
cause the receiver wants to guess correctly and the server wants to wrong-foot 
the receiver, this interaction has a mixed-strategy equilibrium. It is impossible 
to observe the receiver’s strategy on a videotape (on which foot is he resting his 
weight?), so one cannot easily reconstruct the entire matrix of payoffs to test 
whether players are mixing according to the equilibrium predictions. However, 
an important prediction of the theory can be tested by calculating the server’s 
frequency of winning the point for each of his possible serving strategies.

17 R. S. Beresford and M. H. Peston, “A Mixed Strategy in Action,” Operations Research, vol. 6, no. 4 
(December 1955), pp. 173–76.
18 Mark Walker and John Wooders, “Minimax Play at Wimbledon,” American Economic Review, vol. 
91, no. 5 (December 2001), pp. 1521–38.
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If the tennis players are using their equilibrium mixtures in the serve-and-
return game, the server should win the point with the same probability whether 
he serves to the receiver’s forehand or backhand. An actual tennis match con-
tains a hundred or more points played by the same two players; thus there is 
enough data to test whether this implication holds for each match. Walker and 
Wooders tabulated the results of serves in 10 matches. Each match contains four 
kinds of serve-and-return combinations: A serving to B and vice versa, com-
bined with service from the right or the left side of the court (Deuce or Ad side). 
Thus, they had data on 40 serving situations and found that in 39 of them the 
server’s success rates with forehand and backhand serves were equal to within 
acceptable limits of statistical error.

The top-level players must have had enough general experience playing the 
game, as well as particular experience playing against the specific opponents, to 
have learned the general principle of mixing and the correct proportions to mix 
against the specific opponents. However, in one respect the servers’ choices de-
parted from true mixing. To achieve the necessary unpredictability, there should 
be no pattern of any kind in a sequence of serves: the choice of side for each 
serve should be independent of what has gone before. As we said in reference 
to the practice of mixed strategies, players can alternate too much, not realiz-
ing that alternation is a pattern just as much as repeating the same action a few 
times would be a pattern. And indeed, the data show that the tennis servers al-
ternated too much. But the data also indicate that this departure from true mix-
ing was not enough for the opponents to pick up and exploit.

As we showed in Section 8, penalty kicks in soccer are another excellent 
context in which to study mixed strategies. The advantage to analyzing penalty 
kicks is that one can actually observe the strategies of both the kicker and the 
goalkeeper: not only where the kicker aims but also which direction the keeper 
dives. This means one can compute the actual mixing probabilities and com-
pare them to the theoretical prediction. The disadvantage, relative to tennis, is 
that no two players ever face each other more than a few times in a season. In-
stead of analyzing specific matchups of players, one must aggregate across all 
kickers and shooters in order to get enough data. Two studies using exactly this 
kind of data find firm support for predictions of the theory.

Using a large data set from professional soccer leagues in Europe, Ignacio 
Palacios-Huerta constructed the payoff table of the kicker’s average success prob-
abilities shown in Figure 7.12.19 Because the data include both right- and left-
footed kickers, and therefore the natural direction of kicking differs between 
them, they refer to any kicker’s natural side as “Right.” (Kickers usually kick with 
the inside of the foot. A right-footed kicker naturally kicks to the goalie’s right 

19 See “Professionals Play Minimax,” by Ignacio Palacios-Huerta, Review of Economics Studies, vol. 
70, no. 20 (2003), pp. 395–415.
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and a left-footed kicker to the goalie’s left.) The choices are Left and Right for 
each player. When the goalie chooses Right, it means covering the kicker’s natural 
side.

Using the opponent’s indifference property, it is easy to calculate that the 
kicker should choose Left 38.3% of the time and Right 61.7% of the time. This 
mixture achieves a success rate of 79.6% no matter what the goalie chooses. The 
goalie should choose the probabilities of covering her Left and Right to be 41.7 
and 58.3, respectively; this mixture holds the kicker down to a success rate of 
79.6%.

What actually happens? Kickers choose Left 40.0% of the time, and goalies 
choose Left 41.3% of the time. These values are startlingly close to the theoreti-
cal predictions. The chosen mixtures are almost exploitation proof. The kicker’s 
mix achieves a success rate of 79.0% against the goalie’s Left and 80% against the 
goalie’s Right. The goalie’s mix holds kickers down to 79.3% if they choose Left 
and 79.7% if they choose Right.

 In an earlier paper, Pierre-André Chiappori, Timothy Groseclose, and  
Steven Levitt used similar data and found similar results.20 They also analyzed 
the whole sequence of choices of each kicker and goalie and did not even find 
too much alternation. One reason for this last result could be that most penalty 
kicks take place as isolated incidents across many games by contrast with the 
rapidly repeated points in tennis, so players may find it easier to ignore what 
happened on the previous kick. Nevertheless, these findings suggest that behav-
ior in soccer penalty kicks is even closer to true mixing than behavior in the ten-
nis serve-and-return game.

With such strong empirical confirmation of the theory, one might ask 
whether the mixed-strategy skills that players learn in soccer carry over to other 
game contexts. One study indicated that the answer is yes (Spanish profes-
sional soccer players played exactly according to the equilibrium predictions in  

FIGURE 7.12 soccer Penalty Kick success Probabilities in european major leagues

Left Right

GOALIE

Left

Right

58 95

93 70
KICKER

20 Pierre-André Chiappori, Timothy Groseclose, and Steven Levitt, “Testing Mixed Strategy Equilib-
ria When Players are Heterogeneous: The Case of Penalty Kicks in Soccer,” American Economic Re-
view, vol. 92, no. 4 (September 2002), pp. 1138–51.
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laboratory experiments with two-by-two and four-by-four zero-sum matrix 
games). But a second study failed to replicate these results. That study exam-
ined American Major League Soccer players as well as participants in the World 
Series of Poker (who, as noted in Section 8 above, also have professional rea-
sons to prevent exploitation by mixing), finding that the professionals’ behav-
ior in abstract matrix games was just as far from equilibrium as that of stu-
dents. Consistent with the results on professional chess players we discussed in  
Chapter 3, experience leads professional players to mix according to equilib-
rium theory in their jobs, but this experience does not automatically lead play-
ers to equilibrium in new and unfamiliar games. 21

B. Non-Zero-Sum Games

Laboratory experiments on games with mixed strategies in non-zero-sum 
games yield even more negative results than experiments involving mixing in 
zero-sum games. This is not surprising. As we have seen, in such games the 
property that each player’s equilibrium mixture keeps her opponent indiffer-
ent among her pure strategies is a logical property of the equilibrium. Unlike in 
zero-sum games, in general each player in a non-zero-sum game has no positive 
or purposive reason to keep the other players indifferent. Then the reasoning 
underlying the mixture calculations is more difficult for players to comprehend 
and learn. This shows up in their behavior.

In a group of experimental subjects playing a non-zero-sum game, we may 
see some pursuing one pure strategy and others pursuing another. This type of 
mixing in the population, although it does not fit the theory of mixed-strategy 
equilibria, does have an interesting evolutionary interpretation, which we ex-
amine in Chapter 12.

As we saw in Section 5.B above, each player’s mixture probabilities should 
not change when the player’s own payoffs change. But in fact they do: players 
tend to choose an action more when their own payoff to that action increases.22 
The players do change their actions from one round to the next in repeated tri-
als with different partners, but not in accordance with equilibrium predictions.

The overall conclusion is that you should interpret and use mixed-strategy 
equilibria in non-zero-sum games with, at best, considerable caution.

21 The first study referenced is Ignacio Palacios-Huerta and Oskar Volij, “Experientia Docet: Pro-
fessionals Play Minimax in Laboratory Experiments,” Econometrica, vol. 76, no. 1 (January 2008), 
pp. 71–115. The second is Steven D. Levitt, John A. List, and David H. Reiley, “What Happens in the 
Field Stays in the Field: Exploring Whether Professionals Play Minimax in Laboratory Experiments,” 
Econometrica, vol. 78, no. 4 (July 2010), pp. 1413–34.
22 Jack Ochs, “Games with Unique Mixed-Strategy Equilibria: An Experimental Study,” Games and 
Economic Behavior, vol. 10, no. 1 (July 1995), pp. 202–17.
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SUMMARY

Zero-sum games in which one player prefers a coincidence of actions and the 
other prefers the opposite often have no Nash equilibrium in pure strategies. In 
these games, each player wants to be unpredictable and thus uses a mixed strat-
egy that specifies a probability distribution over her set of pure strategies. Each 
player’s equilibrium mixture probabilities are calculated using the opponent’s 
indifference property, namely that the opponent should get equal expected 
payoffs from all her pure strategies when facing the first player’s equilibrium 
mix. Best-response-curve diagrams can be used to show all mixed-strategy (as 
well as pure-strategy) equilibria of a game.

Non-zero-sum games can also have mixed-strategy equilibria that can be 
calculated from the opponent’s indifference property and illustrated using  
best-response curves. But here the motivation for keeping the opponent in-
different is weaker or missing; therefore such equilibria have less appeal and  
are often unstable.

Mixed strategies are a special case of continuous strategies but have addi-
tional matters that deserve separate study. Mixed-strategy equilibria can be inter-
preted as outcomes in which each player has correct beliefs about the probabili-
ties with which the other player chooses from among her underlying pure actions. 
And mixed-strategy equilibria may have some counterintuitive properties when 
payoffs for players change.

If one player has three pure strategies and the other has only two, the player 
with three available strategies will generally use only two in her equilibrium mix. 
If both players have three (or more) pure strategies, equilibrium mixtures may put 
positive probability on all pure strategies or only a subset. All strategies that are 
actively used in the mixture yield equal expected payoff against the opponent’s 
equilibrium mix; all the unused ones yield lower expected payoff. In these large 
games, equilibrium mixtures may also be indeterminate in some exceptional 
cases.

When using mixed strategies, players should remember that their system 
of randomization should not be predictable in any way. Most important, they 
should avoid excessive alternation of actions. Laboratory experiments show only 
weak support for the use of mixed strategies. But mixed-strategy equilibria give 
good predictions in many zero-sum situations in sports played by experienced 
professionals.

KEY TERMS

expected payoff (216) opponent’s indifference property (218)
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SOLVED EXERCISES

 S1. Consider the following game:

  

Safe Risky

COLIN

Safe

Risky

4, 4

1, 4

4, 1

6, 6
ROWENA

Left Right

COLIN

Up

Down

1, 16 4, 6

2, 20 3, 40
ROWENA

 (a) Which game does this most resemble: tennis, assurance, or chicken?  
Explain.

 (b) Find all of this game’s Nash equilibria.

 S2. The following table illustrates the money payoffs associated with a  
two-person simultaneous-move game:

 (a) Find the Nash equilibrium in mixed strategies for this game.
 (b)  What are the players’ expected payoffs in this equilibrium?
 (c) Rowena and Colin jointly get the most money when Rowena plays 

Down. However, in the equilibrium, she does not always play 
Down. Why not? Can you think of ways in which a more coopera-
tive outcome can be sustained?

 S3. Recall Exercise S7 from Chapter 4, about an old lady looking for help 
crossing the street and two players simultaneously deciding whether to 
offer help. If you did that exercise, you also found all of the pure-strategy  
Nash equilibria of the game. Now find the mixed-strategy equilibrium 
of the game.

 S4. Revisit the tennis game in Section 2.A of this chapter. Recall that the 
mixed-strategy Nash equilibrium found in that section had Evert playing 
DL with probability 0.7, while Navratilova played DL with probability 0.6. 
Now suppose that Evert injures herself later in the match, so her DL shots 
are much slower and easier for Navratilova to defend. The payoffs are now 
given by the following table:
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 (a) Relative to the game before her injury (see Figure 7.1), the strategy 
DL seems much less attractive to Evert than before. Would you ex-
pect Evert to play DL more, less, or the same amount in a new mixed-
strategy equilibrium? Explain.

 (b) Find each player’s equilibrium mixture for this game. What is the ex-
pected value of the game to Evert?

 (c) How do the equilibrium mixtures found in part (b) compare with 
those of the original game and with your answer to part (a)? Explain 
why each mixture has or has not changed.

 S5. Exercise S7 in Chapter 6 introduced a simplified version of baseball, and 
part (e) pointed out that the simultaneous-move game has no Nash equi-
librium in pure strategies. This is because pitchers and batters have con-
flicting goals. Pitchers want to get the ball past batters, but batters want 
to connect with pitched balls. The game table is as follows: 

  

DL CC

NAVRATILOVA

DL

CC

30, 70

90, 10 20, 80

60, 40
EVERT

  

Throw fastball Throw curve

PITCHER

Anticipate fastball

Anticipate curve

0.30, 0.70

0.15, 0.85 0.35, 0.65

0.20, 0.80
BATTER

 (a) Find the mixed-strategy Nash equilibrium to this simplified baseball 
game.

 (b) What is each player’s expected payoff for the game?
 (c) Now suppose that the pitcher tries to improve his expected pay-

off in the mixed-strategy equilibrium by slowing down his fastball, 
thereby making it more similar to a curve ball. This changes the pay-
off to the hitter in the “anticipate fastball/throw fastball” cell from 
0.30 to 0.25, and the pitcher’s payoff adjusts accordingly. Can this 
modification improve the pitcher’s expected payoff as desired? Ex-
plain your answer carefully and show your work. Also, explain why 
slowing the fastball can or cannot improve the pitcher’s expected 
payoff in the game.

6841D CH07 UG.indd   251 12/18/14   3:12 PM



2 5 2   [ C h . 7 ]  s i m u lta n e o u s - m o v e  g a m e s : m i x e d  s t r at e g i e s

 S6. Undeterred by their experiences with chicken so far (see Section 4.B), 
James and Dean decide to increase the excitement (and the stakes) by 
starting their cars farther apart. This way they can keep the crowd in sus-
pense longer, and they’ll be able to accelerate to even higher speeds be-
fore they may or may not be involved in a much more serious collision. 
The new game table thus has a higher penalty for collision.

  

Swerve Straight

DEAN

Swerve

Straight

0, 0

1, –1 –10, –10

–1, 1
JAMES

 (a) What is the mixed-strategy Nash equilibrium for this more danger-
ous version of chicken? Do James and Dean play Straight more or 
less often than in the game shown in Figure 7.4?

 (b) What is the expected payoff to each player in the mixed-strategy 
equilibrium found in part (a)?

 (c) James and Dean decide to play the chicken game repeatedly (say, in 
front of different crowds of reckless youths). Moreover, because they 
don’t want to collide, they collude and alternate between the two  
pure-strategy equilibria. Assuming they play an even number of 
games, what is the average payoff to each of them when they col-
lude in this way? Is this better or worse than they can expect from 
playing the mixed-strategy equilibrium? Why?

 (d) After several weeks of not playing chicken as in part (c), James and 
Dean agree to play again. However, each of them has entirely forgot-
ten which pure-strategy Nash equilibrium they played last time and 
neither realizes this until they’re revving their engines moments be-
fore starting the game. Instead of playing the mixed-strategy Nash 
equilibrium, each of them tosses a separate coin to decide which 
strategy to play. What is the expected payoff to James and Dean 
when each mixes 50–50 in this way? How does this compare with 
their expected payoffs when they play their equilibrium mixtures? 
Explain why these payoffs are the same or different from those 
found in part (c).

 S7. Section 2.B illustrates how to graph best-response curves for the  
tennis-point game. Section 4.B notes that when there are multiple 
equilibria, they can be identified from multiple intersections of the  
best-response curves. For the battle-of-the-sexes game in Figure 4.12 

6841D CH07 UG.indd   252 12/18/14   3:12 PM



e x e r C i s e s   2 5 3

from Chapter 4, graph the best responses of Harry and Sally on a p-q co-
ordinate plane. Label all of the Nash equilibria.

 S8. Consider the following game: 

    

Yes No

COLIN

Yes 

No 

x, x

1, 0

0, 1

1, 1
ROWENA

  

PROFESSOR PLUM

Conservatory

Ballroom

Revolver

1, 3

3, 1

Knife

2, –2

1, 4

Wrench

5, 0

0, 6
MRS. PEACOCK

 (a) For what values of x does this game have a unique Nash equilib-
rium? What is that equilibrium?

 (b) For what values of x does this game have a mixed-strategy Nash 
equilibrium? With what probability, expressed in terms of x, does 
each player play Yes in this mixed-strategy equilibrium? 

 (c) For the values of x found in part (b), is the game an example of an 
assurance game, a game of chicken, or a game similar to tennis?  
Explain.

 (d) Let x 5 3. Graph the best-response curves of Rowena and Colin on 
a p-q coordinate plane. Label all the Nash equilibria in pure and 
mixed strategies.

 (e) Let x 5 1. Graph the best-response curves of Rowena and Colin on 
a p-q coordinate plane. Label all the Nash equilibria in pure and 
mixed strategies.

 S9. Consider the following game:

 (a) Graph the expected payoffs from each of Professor Plum’s strategies 
as a function of Mrs. Peacock’s p-mix. 

 (b) Over what range of p does Revolver yield a higher expected payoff 
for Professor Plum than Knife? 

 (c) Over what range of p does Revolver yield a higher expected payoff 
than Wrench?
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 (d) Which pure strategies will Professor Plum use in his equilibrium 
mixture? Why?

 (e) What is the mixed-strategy Nash equilibrium of this game?

 S10. Many of you will be familiar with the children’s game rock-paper-scissors.  
In rock-paper-scissors, two people simultaneously choose either “rock,” 
“paper,” or “scissors,” usually by putting their hands into the shape of 
one of the three choices. The game is scored as follows. A player choos-
ing Scissors beats a player choosing Paper (because scissors cut paper). A 
player choosing Paper beats a player choosing Rock (because paper cov-
ers rock). A player choosing Rock beats a player choosing Scissors (be-
cause rock breaks scissors). If two players choose the same object, they 
tie. Suppose that each individual play of the game is worth 10 points. The 
following matrix shows the possible outcomes in the game: 

Rock Scissors

LISA

Rock

Scissors

0, 0 10, –10 –10, 10

–10, 10 0, 0 10, –10

10, –10 –10, 10 0, 0

Paper

Paper

BART

 (a) Derive the mixed-strategy equilibrium of the rock-paper-scissors 
game.

 (b) Suppose that Lisa announced that she would use a mixture in which 
her probability of choosing Rock would be 40%, her probability of 
choosing Scissors would be 30%, and her probability of choosing 
Paper would be 30%. What is Bart’s best response to this strategy 
choice by Player 2? Explain why your answer makes sense, given 
your knowledge of mixed strategies.

S11. Recall the game between ice-cream vendors on a beach from Exercise U6 
in Chapter 6. In that game, we found two asymmetric pure-strategy equi-
libria. There is also a symmetric mixed-strategy equilibrium to the game.

 (a) Write down the five-by-five table for the game.
 (b) Eliminate dominated strategies, and explain why they should not be 

used in the equilibrium.
 (c) Use your answer to part (b) to help you find the mixed-strategy 

equilibrium to the game.
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In this problem, you will verify that the mixed-strategy equilibrium 
of this game entails the goalie using L and R each 42.2% of the time and C 
15.6% of the time, while the kicker uses LL and LR each 37.8% of the time 
and HC 24.4% of the time. 

 (a) Given the goalie’s proposed mixed strategy, compute the expected 
payoff to the kicker for each of her six pure strategies. (Use only 
three significant digits to keep things simple.)

 (b) Use your answer to part (a) to explain why the kicker’s proposed 
mixed strategy is a best response to the goalie’s proposed mixed 
strategy.

 (c) Given the kicker’s proposed mixed strategy, compute the expected 
payoff to the goalie for each of her three pure strategies. (Again, use 
only three significant digits to keep things simple.)

 (d) Use your answer to part (a) to explain why the goalie’s proposed 
mixed strategy is a best response to the kicker’s proposed mixed 
strategy.

 (e) Using your previous answers, explain why the proposed strategies 
are indeed a Nash equilibrium.

 (f) Compute the equilibrium payoff to the kicker.

GOALIE

LL

HL

HC
KICKER

LC

HR

L

0.50, 0.50

0.85, 0.15

0.40, 0.60

0.70, 0.30

0.85, 0.15

0.95, 0.05

0, 0

C

0.85, 0.15

0.95, 0.05

0, 0

0.85, 0.15

0.95, 0.05

0.85, 0.15

R

0.85, 0.15

0.95, 0.05

0.70, 0.30

0.50, 0.50

0.40, 0.60LR

 S12. Suppose that the soccer penalty-kick game of Section 7.A in this chapter 
is expanded to include a total of six distinct strategies for the kicker: to 
shoot high and to the left (HL), low and to the left (LL), high and in the 
center (HC), low and in the center (LC), high right (HR), and low right 
(LR). The goalkeeper continues to have three strategies: to move to the 
kicker’s left (L) or right (R) or to stay in the center (C). The players’ suc-
cess percentages are shown in the following table:
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 (a) Suppose the game has a mixed-strategy equilibrium. As a function of 
the payoffs in the table, solve for the probability that Rowena plays Up 
in equilibrium.

 (b) Solve for the probability that Colin plays Left in equilibrium.
 (c) Explain how your results show that each player’s equilibrium mixtures 

depend only on the other player’s payoffs.
 (d) What conditions must be satisfied by the payoffs in order to guarantee 

that the game does indeed have a mixed-strategy equilibrium?

 S14. (Optional) Recall Exercise S13 of Chapter 4, which was based on the bar 
scene from the film A Beautiful Mind. Here we consider the mixed-strategy 
equilibria of that game when played by n . 2 young men.

 (a) Begin by considering the symmetric case in which each of the n young 
men independently goes after the solitary blonde with some probabil-
ity P. This probability is determined by the condition that each young 
man should be indifferent between the pure strategies Blonde and 
Brunette, given that everyone else is mixing. What is the condition that 
guarantees the indifference of each player? What is the equilibrium 
value of P in this game?

 (b) There are also some asymmetric mixed-strategy equilibria in this 
game. In these equilibria, m , n young men each go for the blonde 
with probability Q, and the remaining n 2 m young men go after the 
brunettes. What is the condition that guarantees that each of the m 
young men is indifferent, given what everyone else is doing? What 
condition must hold so that the remaining n 2 m players don’t want 
to switch from the pure strategy of choosing a brunette? What is the 
equilibrium value of Q in the asymmetric equilibrium?

  

Left Right

COLIN

Up

Down

a, A

c, C

b, B

d, D
ROW

 S13. (Optional) In Section 5.B, we demonstrated for the assurance game 
that changing Sally’s payoffs does not change her equilibrium mixing  
proportions—only Harry’s payoffs determine her equilibrium mixture. In 
this exercise, you will prove this as a general result for the mixed-strategy  
equilibria of all two-by-two games. Consider a general two-by-two  
non-zero-sum game with the payoff table shown below: 
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UNSOLVED EXERCISES

 U1. In football the offense can either run the ball or pass the ball, whereas 
the defense can either anticipate (and prepare for) a run or anticipate 
(and prepare for) a pass. Assume that the expected payoffs (in yards) for 
the two teams on any given down are as follows: 

    

Work and ask for help Slack and fish for hints

STUDENT

Help student 

Ignore e-mail 

3, 3

–2, 1 0, 0

–1, 4
PROFESSOR 

  

 (a)  Show that this game has no pure-strategy Nash equilibrium. 
 (b) Find the unique mixed-strategy Nash equilibrium to this game.
 (c) Explain why the mixture used by the offense is different from the 

mixture used by the defense.
 (d) How many yards is the offense expected to gain per down in  

equilibrium?

 U2. On the eve of a problem-set due date, a professor receives an e-mail from 
one of her students who claims to be stuck on one of the problems after 
working on it for more than an hour. The professor would rather help the 
student if he has sincerely been working, but she would rather not ren-
der aid if the student is just fishing for hints. Given the timing of the re-
quest, she could simply pretend not to have read the e-mail until later. 
Obviously, the student would rather receive help whether or not he has 
been working on the problem. But if help isn’t coming, he would rather 
be working instead of slacking, since the problem set is due the next day. 
Assume the payoffs are as follows: 

  

Anticipate Run Anticipate Pass

DEFENSE

Run

Pass

1, –1

9, –9 –3, 3

5, –5
OFFENSE

 (a) What is the mixed-strategy Nash equilibrium to this game?
 (b) What is the expected payoff to each of the players?
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 U3. Exercise S12 in Chapter 4 introduced the game “Evens or Odds,” which 
has no Nash equilibrium in pure strategies. It does have an equilibrium 
in mixed strategies.

 (a) If Anne plays 1 (that is, she puts in one finger) with probability p, 
what is the expected payoff to Bruce from playing 1, in terms of p? 
What is his expected payoff from playing 2?

 (b) What level of p will make Bruce indifferent between playing 1 and  
playing 2?

 (c) If Bruce plays 1 with probability q, what level of q will make Anne 
indifferent between playing 1 and playing 2?

 (d)  Write the mixed-strategy equilibrium of this game. What is the ex-
pected payoff of the game to each player?

 U4. Return again to the tennis rivals Evert and Navratilova, discussed in 
Section 2.A. Months later, they meet again in a new tournament. Evert 
has healed from her injury (see Exercise S4), but during that same time 
Navratilova has worked very hard on improving her defense against DL 
serves. The payoffs are now as follows: 

  

DL CC

NAVRATILOVA

DL

CC

25, 75

90, 10 20, 80

80, 20
EVERT

 (a) Find each player’s equilibrium mixture for the game above.
 (b) What happened to Evert’s p-mixture compared to the game pre-

sented in Section 2.A? Why?
 (c) What is the expected value of the game to Evert? Why is it different 

from the expected value of the original game in Section 2.A?

 U5. Section 4.A of this chapter discussed mixing in the battle-of-the-sexes 
game between Harry and Sally.

 (a) What do you expect to happen to the equilibrium values of p and q 
found in the chapter if Sally decides she really likes Local Latte a lot 
more than Starbucks, so that the payoffs in the (Local Latte, Local 
Latte) cell are now (1, 3)? Explain your reasoning.

 (b) Now find the new mixed-strategy equilibrium values of p and q . How 
do they compare with those of the original game?

 (c) What is the expected payoff to each player in the new  
mixed-strategy equilibrium?
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 (d) Do you think Harry and Sally might play the mixed-strategy equilib-
rium in this new version of the game? Explain why or why not.

 U6. Consider the following variant of chicken, in which James’s payoff from 
being “tough” when Dean is “chicken” is 2, rather than 1:

    

COLIN

Up

Down

L

1, 1

2, 5

M

2, 2

3, 3

N

3, 4

1, 2

R

9, 3

7, 1
ROWENA

 (a) Find the mixed-strategy equilibrium in this game, including the ex-
pected payoffs for the players.

 (b) Compare the results with those of the original game in Section 4.B of 
this chapter. Is Dean’s probability of playing Straight (being tough) 
higher now than before? What about James’s probability of playing 
Straight? 

 (c) What has happened to the two players’ expected payoffs? Are these 
differences in the equilibrium outcomes paradoxical in light of the 
new payoff structure? Explain how your findings can be understood 
in light of the opponent’s indifference principle.

 U7. For the chicken game in Figure 4.13 from Chapter 4, graph the best re-
sponses of James and Dean on a p-q coordinate plane. Label all of the 
Nash equilibria.

 U8. (a)  Find all pure-strategy Nash equilibria of the following game:

 (b) Now find a mixed-strategy equilibrium of the game. What are the 
players’ expected payoffs in the equilibrium?

  

Swerve Straight

DEAN

Swerve

Straight

0, 0

2, –1 –2, –2

–1, 1
JAMES
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 U9. Consider a revised version of the game from Exercise S9:

  

PROFESSOR PLUM

Conservatory

Ballroom

Revolver

1, 3

3, 2

Knife

2, –2

1, 4

Wrench

5, 0

0, 6
MRS. PEACOCK

Rock Scissors

LISA

Rock

Scissors

0, 0 20, –20 –10, 10

–10, 10 0, 0 10, –10

10, –10 –10, 10 0, 0

Paper

Paper

BART

 (a) Graph the expected payoffs from each of Professor Plum’s strategies 
as a function of Mrs. Peacock’s p-mix. 

 (b) Which strategies will Professor Plum use in his equilibrium mixture? 
Why?

 (c) What is the mixed-strategy Nash equilibrium of this game?
 (d) Note that this game is only slightly different from the game in Ex-

ercise S9. How are the two games different? Explain why you intui-
tively think the equilibrium outcome has changed from Exercise S9.

 U10. Consider a modified version of rock-paper-scissors in which Bart gets a 
bonus when he wins with Rock. If Bart picks Rock while Lisa picks Scis-
sors, Bart wins twice as many points as when either player wins in any 
other way. The new payoff matrix is:

 (a) What is the mixed-strategy equilibrium in this version of the game?
 (b) Compare your answer here with your answer for the mixed-strategy 

equilibrium in Exercise S10. How can you explain the differences in 
the equilibrium strategy choices?
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 U11. Consider the following game:

 (a) Does this game have a pure-strategy Nash equilibrium? If so, what is 
it?

 (b) Find a mixed-strategy equilibrium to this game.
 (c) Actually, this game has two mixed-strategy equilibria. Find the one 

you didn’t find in part (b). (Hint: In one of these equilibria, one of 
the players plays a mixed strategy, whereas the other plays a pure 
strategy.)

 U12. The recalcitrant James and Dean are playing their more dangerous vari-
ant of chicken again (see Exercise S6). They’ve noticed that their pay-
off for being perceived as “tough” varies with the size of the crowd. The 
larger the crowd, the more glory and praise each receives from driving 
straight when his opponent swerves. Smaller crowds, of course, have the 
opposite effect. Let k . 0 be the payoff for appearing “tough.” The game 
may now be represented as:

Air Sea

MACARTHUR

Air

Sea

0, 3 2, 0 1, 7

2, 4 0, 6 2, 0

1, 3 2, 4 0, 3

Land

Land

PATTON

  

Swerve Straight

DEAN

Swerve

Straight

0, 0

k, –1 –10, –10

–1, k
JAMES

 (a) Expressed in terms of k, with what probability does each driver play 
Swerve in the mixed-strategy Nash equilibrium? Do James and Dean 
play Swerve more or less often as k increases?

 (b) In terms of k, what is the expected value of the game to each player 
in the mixed-strategy Nash equilibrium found in part (a)?

 (c) At what value of k do both James and Dean mix 50–50 in the  
mixed-strategy equilibrium? 

 (d) How large must k be for the average payoff to be positive under the 
alternating scheme discussed in part (c) of Exercise S6?
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 U13. (Optional) Recall the game from Exercise S11 in Chapter 4, where Larry, 
Moe, and Curly can choose to buy tickets toward a prize worth $30. We 
found six pure-strategy Nash equilibria in that game. In this problem, 
you will find a symmetric equilibrium in mixed strategies. 

 (a) Eliminate the weakly dominated strategy for each player. Explain 
why a player would never use this weakly dominated strategy in his 
equilibrium mixture.

 (b) Find the equilibrium in mixed strategies.

 U14. (Optional) Exercises S4 and U4 demonstrate that in zero-sum games 
such as the Evert-Navratilova tennis rivalry, changes in a player’s payoffs 
can sometimes lead to unexpected or unintuitive changes to her equi-
librium mixture. But what happens to the expected value of the game? 
Consider the following general form of a two-player zero-sum game:

    

L R

COLIN

U

D

a, –a

c, –c

b, –b

d, –d
ROWENA

Assume that there is no Nash equilibrium in pure strategies, and assume 
that a, b, c, and d are all greater than or equal to 0. Can an increase in any 
one of a, b, c, or d lead to a lower expected value of the game for Rowena? 
If not, prove why not. If so, provide an example.
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■

Appendix:
Probability and Expected Utility

To calculate the expected payoffs and mixed-strategy equilibria of games in this 
chapter, we had to do some simple manipulation of probabilities. Some simple 
rules govern calculations involving probabilities. Many of you may be familiar 
with them, but we give a brief statement and explanation of the basics here by 
way of reminder or remediation, as appropriate. We also state how to calculate 
expected values of random numerical values.

THE BASIC ALGEBRA OF PROBABILITIES

The basic intuition about the probability of an event comes from thinking about 
the frequency with which this event occurs by chance among a larger set of pos-
sibilities. Usually, any one element of this larger set is just as likely to occur by 
chance as any other, so finding the probability of the event in which we are in-
terested is simply a matter of counting the elements corresponding to that event 
and dividing by the total number of elements in the whole large set.23

In any standard deck of 52 playing cards, for instance, there are four suits 
(clubs, diamonds, hearts, and spades) and 13 cards in each suit (ace through 10 
and the face cards—jack, queen, king). We can ask a variety of questions about 
the likelihood that a card of a particular suit or value—or suit and value—might 
be drawn from this deck of cards: How likely are we to draw a spade? How likely 
are we to draw a black card? How likely are we to draw a 10? How likely are we to 
draw the queen of spades? and so on. We would need to know something about 
the calculation and manipulation of probabilities to answer such questions.  
If we had two decks of cards, one with blue backs and one with green backs, we 

23 When we say “by chance,” we simply mean that a systematic order cannot be detected in the out-
come or that it cannot be determined by using available scientific methods of prediction and cal-
culation. Actually, the motions of coins and dice are fully determined by laws of physics, and highly 
skilled people can manipulate decks of cards, but for all practical purposes, coin tosses, rolls of dice, 
or card shuffles are devices of chance that can be used to generate random outcomes. However, ran-
domness can be harder to achieve than you think. For example, a perfect shuffle, where a deck of 
cards is divided exactly in half and then interleaved by dropping cards one at a time alternately from 
each, may seem a good way to destroy the initial order of the deck. But Cornell mathematician Persi 
Diaconis has shown that, after eight of the shuffles, the original order is fully restored. For slightly 
imperfect shuffles that people carry out in reality, he finds that some order persists through six, but 
randomness suddenly appears on the seventh! See “How to Win at Poker, and Other Science Les-
sons,” The Economist, October 12, 1996. For an interesting discussion of such topics, see Deborah J. 
Bennett, Randomness (Cambridge, Mass.: Harvard University Press, 1998), chs. 6–9.
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could ask even more complex questions (“How likely are we to draw one card 
from each deck and have them both be the jack of diamonds?”), but we would 
still use the algebra of probabilities to answer them.

In general, a probability measures the likelihood of a particular event or 
set of events occurring. The likelihood that you draw a spade from a deck of 
cards is just the probability of the event “drawing a spade.” Here the large set 
has 52 elements—the total number of equally likely possibilities—and the 
event “drawing a spade” corresponds to a subset of 13 particular elements. 
Thus, you have 13 chances out of the 52 to get a spade, which makes the prob-
ability of getting a spade in a single draw equal to 1352 5 14 5 25%. To see 
this another way, consider the fact that there are four suits of 13 cards each, 
so your chance of drawing a card from any particular suit is one out of four, 
or 25%. If you made a large number of such draws (each time from a com-
plete deck), then out of 52 times you will not always draw exactly 13 spades; 
by chance you may draw a few more or a few less. But the chance averages out 
over different such occasions—over different sets of 52 draws. Then the prob-
ability of 25% is the average of the frequencies of spades drawn in a large num-
ber of observations.24

The algebra of probabilities simply develops such ideas in general terms 
and obtains formulas that you can then apply mechanically instead of having 
to do the thinking from scratch every time. We will organize our discussion 
of these probability formulas around the types of questions that one might 
ask when drawing cards from a standard deck (or two: blue backed and green 
backed).25 This method will allow us to provide both specific and general formu-
las for you to use later. You can use the card-drawing analogy to help you reason 
out other questions about probabilities that you encounter in other contexts. 
One other point to note: In ordinary language, it is customary to write probabili-
ties as percentages, but the algebra requires that they be written as fractions or 
decimals; thus instead of 25%, the mathematics works with 1352, or 0.25. We 
will use one or the other, depending on the occasion; be aware that they mean 
the same thing.

A. The Addition Rule

The first questions that we ask are: If we were to draw one card from the blue 
deck, how likely are we to draw a spade? And how likely are we to draw a card 
that is not a spade? We already know that the probability of drawing a spade is 
25% because we determined that earlier. But what is the probability of drawing  

24 Bennett, Randomness, chs. 4 and 5, offers several examples of such calculations of probabilities.
25 If you want a more detailed exposition of the following addition and multiplication rules, as well 
as more exercises to practice these rules, we recommend David Freeman, Robert Pisani, and Robert 
Purves, Statistics, 4th ed. (New York: W. W. Norton & Company, 2007), chs. 13 and 14.
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a card that is not a spade? It is the same likelihood of drawing a club or a di-
amond or a heart instead of a spade. It should be clear that the probability in 
question should be larger than any of the individual probabilities of which it is 
formed; in fact, the probability is 1352 (clubs) 1 1352 (diamonds) 1 1352 
(hearts) 5 0.75. The or in our verbal interpretation of the question is the clue 
that the probabilities should be added together, because we want to know the 
chances of drawing a card from any of those three suits.

We could more easily have found our answer to the second question by not-
ing that not getting a spade is what happens the other 75% of the time. Thus, 
the probability of drawing “not a spade” is 75% (100% 2 25%) or, more formally,  
1 2 0.25 5 0.75. As is often the case with probability calculations, the same re-
sult can be obtained here by two different routes, entailing different ways of 
thinking about the event for which we are trying to find the probability. We will 
see other examples of this later in this appendix, where it will become clear that 
the different methods of calculation can sometimes require vastly different 
amounts of effort. As you develop experience, you will discover and remember 
the easy ways or shortcuts. In the meantime, be comforted that each of the dif-
ferent routes, when correctly followed, leads to the same final answer.

To generalize our preceding calculation, we note that, if you divide the set 
of events, X, in which you are interested into some number of subsets, Y, Z, . . . , 
none of which overlap (in mathematical terminology, such subsets are said to be 
disjoint), then the probabilities of each subset occurring must sum to the prob-
ability of the full set of events; if that full set of events includes all possible out-
comes, then its probability is 1. In other words, if the occurrence of X requires 
the occurrence of any one of several disjoint Y, Z, . . . , then the probability of X 
is the sum of the separate probabilities of Y, Z, . . . . Using Prob(X) to denote the 
probability that X occurs and remembering the caveats on X (that it requires any 
one of Y, Z, . . . ) and on Y, Z, . . . (that they must be disjoint), we can write the 
addition rule in mathematical notation as Prob(X) 5 Prob(Y ) 1 Prob(Z ) 1 … . 

E x E r c i s E    Use the addition rule to find the probability of drawing two 
cards, one from each deck, such that the two cards have identical faces.

B. The Multiplication Rule

Now we ask: What is the likelihood that when we draw two cards, one from each 
deck, both of them will be spades? This event occurs if we draw a spade from 
the blue deck and a spade from the green deck. The switch from or to and in 
our interpretation of what we are looking for indicates a switch in mathematical 
operations from addition to multiplication. Thus, the probability of two spades, 
one from each deck, is the product of the probabilities of drawing a spade from 
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each deck, or (1352) 3 (1352) 5 116 5 0.0625, or 6.25%. Not surprisingly, we 
are much less likely to get two spades than we were in the previous section to 
get one spade. (Always check to make sure that your calculations accord in this 
way with your intuition regarding the outcome.)

In much the same way as the addition rule requires events to be disjoint, 
the multiplication rule requires them to be independent: if we break down a set 
of events, X, into some number of subsets Y, Z, . . . , those subsets are indepen-
dent if the occurrence of one does not affect the probability of the other. Our 
events—a spade from the blue deck and a spade from the green deck—satisfy 
this condition of independence; that is, drawing a spade from the blue deck 
does nothing to alter the probability of getting a spade from the green deck. If 
we were drawing both cards from the same deck, however, then after we had 
drawn a spade (with a probability of 1352), the probability of drawing another 
spade would no longer be 1352 (in fact, it would be 1251); drawing one spade 
and then a second spade from the same deck are not independent events.

The formal statement of the multiplication rule tells us that, if the occur-
rence of X requires the simultaneous occurrence of all the several independent 
Y, Z, . . . , then the probability of X is the product of the separate probabilities of 
Y, Z, . . . : Prob(X) 5 Prob(Y) 3 Prob(Z) 3 … .

E x E r c i s E    Use the multiplication rule to find the probability of drawing 
two cards, one from each deck, and getting a red card from the blue deck and 
a face card from the green deck.

C. Expected Values

If a numerical magnitude (such as money winnings or rainfall) is subject to 
chance and can take on any one of n possible values X1, X2, . . . , Xn with re-
spective probabilities p1, p2, . . . , pn, then the expected value is defined as the 
weighted average of all its possible values using the probabilities as weights; 
that is, as p1X1 1 p2X2 1 … 1 pnXn. For example, suppose you bet on the toss of 
two fair coins. You win $5 if both coins come up heads, $1 if one shows heads 
and the other tails, and nothing if both come up tails. Using the rules for manip-
ulating probabilities discussed earlier in this section, you can see that the prob-
abilities of these events are, respectively, 0.25, 0.50, and 0.25. Therefore, your ex-
pected winnings are (0.25 3 $5) 1 (0.50 3 $1) 1 (0.25 3 $0) 5 $1.75.

In game theory, the numerical magnitudes that we need to average in this 
way are payoffs, measured in numerical ratings, or money, or, as we will see 
later in the appendix to Chapter 8, utilities. We will refer to the expected val-
ues in each context appropriately, for example, as expected payoffs or expected  
utilities.
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SUMMARY

The probability of an event is the likelihood of its occurrence by chance from 
among a larger set of possibilities. Probabilities can be combined by using some 
rules. The addition rule says that the probability of any one of a number of dis-
joint events occurring is the sum of the probabilities of these events. According 
to the multiplication rule, the probability that all of a number of independent 
events will occur is the product of the probabilities of these events. Probability-
weighted averages are used to compute expected payoffs in games.

KEY TERMS

addition rule (265) independent events (266)
disjoint (265) multiplication rule (266)
expected value (266) probability (264)
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88
■

Uncertainty and Information

In Chapter 2,  we mentioned different ways in which uncertainty can arise 
in a game (external and strategic) and ways in which players can have lim-
ited information about aspects of the game (imperfect and incomplete,  
symmetric and asymmetric). We have already encountered and analyzed 

some of these. Most notably, in simultaneous-move games, each player does not 
know the actions the other is taking; this is strategic uncertainty. In Chapter 6, 
we saw that strategic uncertainty gives rise to asymmetric and imperfect infor-
mation, because the different actions taken by one player must be lumped into 
one infor mation set for the other player. In Chapters 4 and 7, we saw how such 
strategic uncertainty is handled by having each player formulate beliefs about 
the other’s action (including beliefs about the probabilities with which differ-
ent actions may be taken when mixed strategies are played) and by applying the 
concept of Nash equilibrium, in which such beliefs are confirmed. In this chap-
ter we focus on some further ways in which uncertainty and informational limi-
tations arise in games.

We begin by examining various strategies that individuals and societies can 
use for coping with the imperfect information generated by external uncertainty 
or risk. Recall that external uncertainty is about matters outside any player’s con-
trol but affecting the payoffs of the game; weather is a simple example. Here we 
show the basic ideas behind diversification, or spreading, of risk by an individual 
player and pooling of risk by multiple players. These strategies can benefit every-
one, although the division of total gains among the participants can be unequal; 
therefore, these situations contain a mixture of common interest and conflict.
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We then consider the informational limitations that often exist in situations 
with strategic interdependence. Information in a game is complete only if all of 
the rules of the game—the strategies available to all players and the payoffs of 
each player as functions of the strategies of all players—are fully known by all 
players and, moreover, are common knowledge among them. By this exacting 
standard, most games in reality have incomplete information. Moreover, the  
incompleteness is usually asymmetric: each player knows his own capabilities 
and payoffs much better than he knows those of other players. As we pointed 
out in Chapter 2, manipulation of the information becomes an important di-
mension of strategy in such games. In this chapter, we will discuss when infor-
mation can or cannot be communicated verbally in a credible manner. We will 
also examine other strategies designed to convey or conceal one’s own informa-
tion and to elicit another player’s information. We spoke briefly of some such 
strategies—namely, screening and signaling—in Chapters 1 and 2; here, we 
study those in more detail.

Of course, players in many games would also like to manipulate the actions 
of others. Managers would like their workers to work hard and well; insurance 
companies would like their policyholders to exert care to reduce the risk that 
is being insured. If information were perfect, the actions would be observable. 
Workers’ pay could be made contingent on the quality and quantity of their ef-
fort; payouts to insurance policyholders could be made contingent on the care 
they exercised. But in reality these actions are difficult to observe; that creates 
a situation of imperfect asymmetric information, commonly called moral haz-
ard. Thus, the counterparties in these games have to devise various indirect 
methods to give incentives to influence others’ actions in the right direction.

The study of the topic of information and its manipulation in games has 
been very active and important in recent decades. It has shed new light on many 
previously puzzling matters in economics, such as the nature of incentive con-
tracts, the organization of companies, markets for labor and for durable goods, 
government regulation of business, and myriad others.1 More recently, political 
scientists have used the same concepts to explain phenomena such as the re-
lation of tax- and expenditures-policy changes to elections, as well as the del-
egation of legislation to committees. These ideas have also spread to biology, 
where evolutionary game theory explains features such as the peacock’s large 
and ornate tail as a signal. Perhaps even more important, you will recognize the 
important role that signaling and screening play in your daily interaction with 
family, friends, teachers, coworkers, and so on, and you will be able to improve 
your strategies in these games.

1 The pioneers of the theory of asymmetric information in economics—George Akerlof,  
Michael Spence, and Joseph Stiglitz—received the 2001 Nobel Prize in economics for these  
contributions.
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Although the study of information clearly goes well beyond consideration of 
external uncertainty and the basic concepts of signaling and screening, we focus 
only on those few topics in this chapter. We will return to the analysis of informa-
tion and its manipulation in Chapter 13, however. There we will use the methods 
developed here to study the design of mechanisms to provide incentives to and 
elicit information from other players who have some private information.

1 IMPERFECT INFORMATION: DEALING WITH RISK

Imagine that you are a farmer subject to the vagaries of weather. If the weather 
is good for your crops, you will have an income of $160,000. If it is bad, your 
income will be only $40,000. The two possibilities are equally likely (probability 
12, or 0.5, or 50% each). Therefore, your average or expected income is $100,000 
(5 12 3 160,000 1 12 3 40,000), but there is considerable risk around this  
average value.

What can you do to reduce the risk that you face? You might try a crop that 
is less subject to the vagaries of weather, but suppose you have already done 
all such things that are under your individual control. Then you might be able 
to reduce your income risk further by getting someone else to accept some of 
the risk. Of course, you must give the other person something else in exchange. 
This quid pro quo usually takes one of two forms: cash payment or a mutual ex-
change or sharing of risks.

A. Sharing of Risk

We begin with an analysis of the possibility of risk sharing for mutual benefit. 
Suppose you have a neighbor who faces a similar risk but gets good weather ex-
actly when you get bad weather and vice versa. (Suppose you live on opposite 
sides of an island, and rain clouds visit one side or the other but not both.) In 
technical jargon, correlation is a measure of alignment between any two un-
certain quantities—in this discussion, between one person’s risk and another’s. 
Thus, we would say that your neighbor’s risk is totally negatively correlated with 
yours. The combined income of you and your neighbor is $200,000, no matter 
what the weather: it is totally risk free. You can enter into a contract that gets 
each of you $100,000 for sure: you promise to give him $60,000 in years when 
you are lucky, and he promises to give you $60,000 in years when he is lucky. You 
have eliminated your risks by combining them.

Currency swaps provide a good example of negative correlation of risk in 
real life. A U.S. firm exporting to Europe gets its revenues in euros, but it is inter-
ested in its dollar profits, which depend on the fluctuating euro-dollar exchange 

i m p e r f e C t  i n f o r m at i o n : d e a l i n g  w i t h  r i s k   2 7 3

6841D CH08 UG.indd   273 12/18/14   3:12 PM



2 7 4   [ C h . 8 ]  u n C e r ta i n t y  a n d  i n f o r m at i o n

rate. Conversely, a European firm exporting to the United States faces similar 
uncertainty about its profits in euros. When the euro falls relative to the dol-
lar, the U.S. firm’s euro revenues convert into fewer dollars, and the European 
firm’s dollar revenues convert into more euros. The opposite happens when the 
euro rises relative to the dollar. Thus, fluctuations in the exchange rate generate 
negatively correlated risks for the two firms. Both can reduce these risks by con-
tracting for an appropriate swap of their revenues. 

Even without such perfect negative correlation, risk sharing has some ben-
efit. Return to your role as an island farmer and suppose you and your neighbor 
face risks that are independent from each other, as if the rain clouds could toss 
a separate coin to decide which one of you to visit. Then there are four possible 
outcomes, each with a probability of 14. The incomes you and your neighbor 
earn in these four cases are illustrated in panel a of Figure 8.1. However, suppose 
the two of you were to make a contract to share and share alike; then your in-
comes would be those shown in panel b of Figure 8.1. Although your average 
(expected) income in each table is $100,000, without the sharing contract, you 
each would have $160,000, or $40,000 with probabilities of 12 each. With the 
contract, you each would have $160,000 with probability 14, $100,000 with 
probability 12, and $40,000 with probability 14. Thus, for each of you, the 
contract has reduced the probabilities of the two extreme outcomes from 12 to 
14 and increased the probability of the middle outcome from 0 to 12. In other 
words, the contract has reduced the risk for each of you.

In fact, as long as your incomes are not totally positively correlated—that 
is, as long as your luck does not move in perfect tandem—you can both reduce 
your risks by sharing them. And if there are more than two of you with some 
degree of independence in your risks, then the law of large numbers makes  
possible even greater reduction in the risk of each. That is exactly what insur-
ance companies do: by combining the similar but independent risks of many 
people, an insurance company is able to compensate any one of them when he 
suffers a large loss. It is also the basis of portfolio diversification: by dividing your 
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FIGURE 8.1  sharing income risk
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wealth among many different assets with different kinds and degrees of risk, you 
can reduce your total exposure to risk.

However, such arrangements for risk sharing depend on public observ-
ability of outcomes and enforcement of contracts. Otherwise, each farmer has 
the temptation to pretend to have suffered bad luck or simply to renege on the 
deal and refuse to share when he has good luck. An insurance company may 
similarly falsely deny claims, but its desire to maintain its reputation in ongoing 
business may check such reneging. 

Here we consider another issue. In the discussion above, we simply assumed 
that sharing meant equal shares. That seems natural, because you and your 
farmer-neighbor are in identical situations. But you may have different strategic 
skills and opportunities, and one may be able to do better than the other in bar-
gaining or contracting.

To understand this, we must recognize the basic reason that farmers want 
to make such sharing arrangements, namely, that they are averse to risk. As we 
explain in the appendix to this chapter, attitudes toward risk can be captured 
by using nonlinear scales to convert money incomes into “utility” numbers. The 
square root function is a simple example of such a scale that reflects risk aver-
sion, and we apply it here.

When you bear the full risk of getting $160,000 or $40,000 with probabilities 
12 each, your expected (probability-weighted average) utility is

 12 3 160,000 1 12 3 40,000 5 12 3 400 1 12 3 200 5 300.

The riskless income that will give you the same utility is the number whose 
square root is 300, that is, $90,000. This is less than the average money income 
you have, namely $100,000. The difference, $10,000, is the maximum money 
sum you would be willing to pay as a price for eliminating the risk in your income 
entirely. Your neighbor faces a risk of equal magnitude, so if he has the same 
utility scale, he is also willing to pay the same maximum amount to eliminate all 
of his risk. 

Consider the situation where your risks are perfectly negatively correlated, 
so that the sum of your two incomes is $200,000 no matter what. You make your 
neighbor the following offer: I will pay you $90,001 2 $40,000 5 $50,001 when 
your luck is bad, if you pay me $160,000 2 $90,001 5 $69,999 when your luck is 
good. That leaves your neighbor with $90,001 whether his luck is good or bad 
($160,000 2 $69,999 in the former situation and $40,000 1 $50,001 in the latter 
situation). He prefers this situation to facing the risk. When his luck is good, 
yours is bad; you have $40,000 of your own but receive $69,999 from him for a 
total of $109,999. When his luck is bad, yours is good; you have $160,000 of your 
own but pay him $50,001, leaving you with $109,999. You have also eliminated 
your own risk. Both of you are made better off by this deal, but you have collared 
almost all the gain.
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Of course, your neighbor could have made you the opposite offer. And a 
whole range of intermediate offers, involving more equitable sharing of the gains 
from risk sharing, is also conceivable. Which of these will prevail? That depends 
on the parties’ bargaining power, as we will see in more detail in Chapter 17; the 
full range of mutually beneficial risk-sharing outcomes will correspond to the ef-
ficient frontier of negotiation in the bargaining game between the players.

B. Paying to Reduce Risk

Now we consider the possibility of trading of risks for cash. Suppose you are the 
farmer facing the same risk as before. But now your neighbor has a sure income 
of $100,000. You face a lot of risk, and he faces none. He may be willing to take 
a little of your risk for a price that is agreeable to both of you. We just saw that 
$10,000 is the maximum “insurance premium” you would be willing to pay to 
get rid of your risk completely. Would your neighbor accept this as payment 
for eliminating your risk? In effect, he is taking over control of his riskless in-
come plus your risky income, that is, $100,000 1 $160,000 5 $260,000 if your 
luck is good and $100,000 1 $40,000 5 $140,000 if your luck is bad. He gives you 
$90,000 in either eventuality, thus leaving him with $170,000 or $50,000 with 
equal probabilities. His expected utility is then

12 3 170,000 1 12 3 50,000 5 12 3 412.31 1 12 3 223.61 5 317.96.

His utility if he did not trade with you would be 100,000 5 316.23, so the trade 
makes him just slightly better off. The range of mutually beneficial deals in this 
case is very narrow, so the outcome is almost determinate, but there is not much 
scope for mutual benefit if you aim to trade all of your risk away.

What about a partial trade? Suppose you pay him x if your luck is good, and 
he pays you y if your luck is bad. For this to raise expected utilities for both of 
you, we need both of the following inequalities to hold:

 12 3 160,000 2 x 1 12 40,000 1 y . 300,

 12 3 100,000 1 x 1 12 3 100,000 2 y . 100,000.

As an example, suppose y 5 10,000. Then the second inequality yields x . 
10,526.67, and the first yields x , 18,328.16. The first value for x is the minimum 
payment he requires from you to be willing to make the trade, and the second 
value for x is the maximum you are willing to pay to him to have him assume 
your risk. Thus, there is a substantial range for mutually beneficial trade and 
bargaining.

What if your neighbor is risk neutral, that is, concerned solely with expected 
monetary magnitudes? Then the deal must satisfy

 12 3 (100,000 1 x) 1 12 3 (100,000 2 y) . 100,000,
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or simply x . y, to be acceptable to him. Almost-full insurance, where you 
pay him $60,001 if your luck is good and he pays you $59,999 if your luck is 
bad, is possible. This is the situation where you reap all the gain from the trade  
in risks.

If your “neighbor” is actually an insurance company, the company can be 
close to risk neutral because it is combining numerous such risks and is owned 
by well-diversified investors for each of whom this business is only a small part 
of their total risk. Then the fiction of a friendly, risk-neutral, good neighbor can 
become a reality. And if insurance companies compete for your business, the 
insurance market can offer you almost-complete insurance at a price that leaves 
almost all of the gain with you.

Common to all such arrangements is the idea that mutually beneficial deals 
can be struck whereby, for a suitable price, someone facing less risk takes some 
of the risk off the shoulders of someone else who faces more. In fact, the idea 
that a price and a market for risk exist is the basis for almost all of the financial 
arrangements in a modern economy. Stocks and bonds, as well as all of the com-
plex financial instruments, such as derivatives, are just ways of spreading risk to 
those who are willing to bear it for the lowest asking price. Many people think 
these markets are purely forms of gambling. In a sense, they are. But those who 
start out with the least risk take the gambles, perhaps because they have already 
diversified in the way that we saw earlier. And the risk is sold or shed by those 
who are initially most exposed to it. This enables the latter to be more adven-
turous in their enterprises than they would be if they had to bear all of the risk 
themselves. Thus, financial markets promote entrepreneurship by facilitating 
risk trading.

Here we have only considered sharing of a given total risk. In practice, peo-
ple may be able to take actions to reduce that total risk: a farmer can guard crops 
against frosts, and a car owner can drive more carefully to reduce the risk of an 
accident. If such actions are not publicly observable, the game will be one of im-
perfect information, raising the problem of moral hazard that we mentioned in 
the introduction: people who are well insured will lack the incentive to reduce 
the risk they face. We will look at such problems, and the design of mechanisms 
to cope with them, in Chapter 13.

C. Manipulating Risk in Contests

The farmers above faced risk due to the weather rather than from any actions of 
their own or of other farmers. If the players in a game can affect the risk they or 
others face, then they can use such manipulation of risk strategically. A prime 
example is contests such as research and development races between compa-
nies to develop and market new information technology or biotech products; 
many sports contests have similar features.
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The outcome of sports and related contests is determined by a mixture of 
skill and chance. You win if

 Your skill 1 your luck . rival’s skill 1 rival’s luck

or

 Your luck  2 rival’s luck . rival’s skill 2 your skill.

Denote the left-hand side by the symbol L; it measures your “luck surplus.” L is an 
uncertain magnitude; suppose its probability distribution is a normal, or bell, 
curve, as illustrated by the black curve in Figure 8.2. At any point on the hori-
zontal axis, the height of the curve represents the probability that L takes on that 
value. Thus, the area under this curve between any two points on the horizontal 
axis equals the probability that L lies between those points. Suppose your rival 
has more skill, so you are an underdog. Your “skill deficit,” which equals the dif-
ference between your rival’s skill and your skill, is therefore positive, as shown by 
the point S. You win if your luck surplus, L, exceeds your skill deficit, S. Therefore,  
the area under the curve to the right of the point S, which is shaded in gray in 
Figure 8.2, represents your probability of winning. If you make the situation 
chancier, the bell curve will be flatter, like the blue curve in Figure 8.2, because 
the probability of relatively high and low values of L increases while the prob-
ability of moderate values decreases. Then the area under the curve to the right 
of S also increases. In Figure 8.2, the area under the original bell curve is shown 
by gray shading, and the larger area under the flatter bell curve by the blue 
hatching. As the underdog, you should therefore adopt a strategy that flattens  
the curve. Conversely, if you are the favorite, you should try to reduce the ele-
ment of chance in the contest.

S Luck surplus (L) 

Probability 
density 

FIGURE 8.2  the effect of greater risk on the Chances of winning
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Thus, we should see underdogs or those who have fallen behind in a long 
race try unusual or risky strategies: it is their only chance to get level or ahead. 
In contrast, favorites or those who have stolen a lead will play it safe. A practical 
piece of advice based on this principle: if you want to challenge someone who is 
a better player than you to a game of tennis, choose a windy day.

You may stand to benefit by manipulating not just the amount of risk in your 
strategy, but also the correlation between the risks. The player who is ahead will 
try to choose a correlation as high and as positive as possible: then, whether his 
own luck is good or bad, the luck of his opponent will be the same and his lead 
protected. Conversely, the player who is behind will try to find a risk as uncorre-
lated with that of his opponent as possible. It is well known that in a two-sailboat 
race, the boat that is behind should try to steer differently from the boat ahead, 
and the boat ahead should try to imitate all the tacks of the one behind.2

2 ASYMMETRIC INFORMATION: BASIC IDEAS 

In many games, one or some of the players may have an advantage of know-
ing with greater certainty what has happened or what will happen. Such advan-
tages, or asymmetries of information, are common in actual strategic situations. 
At the most basic level, each player may know his own preferences or payoffs—
for example, risk tolerance in a game of brinkmanship, patience in bargain-
ing, or peaceful or warlike intentions in international relations—quite well but 
those of the other players much more vaguely. The same is true for a player’s 
knowledge of his own innate characteristics (such as the skill of an employee 
or the riskiness of an applicant for auto or health insurance). And sometimes 
the actions available to one player—for example, the weaponry and readiness of 
a country—are not fully known to other players. Finally, some actual outcomes 
(such as the actual dollar value of loss to an insured homeowner in a flood or an 
earthquake) may be observed by one player but not by others.

By manipulating what the other players know about your abilities and pref-
erences, you can affect the equilibrium outcome of a game. Therefore, such  
manipulation of asymmetric information itself becomes a game of strategy. You 
may think that each player will always want to conceal his own information and 
elicit information from the others, but that is not so. Here is a list of various pos-
sibilities, with examples. The better-informed player may want to do one of the 
following:

a s y m m e t r i C  i n f o r m at i o n : B a s i C  i d e a s   2 7 9

2 Avinash Dixit and Barry Nalebuff, Thinking Strategically (New York: W. W. Norton & Company, 
1991), give a famous example of the use of this strategy in sailboat racing. For a more general theo-
retical discussion, see Luis Cabral, “R&D Competition When the Firms Choose Variance,” Journal of 
Economics and Management Strategy, vol. 12, no. 1 (Spring 2003), pp. 139–50.
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 1. Conceal information or reveal misleading information. When mixing 
moves in a zero-sum game, you don’t want the other player to see what 
you have done; you bluff in poker to mislead others about your cards.

 2. Reveal selected information truthfully. When you make a strategic move, 
you want others to see what you have done so that they will respond in 
the way you desire. For example, if you are in a tense situation but your 
intentions are not hostile, you want others to know this credibly, so that 
there will be no unnecessary fight.

Similarly, the less-informed player may want to do one of the following:

 1. Elicit information or filter truth from falsehood. An employer wants to 
find out the skill of a prospective employee and the effort of a current 
employee. An insurance company wants to know an applicant’s risk class, 
the amount of a claimant’s loss, and any contributory negligence by the 
claimant that would reduce its liability.

 2. Remain ignorant. Being unable to know your opponent’s strategic move 
can immunize you against his commitments and threats. Top-level poli-
ticians or managers often benefit from having such “credible deniability.”

In most cases, we will find that words alone do not suffice to convey credible 
information; rather, actions speak louder than words. Even actions may not con-
vey information credibly if they are too easily performed by any random player. 
In general, however, the less-informed players should pay attention to what a 
better-informed player does, not to what he says. And knowing that the others 
will interpret actions in this way, the better-informed player should in turn try to 
manipulate his actions for their information content.

When you are playing a strategic game, you may find that you have in-
formation that other players do not. You may have information that is “good” 
(for yourself) in the sense that, if the other players knew this information, 
they would alter their actions in a way that would increase your payoff. You 
know that you are a nonsmoker, for example, and should qualify for lower  
life-insurance premiums. Or you may have “bad” information whose disclo-
sure would cause others to act in a way that would hurt you. You cheated your 
way through college, for example, and don’t deserve to be admitted to a pres-
tigious law school. You know that others will infer your information from your 
actions. Therefore, you try to think of, and take, actions that will induce them to 
believe your information is good. Such actions are called signals, and the strat-
egy of using them is called signaling. Conversely, if others are likely to conclude 
that your information is bad, you may be able to stop them from making this  
inference by confusing them. This strategy, called signal jamming, is typically  
a mixed strategy, because the randomness of mixed strategies makes inferences 
imprecise.

6841D CH08 UG.indd   280 12/18/14   3:12 PM



 If other players know more than you do or take actions that you can-
not directly observe, you can use strategies that reduce your informational  
disadvantage. The strategy of making another player act so as to reveal his in-
formation is called screening, and specific methods used for this purpose are 
called screening devices.3

Because a player’s private information often consists of knowledge of his 
own abilities or preferences, it is useful to think of players who come to a game 
possessing different private information as different types. When credible sig-
naling works, in the equilibrium of the game the less-informed players will be 
able to infer the information of the more-informed ones correctly from the ac-
tions; the law school, for example, will admit only the truly qualified applicants. 
Another way to describe the outcome is to say that in equilibrium, the differ-
ent types are correctly revealed or separated. Therefore, we call this a separating 
equilibrium. In some cases, however, one or more types may successfully mimic 
the actions of other types, so that the uninformed players cannot infer types 
from actions and cannot identify the different types; insurance companies, for 
example, may offer only one kind of life insurance policy. Then, in equilibrium 
we say the types are pooled together, and we call this a pooling equilibrium. 
When studying games of incomplete information, we will see that identifying 
the kind of equilibrium that occurs is of primary importance. 

3 DIRECT COMMUNICATION, OR “CHEAP TALK” 

The simplest way to convey information to others would seem to be to tell them; 
likewise, the simplest way to elicit information would seem to be to ask. But in a 
game of strategy, players should be aware that others may not tell the truth and, 
likewise, that their own assertions may not be believed by others. That is, the 
credibility of mere words may be questionable. It is a common saying that talk is 
cheap; indeed, direct communication has zero or negligible direct cost. However, 
it can indirectly affect the outcome and payoffs of a game by changing one play-
ers’s beliefs about another player’s actions or by influencing the selection of one 
equilibrium out of multiple equilibria. Direct communication that has no direct 
cost has come to be called cheap talk by game theorists, and the equilibrium 
achieved by using direct communication is termed a cheap talk equilibrium.

d i r e C t  C o m m u n i C at i o n , o r  “ C h e a p  ta l k ”  2 8 1

3 A word of warning: Don’t confuse screening with signal jamming. In ordinary language, the word 
screening can have different meanings. The one used in game theory is that of testing or scrutinizing. 
Thus, a less-informed player uses screening to find out what a better-informed player knows. For 
the alternative sense of screening—that is, concealing—the game-theoretic term is signal jamming. 
Thus, a better-informed player uses a signal-jamming action to prevent the less-informed player 
from correctly inferring the truth from the action (that is, from screening the better-informed player).
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A. Perfectly Aligned Interests

Direct communication of information works well if the players’ interests are well 
aligned. The assurance game first introduced in Chapter 4 provides the most ex-
treme example of this. We reproduce its payoff table (Figure 4.11) as Figure 8.3.

The interests of Harry and Sally are perfectly aligned in this game; they both 
want to meet, and both prefer meeting in Local Latte. The problem is that the 
game is played noncooperatively; they are making their choices independently, 
without knowledge of what the other is choosing. But suppose that Harry is 
given an opportunity to send a message to Sally (or Sally is given an opportu-
nity to ask a question and Harry replies) before their choices are made. If Harry’s 
message (or reply; we will not keep repeating this) is “I am going to Local Latte,” 
Sally has no reason to think he is lying.4 If she believes him, she should choose 
Local Latte, and if he believes she will believe him, it is equally optimal for him 
to choose Local Latte, making his message truthful. Thus, direct communica-
tion very easily achieves the mutually preferable outcome. This is indeed the 
reason that, when we considered this game in Chapter 4, we had to construct an 
elaborate scenario in which such communication was infeasible; recall that the 
two were in separate classes until the last minute before their meeting and did 
not have their cell phones.

Let us examine the outcome of allowing direct communication in the assur-
ance game more precisely in game-theoretic terms. We have created a two-stage 
game. In the first stage, only Harry acts, and his action is his message to Sally. 
In the second stage, the original simultaneous-move game is played. In the full 
two-stage game, we have a rollback equilibrium where the strategies (complete 
plans of action) are as follows. The second-stage action plans for both players 
are: “If Harry’s first-stage message was ‘I am going to Starbucks,’ then choose 
Starbucks; if Harry’s first-stage message was ‘I am going to Local Latte,’ then 

4 This reasoning assumes that Harry’s payoffs are as stated, and that this fact is common knowledge 
between the two. If Sally suspects that Harry wants her to go to Local Latte so he can go to Starbucks 
to meet another girlfriend, her strategy will be different! Analysis of games of asymmetric information 
thus depends on how many different possible “types” of players are actually conceivable.

Starbucks Local Latte

SALLY

Starbucks 

Local Latte 

1, 1

0, 0 2, 2

0, 0
HARRY 

FIGURE 8.3  assurance
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choose Local Latte.” (Remember that players in sequential games must specify 
complete plans of action.) The first-stage action for Harry is to send the message 
“I am going to Local Latte.” Verification that this is indeed a rollback equilibrium 
of the two-stage game is easy, and we leave it to you.

However, this equilibrium where cheap talk “works” is not the only rollback 
equilibrium of this game. Consider the following strategies: the second-stage  
action plan for each player is to go to Starbucks regardless of Harry’s first-stage 
message; and Harry’s first-stage message can be anything. We can verify that 
this also is indeed a rollback equilibrium. Regardless of Harry’s first-stage mes-
sage, if one player is going to Starbucks, then it is optimal for the other player to 
go there also. Thus, in each of the second-stage subgames that could arise—one 
after each of the two messages that Harry could send—both choosing Starbucks 
is a Nash equilibrium of the subgame. Then, in the first stage, Harry, knowing 
his message is going to be disregarded, is indifferent about which message he 
sends.

The cheap talk equilibrium—where Harry’s message is not disregarded—
yields higher payoffs, and we might normally think that it would be the one se-
lected as a focal point. However, there may be reasons of history or culture that 
favor the other equilibrium. For example, for some reasons quite extraneous to 
this particular game, Harry may have a reputation for being totally unreliable. 
He might be a compulsive practical joker or just absent minded. Then people 
might generally disregard his statements and, knowing this to be the usual state 
of affairs, Sally might not believe this particular one.

Such problems exist in all communication games. They always have alter-
native equilibria where the communication is disregarded and therefore irrel-
evant. Game theorists call these babbling equilibria. Having noted that they 
exist, however, we will focus on the cheap talk equilibria, where communication 
does have some effect.

B. Totally Conflicting Interests

The credibility of direct communication depends on the degree of alignment of 
players’ interests. As a dramatic contrast with the assurance game example, con-
sider a game where the players’ interests are totally in conflict—namely, a zero-sum  
game. A good example is the tennis point in Figure 4.14 from Chapter 4; we repro-
duce its payoff matrix as Figure 8.4. Remember that the payoffs are Evert’s success 
percentages. Remember also that this game has only a mixed-strategy Nash equi-
librium (derived in Chapter 7); Evert’s expected payoff in this equilibrium is 62.

Now suppose that we construct a two-stage game. In the first stage, Evert 
is given an opportunity to send a message to Navratilova. In the second stage, 
the simultaneous-move game of Figure 8.4 is played. What will be the rollback 
equilibrium?

d i r e C t  C o m m u n i C at i o n , o r  “ C h e a p  ta l k ”  2 8 3
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It should be clear that Navratilova will not believe any message she receives 
from Evert. For example, if Evert’s message is “I am going to play DL,” and Navra-
tilova believes her, then Navratilova should choose to cover DL. But if Evert thinks 
that Navratilova will cover DL, then Evert’s best choice is CC. At the next level of 
thinking, Navratilova should see through this and not believe the assertion of DL.

But there is more. Navratilova should not believe that Evert would do exactly 
the opposite of what she says either. Suppose Evert’s message is “I am going to 
play DL,” and Navratilova thinks “She is just trying to trick me, and so I will take 
it that she will play CC.” This will lead Navratilova to choose to cover CC. But if 
Evert thinks that Navratilova will disbelieve her in this simple way, then Evert 
should choose DL after all. And Navratilova should see through this, too.

Thus, Navratilova’s disbelief should mean that she should just totally disre-
gard Evert’s message. Then the full two-stage game has only the babbling equi-
librium. The two players’ actions in the second stage will be simply those of the 
original equilibrium, and Evert’s first-stage message can be anything. This is 
true of all zero-sum games.

C. Partially Aligned Interests

But what about more general games in which there is a mixture of conflict and 
common interest? Whether direct communication is credible in such games de-
pends on how the two aspects of conflict and cooperation mix when players’ 
interests are only partially aligned. Thus, we should expect to see both cheap 
talk and babbling equilibria in games of this type. More generally, the greater 
the alignment of interests, the more information should be communicable. We 
illustrate this intuition with an example. 

Consider a situation that you may have already experienced or, if not, soon 
will when you start to earn and invest. When your financial adviser recommends 
an investment, he may be doing so as part of developing a long-run relation-
ship with you for the steady commissions that your business will bring him or 
he may be a fly-by-night operator who touts a loser, collects the up-front fee, 
and disappears. The credibility of his recommendation depends on what type of 
relationship you establish with him.

  

DL CC

NAVRATILOVA

DL

CC

50, 50

90, 10 20, 80

80, 20
EVERT

FIGURE 8.4  tennis point
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Suppose you want to invest $100,000 in the asset recommended by your ad-
viser and that you anticipate three possible outcomes. The asset could be a bad 
investment (B), leading to a 50% loss, or a payoff of 250 measured in thousands 
of dollars. The asset could be a mediocre investment (M), yielding a 1% return, 
or a payoff of 1. Finally, it could be a good investment (G), yielding a 55% return, 
or a payoff of 55. If you choose to invest, you pay the adviser a 2% fee up front 
regardless of the performance of the asset; this fee gives your adviser a payoff of 
2 and simultaneously lowers your payoff by 2. Your adviser will also earn 20% of 
any gain you make, leaving you with a payoff of 80% of the gain, but he will not 
have to share in any loss.

With no specialized knowledge related to the particular asset that has been 
recommended to you, you cannot judge which of the three outcomes might be 
more likely. Therefore, you simply assume that all three possibilities—B, M, and 
G—are equally likely: there is a one-third chance of each outcome occurring. 
In this situation, in the absence of any further information, you calculate your 
expected payoff from investing in the recommended asset as [(13 3 250) 1  
(13 3 0.8 3 1) 1 (13 3 0.8 3 55)] 2 2 5 [13 3 (250 1 0.8 1 44)] – 2 5 [13 3 
(25.2)] 2 2 5 21.73 2 2 5 23.73. This calculation indicates an expected loss of 
$3,730. Therefore, you would not make the investment, and your adviser would 
not get any fee. Similar calculations show that you would also choose not to in-
vest, due to a negative expected payoff, if you believed the asset was definitely 
the B type, definitely the M type, or definitely any probability-weighted combi-
nation of the B and M types alone. 

Your adviser is in a different situation. He has researched the investment 
and knows which of the three possibilities—B, M, or G—is the truth. We want 
to determine what he will do with his information, specifically whether he will 
truthfully reveal to you what he knows about the asset. We consider the various 
possibilities below, assuming that you update your belief about the asset’s type 
based on the information you receive from your adviser. For this example, we 
assume that you simply believe what you are told: you assign probability 1 to the 
asset being the type stated by your adviser.5

I. SHORT-TERM RELATIONSHIP  If your adviser tells you that the recommended asset is 
type B, you will choose not to invest. Why? Because your expected payoff from 
that asset is 250 and investing would cost you an additional 2 (in fees to the 
adviser) for a final payoff of 252. Similarly, if he tells you the asset is M, you will 
also not invest. In that case, your expected payoff is 80% of the return of 1 minus 

d i r e C t  C o m m u n i C at i o n , o r  “ C h e a p  ta l k ”  2 8 5

5 In the language of probability theory, the probability you assign to a particular event after having 
observed, or heard, information or evidence about that event is known as the posterior probability 
of the event. You thus assign posterior probability 1 to the stated quality of the asset. Bayes’ theorem, 
which we explain in detail in the appendix to this chapter, provides a formal quantification of the 
relationship between prior and posterior probabilities.
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the 2 in fees for a total of 21.2. Only if the adviser tells you that the asset is G will 
you choose to invest. In this situation, your expected payoff is 80% of the 55 re-
turn less the 2 in fees, or 42.

What will your adviser do with his knowledge then? If the truth is G, your ad-
viser will want to tell you the truth in order to induce you to invest. But if he an-
ticipates no long-term relationship with you, he will be tempted to tell you that 
the truth is G, even when he knows the asset is either M or B. If you decide to 
invest based on his statement, he simply pockets his 2% fee and flees; he has no 
further need to stay in touch. Knowing that there is a possibility of getting bad 
advice, or false information, from an adviser with whom you will interact only 
once, you should ignore the adviser’s recommendation altogether. Therefore, in 
this asymmetric information, short-term relationship game, credible communi-
cation is not possible. The only equilibrium is the babbling one in which you 
ignore your adviser; there is no cheap talk equilibrium in this case.

II. LONG-TERM RELATIONSHIP: FULL REVELATION  Now suppose your adviser works for a firm 
that you have invested with for years: losing your future business may cost him 
his job. If you invest in the asset he recommends, you can compare its actual 
performance to your adviser’s forecast. That forecast could prove to have been 
wrong in a small way (the forecast was M and the truth is B, or the forecast was 
G and the truth is M) or in a large way (the forecast was G and the truth is B). If 
you discover such misrepresentations, your adviser and his firm lose your future 
business. They may also lose business from others if you bad-mouth them to 
friends and acquaintances. If the adviser attaches a cost to his loss of reputation, 
he is implicitly concerned about your possible losses, and therefore his interests 
are partially aligned with yours. Suppose the payoff cost to his reputation of a 
small misrepresentation is 2 (the monetary equivalent of a $2,000 loss) and that 
of a large misrepresentation is 4 (a $4,000 loss). We can now determine whether 
the partial alignment of your interests with those of your adviser is sufficient to 
induce him to be truthful.

As we discussed earlier, your adviser will tell you the truth if the asset is G to 
induce you to invest. We need to consider his incentives when the truth is not G, 
when the asset is actually B or M. Suppose first that the asset is B. If your adviser 
truthfully reveals the asset’s type, you will not invest, he will not collect any fee, 
but he will also suffer no reputational cost: his payoff from reporting B when the 
truth is B is 0. If he tells you the asset is M (even though it is B), you still will not 
buy because your expected payoff is 21.2 as we calculated earlier. Then the ad-
viser will still get 0, so he has no incentive to lie and tell you that a B-type asset is 
really M.6 But what if he reports G? If you believe him and invest, he will get the 

6 We are assuming that if you do not invest in the recommended asset, you do not find out its ac-
tual return, so the adviser can suffer no reputation cost in that case. This assumption fits nicely with 
the general interpretation of “cheap talk.” Any message has no direct payoff consequences to the 
sender; those arise only if the receiver acts upon the information received in the message. 
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up-front fee of 2, but he will also suffer the reputational cost of the large error, 
4.7 His payoff from reporting G (when the truth is B) is negative: your adviser 
would do better to reveal B truthfully. Thus, in situations when the truth about 
the asset is G or B, the adviser’s incentives are to reveal the type truthfully. 

But what if the truth is M? Truthful revelation does not induce you to invest: 
the adviser’s payoff is 0 from reporting M. If he reports G and you believe him, 
you invest. The adviser gets his fee of 2, 20% of the 1 that is your return under 
M, and he also suffers the reputation cost of the small misrepresentation, 2. His 
payoff is 2 1 (0.2 3 1) 2 2 5 0.2 . 0. Thus, your adviser does stand to benefit by 
falsely reporting G when the truth is M. Knowing this, you would not believe any 
report of G. 

Because your adviser has an incentive to lie when the asset he is recom-
mending is M, full information cannot be credibly revealed in this situation. 
The babbling equilibrium, where any report from the adviser is ignored, is still a 
possible equilibrium. But is it the only equilibrium here or is some partial com-
munication possible? The failure to achieve full revelation occurs because the 
adviser will misreport M as G, so suppose we lump those two possibilities to-
gether into one event and label it “not-B.” Thus, the adviser asks himself what 
he should report: “B or not-B?”8 Now we can consider whether your adviser will 
choose to report truthfully in this case of partial communication. 

III. LONG-TERM RELATIONSHIP: PARTIAL REVELATION  To determine your adviser’s incentives 
in the “B or not-B” situation, we need to figure out what inference you will draw 
(that is, what posterior probability you will calculate) from the report “not-B,” 
assuming you believe it. Your prior (original) belief was that B, M, and G were 
equally likely, with probabilities 13 each. If you are told “not-B,” you are left 
with the two possibilities of M and G. You regarded the two as equally likely orig-
inally, and there is no reason to change that assumption, so you now give each 
a probability of 12. These are your new, posterior, probabilities, conditioned on 
the information you receive from the adviser’s report. With these probabilities, 
your expected payoff if you invest when the report is “not-B” is: [12 3 (0.8 3 1)] 
1 [12 3 (0.8 3 55)] 2 2 5 0.4 1 22 2 2 5 20.4 . 0. This positive expected payoff 
is sufficient to induce you to invest when given a report of “not-B.”

Knowing that you will invest if you are told “not-B,” we can determine 
whether your adviser will have any incentive to lie. Will he want to tell you 
“not-B” even if the truth is B? When the asset is actually type B and the adviser 
tells the truth (reports B), his payoff is 0 as we calculated earlier. If he reports  
“not-B” instead, and you believe him, he gets 2 in fees.9 He also incurs the  

d i r e C t  C o m m u n i C at i o n , o r  “ C h e a p  ta l k ”   2 8 7

7 The adviser’s payoff calculation does not include a 20% share of your return here. The adviser 
knows the truth to be B and so knows you will make a loss, in which he will not share.
8 Our apologies to William Shakespeare.
9 Again, the adviser’s calculation includes no portion of your gain because you will make a loss: the 
truth is B and the adviser knows the truth.
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reputation cost associated with misrepresentation. Because you assume that 
M or G is equally likely in the “not-B” report, the expected value of the reputa-
tion cost in this case will be 12 times the cost of 2 for small misrepresentation 
plus 12 times the cost of 4 for large misrepresentation: the expected reputa-
tion cost is then (12 3 2) 1 (12 3 4) 5 3. Your adviser’s net payoff from saying 
“not-B” when the truth is B is 2 – 3 5 21. Therefore, he does not gain by mak-
ing a false report to you. Because telling the truth is your adviser’s best strategy 
here, a cheap talk equilibrium with credible partial revelation of information is  
possible.

The concept of the partial-revelation cheap talk equilibrium can be made 
more precise using the concept of a partition. Recall that you anticipate three 
possible cases or events—B, M, and G. This set of events can be divided, or par-
titioned, into distinct subsets, and your adviser then reports to you the subset 
containing the truth. (Of course, the verity of his report remains to be exam-
ined as part of the analysis.) Here we have a situation with a partition into two  
subsets, one consisting of the singleton B, and the other consisting of the pair 
of events {M, G}. In the partial-revelation equilibrium, these two subsets can be 
distinguished based on the adviser’s report, but the finer distinction between M 
and G, leading to the finest possible partition into three subsets each consisting 
only of a singleton, cannot be made. That finer distinction would be possible 
only in a case in which a full-revelation equilibrium exists.

We advisedly said earlier that a cheap talk equilibrium with credible partial 
revelation of information is possible. This game is one with multiple equilib-
ria because the babbling equilibrium also remains possible. The configuration 
of strategies and beliefs where you ignore the adviser’s report, and the adviser 
sends the same report (or even a random report) regardless of the truth, is still 
an equilibrium. Given each player’s strategies, the other has no reason to change 
his actions or beliefs. In the terminology of partitions, we can think of this bab-
bling equilibrium as having the coarsest possible, and trivial, partition with just 
one (sub)set {B, M, G} containing all three possibilities. In general, whenever 
you find a non-babbling equilibrium in a cheap talk game, there will also be at 
least one other equilibrium with a coarser or cruder partition of outcomes.

IV. MULTIPLE EQUILIBRIA  As an example of a situation in which coarser partitions are 
associated with additional equilibria, consider the case in which your adviser’s 
cost of reputation is higher than assumed above. Let the reputation cost be 4 
(instead of 2) for a small misrepresentation of the truth and 8 (instead of 4) for 
a large misrepresentation. Our analysis above showed that your adviser will re-
port G if the truth is G, and that he will report B if the truth is B. These results 
continue to hold. Your adviser wants you to invest when the truth is G, and he 
still gets the same payoff from reporting B when the truth is B as he does from 
reporting M in that situation. The higher reputation cost gives him even less  
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incentive to falsely report G when the truth is B. So if the asset is either B or G, 
the adviser can be expected to report truthfully.

The problem for full revelation in our earlier example arose because of the 
adviser’s incentive to lie when the asset is M. With our earlier numbers, his pay-
off from reporting G when the truth is M was higher than that from reporting 
truthfully. Will that still be true with the higher reputation costs?

Suppose the truth is M and the adviser reports G. If you believe him and in-
vest in the asset, his expected payoff is 2 (his fee) 1 0.2 3 1 (his share in the 
actual return from an M-type asset) 2 4 (his reputation cost) 5 21.8 , 0. The 
truth would get him 0. He no longer has the temptation to exaggerate the qual-
ity of the stock. The outcome where he always reports the truth, and you believe 
him and act upon his report, is now a cheap talk equilibrium with full revela-
tion. This has the finest possible partition consisting of three singleton subsets, 
{B}, {M}, and {G}. 

There are also three other equilibria in this case, each with a coarser parti-
tion than the full-revelation equilibrium. Both two-subset situations—one with 
{B, M} and {G} and the other with {B} and {M, G}—and the babbling situation 
with {B, M, G} are all alternative possible equilibria. We leave it to you to ver-
ify this. Which one prevails can depend on all the considerations addressed in 
Chapter 4 in our discussion of games with multiple equilibria. 

The biggest practical difficulty associated with attaining a non-babbling 
equilibrium with credible information communication lies in the players’ 
knowledge about the extent to which their interests are aligned. The extent of 
alignment of interest between the two players must be common knowledge be-
tween them. In the investment example, it is critical that you know from past 
interactions or other credible sources (for example, a contract) that the adviser 
has a large reputational concern in your investment outcome. If you did not 
know to what extent his interests were aligned with yours, you would be justi-
fied in suspecting that he was exaggerating to induce you to invest for the sake 
of the fee he would earn immediately.

What happens when even richer messages are possible? For example, sup-
pose that your adviser could report a number g, representing his estimate of the 
rate of growth of the stock price, and that g could range over a continuum of 
values. In this situation, as long as the adviser gets some extra benefit if you buy 
a bad stock that he recommends, he has some incentive to exaggerate g. There-
fore, fully accurate truthful communication is no longer possible. But a partial-
revelation cheap talk equilibrium may be possible. The continuous range of 
growth rates may split into intervals—say, from 0% to 1%, from 1% to 2%, and 
so on—such that the adviser finds it optimal to tell you truthfully into which of 
these intervals the actual growth rate falls, and you find it optimal to accept this 
advice and take your optimal action on its basis. The higher the adviser’s val-
uation of his reputation, the finer the possible partition will be—for example,  
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half-percentage points instead of whole or quarter-percentage points instead of 
half. However, we must leave further explanation of this idea to more advanced 
treatments of the subject.10

D. Formal Analysis of Cheap Talk Games

Our analysis of cheap talk games so far has been heuristic and verbal. This ap-
proach often suffices for understanding and predicting behavior, but the formal 
techniques for setting up and solving games—trees and matrices—are available 
and can be deployed if needed. To show how this is done and to connect the 
games in this chapter with the theory of previous chapters, we now consider 
the game between you and your financial adviser in this framework. For this 
analysis, we assume that the “language” of communication from your adviser 
distinguishes all three possibilities B, M, and G—that is, we consider the finest 
possible partition of information. After reading this section, you should be able 
to complete a similar analysis for the case where the adviser’s report has to be 
the coarser choice between B or “not-B.”

We start by constructing the tree for this game, illustrated in Figure 8.5. The 
fictitious player Nature, introduced in Chapter 3, makes the first move, produc-
ing one of three scenarios for the return on your investment, namely B, M, or G, 
with equal probabilities of 13 each. Your adviser observes Nature’s move and 
chooses his action, namely the report to you, which can again be B, M, or G. We 
simplify the tree a little right away by noting that the adviser never has any in-
centive to understate the return on the investment; he will never report B when 
the truth is M or G, nor will he report M when the truth is G. (You could leave 
those possible actions in the tree, but they make it unnecessarily complex. Our 
application of one step of rollback shows that none of them is ever optimal for 
the adviser, so none could ever be part of an equilibrium.) 

Finally, you are the third mover and you must choose whether to invest (I) or 
not invest (N). You do not observe Nature’s move directly, however—you know 
only the adviser’s report. Therefore, for you, both nodes where the adviser re-
ports M are gathered in one information set while all three nodes where the ad-
viser reports G are gathered in another information set: both information sets 
are indicated by dotted ovals around the relevant nodes in Figure 8.5. The pres-
ence of the information sets indicates that your actions are constrained. In the 
information set where the adviser has reported M, you must make the same in-
vestment choice at both nodes in the set. You must choose either I at both nodes 
or N at both nodes: you cannot distinguish between the two nodes inside the 

10 The seminal paper by Vincent Crawford and Joel Sobel, “Strategic Information Transmission,” 
Econometrica, vol. 50, no. 6 (November 1982), pp. 1431–52, developed this theory of partial com-
munication. An elementary exposition and survey of further work is in Joseph Farrell and Matthew 
Rabin, “Cheap Talk,” Journal of Economic Perspectives, vol. 10, no. 3 (Summer 1996), pp. 103–118.
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information set to choose I at one and N at the other. Likewise, you must choose 
either I at all three nodes or N at all three nodes of the “report G” information 
set.

At each terminal node, the adviser’s payoff is shown first, and your payoff is 
shown second. The payoff numbers, measured in thousands of dollars, reflect 
the same numeric values used in our heuristic analysis earlier. You pay your ad-
viser a 2% fee on your $100,000 investment, and your return is 250 if you invest 
in B, 1 if you invest in M, and 55 if you invest in G. Your adviser retains 20% of 
any gain you earn from his recommendation. We make one change to our for-
mer model by not specifying the exact value of the adviser’s reputation cost of 
misrepresentation. Instead, we use S to denote the reputation cost of a small 
misrepresentation and L for that of a large misrepresentation; to be consistent 
with our analysis above, we assume that both are positive and that S , L. This 
approach allows us to consider both levels of reputational consideration dis-
cussed earlier. 

As a sample of how each pair of payoffs is calculated, consider the node at 
which Nature has produced an asset of type M, the adviser has reported G, and 
you have chosen I; this node is labeled i in Figure 8.5. With these choices, your 
payoff includes the up-front fee of 2 paid to your adviser along with 80% of the 
investment’s return of 1 for a total of 0.8 2 2 5 21.2. The adviser gets his fee of 
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FIGURE 8.5 Cheap talk game tree: financial adviser and investor 
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2 and his 20% share of the asset’s return (0.2) but suffers the reputation cost of 
S, so his total payoff is 2.2 2 S. We leave it to you to confirm that all of the other 
payoffs have been computed correctly.

With the help of the tree in Figure 8.5, we can now construct a payoff matrix 
for this game. Technically, that matrix should include all of the strategies avail-
able to both you and your adviser. But, as in our construction of the tree, we can 
eliminate some possible strategies from consideration before even putting them 
into the table: any obviously poor strategies, for example, can be removed. This 
process allows us to build a much smaller table, and therefore one that is much 
more manageable, than would be produced if we were to include all possible 
strategies.

What strategies can we leave out of consideration as equilibrium strate-
gies? The answer is twofold. First, we can ignore strategies that are obviously 
not going to be deployed. We already eliminated some such choices for your ad-
viser (for example, “report B if truth is G”) in building the tree. We can now see 
that you also have some choices that can be removed. For example, the strategy 
“choose I if report is B” at terminal node a is dominated by “choose N if report 
is B,” so we can ignore it. Similarly, inside the “report M” information set, your 
action “choose I if report is M” is dominated by “choose N if report is M”; it is 
the worst choice at both terminal nodes (c and g) and can therefore also be ig-
nored. Second, we can remove strategies that make no difference to the search 
for cheap talk equilibria. For the adviser, for example, “report B” and “report M” 
both lead to your choosing N, so we remove them as well. In addition to the ter-
minal nodes we have already eliminated in Figure 8.5 (a, c, and g), we can now 
eliminate b, d, and h as well.

This simplification process leaves us only six terminal nodes to consider 
as possible equilibrium outcomes of the games (e, f, i, j, k, and l ). Those nodes 
arise from strategies that include the adviser reporting that the asset is G and 
your choice in response to a report of G. Specifically, we are left with three in-
teresting strategies for the adviser [“report G always (regardless of whether the 
truth is B, M, or G),” “report G only when the truth is M or G,” and “report G if 
and only if the truth is G”] and two for you (“choose I if report is G” and “choose 
N even if report is G”). These five strategies yield the three-by-two payoff matrix 
illustrated in Figure 8.6.

The payoffs for each strategy combination in Figure 8.6 are expected payoffs 
calculated using the values shown at the terminal nodes of the tree that can be 
reached under that strategy combination, weighted by the appropriate prob-
abilities. As an example, consider the top-left cell of the table, where the adviser 
reports G regardless of the true type of the asset, and you invest because the 
report is G. This strategy combination leads to terminal nodes e, i, and k, each 
with probability 13. Thus, the adviser’s expected payoff in that cell is {[13 3 
(2 2 L)] 1 [13 3 (2.2 2 S)] 1 (13 3 13)} 5 13 3 (17.2 2 L 2 S ). Similarly, your 
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expected payoff in the same cell is [(13 3 252) 1 (13 3 21.2) 1 (13 3 42)] 5 
13 3 (211.2). Again we leave it to you to confirm that the remaining expected 
payoffs have been computed correctly.

Now that we have a complete payoff matrix, we can use the techniques de-
veloped in Chapter 4 to identify equilibria, with the caveat that the values of L 
and S will play a role in our analysis. Simple best-response analysis shows that 
your best response to “Always G” is “N if G,” but your best response to the advis-
er’s other two strategies is “I if G.” Similarly, the adviser’s best response to your 
“N if G” can be any of his three choices. Thus, we have our first result: the top-
right cell is always a Nash equilibrium. If the adviser reports G regardless of the 
truth (or for that matter sends any report that is the same in all three scenarios), 
then you do better by choosing N, and given that you are choosing N, the ad-
viser has no incentive to deviate from his choice. This equilibrium is the bab-
bling equilibrium with no information communication that we saw earlier.

Next consider the adviser’s best response to your choice of “I if G.” The only 
possible equilibria occur when he chooses “G only if M or G” or “G if and only 
if G.” But whether he will pick one or the other of these, or indeed neither, de-
pends on the specific values of L and S. For the strategy pair {“G only if M or G,” 
“I if G”} to be a Nash equilibrium, it must be true that 15.2 2 S . 17.2 2 L 2 S 
and that 15.2 2 S . 13. The first expression holds if L . 2; the second if S , 2.2. 
So if the values of L and S meet these requirements, the middle-left cell will be a 
cheap talk (Nash) equilibrium. In this equilibrium, the report G does not allow 
you to infer whether the true scenario is M or G, but you know that the truth is 
definitely not B. Knowing this much, you can be sure that your expected payoff 
will be positive, and you choose to invest. In this situation, G really means “not-
B,” and the equilibrium outcome is formally equivalent to the partial-revelation 
equilibrium we discussed earlier.11
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FIGURE 8.6  payoff matrix for Cheap talk game 

11 Incidentally, this highlights a certain arbitrariness in language. It does not matter whether the re-
port is G or “not-B,” as long as its significance is clearly understood by the parties. One can even 
have upside-down conventions where “bad” means “good” and vice versa, if the translation from the 
terms to meaning is common knowledge to all parties involved in the communication. 
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We can also check for the conditions under which the strategy pair {“G if and 
only if G,” “I if G”} is a Nash equilibrium. That outcome requires both 13 . 17.2 
2 L 2 S and 13 . 15.2 2 S. These are less easily handled than the pair of expres-
sions above. Note however that the latter expression requires S . 2.2 and that 
we have assumed that L . S; so L . 2.2 must hold when S . 2.2 holds. You can 
now use these requirements to check whether the first expression will hold. Use 
the minimum value of L and S, 2.2, and plug these into 13 . 17.2 2 L 2 S to find 
13 . 12.8, which is always true. These calculations indicate that the bottom-left 
cell is a cheap talk equilibrium when S . 2.2, as long as L . S. This equilibrium 
is the one with full revelation that we identified at the end of our earlier analysis. 

In each case described here, the babbling equilibrium exists along with ei-
ther the {“G if and only if G,” “I if G”} or the {“G only if M or G,” “I if G”} equi-
librium. Note that we get only the babbling equilibrium when the reputational 
cost to your adviser is small (L , 2, and S , L), which is consistent with the intu-
ition we presented earlier. Finally, if we restrict the language of messages to the 
coarser partition between B and “not-B,” then an extension of the analysis here 
shows that the strategy set {“ ‘not-B’ if M or G,” “I if ‘not-B’ ”} is also a Nash equi-
librium of that game.

In each instance, our formal analysis confirms the verbal arguments we 
made in Section 3.C. Some of you may find the verbal approach sufficient for 
most, if not all, of your needs. Others may prefer the more formal model pre-
sented in this section. Be aware, however, that game trees and matrices can only 
go so far: once your model becomes sufficiently complex, with a continuum 
of report choices, for example, you will need to rely almost entirely on math-
ematics to identify equilibria. Being able to solve models of asymmetric infor-
mation in a variety of forms—verbally, with trees and tables, or with algebra or  
calculus—is an important skill. Later in this chapter, we present additional ex-
amples of such games: we solve one using a combination of intuition and al-
gebra and the other with a game tree and payoff table. In each case, the one 
solution method does not preclude the other, so you may attempt alternative 
solutions on your own.

4 ADVERSE SELECTION, SIGNALING, AND SCREENING 

A. Adverse Selection and Market Failure 

In many games, one of the players knows something pertinent to the outcomes 
that the other players don’t know. An employer knows much less about the skills 
of a potential employee than does the employee himself; vaguer but important 
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matters such as work attitude and collegiality are even harder to observe. An in-
surance company knows much less about the health or driving skills of some-
one applying for medical or auto insurance than does the applicant. The seller 
of a used car knows a lot about the car from long experience; a potential buyer 
can at best get a little information by inspection. 

In such situations, direct communication will not credibly signal informa-
tion. Unskilled workers will claim to have skills to get higher-paid jobs; people 
who are bad risks will claim good health or driving habits to get lower insurance 
premiums; owners of bad cars will assert that their cars run fine and have given 
them no trouble in all the years they have owned them. The other parties to the 
transactions will be aware of the incentives to lie and will not trust the informa-
tion conveyed by the words. There is no possibility of a cheap talk equilibrium of 
the type described in Section 3.

What if the less-informed parties in these transactions have no way of ob-
taining the pertinent information at all? In other words, to use the terminology 
introduced in Section 2 above, suppose that no credible screening devices nor 
signals are available. If an insurance company offers a policy that costs 5 cents 
for each dollar of coverage, then the policy will be especially attractive to people 
who know that their own risk (of illness or a car crash) exceeds 5%. Of course, 
some people who know their risk to be lower than 5% will still buy the insurance 
because they are risk averse. But the pool of applicants for this insurance pol-
icy will have a larger proportion of the poorer risks than the proportion of these 
risks in the population as a whole. The insurance company will selectively attract 
an unfavorable, or adverse, group of customers. This phenomenon is very com-
mon in transactions involving asymmetric information and is known as adverse  
selection. (This term in fact originated within the insurance industry.)

Potential consequences of adverse selection for market transactions were 
dramatically illustrated by George Akerlof in a paper that became the starting 
point of economic analysis of asymmetric information situations and won him 
a Nobel Prize in 2001.12 We use his example to introduce you to the effects that 
adverse selection may have.

B. The Market for  “Lemons” 

Think of the market in 2014 for a specific kind of used car, say a 2011 Citrus. 
Suppose that in use these cars have proved to be either largely trouble free and 
reliable or have had many things go wrong. The usual slang name for the latter 
type is “lemon,” so for contrast let us call the former type “orange.” 
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12 George Akerlof, “The Market for Lemons: Qualitative Uncertainty and the Market Mechanism,” 
Quarterly Journal of Economics, vol. 84, no. 3 (August 1970), pp. 488–500.
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Suppose that each owner of an orange Citrus values it at $12,500; he is will-
ing to part with it for a price higher than this but not for a lower price. Similarly, 
each owner of a lemon Citrus values it at $3,000. Suppose that potential buy-
ers are willing to pay more than these values for each type. If a buyer could be 
confident that the car he was buying was an orange, he would be willing to pay 
$16,000 for it; if the car was a known lemon, he would be willing to pay $6,000. 
Since the buyers value each type of car more than do the original owners, it ben-
efits everyone if all the cars are traded. The price for an orange can be anywhere 
between $12,500 and $16,000; that for a lemon anywhere between $3,000 and 
$6,000. For definiteness, we will suppose that there is a limited stock of such 
cars and a larger number of potential buyers. Then the buyers, competing with 
each other, will drive the price up to their full willingness to pay. The prices will 
be $16,000 for an orange and $6,000 for a lemon—if each type could be identi-
fied with certainty.

But information about the quality of any specific car is not symmetric be-
tween the two parties to the transaction. The owner of a Citrus knows perfectly 
well whether it is an orange or a lemon. Potential buyers don’t, and the owner 
of a lemon has no incentive to disclose the truth. For now, we confine our anal-
ysis to the private used-car market in which laws requiring truthful disclosure 
are either nonexistent or hard to enforce. We also assume away any possibility 
that the potential buyer can observe something that tells him whether the car 
is an orange or a lemon; similarly, the car owner has no way to indicate the type 
of car he owns. Thus, for this example, we consider the effects of the informa-
tion asymmetry alone without allowing either side of the transaction to signal or 
screen. 

When buyers cannot distinguish between oranges and lemons, there cannot 
be distinct prices for the two types in the market. There can be just one price, 
p, for a Citrus; the two types—oranges and lemons—must be pooled. Whether 
efficient trade is possible under such circumstances will depend on the propor-
tions of oranges and lemons in the population. We suppose that oranges are a 
fraction f of used Citruses and lemons the remaining fraction (1  2 f ). 

Even though buyers cannot verify the quality of an individual car, they can 
know the proportion of good cars in the population as a whole, for example, 
from newspaper reports, and we assume this to be the case. If all cars are being 
traded, a potential buyer will expect to get a random selection, with probabili-
ties f and (1 2 f ) of getting an orange and a lemon, respectively. The expected 
value of the car purchased is 16,000 3 f 1 6,000 3 (1 2 f ) 5 6,000 1 10,000 3 f. 
He will buy such a car if its expected value exceeds the price he is asked to pay, 
that is, if 6,000 1 10,000 3 f . p.

Now consider the point of view of the seller. The owners know whether their 
cars are oranges or lemons. The owner of a lemon is willing to sell it as long 
as the price exceeds its value to him, that is, if p . 3,000. But the owner of an  
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orange requires p . 12,500. If this condition for an orange owner to sell is satis-
fied, so is the sell condition for a lemon owner.

To meet the requirements for all buyers and sellers to want to make the 
trade, therefore, we need 6,000 1 10,000 3 f . p . 12,500. If the fraction of 
oranges in the population satisfies 6,000 1 10,000 3 f  . 12,500, or f . 0.65, a 
price can be found that does the job; otherwise there cannot be efficient trade. 
If 6,000 1 10,000 3 f , 12,500 (leaving out the exceptional and unlikely case 
where the two are just equal), owners of oranges are unwilling to sell at the max-
imum price the potential buyers are willing to pay. We then have adverse selec-
tion in the set of used cars put up for sale; no oranges will appear in the market 
at all. The potential buyers will recognize this, will expect to get a lemon for sure, 
and will pay at most $6,000. The owners of lemons will be happy with this out-
come, so lemons will trade. But the market for oranges will collapse completely 
due to the asymmetric information. The outcome will be a kind of Gresham’s 
law, where bad cars drive out the good.

Because the lack of information makes it impossible to get a reasonable 
price for an orange, the owners of oranges will want a way to convince the buy-
ers that their cars are the good type. They will want to signal their type. The 
trouble is that the owners of lemons would also like to pretend that their cars 
are oranges, and to this end they can imitate most of the signals that owners 
of oranges might attempt to use. Michael Spence, who developed the concept 
of signaling and shared the 2001 Nobel Prize for information economics with 
Akerlof and Stiglitz, summarizes the problems facing our orange owners in his 
pathbreaking book on signaling: “Verbal declarations are costless and therefore 
useless. Anyone can lie about why he is selling the car. One can offer to let the 
buyer have the car checked. The lemon owner can make the same offer. It’s a 
bluff. If called, nothing is lost. Besides, such checks are costly. Reliability reports 
from the owner’s mechanic are untrustworthy. The clever nonlemon owner 
might pay for the checkup but let the purchaser choose the inspector. The prob-
lem for the owner, then, is to keep the inspection cost down. Guarantees do not 
work. The seller may move to Cleveland, leaving no forwarding address.”13

In reality, the situation is not so hopeless as Spence implies. People and 
firms that regularly sell used cars as a business can establish a reputation for 
honesty and profit from this reputation by charging a markup. (Of course, some 
used car dealers are unscrupulous.) Some buyers are knowledgeable about cars; 
some buy from personal acquaintances and can therefore verify the history of 
the car they are buying. Or dealers may offer warranties, a topic we discuss in 
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13 A. Michael Spence, Market Signaling: Information Transfer in Hiring and Related Screening Pro-
cesses (Cambridge, Mass.: Harvard University Press, 1974), pp. 93–94. The present authors apologize 
on behalf of Spence to any residents of Cleveland who may be offended by any unwarranted sugges-
tion that that’s where shady sellers of used cars go!
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more detail later. And in other markets it is harder for bad types to mimic the 
actions of good types, so credible signaling will be viable. For a specific example 
of such a situation, consider the possibility that education can signal skill. Then 
it may be hard for the unskilled to acquire enough education to be mistaken for 
highly skilled people. The key requirement for education to separate the types 
is that education should be sufficiently more costly for the truly unskilled to ac-
quire than for the truly skilled. To show how and when signaling can success-
fully separate types, therefore, we turn to the labor market.

C. Signaling and Screening: Sample Situations

The basic idea of signaling or screening to convey or elicit information is very 
simple: players of different “types” (that is, possessing different information 
about their own characteristics or about the game and its payoffs more gener-
ally) should find it optimal to take different actions so that their actions truth-
fully reveal their types. Situations of such information asymmetry, and signaling 
and screening strategies to cope with them, are ubiquitous. Here are some ad-
ditional situations to which the methods of analysis developed throughout this 
chapter can be applied. 

I. INSURANCE   The prospective buyers of an insurance policy vary in their risk cat-
egories, or their levels of riskiness to the insurer. For example, among the numer-
ous applicants for an automobile collision insurance policy will be some drivers 
who are naturally cautious and others who are simply less careful. Each potential 
customer has a better knowledge of his or her own risk class than does the insur-
ance company. Given the terms of any particular policy, the company will make 
less profit (or a greater loss) on the more risky customers. However, the more 
risky customers will be the ones who find the specified policy more attractive. 
Thus, the company attracts the less favorable group of customers, and we have 
a situation of adverse selection.14 Clearly, the insurance company would like to 
distinguish between the risk classes. They can do so using a screening device. 

Suppose as an example that there are just two risk classes. The company can 
then offer two policies from which any individual customer chooses one. The 
first has a lower premium (in units of so many cents per dollar of coverage), but 
covers a lower percentage of any loss incurred by the customer; the second has 
a higher premium, but covers a higher percentage, perhaps even 100%, of the 
loss. (In the case of collision insurance, this loss represents the cost of having 

14 Here we are not talking about the possibility that a well-insured driver will deliberately exercise 
less care. That is moral hazard, and it can be mitigated using co-insurance schemes similar to those 
discussed here. But for now our concern is purely adverse selection, where some drivers are just by 
their nature careful, and others are equally uncontrollably spaced out and careless when they drive.
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an auto body shop complete the needed repairs to one’s car.) A higher-risk cus-
tomer is more likely to suffer the uncovered loss and therefore is more willing to 
pay the higher premium to get more coverage. The company can then adjust the 
premiums and coverage ratios so that customers of the higher-risk type choose 
the high-premium, high-coverage policy and customers of the less-risky type 
choose the lower-premium, lower-coverage policy. If there are more risk types, 
there have to be correspondingly more policies in the menu offered to prospec-
tive customers: with a continuous spectrum of risks, there may be a correspond-
ing continuum of policies.

Of course, this insurance company has to compete with other insurance 
companies for the business of each customer. That competition affects the 
packages of premiums and levels of coverage it can offer. Sometimes the com-
petition may even preclude the attainment of an equilibrium as each offering 
can be defeated by another.15 But the general idea behind differential premium 
policies for differential risk-class customers is valid and important.

II. WARRANTIES  Many types of durable goods—cars, computers, washing  
machines—vary in their quality. Any company that has produced such a good 
will have a pretty good idea of its quality. But a prospective buyer will be much 
less informed. Can a company that knows its product to be of high quality signal 
this fact credibly to its potential customers?

The most obvious, and most commonly used, signal is a good warranty. The 
cost of providing a warranty is lower for a genuinely high-quality product; the 
high-quality producer is less likely to be called on to provide repairs or replace-
ment than the company with a shoddier product. Therefore, warranties can 
serve as signals of quality, and consumers are intuitively quite aware of this fact 
when they make their purchase decisions.

Typically in such situations, the signal has to be carried to excess in order to 
make it sufficiently costly to mimic. Thus, the producer of a high-quality car has 
to offer a sufficiently long or strong warranty to signal the quality credibly. This 
requirement is especially relevant for any company that is a relative newcomer 
or one that does not have a previous reputation for offering high-quality prod-
ucts. Hyundai, for example, began selling cars in the United States in 1986 and 
for its first decade had a low-quality reputation. In the mid-1990s, it invested 
heavily in better technology, design, and manufacturing. To revamp its image, 
it offered the then-revolutionary 10-year, 100,000-mile warranty. Now it ranks 
with consumer groups as one of the better-quality automobile manufacturers.
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15 See Michael Rothschild and Joseph Stiglitz, “Equilibrium in Competitive Insurance Markets: An 
Essay on the Economics of Imperfect Information,” Quarterly Journal of Economics, vol. 90, no. 4 
(November 1976), pp. 629–49.
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III. PRICE DISCRIMINATION  The buyers of most products are heterogeneous in terms 
of their willingness to pay, their willingness to devote time to searching for a 
better price, and so on. Companies would like to identify those potential cus-
tomers with a higher willingness to pay and charge them one, presumably fairly 
high, price while offering selective good deals to those who are not willing to 
pay so much (as long as that willingness to pay still exceeds the cost of supply-
ing the product). The companies can successfully charge different prices to dif-
ferent groups of customers by using screening devices to separate the types. We 
will discuss such strategies, known as price discrimination in the economics lit-
erature, in more detail in Chapter 13. Here we provide just a brief overview.

The example of discriminatory prices best known to most people comes 
from the airline industry. Business travelers are willing to pay more for their 
airline tickets than are tourists, often because at least some of the cost of the 
ticket is borne by the business traveler’s employer. It would be illegal for air-
lines blatantly to identify each traveler’s type and then to charge them differ-
ent prices. But the airlines take advantage of the fact that tourists are also more 
willing to commit to an itinerary well in advance, while business travelers need 
to retain flexibility in their plans. Therefore, airlines charge different prices for 
nonrefundable versus refundable fares and leave it to the travelers to choose 
the fare type. This pricing strategy is an example of screening by self-selection.16 
Other devices—advance purchase or Saturday night stay requirements, different 
classes of onboard service (first versus business versus coach)—serve the same 
screening purpose.

Price discrimination is not specific to high-priced products like airline tick-
ets. Other discriminatory pricing schemes can be observed in many markets 
where product prices are considerably lower than those for air travel. Coffee and 
sandwich shops, for example, commonly offer “frequent buyer” discount cards. 
These cards effectively lower the price of coffee or a sandwich to the shop’s regu-
lar customers. The idea is that regular customers are more willing to search for 
the best deal in the neighborhood, while visitors or occasional users would go to 
the first coffee or sandwich shop they see without spending the time necessary 
to determine whether any lower prices might be available. The higher regular 
price and “free 11th item” discount represent the menu of options from which 
the two types of customer select, thereby separating them by type.

Books are another example. They are typically first published in a higher-
price hardcover version; a cheaper paperback comes out several months to a 
year or more later. The difference in the costs of producing the two versions is 
negligible. But the versions serve to separate the buyers who want to read the 

16 We investigate the idea of self-selection more formally in Section 5 of this chapter.
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book immediately and are willing to pay more for the ability to do so from those 
who wish to pay less and are willing to wait longer. 

IV. PRODUCT DESIGN AND ADVERTISING  Can an attractive, well-designed product exterior 
serve the purpose of signaling high quality? The key requirement is that the cost 
of the signal be sufficiently higher for a company trying to pretend high qual-
ity than for one that has a truly high-quality product. Typically, the cost of the 
product exterior is the same regardless of the innate quality that resides within. 
Therefore, the mimic would face no cost differential, and the signal would not 
be credible. 

But such signals may have some partial validity. Exterior design is a fixed 
cost that is spread over the whole product run. Buyers do learn about quality 
from their own experience, from friends, and from reviews and comments in 
the media. These considerations indicate that a high-quality good can expect to 
have a longer market life and higher total sales. Therefore, the cost of an expen-
sive exterior is spread over a larger volume and adds less to the cost of each unit 
of the product, if that product is of higher innate quality. The firm is in effect 
making a statement: “We have a good product that will sell a lot. That is why 
we can afford to spend so much on its design. A fly-by-night firm would find 
this prohibitive for the few units it expects to sell before people find out its poor 
quality and don’t buy any more from it.” Even expensive, seemingly useless and 
uninformative product launch and advertising campaigns can have a similar 
signaling effect.17

Similarly, when you walk into a bank and see solid, expensive marble coun-
ters and plush furnishings, you may be reassured about its stability. However, 
for this particular signal to work, it is important that the building, furnishings, 
and décor be specific to the bank. If everything could easily be sold to other 
types of establishments and the space converted into a restaurant, say, then a 
fly-by-night operator could mimic a truly solid bank at no higher cost. In that 
situation, the signal would not be credible.

V. TAxIS  The examples above are drawn primarily from economics, but here is 
one from the field of sociology about taxi service. The overwhelming majority 
of people who hail a taxi simply want to go to their destination, pay the fare, 
and depart. But a few are out to rob the driver or hijack the cab, perhaps with 
some physical violence involved. How can taxi drivers screen their prospective 
customers and accept only the good ones? Sociologists Diego Gambetta and 
Heather Hamill researched this question using extensive interviews with taxi 
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17 Kyle Bagwell and Gary Ramey, “Coordination Economies, Advertising, and Search Behavior in Re-
tail Markets,” American Economic Review, vol. 84, no. 3 (June 1994), pp. 498–517.
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drivers in New York (where robbery is the main problem) and Northern Ireland 
(where sectarian violence was a serious problem at the time of their study).18

The drivers need an appropriate screening device, knowing that the bad 
types of potential customers are trying to mimic the actions of the good type. 
The usual differential cost condition applies. A New York customer wearing a 
suit is not guaranteed to be harmless, because a robber can buy and wear a suit 
for the same cost as a good customer; race and gender cannot be used to screen 
customers either. In Northern Ireland, the warring factions were also not easily 
distinguishable by external characteristics. 

Gambetta and Hamill found that some screens were more useful to the taxi 
drivers than others. For example, ordering a cab by phone was a better signal 
of a customer’s trustworthiness than hailing on the street: when you revealed 
a pickup location, the taxi company literally “knew where you lived.”19 More 
important, some signaling devices worked better for customers (and were 
therefore better screens for the drivers) when used in combination rather than 
individually. Wearing a suit was no good as a credible screen all by itself, but a 
customer coming out of an office building wearing a suit was deemed safer than 
a random suit-wearing customer standing on a street corner. Most office build-
ings have some security in the lobby these days, and such a customer could be 
deemed to have already passed one level of security testing.

Perhaps most important were the involuntary signals that people give off—
microexpressions, gestures, and so forth—that experienced drivers learn to read 
and interpret. Exactly because these are involuntary, they act as signals with an 
infinite cost of mimicry and are therefore the most effective in screening to sep-
arate types.20

VI. POLITICAL BUSINESS CYCLES  And now we provide two examples from the field of 
political economy. Incumbent governments often increase spending to get the 
economy to boom just before an election, thereby hoping to attract more votes 
and win the election. But shouldn’t rational voters see through this stratagem 
and recognize that, as soon as the election is over, the government will be forced 
to retrench, perhaps leading to a recession? For pre-election spending to be an 
effective signal of type, there has to be some uncertainty in the voters’ mind 
about the “competence-type” of the government. The future recession will cre-
ate a political cost for the government. This cost will be smaller if the govern-
ment is more competent in its handling of the economy. If the cost differential 

18 Diego Gambetta and Heather Hamill, Streetwise: How Taxi Drivers Establish Their Customers’ 
Trustworthiness  (New York: Russell Sage Foundation, 2005).
19 Even if the location was a restaurant or office, not a home, you leave more evidence about your-
self when you call for pickup than when you hail a cab on the street.
20 Paul Ekman, Telling Lies: Clues to Deceit in the Marketplace, Politics, and Marriage  (New York:  
W. W. Norton & Company, 2009), reports on how such inadvertent signals can be read and interpreted. 
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between competent and incompetent government types is large enough, a suf-
ficiently high expenditure spike can credibly signal competence.21

Another similar example relates to inflation controls. Many countries at 
many times have suffered high inflation, and governments have piously de-
clared their intentions to reduce this level. Can a government that truly cares 
about price stability credibly signal its type? Yes. Governments can issue bonds 
protected against inflation: the interest rate on such bonds is automatically 
ratcheted up by the rate of inflation or the capital value of the bond rises in pro-
portion to the increase in the price level. Issuing government debt in this form 
is more costly to a government that likes policies that lead to higher inflation, 
because it has to make good on the contract of paying more interest or increas-
ing the value of its debt. Therefore, a government with genuinely anti-inflation 
preferences can issue inflation-protected bonds as a credible signal, separating 
itself from the inflation-loving type of government.

VII. EVOLUTIONARY BIOLOGY  Finally, an example from the natural sciences. In many 
species of birds, the males have very elaborate and heavy plumage that females 
find attractive. One should expect the females to seek genetically superior males 
so that their offspring will be better equipped to survive to adulthood and to at-
tract mates in their turn. But why does elaborate plumage indicate such desir-
able genetic qualities? One would think that such plumage might be a handicap, 
making the male bird more visible to predators (including human hunters) and 
less mobile, therefore less able to evade these predators. Why do females choose 
these seemingly handicapped males? The answer comes from the conditions for 
credible signaling. Although heavy plumage is indeed a handicap, it is less of a 
handicap to a male who is sufficiently genetically superior in qualities such as 
strength and speed. The weaker the male, the harder it will be for him to pro-
duce and maintain plumage of a given quality. Thus, it is precisely the heaviness 
of the plumage that makes it a credible signal of the male’s quality.22

D. Experimental Evidence

The characterization of and solution for equilibria in games of signaling and 
screening entail some quite subtle concepts and computations. Thus, in each 
case above, formal models must be carefully described in order to formulate 
reasonable and accurate predictions for player choices. In all such games, play-
ers must revise or update their probabilities about other players’ type(s) based 
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21 These ideas and the supporting evidence are reviewed by Alan Drazen in “The Political Business 
Cycle after 25 Years,” in NBER Macroeconomics Annual 2000, ed. Ben S. Bernanke and Kenneth S. 
Rogoff (Cambridge, Mass.: MIT Press, 2001), pp. 75–117.
22 Matt Ridley, The Red Queen: Sex and the Evolution of Human Behavior (New York: Penguin, 1995), 
p. 148.
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on observation of those other players’ actions. This updating requires an appli-
cation of Bayes’ theorem, which is explained in the appendix to this chapter. We 
also carefully analyze an example of a game with this kind of updating in Sec-
tion 6 below. 

You can imagine, without going into any of the details of the appendixes, 
that these probability-updating calculations are quite complex. Should we ex-
pect players to perform them correctly? There is ample evidence that people are 
very bad at performing calculations that include probabilities and are especially 
bad at conditioning probabilities on new information.23 Therefore, we should be 
justifiably suspicious of equilibria that depend on the players’ doing so. 

Relative to this expectation, the findings of economists who have conducted 
laboratory experiments of signaling games are encouraging. Some surprisingly 
subtle refinements of Bayesian-Nash and perfect Bayesian equilibria are suc-
cessfully observed, even though these refinements require not only updating 
of information by observing actions along the equilibrium path but also decid-
ing how one would infer information from off-equilibrium actions that should 
never have been taken in the first place. However, the verdict of the experiments 
is not unanimous: much seems to depend on the precise details of the labora-
tory design of the experiment.24

5 SIGNALING IN THE LABOR MARKET

Many of you expect that when you graduate, you will work for an elite firm in fi-
nance or computing. These firms have two kinds of jobs. One kind requires high 
quantitative and analytical skills and capacity for hard work and offers high pay 
in return. The other kind of jobs are semiclerical, lower-skill, lower-pay jobs. Of 
course, you want the job with higher pay. You know your own qualities and skills 
far better than your prospective employer does. If you are highly skilled, you 
want your employer to know this about you, and he also wants to know. He can 
test and interview you, but what he can find out by these methods is limited by 
the available time and resources. You can tell him how skilled you are, but mere 
assertions about your qualifications are not credible. More objective evidence is 
needed, both for you to offer and for your employer to seek out.

23 Deborah J. Bennett, Randomness (Cambridge, Mass.: Harvard University Press, 1998), pp. 2–3 and 
ch. 10. See also Paul Hoffman, The Man Who Loved Only Numbers (New York: Hyperion, 1998), pp. 
233–40, for an entertaining account of how several probability theorists, as well as the brilliant and 
prolific mathematician Paul Erdös, got a very simple probability problem wrong and even failed to 
understand their error when it was explained to them.
24 Douglas D. Davis and Charles A. Holt, Experimental Economics (Princeton: Princeton University 
Press, 1995), review and discuss these experiments in their chapter 7.
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What items of evidence can the employer seek, and what can you offer? 
Recall from Section 2 of this chapter that your prospective employer will use 
screening devices to identify your qualities and skills. You will use signals to con-
vey your information about those same qualities and skills. Sometimes similar 
or even identical devices can be used for either signaling or screening.

In this instance, if you have selected (and passed) particularly tough and 
quantitative courses in college, your course choices can be credible evidence of 
your capacity for hard work in general and of your quantitative and logical skills 
in particular. Let us consider the role of course choice as a screening device.

A. Screening to Separate Types

To keep things simple, we approach this screening game using intuition and 
some algebra. Suppose college students are of just two types when it comes to 
the qualities most desired by employers: A (able) and C (challenged). Potential 
employers in finance or computing are willing to pay $160,000 a year to a type 
A and $60,000 to a type C. Other employment opportunities yield the A types a 
salary of $125,000 and the C types a salary of $30,000. These are just the num-
bers in the Citrus car example in Section 4.B above, but multiplied by a factor of 
10 better to suit the reality of the job-market example. And just as in the used-
car example where we supposed there was fixed supply and numerous potential 
buyers, we suppose here that there are many potential employers who have to 
compete with each other for a limited number of job candidates, so they have 
to pay the maximum amount that they are willing to pay. Because employers 
cannot directly observe any particular job applicant’s type, they have to look for 
other credible means to distinguish among them.25

Suppose the types differ in their tolerance for taking a tough course rather 
than an easy one in college. Each type must sacrifice some party time or other 
activities to take a tougher course, but this sacrifice is smaller or easier to bear 
for the A types than it is for the C types. Suppose the A types regard the cost of 
each such course as equivalent to $3,000 a year of salary, while the C types re-
gard it as $15,000 a year of salary. Can an employer use this differential to screen 
his applicants and tell the A types from the C types?

Consider the following hiring policy: anyone who has taken a certain num-
ber, n, or more of the tough courses will be regarded as an A and paid $160,000, 
and anyone who has taken fewer than n will be regarded as a C and paid $60,000. 
The aim of this policy is to create natural incentives whereby only the A types 
will take the tough courses, and the C types will not. Neither wants to take more 
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25 You may wonder whether the fact that the two types have different outside opportunities can be 
used to distinguish between them. For example, an employer may say, “Show me an offer of a job at 
$125,000, and I will accept you as type A and pay you $160,000.” However, such a competing offer 
can be forged or obtained in cahoots with someone else, so it is not reliable.
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of the tough courses than he has to, so the choice is between taking n to qualify 
as an A or giving up and settling for being regarded as a C, in which case he may 
as well not take any of the tough courses and just coast through college.

To succeed, such a policy must satisfy two kinds of conditions. The first set 
of conditions requires that the policy gives each type of job applicant the incen-
tive to make the choice that the firm wants him to make. In other words, the 
policy should be compatible with the incentives of the workers; therefore, the 
relevant conditions are called incentive-compatibility conditions. The second 
kind of conditions ensure that, with such an incentive-compatible choice, the 
workers get a better (at least, no worse) payoff from these jobs than they would 
get in their alternative opportunities. In other words, the workers should be will-
ing to participate in this firm’s offer; therefore, the relevant conditions are called 
the participation conditions. We will develop these conditions in the labor mar-
ket context now. Similar conditions will appear in other examples later in this 
chapter and again in Chapter 13, where we develop the general theory of mech-
anism design. 

I. INCENTIVE COMPATIBILIT Y  The criterion that employers devise to distinguish an A 
from a C—namely, the number of tough courses taken—should be sufficiently 
strict that the C types do not bother to meet it but not so strict as to discourage 
even the A types from attempting it. The correct value of n must be such that 
the true C types prefer to settle for being revealed as such and getting $60,000, 
rather than incurring the extra cost of imitating the A type’s behavior. That is, we 
need the policy to be incentive compatible for the C types, so26

 60,000 $ 160,000 2 15,000 n, or 15 n $ 100, or n $ 6.67.

Similarly, the condition that the true A types prefer to prove their type by taking 
n tough courses is

 160,000 2 3,000 n $ 60,000, or 3n # 100, or n # 33.33.

These incentive-compatibility conditions or, equivalently, incentive- 
compatibility constraints, align the job applicant’s incentives with the employ-
er’s desires, or make it optimal for the applicant to reveal the truth about his skill 
through his action. The n satisfying both constraints, because it is required to 
be an integer, must be at least 7 and at most 33.27 The latter is not realistically  

26 We require merely that the payoff from choosing the option intended for one’s type be at least as 
high as that from choosing a different option, not that it be strictly greater. However, it is possible to 
approach the outcome of this analysis as closely as one wants while maintaining a strict inequality, 
so nothing substantial hinges on this assumption.
27 If in some other context the corresponding choice variable is not required to be an integer—for 
example, if it is a sum of money or an amount of time—then a whole continuous range will satisfy 
both incentive-compatibility constraints.
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relevant in this example, as an entire college program is typically 32 courses, but 
in other examples it might matter.

What makes it possible to meet both conditions is the difference in the costs 
of taking tough courses between the two types: the cost is sufficiently lower for 
the “good” type that the employers wish to identify. When the constraints are 
met, the employer can use a policy to which the two types will respond differ-
ently, thereby revealing their types. This is called separation of types based on 
self-selection.

We did not assume here that the tough courses actually imparted any ad-
ditional skills or work habits that might convert C types into A types. In our 
scenario, the tough courses serve only the purpose of identifying the persons 
who already possess these attributes. In other words, they have a pure screening 
function.

In reality, education does increase productivity. But it also has the additional 
screening or signaling function of the kind described here. In our example, we 
found that education might be undertaken solely for the latter function; in re-
ality, the corresponding outcome is that education is carried further than is 
justified by the extra productivity alone. This extra education carries an extra 
cost—the cost of the information asymmetry.

II. PARTICIPATION  When the incentive-compatibility conditions for the two types of 
jobs in this firm are satisfied, the A types take n tough courses and get a payoff 
of 160,000 2 3,000n, and the C types take no tough courses and get a payoff of 
60,000. For the types to be willing to make these choices instead of taking their 
alternative opportunities, the participation conditions must be satisfied as well. 
So we need

 160,000 2 3,000n $ 125,000, and 60,000 $ 30,000.

The C types’ participation condition is trivially satisfied in this example (al-
though that may not be the case in other examples); the A types’ participation 
condition requires n # 11.67, or, since n must be an integer, n # 11. Here, any 
n that satisfies the A types’ participation constraint of n # 11 also satisfies their 
incentive compatibility constraint of n # 33, so the latter becomes logically re-
dundant, regardless of its realistic irrelevance.

The full set of conditions that are required to achieve separation of types 
in this labor market is then 7 # n # 11. This restriction on possible values of n 
combines the incentive-compatibility condition for the C types and the partici-
pation condition for the A types. The participation condition for the C types and 
the incentive-compatibility condition for the A types in this example are auto-
matically satisfied when the other conditions hold.

When the requirement of taking enough tough courses is used for screening, 
the A types bear the cost. Assuming that only the minimum needed to achieve 
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separation is used—namely, n 5 7—the cost to each A type has the monetary 
equivalent of 7 3 $3,000 5 $21,000. This is the cost, in this context, of the infor-
mation asymmetry. It would not exist if a person’s type could be directly and 
objectively identified. Nor would it exist if the population consisted solely of A 
types. The A types have to bear this cost because there are some C types in the 
population from whom they (or their prospective employers) seek to distinguish 
themselves.28

B. Pooling of Types

Rather than having the A types bear the cost of the information asymmetry, 
might it be better not to bother with the separation of types at all? With the sep-
aration, A types get a salary of $160,000 but suffer a cost, the monetary equiva-
lent of $21,000, in taking the tough courses; thus, their net money-equivalent 
payoff is $139,000. And C types get the salary of $60,000. What happens to the 
two types if they are not separated?

If employers do not use screening devices, they have to treat every applicant 
as a random draw from the population and pay all the same salary. This is called 
pooling of types, or simply pooling when the sense is clear.29 In a competitive 
job market, the common salary under pooling will be the population average 
of what the types are worth to an employer, and this average will depend on the 
proportions of the types in the population. For example, if 60% of the popula-
tion is type A and 40% is type C, then the common salary with pooling will be

 0.6 3 $160,000 1 0.4 3 $60,000 5 $120,000.

The A types will then prefer the situation with separation because it yields 
$139,000 instead of the $120,000 with pooling. But if the proportions are 80% 
A and 20% C, then the common salary with pooling will be $140,000, and the A 
types will be worse off under separation than they would be under pooling. The 
C types are always better off under pooling. The existence of the A types in the 
population means that the common salary with pooling will always exceed the 
C types’ separation salary of $60,000.

However, even if both types prefer the pooling outcome, it cannot be an 
equilibrium when many employers or workers compete with each other in the  
screening or signaling process. Suppose the population proportions are 80–20 
and there is an initial situation with pooling where both types are paid $140,000. 
An employer can announce that he will pay $144,000 for someone who takes 
just one tough course. Relative to the initial situation, the A types will find it  

28 In the terminology of economics, the C types in this example inflict a negative external effect on 
the A types. We will develop this concept in Chapter 11.
29 It is the opposite of separation of types, described above where players differing in their character-
istics get different outcomes, so the outcome reveals the type perfectly.
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worthwhile because their cost of taking the course is only $3,000 and it raises 
their salary by $4,000, whereas C types will not find it worthwhile because their 
cost, $15,000, exceeds the benefit, $4,000. Because this particular employer se-
lectively attracts the A types, each of whom is worth $160,000 to him but is paid 
only $144,000, he makes a profit by deviating from the pooling salary package.

But his deviation starts a process of adjustment by competing employers, 
and that causes the old pooling situation to collapse. As A types flock to work for 
him, the pool available to the other employers is of lower average quality, and 
eventually they cannot afford to pay $140,000 anymore. As the salary in the pool 
is lowered, the differential between that salary and the $144,000 offered by the 
deviating employer widens to the point where the C types also find it desirable 
to take that one tough course. But then the deviating employer must raise his re-
quirement to two courses and must increase the salary differential to the point 
where two courses become too much of a burden for the C types, but the A types 
find it acceptable. Other employers who would like to hire some A types must 
use similar policies to attract them. This process continues until the job market 
reaches the separating equilibrium described earlier.

Even if the employers did not take the initiative to attract As rather than Cs, 
a type A earning $140,000 in a pooling situation might take a tough course, take 
his transcript to a prospective employer, and say, “I have a tough course on my 
transcript, and I am asking for a salary of $144,000. This should be convincing 
evidence that I am type A; no type C would make you such a proposition.” Given 
the facts of the situation, the argument is valid, and the employer should find 
it very profitable to agree: the employee, being type A, will generate $160,000 
for the employer but get only $144,000 in salary. Other A types can do the same. 
This starts the same kind of cascade that leads to the separating equilibrium. 
The only difference is in who takes the initiative. Now the type A workers choose 
to get the extra education as credible proof of their type; it becomes a case of 
signaling rather than screening.

The general point is that, even though the pooling outcome may be better 
for all, they are not choosing the one or the other in a cooperative, binding pro-
cess. They are pursuing their own individual interests, which lead them to the 
separating equilibrium. This is like a prisoners’ dilemma game with many play-
ers, and therefore there is something unavoidable about the cost of the informa-
tion asymmetry.

C. Many Types

We have considered an example with only two types, but the analysis gener-
alizes immediately. Suppose there are several types: A, B, C, . . . , ranked in an 
order that is at the same time decreasing in their worth to the employer and in-
creasing in the costs of extra education. Then it is possible to set up a sequence 
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of requirements of successively higher and higher levels of education, such that 
the very worst type needs none, the next-worst type needs the lowest level, the 
type third from the bottom needs the next higher level, and so on, and the types 
will self-select the level that identifies them. 

To finish this discussion, we provide one further point, or perhaps a word of 
warning, regarding signaling. You are the informed party and have available an 
action that would credibly signal good information (information whose credible 
transmission would work to your advantage). If you fail to send that signal, you 
will be assumed to have bad information. In this respect, signaling is like play-
ing chicken: if you refuse to play, you have already played and lost.

You should keep this in mind when you have the choice between taking 
a course for a letter grade or on a pass/fail basis. The whole population in the 
course spans the whole spectrum of grades; suppose the average is B. A student 
is likely to have a good idea of his own abilities. Those reasonably confident of 
getting an A1 have a strong incentive to take the course for a letter grade. When 
they have done so, the average of the rest is less than B, say, B2, because the top 
end has been removed from the distribution. Now, among the rest, those expect-
ing an A have a strong incentive to choose the letter-grade option. That in turn 
lowers the average of the rest. And so on. Finally, the pass/fail option is chosen 
by only those anticipating Cs and Ds. A strategically smart reader of a transcript 
(a prospective employer or the admissions officer for a professional graduate 
school) will be aware that the pass/fail option will be selected mainly by stu-
dents in the lower portion of the grade distribution; such a reader will therefore 
interpret a Pass as a C or a D, not as the class-wide average B. 

6 EQUILIBRIA IN TWO-PLAYER SIGNALING GAMES

Our analysis so far in this chapter has covered the general concept of incom-
plete information as well as the specific strategies of screening and signaling; we 
have also seen the possible outcomes of separation and pooling that can arise 
when these strategies are being used. We saw how adverse selection could arise 
in a market where many car owners and buyers came together and how signals 
and screening devices would operate in an environment where many employers 
and employees meet each other. However, we have not specified and solved a 
game in which just two players with differential information confront one an-
other. Here we develop an example to show how that can be done using a game 
tree and payoff table as our tools of analysis. We will see that either separating 
or pooling can be an equilibrium and that a new type of partially revealing or 
semiseparating equilibrium can emerge.
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A. Basic Model and Payoff Structure

In this section, we analyze a game of market entry with asymmetric informa-
tion; the players are two auto manufacturers, Tudor and Fordor. Tudor Auto 
Corporation currently enjoys a monopoly in the market for a particular kind of 
automobile, say a nonpolluting, fuel-efficient compact car. An innovator, For-
dor, has a competing concept and is deciding whether to enter the market. But  
Fordor does not know how tough a competitor Tudor will prove to be. Specifi-
cally, Tudor’s production cost, unknown to Fordor, may be high or low. If it is 
high, Fordor can enter and compete profitably; if it is low, Fordor’s entry and 
development costs cannot be recouped by subsequent operating profits, and it 
will make a net loss if it enters. 

The two firms interact in a sequential game. In the first stage of the game 
(period 1), Tudor sets a price (high or low, for simplicity) knowing that it is the 
only manufacturer in the market. In the next stage, Fordor makes its entry de-
cision. Payoffs, or profits, are determined based on the market price of the 
automobile relative to each firm’s production costs and, for Fordor, entry and 
development costs as well.

Tudor would of course prefer that Fordor not enter the market. It might 
therefore try to use its price in the first stage of the game as a signal of its cost. 
A low-cost firm would charge a lower price than would a high-cost firm. Tudor 
might therefore hope that if it keeps its period-1 price low, Fordor will inter-
pret this as evidence that Tudor’s cost is low and will stay out. (Once Fordor has 
given up and is out of the picture, in later periods Tudor can jack its price back 
up.) Just as a poker player might bet on a poor hand, hoping that the bluff will 
succeed and the opponent will fold, Tudor might try to bluff Fordor into stay-
ing out. Of course, Fordor is a strategic player and is aware of this possibility. 
The question is whether Tudor can bluff successfully in an equilibrium of their 
game. The answer depends on the probability that Tudor is genuinely low cost 
and on Tudor’s cost of bluffing. We consider different cases below and show the 
resulting different equilibria.

In all the cases, the per-unit costs and prices are expressed in thousands of 
dollars, and the numbers of cars sold are expressed in hundreds of thousands, 
so the profits are measured in hundreds of millions. This will help us write the 
payoffs and tables in a relatively compact form that is easy to read. We calcu-
late those payoffs using the same type of analysis that we used for the restaurant 
pricing game of Chapter 5, assuming that the underlying relationship between 
the price charged (P) and the quantity demanded (Q) is given by P 5 25 2 Q.30 

e q u i l i B r i a  i n  t w o - p l ay e r  s i g n a l i n g  g a m e s   3 1 1

30 We do not supply the full calculations necessary to generate the profit-maximizing prices and the 
resulting firm profits in each case. You may do so on your own for extra practice, using the methods 
learned in Chapter 5.
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To enter the market, Fordor must incur an up-front cost of 40 (this payment is in 
the same units as profits, or hundreds of millions, so the actual figure is $4 bil-
lion) to build its plant, launch an ad campaign, and so on. If it enters the market, 
its cost for producing and delivering each of its cars to the market will always be 
10 (thousand dollars). 

Tudor could be either a lumbering, old firm with a high unit production cost 
of 15 (thousand dollars) or a nimble, efficient producer with a lower unit cost. To 
start, we suppose that the lower cost is 5; this cost is less than what Fordor can 
achieve. Later in Sections 6.C and 6.D, we will investigate the effect of other cost 
levels. For now, suppose further that Tudor can achieve the lower unit cost with 
probability 0.4, or 40% of the time; therefore it has high unit cost with probabil-
ity 0.6, or 60% of the time.31 

Fordor’s choices in the entry game will depend on how much information 
it has about Tudor’s costs. We assume that Fordor knows the two possible levels 
of cost and therefore can calculate the profits associated with each case (as we 
do below). In addition, Fordor will form some belief about the probability that 
Tudor is the low-cost type. We are assuming that the structure of the game is 
common knowledge to both players. Therefore, although Fordor does not know 
the type of the specific Tudor it is facing, Fordor’s prior belief exactly matches 
the probability with which Tudor has the lower unit cost; that is, Fordor’s belief 
is that the probability of facing a low-cost Tudor is 40%. 

If Tudor’s cost is high, 15 (thousand), then under conditions of unthreatened 
monopoly it will maximize its profit by pricing its car at 20 (thousand). At that 
price it will sell 5 (hundred thousand) units and make a profit of 25 [5 5 3 (20 2 
15) hundred million, or 2.5 billion]. If Fordor enters and the two compete, then 
the Nash equilibrium of their duopoly game will yield operating profits of 3 to 
Tudor and 45 to Fordor. The operating profit exceeds Fordor’s up-front cost of 
entry (40), so Fordor would choose to enter and earn a net profit of 5 if it knew 
Tudor to be high cost.

If Tudor’s cost is low, 5, then in unthreatened monopoly it will price its car at 
15, selling 10 and making a profit of 100. In the second-stage equilibrium follow-
ing the entry of Fordor, the operating profits will be 69 for Tudor and 11 for For-
dor. The 11 is less than Fordor’s cost of entry of 40. Therefore, it would not enter 
and avoid incurring a loss of 29 if it knew Tudor to be low cost.

B. Separating Equilibrium

If Tudor is actually high cost, but wants Fordor to think that it is low cost, Tudor 
must mimic the action of the low-cost type; that is, it has to price at 15. But that 

31 Tudor’s probability of having low unit cost could be denoted with an algebraic parameter, z. The 
equilibrium will be the same regardless of the value of z, as you will be asked to show in Exercise S5 
at the end of this chapter.
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price equals its cost in this case; it will make zero profit. Will this sacrifice of ini-
tial profit give Tudor the benefit of scaring Fordor off and enjoying the benefits 
of being a monopoly in subsequent periods?

We show the full game in extensive form in Figure 8.7. Note that we use the 
fictitious player called Nature, as in Section 3, to choose Tudor’s cost type at 
the start of the game. Then Tudor makes its pricing decision. We assume that 
if Tudor has low cost, it will not choose a high price.32 But if Tudor has high cost, 
it may choose either the high price or the low price if it wants to bluff. Fordor 
cannot tell apart the two situations in which Tudor prices low; therefore its entry 
choices at these two nodes are enclosed in one information set. Fordor must 
choose either In at both or Out at both.

At each terminal node, the first payoff entry (in blue) is Tudor’s profit, and 
the second entry (in black) is Fordor’s profit. Tudor’s profit is added over two pe-
riods, the first period when it is the sole producer, and the second period when 

e q u i l i B r i a  i n  t w o - p l ay e r  s i g n a l i n g  g a m e s   3 1 3

100 � 69, 11 � 40

100 � 100, 0

0 � 3, 45 � 40

0 � 25, 0

25 � 25, 0

25 � 3, 45 � 40

NATURE

TUDOR

TUDOR

FORDOR

FORDOR

FORDOR

Tudor’s
cost low
(Prob. 0.4)

Tudor’s
cost high
(Prob. 0.6)

Price low

Price low

In 

Out 

In 

Out 

In 

Out 

Price high

FIGURE 8.7  extensive form of entry game: tudor’s low Cost is 5

32 This seems obvious: Why choose a price different from the profit-maximizing price? Charging the 
high price when you have low cost not only sacrifices some profit in period 1 (if the low-cost Tudor 
charges 20, its sales will drop by so much that it will make a profit of only 75 instead of the 100 it gets 
by charging 15), but also increases the risk of entry and so lowers period-2 profits as well (compet-
ing with Fordor, the low-cost Tudor would have a profit of only 69 instead of the 100 it gets under 
monopoly). However, game theorists have found strange equilibria where a high period-1 price for 
Tudor is perversely interpreted as evidence of low cost, and they have applied great ingenuity in rul-
ing out these equilibria. We leave out these complications, as we did in our analysis of cheap talk 
equilibria earlier, but refer interested readers to In-Koo Cho and David Kreps, “Signaling Games and 
Stable Equilibria,” Quarterly Journal of Economics, vol. 102, no. 2 (May 1987), pp. 179–222.
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it may be a monopolist or a duopolist, depending on whether Fordor enters. 
Fordor’s profit covers only the second period and is non-zero only when it has 
chosen to enter.

Using one step of rollback analysis, we see that Fordor will choose In at the 
bottom node where Tudor has chosen the high price, because 45 – 40 5 5 . 0. 
Therefore, we can prune the Out branch at that node. Then each player has just 
two strategies (complete plans of action). For Tudor the strategies are Bluff, or 
choose the low price in period 1 regardless of cost (LL in the shorthand notation 
of Chapter 3), and Honest, or choose the low price in period 1 if cost is low and 
the high price if cost is high (LH). For Fordor, the two strategies are Regardless, 
or enter irrespective of Tudor’s period-1 price (II, for In-In), and Conditional, or 
enter only if Tudor’s period-1 price is high (OI). 

We can now show the game in strategic (normal) form. Figure 8.8 shows each 
player with two possible strategies; payoffs in each cell are the expected profits 
to each firm, given the probability (40%) that Tudor’s cost is low. The calculations 
are similar to those we performed to fill in the table in Figure 8.6. As in that ex-
ample, you may find the calculations easier if you label the terminal nodes in the 
tree and determine which ones are relevant for each cell of the table.

This is a simple dominance-solvable game. For Tudor, Honest dominates 
Bluff. And Fordor’s best response to Tudor’s dominant strategy of Honest is Con-
ditional. Thus (Honest, Conditional) is the only (subgame-perfect) Nash equi-
librium of the game. 

The equilibrium found in Figure 8.8 is separating. The two cost types of 
Tudor charge different prices in period 1. This action reveals Tudor’s type to For-
dor, which then makes its entry decision appropriately.

The key to understanding why Honest is the dominant strategy for Tudor 
can be found in the comparison of its payoffs against Fordor’s Conditional strat-
egy. These are the outcomes when Tudor’s bluff “works’’: Fordor enters if Tudor 
charges the high price in period 1 and stays out if Tudor charges the low price in 
period 1. If Tudor is truly low cost, then its payoffs against Fordor playing Condi-
tional are the same whether it chooses Bluff or Honest. But when Tudor is actu-
ally high cost, the results are different.

FORDOR

Bluff (LL) 

Honest (LH) 169 � 0.4 � 28 � 0.6 � 84.4,
�29 � 0.4 � 5 � 0.6 � �8.6

200� 0.4 � 28 � 0.6 � 96.8,
5 � 0.6 � 3

200 � 0.4 � 25 � 0.6 � 95,
0

Regardless (II) Conditional (OI)

169 � 0.4 � 3 � 0.6 � 69.4,
�29 � 0.4 � 5 � 0.6 � �8.6

TUDOR  

FIGURE 8.8  strategic form of entry game: tudor’s low Cost is 5
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If Fordor’s strategy is Conditional and Tudor is high cost, Tudor can use 
Bluff successfully. However, even the successful bluff will be too costly. If Tudor 
charged its best monopoly (Honest) price in period 1, it would make a profit 
of 25; the bluffing low price reduces this period-1 profit drastically, in this in-
stance all the way to 0. The higher monopoly price in period 1 would encourage 
Fordor’s entry and reduce period-2 profit for Tudor, from the monopoly level of 
25 to the duopoly level of 3. But Tudor’s period-2 benefit from charging the low 
(Bluff) price and keeping Fordor out (25 2 3 5 22) is less than the period-1 cost 
imposed by bluffing and giving up its monopoly profits (25 2 0 5 25). As long as 
there is some positive probability that Tudor is high cost, then the benefits from 
choosing Honest will outweigh those from choosing Bluff, even when Fordor’s 
choice is Conditional. 

If the low price were not so low, then a truly high-cost Tudor would sacri-
fice less by mimicking the low-cost type. In such a case, Bluff might be a more 
profitable strategy for a high-cost Tudor. We consider exactly this possibility in 
the analysis below.

C. Pooling Equilibrium

Let us now suppose that the lower of the production costs for Tudor is 10 per car 
instead of 5. With this cost change, the high-cost Tudor still makes profit of 25 
under monopoly if it charges its profit-maximizing price of 20. But the low-cost 
Tudor now charges 17.5 as a monopolist (instead of 15) and makes a profit of 56. 
If the high-cost type mimics the low-cost type and also charges 17.5, its profit 
is now 19 (rather than the 0 it earned in this case before); the loss of profit from 
bluffing is now much smaller: 25 2 19 5 6, rather than 25. If Fordor enters, then 
the two firms’ profits in their duopoly game are 3 for Tudor and 45 for Fordor if 
Tudor has high costs (as in the previous section). Duopoly profits are now 25 for 
each firm if Tudor has low costs; in this situation, Fordor and the low-cost Tudor 
have identical unit costs of 10.

Suppose again that the probability of Tudor being the low-cost type is 40% 
(0.4) and Fordor’s belief about the low-cost probability is correct. The new game 
tree is shown in Figure 8.9. Because Fordor will still choose In when Tudor prices 
High, the game again collapses to one in which each player has exactly two 
complete strategies; those strategies are the same ones we described in Section 
6.B above. The payoff table for the normal form of this game is then the one il-
lustrated in Figure 8.10. 

This is another dominance-solvable game. Here it is Fordor with a domi-
nant strategy, however; it will always choose Conditional. And given the domi-
nance of Conditional, Tudor will choose Bluff. Thus, (Bluff, Conditional) is the 
unique (subgame-perfect) Nash equilibrium of this game. In all other cells 
of the table, one firm gains by deviating to its other action. We leave it to you 
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to think about the intuitive explanations of why each of these deviations is  
profitable.

The equilibrium found using Figure 8.10 involves pooling. Both cost types of 
Tudor charge the same (low) price and, seeing this, Fordor stays out. When both 
types of Tudor charge the same price, observation of that price does not convey 
any information to Fordor. Its estimate of the probability of Tudor’s cost being 
low stays at 0.4, and it calculates its expected profit from entry to be 23 , 0,  
so it does not enter. Even though Fordor knows full well that Tudor is bluffing in 
equilibrium, the risk of calling the bluff is too great because the probability of 
Tudor’s cost actually being low is sufficiently great.

What if this probability were smaller—say, 0.1—and Fordor was aware of 
this fact? If all the other numbers remain unchanged, then Fordor’s expected 
profit from its Regardless strategy is 215 3 0.1 1 5 3 0.9 5 4.5 2 1.5 5 3 . 0. 

FORDOR

Bluff (LL) 

Honest (LH) 81 � 0.4 � 28 � 0.6 � 49.2,
�15 � 0.4 � 5 � 0.6 � �3

112 � 0.4 � 28 � 0.6 � 61.6,
5 � 0.6 � 3

112 � 0.4 � 44 � 0.6 � 71.2,
0

Regardless (II) Conditional (OI)

81 � 0.4 � 22 � 0.6 � 45.6,
�15 � 0.4 � 5 � 0.6 � �3

TUDOR  

FIGURE 8.10  strategic form of entry game: tudor’s low Cost is 10

56 � 25, 25 � 40

56 � 56, 0

19 � 3, 45 � 40

19 � 25, 0

25 � 25, 0

25 � 3, 45 � 40

NATURE

TUDOR

TUDOR

FORDOR

FORDOR

FORDOR

Tudor’s
cost low
(Prob. 0.4)

Tudor’s
cost high
(Prob. 0.6)

Price low

Price low

In 

Out 

In 

Out 

In 

Out 

Price high

FIGURE 8.9  extensive form of entry game: tudor’s low Cost is 10
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Then Fordor will enter no matter what price Tudor charges, and Tudor’s bluff 
will not work. Such a situation results in a new kind of equilibrium; we consider 
its features below.

D. Semiseparating Equilibrium

Here we consider the outcomes in the entry game when Tudor’s probability of 
achieving the low production cost of 10 is small, only 10% (0.1). All of the cost 
and profit numbers are the same as in the previous section; only the probabili-
ties have changed. Therefore, we do not show the game tree (Figure 8.9) again. 
We show only the payoff table as Figure 8.11. 

In this new situation, the game illustrated in Figure 8.11 has no equilibrium 
in pure strategies. From (Bluff, Regardless), Tudor gains by deviating to Honest; 
from (Honest, Regardless), Fordor gains by deviating to Conditional; from (Hon-
est, Conditional), Tudor gains by deviating to Bluff; and from (Bluff, Conditional), 
Fordor gains by deviating to Regardless. Once again, we leave it to you to think 
about the intuitive explanations of why each of these deviations is profitable.

So now we need to look for an equilibrium in mixed strategies. We suppose 
Tudor mixes Bluff and Honest with probabilities p and (1 2 p), respectively. Sim-
ilarly, Fordor mixes Regardless and Conditional with probabilities q and (1 2 q), 
respectively. Tudor’s p-mix must keep Fordor indifferent between its two pure 
strategies of Regardless and Conditional; therefore we need

 3p 1 3 (1 2 p) 5 0p 1 4.5 (1 2 p), or 4.5 (1 2 p) 5 3, or 

 1 2 p 5 23, or p 5 13.

And Fordor’s q-mix must keep Tudor indifferent between its two pure strategies 
of Bluff and Honest; therefore we need

 27.9q 1 50.8 (1 2 q) 5 33.3q 1 36.4 (1 2 q), or 5.4q 5 14 (1 2 q), or 

 q 5 14.419.8 5 1622 5 0.727.

The mixed-strategy equilibrium of the game then entails Tudor playing 
Bluff one-third of the time and Honest two-thirds of the time, while Fordor  

e q u i l i B r i a  i n  t w o - p l ay e r  s i g n a l i n g  g a m e s   3 1 7

FORDOR

Bluff (LL) 

Honest (LH) 81 � 0.1 � 28 � 0.9 � 33.3,
�15 � 0.1 � 5 � 0.9 � 3

112 � 0.1 � 28 � 0.9 � 36.4,
5 � 0.9 � 4.5

112 � 0.1 � 44 � 0.9 � 50.8,
0

Regardless (II) Conditional (OI)

81 � 0.1 � 22 � 0.9 � 27.9,
�15 � 0.1 � 5 � 0.9 � 3

TUDOR 

FIGURE 8.11  strategic form of entry game: tudor's low Cost is 10 with probability 0.1
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plays Regardless sixteen twenty-seconds of the time and Conditional six  
twenty-seconds of the time.

In this equilibrium, the Tudor types are only partially separated. The  
low-cost-type Tudor always prices Low in period 1, but the high-cost-type 
Tudor mixes and will also charge the low price one-third of the time. If For-
dor observes a high price in period 1, it can be sure that Tudor has high cost; in 
that case, it will always enter. But if Fordor observes a low price, it does not know 
whether it faces a truly low-cost Tudor or a bluffing, high-cost Tudor. Then Fordor 
also plays a mixed strategy, entering 72.7% of the time. Thus, a high price conveys 
full information, but a low price conveys only partial information about Tudor’s 
type. Therefore, this kind of equilibrium is labeled semiseparating.

To understand better the mixed strategies of each firm and the semiseparat-
ing equilibrium, consider how Fordor can use the partial information conveyed 
by Tudor’s low price. If Fordor sees the low price in period 1, it will use this ob-
servation to update its belief about the probability that Tudor is low cost; it does 
this updating using Bayes’ theorem.33 The table of calculations is shown as Fig-
ure 8.12; this table is similar to Figure 8A.3 in the appendix.

The table shows the possible types of Tudor in the rows and the prices For-
dor observes in the columns. The values in the cells represent the overall proba-
bility that a Tudor of the type shown in the corresponding row chooses the price 
shown in the corresponding column (incorporating Tudor’s equilibrium mixture 
probability); the final row and column show the total probabilities of each type 
and of observing each price, respectively. 

Using Bayes’ rule, when Fordor observes Tudor charging a low period-1 
price, it will revise its belief about the probability of Tudor being low cost by tak-
ing the probability that a low-cost Tudor is charging the low price (the 0.1 in the 
top-left cell) and dividing that by the total probability of the two types of Tudor 
choosing the low price (0.4, the column sum in the left column). This calculation 
yields Fordor’s updated belief about the probability that Tudor has low costs to 

TUDOR’S PRICE

Low 

Sum of 
row 

High 

Sum of column 0.4 

0.9 � 1�3 � 0.3

0.6 

0.9 � 2�3 � 0.6

0 

0.9 

Low High

0.1 0.1 
TUDOR’S 

COST  

FIGURE 8.12  applying Bayes’ theorem to the entry game

33 We provide a thorough explanation of Bayes’ theorem in the appendix to this chapter. Here, we 
simply apply the analysis found there to our entry game.
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be 0.1 0.4 5 0.25. Then Fordor also updates its expected profit from entry to be 
215 3 0.25 1 5 3 0.75 5 0. Thus, Tudor’s equilibrium mixture is exactly right for 
making Fordor indifferent between entering and not entering when it sees the 
low period-1 price. This outcome is exactly what is needed to keep Tudor willing 
to mix in the equilibrium. 

The original probability 0.1 of Tudor being low cost was too low to deter For-
dor from entering. Fordor’s revised probability of 0.25, after observing the low 
price in period 1, is higher. Why? Precisely because the high-cost-type Tudor is 
not always bluffing. If it were, then the low price would convey no information 
at all. Fordor’s revised probability would equal 0.1 in that case, whereupon it 
would enter. But when the high-cost-type Tudor bluffs only sometimes, a low 
price is more likely to be indicative of low cost.

We developed the equilibria in this entry game in an intuitive way, but we 
now look back and think systematically about the nature of those equilibria. In 
each case, we first ensured that each player’s (and each type’s) strategy was opti-
mal, given the strategies of everyone else; we applied the Nash concept of equi-
librium. Second, we ensured that players drew the correct inference from their 
observations; this required a probability calculation using Bayes’ theorem, most 
explicitly in the semiseparating equilibrium. The combination of concepts nec-
essary to identify equilibria in such asymmetric information games justifies giv-
ing them the label Bayesian Nash equilibria. Finally, although this was a rather 
trivial part of this example, we did a little bit of rollback, or subgame perfectness, 
reasoning. The use of rollback justifies calling it the perfect Bayesian equilib-
rium (PBE) as well. Our example was a simple instance of all of these equilibrium 
concepts: you will meet some of them again in slightly more sophisticated forms 
in later chapters and in much fuller contexts in further studies of game theory.

SUMMARY

When facing imperfect or incomplete information, game players with different 
attitudes toward risk or different amounts of information can engage in strategic 
behavior to control and manipulate the risk and information in a game. Players 
can reduce their risk with payment schemes or by sharing the risk with others, 
although the latter is complicated by moral hazard and adverse selection. Risk 
can sometimes be manipulated to a player’s benefit, depending on the circum-
stances within the game.

Players with private information may want to conceal or reveal that infor-
mation, while those without the information try to elicit it or avoid it. Actions 
speak louder than words in the presence of asymmetric information. To reveal 
information, a credible signal is required. In some cases, mere words may be 
sufficient to convey information credibly, and then a cheap talk equilibrium can 
arise. The extent to which player interests are aligned plays an important role in 
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achieving such equilibria. When the information content of a player’s words is 
ignored, the game has a babbling equilibrium.

More generally, specific actions taken by players convey information. Sig-
naling works only if the signal action entails different costs to players with dif-
ferent information. To obtain information, when questioning is not sufficient 
to elicit truthful information, a screening scheme that looks for a specific action 
may be required. Screening works only if the screening device induces others to 
reveal their types truthfully; there must be incentive compatibility to get sepa-
ration. At times, credible signaling or screening may not be possible; then the 
equilibrium can entail pooling or there can be a complete collapse of the mar-
ket or transaction for one of the types. Many examples of signaling and screen-
ing games can be found in ordinary situations such as the labor market or in 
the provision of insurance. The evidence on players’ abilities to achieve perfect 
Bayesian equilibria seems to suggest that, despite the difficult probability cal-
culations necessary, such equilibria are often observed. Different experimental 
results appear to depend largely on the design of the experiment.

In the equilibrium of a game with asymmetric information, players must not 
only use their best actions given their information, but must also draw correct 
inferences (update their information) by observing the actions of others. This 
type of equilibrium is known as a Bayesian Nash equilibrium. When the further 
requirement of optimality at all nodes (as in rollback analysis) must be imposed, 
the equilibrium becomes a perfect Bayesian equilibrium. The outcome of such 
a game may entail pooling, separation, or partial separation, depending on the 
specifics of the payoff structure and the specified updating processes used by 
players. In some parameter ranges, such games may have multiples types of 
perfect Bayesian equilibria.

KEY TERMS
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adverse selection (295)
babbling equilibrium (283)
Bayesian Nash equilibrium (319)
cheap talk equilibrium (281)
incentive-compatability  
     condition (constraint) (306)
moral hazard (272)
negatively correlated (273)
partially revealing  
     equilibrium (310)
participation condition  
     (constraint) (306)

perfect Bayesian  
     equilibrium (PBE) (319)
pooling (308)
pooling of types (308)
pooling equilibrium (281)
positively correlated (274)
screening (281)
screening device (281)
self-selection (307)
semiseparating equilibrium (310)
separating equilibrium (281)
separation of types (307)
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SOLVED ExERCISES

 S1.  In the risk-trading example in Section 1, you had a risky income that 
was $160,000 with good luck (probability 0.5) and $40,000 with bad luck 
(probability 0.5). When your neighbor had a sure income of $100,000, we 
derived a scheme in which you could eliminate all of your risk while rais-
ing his expected utility slightly. Assume that the utility of each of you is 
still the square root of the respective income. Now, however, let the prob-
ability of good luck be 0.6. Consider a contract that leaves you with ex-
actly $100,000 when you have bad luck. Let x be the payment that you 
make to your neighbor when you have good luck.

 (a) What is the minimum value of x (to the nearest penny) such that 
your neighbor slightly prefers to enter into this kind of contract 
rather than no contract at all?

 (b) What is the maximum value of x (to the nearest penny) for which 
this kind of contract gives you a slightly higher expected utility than 
no contract at all? 

 S2.  A local charity has been given a grant to serve free meals to the homeless 
in its community, but it is worried that its program might be exploited 
by nearby college students, who are always on the lookout for a free 
meal. Both a homeless person and a college student receive a payoff of 
10 for a free meal. The cost of standing in line for the meal is t 2320 for a 
homeless person and t 2160 for a college student, where t is the amount 
of time in line measured in minutes. Assume that the staff of the charity 
cannot observe the true type of those coming for free meals.

 (a) What is the minimum wait time t that will achieve separation of types?
 (b) After a while, the charity finds that it can successfully identify and 

turn away college students half of the time. College students who 
are turned away receive no free meal and, further, incur a cost of 5 
for their time and embarrassment. Will the partial identification of 
college students reduce or increase the answer in part (a)? Explain.

 S3. Consider the used-car market for the 2011 Citrus described in Section 
4.B. There is now a surge in demand for used Citruses; buyers would now 
be willing to pay up to $18,000 for an orange and $8,000 for a lemon. All 
else remains identical to the example in Section 4.B.
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signal (280)
signaling (280)

signal jamming (280)
type (281)
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 (a) What price would buyers be willing to pay for a 2011 Citrus of un-
known type if the fraction of oranges in the population, f, were 0.6?

 (b) Will there be a market for oranges if f 5 0.6? Explain.
 (c) What price would buyers be willing to pay if f were 0.2?
 (d) Will there be a market for oranges if f 5 0.2? Explain.
 (e) What is the minimum value of f such that the market for oranges 

does not collapse?
 (f) Explain why the increase in the buyers’ willingness to pay changes 

the threshold value of f , where the market for oranges collapses.

 S4.  Suppose electricians come in two types: competent and incompetent. 
Both types of electricians can get certified, but for the incompetent types 
certification takes extra time and effort. Competent ones have to spend 
C months preparing for the certification exam; incompetent ones take 
twice as long. Certified electricians can earn 100 (thousand dollars) each 
year working on building sites for licensed contractors. Uncertified elec-
tricians can earn only 25 (thousand dollars) each year in freelance work; 
licensed contractors won’t hire them. Each type of electrician gets a pay-
off equal to S 2 M, where S is the salary measured in thousands of dol-
lars and M is the number of months spent getting certified. What is the 
range of values of C for which a competent electrician will choose to sig-
nal with this device but an incompetent one will not?

 S5. Return to the Tudor-Fordor example in Section 6.A, when Tudor’s low 
per-unit cost is 5. Let z be the probability that Tudor actually has a low 
per-unit cost. 

 (a) Rewrite the table in Figure 8.8 in terms of z. 
 (b) How many pure-strategy equilibria are there when z 5 0? Explain.
 (c) How many pure-strategy equilibria are there when z 5 1? Explain.
 (d) Show that the Nash equilibrium of this game is always a separating 

equilibrium for any value of z between 0 and 1 (inclusive). 

 S6. Looking at Tudor and Fordor again, assume that the old, established 
company Tudor is risk averse, whereas the would-be entrant Fordor 
(which is planning to finance its project through venture capital) is risk 
neutral. That is, Tudor’s utility is always the square root of its total profit 
over both periods. Fordor’s utility is simply the amount of its profit—if 
any—during the second period. Assume that Tudor’s low per-unit cost is 
5, as in Section 6.A.

 (a) Redraw the extensive-form game shown in Figure 8.7, giving the 
proper payoffs for a risk-averse Tudor. 
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 (b) Let the probability that Tudor is low cost, z, be 0.4. Will the equilib-
rium be separating, pooling, or semiseparating? (Hint: Use a table 
equivalent to Figure 8.8.)

 (c) Repeat part (b) with z 5 0.1.

 S7. Return to a risk-neutral Tudor, but with a low per-unit cost of 6 (instead 
of 5 or 10 as in Section 6). If Tudor’s cost is low, 6, then it will earn 90 
in a profit-maximizing monopoly. If Fordor enters, Tudor will earn 59 in 
the resulting duopoly while Fordor earns 13. If Tudor is actually high cost 
(that is, its per-unit cost is 15) and prices as if it were low cost (that is, 
with a per-unit cost of 6), then it earns 5 in a monopoly situation. 

 (a) Draw a game tree for this game equivalent to Figure 8.7 or 8.9 in the 
text, changing the appropriate payoffs.

 (b) Write the normal form of this game, assuming that the probability 
that Tudor is low price is 0.4.

 (c) What is the equilibrium of the game? Is it separating, pooling, or 
semiseparating? Explain why.

 S8.  Felix and Oscar are playing a simplified version of poker. Each makes an 
initial bet of 8 dollars. Then each separately draws a card, which may be 
High or Low with equal probabilities. Each sees his own card but not that 
of the other.

Then Felix decides whether to Pass or to Raise (bet an additional 4 
dollars). If he chooses to pass, the two cards are revealed and compared. 
If the outcomes are different, the one who has the High card collects the 
whole pot. The pot has 16 dollars, of which the winner himself contrib-
uted 8, so his winnings are 8 dollars. The loser’s payoff is 28 dollars. If the  
outcomes are the same, the pot is split equally and each gets his 8 dollars back  
(payoff 0).

If Felix chooses Raise, then Oscar has to decide whether to Fold (con-
cede) or See (match with his own additional 4 dollars). If Oscar chooses 
Fold, then Felix collects the pot irrespective of the cards. If Oscar chooses 
See, then the cards are revealed and compared. The procedure is the 
same as that in the preceding paragraph, but the pot is now bigger.

 (a) Show the game in extensive form. (Be careful about information 
sets.)

If the game is instead written in the normal form, Felix has four strat-
egies: (1) Pass always (PP for short), (2) Raise always (RR), (3) Raise if his 
own card is High and Pass if it is Low (RP), and (4) the other way round 
(PR). Similarly, Oscar has four strategies: (1) Fold always (FF), (2) See al-
ways (SS), (3) See if his own card is High and Fold if it is Low (SF), and (4) 
the other way round (FS).
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(In each case, you will have to take an expected value by averaging over 
the consequences for each of the four possible combinations of the card 
draws.)

 (c) Eliminate dominated strategies as far as possible. Find the mixed-
strategy equilibrium in the remaining table and the expected payoff 
to Felix in the equilibrium.

 (d) Use your knowledge of the theory of signaling and screening to ex-
plain intuitively why the equilibrium has mixed strategies.

 S9. Felix and Oscar are playing another simplified version of poker called 
Stripped-Down Poker. Both make an initial bet of one dollar. Felix (and 
only Felix) draws one card, which is either a King or a Queen with equal 
probability (there are four Kings and four Queens). Felix then chooses 
whether to Fold or to Bet. If Felix chooses to Fold, the game ends, and 
Oscar receives Felix’s dollar in addition to his own. If Felix chooses to Bet, 
he puts in an additional dollar, and Oscar chooses whether to Fold or to 
Call. 

If Oscar Folds, Felix wins the pot (consisting of Oscar’s initial bet of 
one dollar and two dollars from Felix). If Oscar Calls, he puts in another 
dollar to match Felix’s bet, and Felix’s card is revealed. If the card is a 
King, Felix wins the pot (two dollars from each of the roommates). If it is 
a Queen, Oscar wins the pot.

 (a) Show the game in extensive form. (Be careful about information 
sets.)

 (b) How many strategies does each player have?
 (c) Show the game in strategic form, where the payoffs in each cell re-

flect the expected payoffs given each player’s respective strategy.
 (d) Eliminate dominated strategies, if any. Find the equilibrium in 

mixed strategies. What is the expected payoff to Felix in equilibrium?
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FF SS

OSCAR

PP 

RR 

0 0 0 0 

8 0 1 7 

2 1 0 3 

6 –1 1 4 

SF FS

RP 

PR 

FELIX 

 (b) Show that the table of payoffs to Felix is as follows:
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 S10. Wanda works as a waitress and consequently has the opportunity to earn 
cash tips that are not reported by her employer to the Internal Revenue 
Service. Her tip income is rather variable. In a good year (G), she earns a 
high income, so her tax liability to the IRS is $5,000. In a bad year (B), she 
earns a low income, and her tax liability to the IRS is $0. The IRS knows 
that the probability of her having a good year is 0.6, and the probability 
of her having a bad year is 0.4, but it doesn’t know for sure which out-
come has resulted for her this tax year.

In this game, first Wanda decides how much income to report to 
the IRS. If she reports high income (H), she pays the IRS $5,000. If she 
reports low income (L), she pays the IRS $0. Then the IRS has to decide 
whether to audit Wanda. If she reports high income, they do not audit, 
because they automatically know they’re already receiving the tax pay-
ment Wanda owes. If she reports low income, then the IRS can either 
audit (A) or not audit (N). When the IRS audits, it costs the IRS $1,000 
in administrative costs, and also costs Wanda $1,000 in the opportunity 
cost of the time spent gathering bank records and meeting with the audi-
tor. If the IRS audits Wanda in a bad year (B), then she owes nothing to 
the IRS, although she and the IRS have each incurred the $1,000 auditing 
cost. If the IRS audits Wanda in a good year (G), then she has to pay the 
$5,000 she owes to the IRS, in addition to her and the IRS each incurring 
the cost of auditing.

 (a) Suppose that Wanda has a good year (G), but she reports low in-
come (L). Suppose the IRS then audits her (A). What is the total pay-
off to Wanda, and what is the total payoff to the IRS?

 (b) Which of the two players has an incentive to bluff (that is, to give a 
false signal) in this game? What would bluffing consist of?

 (c) Show this game in extensive form. (Be careful about information 
sets.)

 (d) How many pure strategies does each player have in this game? Ex-
plain your reasoning.

 (e) Write down the strategic-form game matrix for this game. Find all of 
the Nash equilibria to this game. Identify whether the equilibria you 
find are separating, pooling, or semiseparating.

 (f) Let x equal the probability that Wanda has a good year. In the origi-
nal version of this problem, we had x 5 0.6. Find a value of x such 
that Wanda always reports low income in equilibrium. 

 (g) What is the full range of values of x for which Wanda always reports 
low income in equilibrium?

 S11.  The design of a health-care system concerns matters of information and 
strategy at several points. The users—potential and actual patients—
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have better information about their own state of health, lifestyle, and 
so forth—than the insurance companies can find out. The providers— 
doctors, hospitals, and so forth—know more about what the patients 
need than do either the patients themselves or the insurance companies. 
Doctors also know more about their own skills and efforts, and hospitals 
about their own facilities. Insurance companies may have some statistical 
information about outcomes of treatments or surgical procedures from 
their past records. But outcomes are affected by many unobservable and 
random factors, so the underlying skills, efforts, or facilities cannot be in-
ferred perfectly from observation of the outcomes. The pharmaceutical 
companies know more about the efficacy of drugs than do the others. As 
usual, the parties do not have natural incentives to share their informa-
tion fully or accurately with others. The design of the overall scheme must 
try to face these matters and find the best feasible solutions.

Consider the relative merits of various payment schemes—fee for 
service versus capitation fees to doctors, comprehensive premiums per 
year versus payment for each visit for patients, and so forth—from this 
strategic perspective. Which are likely to be most beneficial to those 
seeking health care? To those providing health care? Think also about the 
relative merits of private insurance and coverage of costs from general 
tax revenues.

 S12. In a television commercial for a well-known brand of instant cappuccino, 
a gentleman is entertaining a lady friend at his apartment. He wants to 
impress her and offers her cappuccino with dessert. When she accepts, 
he goes into the kitchen to make the instant cappuccino—simultane-
ously tossing take-out boxes into the trash and faking the noises made by 
a high-class (and expensive) espresso machine. As he is doing so, a voice 
comes from the other room: “I want to see the machine . . . .”

Use your knowledge of games of asymmetric information to com-
ment on the actions of these two people. Pay attention to their attempts 
to use signaling and screening, and point out specific instances of each 
strategy. Offer an opinion about which player is the better strategist.

 S13. (Optional, requires appendix) In the genetic test example, suppose the 
test comes out negative (Y is observed). What is the probability that the 
person does not have the defect (B exists)? Calculate this probability by 
applying Bayes’ rule, and then check your answer by doing an enumera-
tion of the 10,000 members of the population.

 S14. (Optional, requires appendix) Return to the example of the 2011  
Citrus in Section 4.B. The two types of Citrus—the reliable orange and 
the hapless lemon—are outwardly indistinguishable to a buyer. In the  
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example, if the fraction f of oranges in the Citrus population is less than 
0.65, the seller of an orange will not be willing to part with the car for 
the maximum price buyers are willing to pay, so the market for oranges  
collapses. 

But what if a seller has a costly way to signal her car’s type? Although 
oranges and lemons are in nearly every respect identical, the defining dif-
ference between the two is that lemons break down much more frequently. 
Knowing this, owners of oranges make the following proposal. On a buy-
er’s request, the seller will in one day take a 500-mile round-trip drive in 
the car. (Assume this trip will be verifiable via odometer readings and a  
time-stamped receipt from a gas station 250 miles away.) For the sellers 
of both types of Citrus, the cost of the trip in fuel and time is $0.50 per 
mile (that is, $250 for the 500-mile trip). However, with probability q a 
lemon attempting the journey will break down. If a car breaks down, the 
cost is $2 per mile of the total length of the attempted road trip (that is, 
$1,000). Additionally, breaking down will be a sure sign that the car is a 
lemon, so a Citrus that does so will sell for only $6,000.

Assume that the fraction of oranges in the Citrus population, f, is 0.6. 
Also, assume that the probability of a lemon breaking down, q, is 0.5 and 
that owners of lemons are risk neutral. 

 (a) Use Bayes’ rule to determine fupdated, the fraction of Citruses that 
have successfully completed a 500-mile road trip that are oranges. 
Assume that all Citrus owners attempt the trip. Is fupdated greater than 
or less than f ? Explain why.

 (b) Use fupdated to determine the price, pupdated, that buyers are willing to 
pay for a Citrus that has successfully completed the 500-mile road 
trip.

 (c) Will an owner of an orange be willing to make the road trip and sell 
her car for pupdated? Why or why not?

 (d) What is the expected payoff of attempting the road trip to the seller 
of a lemon?

 (e) Would you describe the outcome of this market as pooling, separat-
ing, or semiseparating? Explain.

UNSOLVED ExERCISES

 U1. Jack is a talented investor, but his earnings vary considerably from year 
to year. In the coming year he expects to earn either $250,000 with good 
luck or $90,000 with bad luck. Somewhat oddly, given his chosen profes-
sion, Jack is risk averse, so that his utility is equal to the square root of his 
income. The probability of Jack’s having good luck is 0.5.
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 (a) What is Jack’s expected utility for the coming year?
 (b) What amount of certain income would yield the same level of utility 

for Jack as the expected utility in part (a)?

Jack meets Janet, whose situation is identical in every respect. She’s 
an investor who will earn $250,000 in the next year with good luck and 
$90,000 with bad, she’s risk averse with square-root utility, and her prob-
ability of having good luck is 0.5. Crucially, it turns out that Jack and Janet 
invest in such a way that their luck is completely independent. They 
agree to the following deal. Regardless of their respective luck, they will 
always pool their earnings and then split them equally.

 (c) What are the four possible luck-outcome pairs, and what is the 
probability of reaching each one?

 (d) What is the expected utility for Jack or Janet under this arrangement? 
 (e) What amount of certain income would yield the same level of utility 

for Jack and Janet as in part (d)?

Incredibly, Jack and Janet then meet Chrissy, who is also identical 
to Jack and Janet with respect to her earnings, utility, and luck. Chrissy’s 
probability of good luck is independent from either Jack’s or Janet’s. After 
some discussion, they decide that Chrissy should join the agreement of 
Jack and Janet. All three of them will pool their earnings and then split 
them equally three ways.

 (f) What are the eight possible luck-outcome triplets, and what is the 
probability of reaching each of them?

 (g) What is the expected utility for each of the investors under this ex-
panded arrangement?

 (h) What amount of certain income would yield the same level of utility 
as in part (g) for these risk-averse investors? 

 U2. Consider again the case of the 2011 Citrus. Almost all cars depreciate over 
time, and so it is with the Citrus. Every month that passes, all sellers of  
Citruses—regardless of type—are willing to accept $100 less than they 
were the month before. Also, with every passing month, buyers are maxi-
mally willing to pay $400 less for an orange than they were the previous 
month and $200 less for a lemon. Assume that the example in the text 
takes place in month 0. Eighty percent of the Citruses are oranges, and 
this proportion never changes.
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 (b) Graph the willingness to accept of the sellers of oranges over the 
next 12 months. On the same figure, graph the price that buyers 
are willing to pay for a Citrus of unknown type (given that the pro-
portion of oranges is 0.8). (Hint: Make the vertical axis range from 
10,000 to 14,000.)

 (c) Is there a market for oranges in month 3? Why or why not?
 (d) In what month does the market for oranges collapse?
 (e) If owners of lemons experienced no depreciation (that is, they were 

never willing to accept anything less than $3,000), would this affect 
the timing of the collapse of the market for oranges? Why or why not? 
In what month does the market for oranges collapse in this case?

 (f) If buyers experienced no depreciation for a lemon (that is, they were 
always willing to pay up to $6,000 for a lemon), would this affect the 
timing of the collapse of the market for oranges? Why or why not? In 
what month does the market for oranges collapse in this case?

 U3.  An economy has two types of jobs, Good and Bad, and two types of work-
ers, Qualified and Unqualified. The population consists of 60% Quali-
fied and 40% Unqualified. In a Bad job, either type of worker produces 
10 units of output. In a Good job, a Qualified worker produces 100 units, 
and an Unqualified worker produces 0. There is enough demand for 
workers that for each type of job, companies must pay what they expect 
the appointee to produce.

Companies must hire each worker without observing his type and 
pay him before knowing his actual output. But Qualified workers can 
signal their qualification by getting educated. For a Qualified worker, the 
cost of getting educated to level n is n22, whereas for an Unqualified 
worker, it is n2. These costs are measured in the same units as output, 
and n must be an integer.

 (a) What is the minimum level of n that will achieve separation?
 (b) Now suppose the signal is made unavailable. Which kind of jobs will 

be filled by which kinds of workers and at what wages? Who will gain 
and who will lose from this change?

Willingness to
accept of sellers

Willingness to
pay of buyers

Orange 

Lemon 

 (a) Fill out three versions of the following table for month 1, month 2, 
and month 3:
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 U4. You are the Dean of the Faculty at St. Anford University. You hire Assistant 
Professors for a probationary period of 7 years, after which they come up 
for tenure and are either promoted and gain a job for life or turned down, 
in which case they must find another job elsewhere.

Your Assistant Professors come in two types, Good and Brilliant. 
Any types worse than Good have already been weeded out in the hiring 
process, but you cannot directly distinguish between Good and Brilliant 
types. Each individual Assistant Professor knows whether he or she is 
Brilliant or merely Good. You would like to tenure only the Brilliant types.

The payoff from a tenured career at St. Anford is $2 million; think 
of this as the expected discounted present value of salaries, consulting 
fees, and book royalties, plus the monetary equivalent of the pride and 
joy that the faculty member and his or her family would get from being 
tenured at St. Anford. Anyone denied tenure at St. Anford will get a fac-
ulty position at Boondocks College, and the present value of that career 
is $0.5 million.

Your faculty can do research and publish the findings. But each 
publication requires effort and time and causes strain on the family; 
all these are costly to the faculty member. The monetary equivalent of 
this cost is $30,000 per publication for a Brilliant Assistant Professor and 
$60,000 per publication for a Good one. You can set a minimum number, 
N, of publications that an Assistant Professor must produce in order to 
achieve tenure.

 (a)  Without doing any math, describe, as completely as you can, what 
would happen in a separating equilibrium to this game.

 (b)  There are two potential types of pooling outcomes to this game. 
Without doing any math, describe what they would look like, as 
completely as you can.

 (c)  Now please go ahead and do some math. What is the set of possible 
N that will accomplish your goal of screening the Brilliant profes-
sors out from the merely Good ones?

 U5. Return to the Tudor-Fordor problem from Section 6.C, when Tudor’s low 
per-unit cost is 10. Let z be the probability that Tudor actually has a low 
per-unit cost. 

 (a) Rewrite the table in Figure 8.10 in terms of z. 
 (b) How many pure-strategy equilibria are there when z 5 0? What type 

of equilibrium (separating, pooling, or semiseparating) occurs when 
z 5 0? Explain.

 (c) How many pure-strategy equilibria are there when z 5 1? What type 
of equilibrium (separating, pooling, or semiseparating) occurs when 
z 5 1? Explain.
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 (d) What is the lowest value of z such that there is a pooling equilibrium? 
 (e) Explain intuitively why the pooling equilibrium cannot occur when 

the value of z is too low.

 U6. Assume that Tudor is risk averse, with square-root utility over its total 
profit (see Exercise S6), and that Fordor is risk neutral. Also, assume that 
Tudor’s low per-unit cost is 10, as in Section 6.C.

 (a) Redraw the extensive-form game shown in Figure 8.9, giving the 
proper payoffs for a risk-averse Tudor. 

 (b) Let the probability that Tudor is low cost, z, be 0.4. Will the equilib-
rium be separating, pooling, or semiseparating? (Hint: Use a table 
equivalent to Figure 8.10.)

 (c) Repeat part (b) with z 5 0.1.
 (d) (Optional) Will Tudor’s risk aversion change the answer to part (d) 

of Exercise U5? Explain why or why not.

 U7. Return to the situation in Exercise S7, where Tudor’s low per-unit cost  
is 6.

 (a) Write the normal form of this game in terms of z, the probability 
that Tudor is low price.

 (b) What is the equilibrium when z 5 0.1? Is it separating, pooling, or 
semiseparating?

 (c) Repeat part (b) for z 5 0.2.
 (d) Repeat part (b) for z 5 0.3.
 (e) Compare your answers in parts (b), (c), and (d) of this problem with 

part (d) of Exercise U5. When Tudor’s low cost is 6 instead of 10, can 
pooling equilibria be achieved at lower values of z? Or are higher 
values of z required for pooling equilibria to occur? Explain intui-
tively why this is the case.

 U8. Corporate lawsuits may sometimes be signaling games. Here is one ex-
ample. In 2003, AT&T filed suit against eBay, alleging that its Billpoint 
and PayPal electronic-payment systems infringed on AT&T’s 1994 patent 
on “mediation of transactions by a communications system.”

Let’s consider this situation from the point in time when the suit was 
filed. In response to this suit, as in most patent-infringement suits, eBay 
can offer to settle with AT&T without going to court. If AT&T accepts 
eBay’s settlement offer, there will be no trial. If AT&T rejects eBay’s settle-
ment offer, the outcome will be determined by the court.

The amount of damages claimed by AT&T is not publicly available. 
Let’s assume that AT&T is suing for $300 million. In addition, let’s assume 
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that if the case goes to trial, the two parties will incur court costs (paying 
lawyers and consultants) of $10 million each. 

Because eBay is actually in the business of processing electronic 
payments, we might think that eBay knows more than AT&T does about 
its probability of winning the trial. For simplicity, let’s assume that eBay 
knows for sure whether it will be found innocent (i) or guilty (g) of patent 
infringement. From AT&T’s point of view, there is a 25% chance that eBay 
is guilty (g) and a 75% chance that eBay is innocent (i).

Let’s also suppose that eBay has two possible actions: a generous 
settlement offer (G) of $200 million or a stingy settlement offer (S) of $20 
million. If eBay offers a generous settlement, assume that AT&T will ac-
cept, thus avoiding a costly trial. If eBay offers a stingy settlement, then 
AT&T must decide whether to accept (A) and avoid a trial or reject and 
take the case to court (C). In the trial, if eBay is guilty, it must pay AT&T 
$300 million in addition to paying all the court costs. If eBay is found in-
nocent, it will pay AT&T nothing, and AT&T will pay all the court costs.

 (a) Show the game in extensive form. (Be careful to label information 
sets correctly.) 

 (b) Which of the two players has an incentive to bluff (that is, to give a 
false signal) in this game? What would bluffing consist of? Explain 
your reasoning.

 (c) Write the strategic-form game matrix for this game. Find all of the 
Nash equilibria to this game. What are the expected payoffs to each 
player in equilibrium?

 U9. For the Stripped-Down Poker game that Felix and Oscar play in Exercise 
S9, what does the mix of Kings and Queens have to be for the game to be 
fair? That is, what fraction of Kings will make the expected payoff of the 
game zero for both players?

 U10. Bored with Stripped-Down Poker, Felix and Oscar now make the game 
more interesting by adding a third card type: Jack. Four Jacks are added 
to the deck of four Kings and four Queens. All rules remain the same as 
before, except for what happens when Felix Bets and Oscar Calls. When 
Felix Bets and Oscar Calls, Felix wins the pot if he has a King, they “tie” 
and each gets his money back if Felix is holding a Queen, and Oscar wins 
the pot if the card is a Jack.

 (a) Show the game in extensive form. (Be careful to label information 
sets correctly.)

 (b) How many pure strategies does Felix have in this game? Explain 
your reasoning.

 (c) How many pure strategies does Oscar have in this game? Explain 
your reasoning.
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 (d) Represent this game in strategic form. This should be a matrix of  
expected payoffs for each player, given a pair of strategies.

 (e) Find the unique pure-strategy Nash equilibrium of this game. 
 (f) Would you call this a pooling equilibrium, a separating equilibrium, 

or a semiseparating equilibrium?
 (g) In equilibrium, what is the expected payoff to Felix of playing this 

game? Is it a fair game?

 U11. Consider Spence’s job-market signaling model with the following specifi-
cations. There are two types of workers, 1 and 2. The productivities of the 
two types, as functions of the level of education E, are

 W1(E ) 5 E  and W2(E ) 5 1.5E. 

The costs of education for the two types, as functions of the level of edu-
cation, are

 C1(E ) 5 E 22 and C2(E ) 5 E 23.

Each worker’s utility equals his or her income minus the cost of educa-
tion. Companies that seek to hire these workers are perfectly competitive 
in the labor market.

 (a)  If types are public information (observable and verifiable), find ex-
pressions for the levels of education, incomes, and utilities of the 
two types of workers.

Now suppose each worker’s type is his or her private information.
 (b)  Verify that if the contracts of part (a) are attempted in this situation 

of information asymmetry, then type 2 does not want to take up the 
contract intended for type 1, but type 1 does want to take up the 
contract intended for type 2, so “natural” separation cannot prevail.

 (c)  If we leave the contract for type 1 as in part (a), what is the range 
of contracts (education-wage pairs) for type 2 that can achieve  
separation?

 (d)  Of the possible separating contracts, which one do you expect to 
prevail? Give a verbal but not a formal explanation for your answer.

 (e)  Who gains or loses from the information asymmetry? How much?

 U12. “Mr. Robinson pretty much concludes that business schools are a sift-
ing device—M.B.A. degrees are union cards for yuppies. But perhaps 
the most important fact about the Stanford business school is that all 
meaningful sifting occurs before the first class begins. No messy weed-
ing is done within the walls. ‘They don’t want you to flunk. They want you 
to become a rich alum who’ll give a lot of money to the school.’ But one 
wonders: If corporations are abdicating to the Stanford admissions office 
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the responsibility for selecting young managers, why don’t they simply re-
place their personnel departments with Stanford admissions officers, and 
eliminate the spurious education? Does the very act of throwing away a 
lot of money and two years of one’s life demonstrate a commitment to 
business that employers find appealing?” (From the review by Michael 
Lewis of Peter Robinson’s Snapshots from Hell: The Making of an MBA, in 
the New York Times, May 8, 1994, Book Review section.) What answer to 
Lewis’s question can you give, based on our analysis of strategies in situa-
tions of asymmetric information?

 U13. (Optional, requires appendix) An auditor for the IRS is reviewing Wan-
da’s latest tax return (see Exercise S10), on which she reports having had 
a bad year. Assume that Wanda is playing according to her equilibrium 
strategy and that the auditor knows this. 

 (a) Using Bayes’ rule, find the probability that Wanda had a good year 
given that she reports having had a bad year. 

 (b) Explain why the answer in part (a) is more or less than the baseline 
probability of having a good year, 0.6.

 U14. (Optional, requires appendix) Return to Exercise S14. Assume, reason-
ably, that the probability of a lemon’s breaking down increases over the 
length of the road trip. Specifically, let q 5 m(m 1 500), where m is the 
number of miles in the round trip.

 (a) Find the minimum integer number of miles, m, necessary to avoid 
the collapse of the market for oranges. That is, what is the smallest 
m such that the seller of an orange is willing to sell her car at the 
market price for a Citrus that has successfully completed the road 
trip? (Hint: Remember to calculate fupdated and pupdated.)

 (b) What is the minimum integer number of miles, m, necessary to 
achieve complete separation between functioning markets for or-
anges and lemons? That is, what is the smallest m such that the 
owner of a lemon will never decide to attempt the road trip? 
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■

Appendix:
Risk Attitudes and Bayes’ Theorem

1 AT TITUDES TOWARD RISK AND ExPECTED UTILIT Y

In Chapter 2, we pointed out a difficulty about using probabilities to calculate 
the average or expected payoff for players in a game. Consider a game where 
players gain or lose money, and suppose we measure payoffs simply in money 
amounts. If a player has a 75% chance of getting nothing and a 25% chance of 
getting $100, then the expected payoff is calculated as a probability-weighted  
average; the expected payoff is the average of the different payoffs with the  
probabilities of each as weights. In this case, we have $0 with a probability of 
75%, which yields 0.75 3 0 5 0 on average, added to $100 with a probability of 
25%, which yields 0.25 3 100 5 25 on average. That is the same payoff as the 
player would get from a simple nonrandom outcome that guaranteed him $25 
every time he played. People who are indifferent between two alternatives with 
the same average monetary value but different amounts of risk are said to be 
risk-neutral. In our example, one prospect is riskless ($25 for sure), while the 
other is risky, yielding either $0 with a probability of 0.75 or $100 with a prob-
ability of 0.25, for the same average of $25. In contrast are risk-averse people—
those who, given a pair of alternatives each with the same average monetary 
value, would prefer the less risky option. In our example, they would rather get 
$25 for sure than face the risky $100-or-nothing prospect and, given the choice, 
would pick the safe prospect. Such risk-averse behavior is quite common; we 
should therefore have a theory of decision making under uncertainty that takes 
it into account.

We also said in Chapter 2 that a very simple modification of our payoff cal-
culation can get us around this difficulty. We said that we could measure payoffs 
not in money sums but by using a nonlinear rescaling of the dollar amounts. 
Here we show explicitly how that rescaling can be done and why it solves our 
problem for us.

Suppose that, when a person gets D dollars, we define the payoff to be  
something other than just D, perhaps D . Then the payoff number associated 
with $0 is 0, and that for $100 is 10. This transformation does not change the way 
in which the person rates the two payoffs of $0 and $100; it simply rescales the  
payoff numbers in a particular way.
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Now consider the risky prospect of getting $100 with probability 0.25 and 
nothing otherwise. After our rescaling, the expected payoff (which is the average  
of the two payoffs with the probabilities as weights) is (0.75 3 0) 1 (0.25 3 10) 5 
2.5. This expected payoff is equivalent to the person’s getting the dollar amount 
whose square root is 2.5; because 2.5 5 6.25, a person getting $6.25 for  
sure would also receive a payoff of 2.5. In other words, the person with our 
square-root payoff scale would be just as happy getting $6.25 for sure as he would 
getting a 25% chance at $100. This indifference between a guaranteed $6.25 and a  
1 in 4 chance of $100 indicates quite a strong aversion to risk; this person is 
 willing to give up the difference between $25 and $6.25 to avoid facing the risk. 
Figure 8A.1 shows this nonlinear scale (the square root), the expected payoff, 
and the person’s indifference between the sure prospect and the gamble.

What if the nonlinear scale that we use to rescale dollar payoffs is the cube 
root instead of the square root? Then the payoff from $100 is 4.64, and the  
expected payoff from the gamble is (0.75 3 0) 1 (0.25 3 4.64) 5 1.16, which is 
the cube root of 1.56. Therefore, a person with this payoff scale would accept 
only $1.56 for sure instead of a gamble that has a money value of $25 on average; 
such a person is extremely risk-averse indeed. (Compare a graph of the cube 
root of x with a graph of the square root of x to see why this should be so.)

And what if the rescaling of payoffs from x dollars is done by using the 
function x 2? Then the expected payoff from the gamble is (0.75 3 0) 1 (0.25 3 
10,000) 5 2,500, which is the square of 50. Therefore, a person with this payoff 
scale would be indifferent between getting $50 for sure and the gamble with an 

Payoff
scale

Dollars

2.5

100

10

256.25

FIGURE 8A.1  Concave scale: risk aversion
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expected money value of only $25. This person must be a risk lover because he 
is not willing to give up any money to get a reduction in risk; on the contrary, 
he must be given an extra $25 in compensation for the loss of risk. Figure 8A.2 
shows the nonlinear scale associated with a function such as x 2.

So by using different nonlinear scales instead of pure money payoffs, we can 
capture different degrees of risk-averse or risk-loving behavior. A concave scale 
like that of Figure 8A.1 corresponds to risk aversion, and a convex scale like that 
of Figure 8A.2 corresponds to risk-loving behavior. You can experiment with 
different simple nonlinear scales—for example, logarithms, exponentials, and 
other roots and powers—to see what they imply about attitudes toward risk.34

This method of evaluating risky prospects has a long tradition in decision 
theory; it is called the expected utility approach. The nonlinear scale that gives 
payoffs as functions of money values is called the utility function; the square 
root, cube root, and square functions referred to earlier are simple examples. 
Then the mathematical expectation, or probability-weighted average, of the 
utility values of the different money sums in a random prospect is called the  
expected utility of that prospect. And different random prospects are compared 
with one another in terms of their expected utilities; prospects with higher ex-
pected utility are judged to be better than those with lower expected utility.

Payoff
scale

25 Dollars

2,500

100

10,000

50

FIGURE 8A.2  Convex scale: risk loving

34 Additional information on the use of expected utility and risk attitudes of players can be found in 
many intermediate microeconomic texts; for example, Hal Varian, Intermediate Microeconomics, 7th 
ed. (New York: W. W. Norton & Company, 2006), ch. 12; Walter Nicholson and Christopher Snyder, 
Microeconomic Theory, 10th ed. (New York: Dryden Press, 2008), ch. 7.
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Almost all of game theory is based on the expected utility approach, and it is 
indeed very useful, although it is not without flaws. We will adopt it in this book, 
leaving more detailed discussions to advanced treatises.35

2 INFERRING PROBABILITIES FROM OBSERVING CONSEQUENCES

When players have different amounts of information in a game, they will try to 
use some device to ascertain their opponents’ private information. As we saw 
in Section 3 of this chapter, it is sometimes possible for direct communication 
to yield a cheap talk equilibrium. But more often, players will need to deter-
mine one another’s information by observing one another’s actions. They then 
must estimate the probabilities of the underlying information by using those ac-
tions or their observed consequences. This estimation requires some relatively  
sophisticated manipulation of the rules of probability, and we examine this pro-
cess in detail here.

The rules given in the appendix to Chapter 7 for manipulating and calculat-
ing the probability of events, particularly the combination rule, prove useful in 
our calculations of payoffs when individual players are differently informed. In 
games of asymmetric information, players try to find out the other’s information 
by observing their actions. Then they must draw inferences about the likelihood 
of—estimate the probabilities of—the underlying information by exploiting the 
actions or consequences that are observed.

The best way to understand this is by example. Suppose 1% of the popula-
tion has a genetic defect that can cause a disease. A test that can identify this 
genetic defect has a 99% accuracy: when the defect is present, the test will fail 
to detect it 1% of the time, and the test will also falsely find a defect when none 
is present 1% of the time. We are interested in determining the probability that a 
person with a positive test result really has the defect. That is, we cannot directly 
observe the person’s genetic defect (underlying condition), but we can observe 
the results of the test for that defect (consequences)—except that the test is not 
a perfect indicator of the defect. How certain can we be, given our observations, 
that the underlying condition does in fact exist?

We can do a simple numerical calculation to answer the question for our 
particular example. Consider a population of 10,000 persons in which 100 (1%) 
have the defect and 9,900 do not. Suppose they all take the test. Of the 100  
persons with the defect, the test will be (correctly) positive for 99. Of the 9,900 

35 See R. Duncan Luce and Howard Raiffa, Games and Decisions (New York: John Wiley & Sons, 1957), 
ch. 2 and app. 1, for an exposition; and Mark Machina, “Choice Under Uncertainty: Problems Solved 
and Unsolved,” Journal of Economic Perspectives, vol. 1, no. 1 (Summer 1987), pp. 121–54, for a cri-
tique and alternatives. Although decision theory based on these alternatives has made considerable 
progress, it has not yet influenced game theory to any significant extent.
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without the defect, it will be (wrongly) positive for 99. That is 198 positive test re-
sults of which one-half are right and one-half are wrong. If a random person re-
ceives a positive test result, it is just as likely to be because the test is indeed right 
as because the test is wrong, so the risk that the defect is truly present for a per-
son with a positive result is only 50%. (That is why tests for rare conditions must 
be designed to have especially low error rates of generating “false positives.”)

For general questions of this type, we use an algebraic formula called Bayes’ 
theorem to help us set up the problem and do the calculations. To do so, we 
generalize our example, allowing for two alternative underlying conditions,  
A and B (genetic defect or not, for example), and two observable consequences, 
X and Y (positive or negative test result, for example). Suppose that, in the ab-
sence of any information (over the whole population), the probability that A ex-
ists is p, so the probability that B exists is (1 2 p). When A exists, the chance of 
observing X is a, so the chance of observing Y is (1 2 a). (To use the language 
that we developed in the appendix to Chapter 7, a is the probability of X condi-
tional on A, and (1 2 a) is the probability of Y conditional on A.) Similarly, when 
B exists, the chance of observing X is b, so the chance of observing Y is (1 2 b).

This description shows us that four alternative combinations of events 
could arise: (1) A exists and X is observed, (2) A exists and Y is observed, (3) B 
exists and X is observed, and (4) B exists and Y is observed. Using the modified 
multiplication rule, we find the probabilities of the four combinations to be, re-
spectively, pa, p(1 2 a), (1 2 p)b, and (1 2 p)(1 2 b).

Now suppose that X is observed: a person has the test for the genetic defect 
and gets a positive result. Then we restrict our attention to a subset of the four 
preceding possibilities—namely, the first and third, both of which include the 
observation of X. These two possibilities have a total probability of pa 1 (1 2 p)
b; this is the probability that X is observed. Within this subset of outcomes in 
which X is observed, the probability that A also exists is just pa, as we have  
already seen. So we know how likely we are to observe X alone and how likely it 
is that both X and A exist.

But we are more interested in determining how likely it is that A exists, given 
that we have observed X—that is, the probability that a person has the genetic 
defect, given that the test is positive. This calculation is the trickiest one. Using 
the modified multiplication rule, we know that the probability of both A and X 
happening equals the product of the probability that X alone happens times the 
probability of A conditional on X; it is this last probability that we are after. Using 
the formulas for “A and X ” and for “X alone,” which we just calculated, we get:

                     Prob(A and X ) 5 Prob(X alone) 3 Prob(A conditional on X)

                                            pa 5 [ pa 1 (1 2 p)b ] 3 Prob(A conditional on X )

          Prob(A conditional on X 5
pa

 
�(1 � p)b

pa 
. 
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This formula gives us an assessment of the probability that A has occurred, 
given that we have observed X (and have therefore conditioned everything on 
this fact). The outcome is known as Bayes’ theorem (or rule or formula).

In our example of testing for the genetic defect, we had Prob(A) 5 p 5 0.01, 
Prob(X conditional on A) 5 a 5 0.99, and Prob(X conditional on B) 5 b 5 0.01. 
We can substitute these values into Bayes’ formula to get

 Probability defect exists given that test is positive 5 Prob(A conditional on X)

 Probability defect exists given that test is positive 5 Prob(A conditional on X)

 5

 5

 5

The probability algebra employing Bayes’ rule confirms the arithmetical calcu-
lation that we used earlier, which was based on an enumeration of all of the pos-
sible cases. The advantage of the formula is that, once we have it, we can apply it 
mechanically; this saves us the lengthy and error-susceptible task of enumerat-
ing every possibility and determining each of the necessary probabilities.

We show Bayes’ rule in Figure 8A.3 in tabular form, which may be easier to 
remember and to use than the preceding formula. The rows of the table show 
the alternative true conditions that might exist, for example, “genetic defect” 
and “no genetic defect.” Here, we have just two, A and B, but the method gen-
eralizes immediately to any number of possibilities. The columns show the ob-
served events—for example, “test positive” and “test negative.”

Each cell in the table shows the overall probability of that combination of 
the true condition and the observation; these are just the probabilities for the 
four alternative combinations listed above. The last column on the right shows 
the sum across the first two columns for each of the top two rows. This sum is 

OBSERVATION

A 

Sum of
row

B 

Sum of column pa + (1 – p)b 

(1 – p)b 

p(1 – a) + (1 – p)(1 – b) 

(1 – p)(1 – b) 

p(1 – a) 

1 – p

X Y

pa p
TRUE 

CONDITION  

FIGURE 8A.3  Bayes’ rule

(0.01)(0.99)
(0.01)(0.99) � (1 � 0.01)(0.01)

0.0099
0.0099 � 0.0099

0.5
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the total probability of each true condition (so, for instance, A’s probability is 
p, as we have seen). The last row shows the sum of the first two rows in each 
column. This sum gives the probability that each observation occurs. For ex-
ample, the entry in the last row of the X column is the total probability that X is  
observed, either when A is the true condition (a true positive in our genetic test 
example) or when B is the true condition (a false positive).

To find the probability of a particular condition, given a particular obser-
vation, then, Bayes’ rule says that we should take the entry in the cell corre-
sponding to the combination of that condition and that observation and divide 
it by the column sum in the last row for that observation. As an example, Prob  
(B given X) 5 (1 – p)b[pa 1 (1 – p)b].

SUMMARY

Judging consequences by taking expected monetary payoffs assumes risk-neutral 
behavior. Risk aversion can be allowed by using the expected utility approach, 
which requires the use of a utility function, which is a concave rescaling of mon-
etary payoffs, and taking its probability-weighted average as the measure of ex-
pected payoff.

If players have asymmetric information in a game, they may try to infer 
probabilities of hidden underlying conditions from observing actions or the 
consequences of those actions. Bayes’ theorem provides a formula for inferring 
such probabilities.

KEY TERMS

Bayes’ theorem (339) risk-neutral (335)
expected utility (337) utility function (337)
risk-averse (335)
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Strategic Moves

A 
game is specified by the choices or moves available to the players, the 
order, if any, in which they make those moves, and the payoffs that re‑
sult from all logically possible combinations of all the players’ choices. In 
Chapter 6, we saw how changing the order of moves from sequential to 

simultaneous or vice versa can alter the game’s outcomes. Adding or removing 
moves available to a player or changing the payoffs at some terminal nodes or 
in some cells of the game table also can change outcomes. Unless the rules of a 
game are fixed by an outside authority, each player has the incentive to manipu‑
late them to produce an outcome that is more to his own advantage. Devices to 
manipulate a game in this way are called strategic moves, which are the subject 
of this chapter.

A strategic move changes the rules of the original game to create a new 
two‑stage game. In this sense, strategic moves are similar to the direct commu‑
nications of information that we examined in Chapter 8. With strategic moves, 
though, the second stage is the original game, often with some alteration of the 
order of moves and the payoffs; there was no such alteration in our games with di‑
rect communication. The first stage in a game with strategic moves specifies how 
you will act in the second stage. Different first‑stage actions correspond to differ‑
ent strategic moves, and we classify them into three types: commitments, threats, 
and promises. The aim of all three is to alter the outcome of the second‑stage 
game to your own advantage. Which, if any, suits your purpose depends on the 
context. But most important, any of the three works only if the other player be‑
lieves that at the second stage you will indeed do what you declared at the first  

99
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stage. In other words, the credibility of the strategic move is open to question. 
Only a credible strategic move will have the desired effect and, as was often the 
case in Chapter 8, mere declarations are not enough. At the first stage, you must 
take some ancillary actions that lend credibility to your declared second‑stage 
actions. We will study both the kinds of second‑stage actions that work to your 
benefit and the first‑stage ancillary moves that make them credible.

You are probably more familiar with the use and credibility of strategic 
moves than you might think. Parents, for instance, constantly attempt to influ‑
ence the behavior of their children by using threats (“no dessert unless you fin‑
ish your vegetables”) and promises (“you will get the new racing bike at the end 
of the term if you maintain at least a B average in school”). And children know 
very well that many of these threats and promises are not credible; much bad 
behavior can escape the threatened punishment if the child sweetly promises 
not to do that again, even though the promise itself may not be credible. Fur‑
thermore, when the children get older and become concerned with their own 
appearance, they find themselves making commitments to themselves to exer‑
cise and diet; many of these commitments also turn out to lack credibility. All of 
these devices—commitments, threats, and promises—are examples of strategic 
moves. Their purpose is to alter the actions of another player, perhaps even your 
own future self, at a later stage in a game. But they will not achieve this pur‑
pose unless they are credible. In this chapter, we will use game theory to study  
systematically how to use such strategies and how to make them credible.

Be warned, however, that credibility is a difficult and subtle matter. We can 
offer you some general principles and an overall understanding of how strategic 
moves can work—a science of strategy. But actually making them work depends 
on your specific understanding of the context, and your opponent may get the 
better of you by having a better understanding of the concepts or the context 
or both. Therefore, the use of strategic moves in practice retains a substantial 
component of art. It also entails risk, particularly when using the strategy of  
brinkmanship, which can sometimes lead to disasters. You can have success as 
well as fun trying to put these ideas into practice, but note our disclaimer and 
warning: use such strategies at your own risk.

1 A CLASSIFICATION OF STRATEGIC MOVES

Because the use of strategic moves depends so critically on the order of moves, 
to study them we need to know what it means to “move first.” Thus far, we have 
taken this concept to be self‑evident, but now we need to make it more precise.  
It has two components. First, your action must be observable to the other 
player; second, it must be irreversible.
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Consider a strategic interaction between two players, A and B, in which A’s 
move is made first. If A’s choice is not observable to B, then B cannot respond 
to it, and the mere chronology of action is irrelevant. For example, suppose A 
and B are two companies bidding in an auction. A’s committee meets in secret 
on Monday to determine its bid; B’s committee meets on Tuesday; the bids are 
mailed separately to the auctioneer and opened on Friday. When B makes its de‑
cision, it does not know what A has done; therefore the moves are strategically 
the same as if they were simultaneous.

If A’s move is not irreversible, then A might pretend to do one thing, lure 
B into responding, and then change its own action to its own advantage. B 
should anticipate this ruse and not be lured; then it will not be responding to A’s  
choice. Once again, in the true strategic sense A does not have the first move.

Considerations of observability and irreversibility affect the nature and 
types of strategic moves as well as their credibility. We begin with a taxonomy of 
strategic moves available to players.

A.  Unconditional Strategic Moves

Let us suppose that player A is the one making a strategic observable and irrevers‑
ible move in the first stage of the game. He can declare: “In the game to follow,  
I will make a particular move, X.” This declaration says that A’s future move is un‑
conditional; A will do X irrespective of what B does. Such a statement, if credible, is 
tantamount to changing the order of the game at stage 2 so that A moves first and 
B second, and A’s first move is X. This strategic move is called a commitment.

If the previous rules of the game at the second stage already have A moving 
first, then such a declaration would be irrelevant. But if the game at the second 
stage has simultaneous moves or if A is to move second there, then such a decla‑
ration, if credible, can change the outcome because it changes B’s beliefs about 
the consequences of his actions. Thus, a commitment is a simple seizing of the 
first‑mover advantage when it exists.

In the street‑garden game of Chapter 3, three women play a sequential‑move 
game in which each must decide whether to contribute toward the creation of 
a public flower garden on their street; two or more contributors are necessary 
for the creation of a pleasant garden. The rollback equilibrium entails the first 
player (Emily) choosing not to contribute while the other players (Nina and 
Talia) do contribute. By making a credible commitment not to contribute, how‑
ever, Talia (or Nina) could alter the outcome of the game. Even though she does 
not get her turn to announce her decision until after Emily and Nina have made 
theirs public, Talia could let it be known that she has sunk all of her savings 
(and energy) into a large house‑renovation project, and so she will have abso‑
lutely nothing left to contribute to the street garden. Then Talia essentially com‑
mits herself not to contribute regardless of Emily’s and Nina’s decisions, before 
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Emily and Nina make those decisions. In other words, Talia changes the game 
to one in which she is in effect the first mover. You can easily check that the new  
rollback equilibrium entails Emily and Nina both contributing to the garden and 
the equilibrium payoffs are 3 to each of them but 4 to Talia—the equilibrium 
outcome associated with the game when Talia moves first. Several more detailed 
examples of commitments are given in the following sections.

B.  Conditional Strategic Moves

Another possibility for A is to declare at the first stage: “In the game to follow, I 
will respond to your choices in the following way. If you choose Y1, I will do Z1; if 
you do Y2, I will do Z2, . . .” In other words, A can use a move that is conditional 
on B’s behavior; we call this type of move a response rule or reaction function. 
A’s statement means that, in the game to be played at the second stage, A will 
move second, but how he will respond to B’s choices at that point is already pre‑
determined by A’s declaration at stage 1. For such declarations to be meaning‑
ful, A must be physically able to wait to make his move at the second stage until 
after he has observed what B has irreversibly done. In other words, at the second 
stage, B should have the true first move in the double sense just explained.

Conditional strategic moves take different forms, depending on what they 
are trying to achieve and how they set about achieving it. When A wants to 
stop B from doing something, we say that A is trying to deter B, or to achieve 
deterrence; when A wants to induce B to do something, we say that A is trying 
to compel B, or to achieve compellence. We return to this distinction later. Of 
more immediate interest is the method used in pursuit of either of these aims. 
If A declares, “Unless your action (or inaction, as the case may be) conforms to 
my stated wish, I will respond in a way that will hurt you,” that is, a threat. If  
A declares, “If your action (or inaction, as the case may be) conforms to my 
stated wish, I will respond in a way that will reward you,” that is, a promise. 
“Hurt” and “reward” are measured in terms of the payoffs in the game itself. 
When A hurts B, A does something that lowers B’s payoff; when A rewards B, A 
does something that leads to a higher payoff for B. Threats and promises are the 
two conditional strategic moves on which we focus our analysis.

To understand the nature of these strategies, consider the dinner game men‑
tioned earlier. In the natural chronological order of moves, first the child decides 
whether to eat his vegetables, and then the parent decides whether to give the 
child dessert. Rollback analysis tells us the outcome: the child refuses to eat the 
vegetables, knowing that the parent, unwilling to see the child hungry and un‑
happy, will give him the dessert. The parent can foresee this outcome, however, 
and can try to alter it by making an initial move—namely, by stating a condi‑
tional response rule of the form “no dessert unless you finish your vegetables.” 
This declaration constitutes a threat. It is a first move in a pregame, which fixes 
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how you will make your second move in the actual game to follow. If the child 
believes the threat, that alters the child’s rollback calculation. The child “prunes” 
that branch of the game tree in which the parent serves dessert even if the child 
has not finished his vegetables. This may alter the child’s behavior; the parent 
hopes that it will make the child act as the parent wants him to. Similarly, in the 
“study game,” the promise of the bike may induce a child to study harder.

2 CREDIBILIT Y OF STRATEGIC MOVES

We have already seen that payoffs to the other player can be altered by one play‑
er’s strategic move, but what about the payoffs for the player making that move? 
Player A gets a higher payoff when B acts in conformity with A’s wishes. But A’s 
payoff also may be affected by his own response. In regard to a threat, A’s threat‑
ened response if B does not act as A would wish may have consequences for A’s 
own payoffs: the parent may be made unhappy by the sight of the unhappy child 
who has been denied dessert. Similarly, in regard to a promise, rewarding B if he 
does act as A would wish can affect A’s own payoff: the parent who rewards the 
child for studying hard has to incur the monetary cost of the gift but is happy to 
see the child’s happiness on receiving the gift and even happier about the aca‑
demic performance of the child.

This effect on A’s payoffs has an important implication for the efficacy of A’s 
strategic moves. Consider the threat. If A’s payoff is actually increased by car‑
rying out the threatened action, then B reasons that A will carry out this action 
even if B fulfills A’s demands. Therefore, B has no incentive to comply with A’s 
wishes, and the threat is ineffective. For example, if the parent is a sadist who 
enjoys seeing the child go without dessert, then the child thinks, “I am not going 
to get dessert anyway, so why eat the vegetables?”

Therefore, an essential aspect of a threat is that it should be costly for the 
threatener to carry out the threatened action. In the dinner game, the parent 
must prefer to give the child dessert. Threats in the true strategic sense have the 
innate property of imposing some cost on the threatener, too; they are threats of 
mutual harm.

In technical terms, a threat fixes your strategy (response rule) in the subse‑
quent game. A strategy must specify what you will do in each eventuality along 
the game tree. Thus, “no dessert if you don’t finish your vegetables” is an incom‑
plete specification of the strategy; it should be supplemented by “and dessert if 
you do.” Threats generally don’t specify this latter part. Why not? Because the 
second part of the strategy is automatically understood; it is implicit. And for 
the threat to work, this second part of the strategy—the implied promise in this 
case—has to be automatically credible, too.
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Thus, the threat “no dessert if you don’t finish your vegetables” carries with 
it an implicit promise of “dessert if you do finish your vegetables.” This promise 
also should be credible if the threat is to have the desired effect. In our exam‑
ple, the credibility of the implicit promise is automatic when the parent prefers 
to see the child get and enjoy his dessert. In other words, the implicit promise 
is automatically credible precisely when the threatened action is costly for the 
parent to carry out.

To put it yet another way, a threat carries with it the stipulation that you will 
do something if your wishes are not met that, if those circumstances actually 
arise, you will regret having to do. Then why make this stipulation at the first 
stage? Why tie your own hands in this way when it might seem that leaving one’s 
options open would always be preferable? Because in the realm of game theory, 
having more options is not always preferable. In regard to a threat, your lack of 
freedom in the second stage of the game has strategic value. It changes other 
players’ expectations about your future responses, and you can use this change 
in expectations to your advantage.

A similar effect arises with a promise. If the child knows that the parent en‑
joys giving him gifts, he may expect to get the racing bike anyway on some occa‑
sion in the near future—for example, an upcoming birthday. Then the promise 
of the bike has little effect on the child’s incentive to study hard. To have the  
intended strategic effect, the promised reward must be so costly to provide that 
the other player would not expect you to hand over that reward anyway. (This 
is a useful lesson in strategy that you can point out to your parents: the rewards 
that they promise must be larger and more costly than what they would give you 
just for the pleasure of seeing you happy.)

The same is true of unconditional strategic moves (commitments), too. In 
bargaining, for example, others know that, when you have the freedom to act, 
you also have the freedom to capitulate; so a “no concessions” commitment can 
secure you a better deal. If you hold out for 60% of the pie and the other party 
offers you 55%, you may be tempted to take it. But if you can credibly assert in 
advance that you will not take less than 60%, then this temptation does not arise 
and you can do better than you otherwise would.

Thus, it is in the very nature of strategic moves that after the fact—that is, 
when the stage 2 game actually requires it—you do not want to carry out the ac‑
tion that you had stipulated you would take. This is true for all types of strategic 
moves, and it is what makes credibility so problematic. You have to do something 
at the first stage to create credibility—something that convincingly tells the other 
player that you will not give in to the temptation to deviate from the stipulated ac‑
tion when the time comes—in order for your strategic move to work. That is why 
giving up your own freedom to act can be strategically beneficial. Alternatively, 
credibility can be achieved by changing your own payoffs in the second‑stage 
game in such a way that it becomes truly optimal for you to act as you declare.
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Thus, there are two general ways of making your strategic moves credible: 
(1) remove from your own set of future choices the other moves that may tempt 
you or (2) reduce your own payoffs from those temptation moves so that the 
stipulated move becomes the actual best one. In the sections that follow, we 
first elucidate the mechanics of strategic moves, assuming them to be credible. 
We make some comments about credibility as we go along but postpone our  
general analysis of credibility until the last section of the chapter.

3 COMMITMENTS

We studied the game of chicken in Chapter 4 and found two pure‑strategy Nash 
equilibria. Each player prefers the equilibrium in which he goes straight and the 
other person swerves.1 We saw in Chapter 6 that, if the game were to have se‑
quential rather than simultaneous moves, the first mover would choose Straight, 
leaving the second to make the best of the situation by settling for Swerve rather 
than causing a crash. Now we can consider the same matter from another per‑
spective. Even if the game itself has simultaneous moves, if one player can make 
a strategic move—create a first stage in which he makes a credible declaration 
about his action in the chicken game itself, which is to be played at the second 
stage—then he can get the same advantage afforded a first mover by making a 
commitment to act tough (choose Straight).

Although the point is simple, we outline the formal analysis to develop 
your understanding and skill, which will be useful for later, more complex ex‑
amples. Remember our two players, James and Dean. Suppose James is the one 
who has the opportunity to make a strategic move. Figure 9.1 shows the tree for 
the two‑stage game. At the first stage, James has to decide whether to make a 
commitment. Along the upper branch emerging from the first node, he does 
not make the commitment. Then at the second stage the simultaneous‑move 
game is played, and its payoff table is the familiar one shown in Figure 4.13 and 
Figure 6.6. This second‑stage game has multiple equilibria, and James gets his 
best payoff in only one of them. Along the lower branch, James makes the com‑
mitment. Here, we interpret this commitment to mean giving up his freedom to 
act in such a way that Straight is the only action available to James at this stage. 
Therefore, the second‑stage game table has only one row for James, correspond‑
ing to his declared choice of Straight. In this table, Dean’s best action is Swerve; 
so the equilibrium outcome gives James his best payoff. Therefore, at the first 
stage, James finds it optimal to make the commitment; this strategic move en‑
sures his best payoff, while not committing leaves the matter uncertain.

1 We saw in Chapter 7 and will see again in Chapter 12 that the game has a third equilibrium, in 
mixed strategies, in which both players do quite poorly.
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How can James make this commitment credibly? Like any first move, the com‑
mitment move must be (1) irreversible and (2) visible to the other player. People 
have suggested some extreme and amusing ideas. James can disconnect the steer‑
ing wheel of the car and throw it out of the window so that Dean can see that James 
can no longer Swerve. (James could just tie the wheel so that it could no longer 
be turned, but it would be more difficult to demonstrate to Dean that the wheel 
was truly tied and that the knot was not a trick one that could be undone quickly.) 
These devices simply remove the Swerve option from the set of choices available 
to James in the stage 2 game, leaving Straight as the only thing he can do.

More plausibly, if such games are played every weekend, James can acquire 
a general reputation for toughness that acts as a guarantee of his action on any 
one day. In other words, James can alter his own payoff from swerving by sub‑
tracting an amount that represents the loss of reputation. If this amount is large 
enough—say, 3—then the second‑stage game when James has made the com‑
mitment has a different payoff table. The complete tree for this version of the 
game is shown in Figure 9.2.

Now, in the second stage with commitment, Straight has become truly op‑
timal for James; in fact, it is his dominant strategy in that stage. Dean’s optimal 
strategy is then Swerve. Looking ahead to this outcome at stage 1, James sees 
that he gets 1 by making the commitment (changing his own stage 2 payoffs), 
while without the commitment he cannot be sure of 1 and may do much worse. 
Thus, a rollback analysis shows that James should make the commitment.

Both (or all) can play the game of commitment, so success may depend 
both on the speed with which you can seize the first move and on the credibility 
with which you can make that move. If there are lags in observation, the two 
may even make incompatible simultaneous commitments: each disconnects his 
steering wheel and tosses it out of the window just as he sees the other’s wheel 
come flying out, and then the crash is unavoidable.

JAMES 

Swerve Straight

Swerve Straight

DEAN

Swerve 

Straight 

0, 0 –1, 1

1, –1 –2, –2

JAMES 1, –1 –2, –2Straight 

Uncommitted 

JAMES 

Committed 

DEAN

FIGURE 9.1  chicken: commitment by restricting freedom to Act
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Even if one of the players has the advantage in making a commitment, the 
other player can defeat the first player’s attempt to do so. The second player 
could demonstrably remove his ability to “see” the other’s commitment, for ex‑
ample, by cutting off communication.

Games of chicken may be a 1950s anachronism, but our second example is 
perennial and familiar. In a class, the teacher’s deadline enforcement policy can 
be Weak or Tough, and the students’ work can be Punctual or Late. Figure 9.3 
shows this game in the strategic form. The teacher does not like being tough; for 
him the best outcome (a payoff of 4) is when students are punctual even when 
he is weak; the worst (1) is when he is tough but students are still late. Of the 
two intermediate strategies, he recognizes the importance of punctuality and 
rates (Tough, Punctual) better than (Weak, Late). The students most prefer the 
outcome (Weak, Late), where they can party all weekend without suffering any 
penalty for the late assignment. (Tough, Late) is the worst for them, just as it is 
for the teacher. Between the intermediate ones, they prefer (Weak, Punctual) to 
(Tough, Punctual) because they have higher self‑esteem if they can think that 

JAMES 

Swerve Straight

Swerve Straight

DEAN

Swerve 

Swerve 

Straight 

  0, 0 –1, 1

1, –1 –2, –2

–3, 0 –4, 1

1, –1 –2, –2
JAMES 

Straight 

Uncommitted 

JAMES 

Committed 

DEAN

FIGURE 9.2  chicken: commitment by changing Payoffs

Punctual Late

STUDENT

Weak 

Tough 

2, 44, 3

1, 13, 2
TEACHER 

FIGURE 9.3  Payoff table for class deadline game
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they acted punctually of their own volition rather than because of the threat of a 
penalty.2

If this game is played as a simultaneous‑move game or if the teacher  
moves second, Weak is dominant for the teacher, and then the student chooses 
Late. The equilibrium outcome is (Weak, Late), and the payoffs are (2, 4). But 
the teacher can achieve a better outcome by committing at the outset to the 
policy of Tough. We do not draw a tree as we did in Figures 9.1 and 9.2. The 
tree would be very similar to that for the preceding chicken case, and so we 
leave it for you to draw. Without the commitment, the second‑stage game is as 
before, and the teacher gets a 2. When the teacher is committed to Tough, the 
students find it better to respond with Punctual at the second stage, and the 
teacher gets a 3.

The teacher commits to a move different from what he would do in simul‑
taneous play or, indeed, his best second move if the students moved first. This 
is where strategic thinking enters. The teacher has nothing to gain by declaring 
that he will have a Weak enforcement regime; the students expect that anyway 
in the absence of any declaration. To gain advantage by making a strategic move, 
he must commit not to follow what would be his equilibrium strategy in the  
simultaneous‑move game. This strategic move changes the students’ expecta‑
tions and therefore their action. Once they believe the teacher is really commit‑
ted to tough discipline, they will choose to turn in their assignments punctually. 
If they tested this out by being late, the teacher would like to forgive them, 
maybe with an excuse to himself, such as “just this once.” The existence of this 
temptation to shift away from your commitment is what makes its credibility 
problematic.

Even more dramatic, in this instance the teacher benefits by making a stra‑
tegic move that commits him to a dominated strategy. He commits to choosing 
Tough, which is dominated by Weak. If you think it paradoxical that one can gain 
by choosing a dominated strategy, you are extending the concept of dominance 
beyond the proper scope of its validity. Dominance entails either of two calcula‑
tions: (1) After the other player does something, how do I respond, and is some 
choice best (or worst), given all possibilities? (2) If the other player is simultane‑
ously doing action X, what is best (or worst) for me, and is this the same for all 
the X actions that the other could be choosing? Neither is relevant when you are 
moving first. Instead, you must look ahead to how the other will respond. There‑
fore, the teacher does not compare his payoffs in vertically adjacent cells of the 
table (taking the possible actions of the students one at a time). Instead, he  

2 You may not regard these specific rankings of outcomes as applicable either to you or to your own 
teachers. We ask you to accept them for this example, whose main purpose is to convey some gen-
eral ideas about commitment in a simple way. The same disclaimer applies to all the examples that 
follow.
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calculates how the students will react to each of his moves. If he is committed to 
Tough, they will be Punctual, but if he is committed to Weak (or uncommitted), 
they will be Late, so the only pertinent comparison is that of the top‑right cell 
with the bottom left, of which the teacher prefers the latter.

To be credible, the teacher’s commitment must be everything a first 
move has to be. First, it must be made before the other side makes its move. 
The teacher must establish the ground rules of deadline enforcement before  
the assignment is due. Next, it must be observable—the students must know the 
rules by which they must abide. Finally, and perhaps most important, it must be  
irreversible—the students must know that the teacher cannot, or at any rate 
will not, change his mind and forgive them. A teacher who leaves loopholes and  
provisions for incompletely specified emergencies is merely inviting imagina‑
tive excuses accompanied by fulsome apologies and assertions that “it won’t  
happen again.”

The teacher might achieve credibility by hiding behind general university  
regulations; this simply removes the Weak option from his set of available 
choices at stage 2. Or, as is true in the chicken game, he might establish a repu‑
tation for toughness, changing his own payoffs from Weak by creating a suffi‑
ciently high cost of loss of reputation.

4 THREATS AND PROMISES

We emphasize that threats and promises are response rules: your actual future 
action is conditioned on what the other players do in the meantime, but your 
freedom of future action is constrained to following the stated rule. Once again, 
the aim is to alter the other players’ expectations and therefore their actions in 
a way favorable to you. Tying yourself to a rule that you would not want to fol‑
low if you were completely free to act at the later time is an essential part of this 
process. Thus, the initial declaration of intention must be credible. Once again, 
we will elucidate some principles for achieving credibility of these moves, but 
we remind you that their actual implementation remains largely an art.

Remember the taxonomy given in Section 1. A threat is a response rule  
that leads to a bad outcome for the other players if they act contrary to your 
interests. A promise is a response rule by which you offer to create a good out‑
come for the other players if they act in a way that promotes your own interests. 
Each of these responses may aim either to stop the other players from doing 
something that they would otherwise do (deterrence) or to induce them to do 
something that they would otherwise not do (compellence). We consider these 
features in turn.
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A.  Example of a Threat: U.S.–Japan Trade Relations

Our example comes from a hardy perennial of U.S. international economic 
 policy—namely, trade friction with Japan. Each country has the choice of keep‑
ing its own markets open or closed to the other’s goods. They have somewhat 
different preferences regarding the outcomes.

Figure 9.4 shows the payoff table for the trade game. For the United States, 
the best outcome (a payoff of 4) comes when both markets are open; this is 
partly because of its overall commitment to the market system and free trade 
and partly because of the benefit of trade with Japan itself—U.S. consumers get 
high‑quality cars and consumer electronics products, and U.S. producers can 
export their agricultural and high‑tech products. Similarly, its worst outcome 
(payoff 1) occurs when both markets are closed. Of the two outcomes when only 
one market is open, the United States would prefer its own market to be open, 
because the Japanese market is smaller, and loss of access to it is less important 
than the loss of access to Hondas and video games.

As for Japan, for the purpose of this example we accept the protectionist, 
producer‑oriented picture of Japan, Inc. Its best outcome is when the U.S. mar‑
ket is open and its own is closed; its worst is when matters are the other way 
around. Of the other two outcomes, it prefers that both markets be open, be‑
cause its producers then have access to the much larger U.S. market.3

Both sides have dominant strategies. No matter how the game is played—
 simultaneously or sequentially with either move order—the equilibrium  
outcome is (Open, Closed), and the payoffs are (3, 4). This outcome also fits well 
the common American impression of how the actual trade policies of the two 
countries work.

Japan is already getting its best payoff in this equilibrium and so has no 
need to try any strategic moves. The United States, however, can try to get a 
4 instead of a 3. But in this case, an ordinary unconditional commitment will 

Open Closed

JAPAN

Open 

Closed 

3, 44, 3

1, 22, 1

UNITED 
STATES 

FIGURE 9.4  Payoff table for U.s.–Japan trade game

3 Again, we ask you to accept this payoff structure as a vehicle for conveying the ideas. You can ex‑
periment with the payoff tables to see what difference that would make to the role and effectiveness 
of the strategic moves.
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not work. Japan’s best response, no matter what commitment the United States 
makes, is to keep its market closed. Then the United States does better for itself 
by committing to keep its own market open, which is the equilibrium without 
any strategic moves anyway.

But suppose the United States can choose the following conditional re‑
sponse rule: “We will close our market if you close yours.” The situation then be‑
comes the two‑stage game shown in Figure 9.5. If the United States does not use 
the threat, the second stage is as before and leads to the equilibrium in which 
the U.S. market is open and it gets a 3, whereas the Japanese market is closed 
and it gets a 4. If the United States does use the threat, then at the second stage 
only Japan has freedom of choice; given what Japan does, the United States then 
merely does what its response rule dictates. Therefore, along this branch of the 
tree, we show only Japan as an active player and write down the payoffs to the 
two parties: If Japan keeps its market closed, the United States closes its own, 
and the United States gets a 1 and Japan gets a 2. If Japan keeps its market open, 
then the United States threat has worked, it is happy to keep its own market 
open, and it gets a 4, while Japan gets a 3. Of these two possibilities, the second 
is better for Japan.

Now we can use the familiar rollback reasoning. Knowing how the second 
stage will work in all eventualities, it is better for the United States to deploy its 
threat at the first stage. This threat will result in an open market in Japan, and 
the United States will get its best outcome.

Having described the mechanics of the threat, we now point out some of its 
important features:

 1. When the United States deploys its threat credibly, Japan doesn’t follow 
its dominant strategy Closed. Again, the idea of dominance is relevant 
only in the context of simultaneous moves or when Japan moves second.  

Open Closed

JAPAN

Open 

Closed 
No 

threat 

UNITED 
ST A TES 

Threat 
JAPAN

Closed

Open

(US, J)

4, 3

2, 1 1, 2

3, 4

(1, 2)

(4, 3)

UNITED 
STATES 

FIGURE 9.5  tree for the U.s.–Japan trade game with threat
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Here, Japan knows that the United States will take actions that depart 
from its dominant strategy. In the payoff table, Japan is looking at a 
choice between just two cells, the top left and the bottom right, and of 
those two, it prefers the latter.

 2. Credibility of the threat is problematic because, if Japan puts it to the 
test by keeping its market closed, the United States faces the temptation 
to refrain from carrying out the threat. In fact, if the threatened action 
were the best U.S. response after the fact, then there would be no need to 
make the threat in advance (but the United States might issue a warning 
just to make sure that the Japanese understand the situation). The stra‑
tegic move has a special role exactly because it locks a player into doing 
something other than what it would have wanted to do after the fact. As 
explained earlier, a threat in the true strategic sense is necessarily costly 
for the threatener to carry out; the threatened action would inflict mu-
tual harm.

 3. The conditional rule “We will close our market if you close yours” does 
not completely specify the U.S. strategy. To be complete, it needs an ad‑
ditional clause indicating what the United States will do in response to 
an open Japanese market: “and we will keep our market open if you keep 
yours open.” This additional clause, the implicit promise, is really part of 
the threat, but it does not need to be stated explicitly, because it is automat‑
ically credible. Given the payoffs of the second‑stage game, it is in the best 
interests of the United States to keep its market open if Japan keeps its 
market open. If that were not the case, if the United States would respond 
by keeping its market closed even when Japan kept its own market open, 
then the implicit promise would have to be made explicit and somehow 
made credible. Otherwise, the U.S. threat would become tantamount to 
the unconditional commitment “We will keep our market closed,” and 
that would not elicit the desired response from Japan.

 4. The threat, when credibly deployed, results in a change in Japan’s ac‑
tion. We can regard this as deterrence or compellence, depending on the 
status quo. If the Japanese market is initially open, and the Japanese are 
considering a switch to protectionism, then the threat deters them from 
that action. But if the Japanese market is initially closed, then the threat 
compels them to open it. Thus, whether a strategic move is deterrent or 
compellent depends on the status quo. The distinction may seem to be a 
matter of semantics, but in practice the credibility of a move and the way 
that it works are importantly affected by this distinction. We return to this 
matter later in the chapter.

 5. Here are a few ways in which the United States can make its threat credi‑
ble. First, it can enact a law that mandates the threatened action under the 
right circumstances. This removes the temptation action from the set of 
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available choices at stage 2. Some reciprocity provisions in the World Trade 
Organization agreements have this effect, but the procedures are very 
slow and uncertain. Second, it can delegate fulfillment to an agency such 
as the U.S. Commerce Department that is captured by U.S. producers who 
would like to keep our markets closed and so reduce the competitive pres‑
sure on themselves. This changes the U.S. payoffs at stage 2—replacing  
the true U.S. payoffs by those of the Commerce Department—with the 
result that the threatened action becomes truly optimal. (The danger is 
that the Commerce Department will then retain a protectionist stance 
even if Japan opens its market; gaining credibility for the threat may lose 
credibility for the implied promise.)

 6. If a threat works, it doesn’t have to be carried out. So its cost to you is im‑
material. In practice, the danger that you may have miscalculated or the 
risk that the threatened action will take place by error even if the other 
player complies is a strong reason to refrain from using threats more se‑
vere than necessary. To make the point starkly, the United States could 
threaten to pull out of defensive alliances with Japan if it didn’t buy our 
rice and semiconductors, but that threat is “too big” and too risky for 
the United States ever to carry out; therefore it is not credible. If the 
only available threat appears “too big,” then a player can reduce its size 
by making its fulfillment a matter of chance. Instead of saying, “If you 
don’t open your markets, we will refuse to defend you in the future,” the 
United States can say to Japan, “If you don’t open your markets, the rela‑
tions between our countries will deteriorate to the point where Congress 
may refuse to allow us to come to your assistance if you are ever attacked, 
even though we do have an alliance.” In fact, the United States can de‑
liberately foster sentiments that raise the probability that Congress will 
do just that, so the Japanese will feel the danger more vividly. A threat of 
this kind, which creates a risk but not a certainty of the bad outcome, is 
called brinkmanship. It is an extremely delicate and even dangerous vari‑
ant of the strategic move. We will study brinkmanship in greater detail in  
Chapter 14.

 7. Japan gets a worse outcome when the United States deploys its threat 
than it would without this threat, so it would like to take strategic actions 
that defeat or disable U.S. attempts to use the threat. For example, sup‑
pose its market is currently closed, and the United States is attempting 
compellence. The Japanese can accede in principle but stall in practice, 
pleading unavoidable delays for assembling the necessary political con‑
sensus to legislate the market opening, then delays for writing the neces‑
sary administrative regulations to implement the legislation, and so on. 
Because the United States does not want to go ahead with its threatened 
action, at each point it has the temptation to accept the delay. Or Japan 
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can claim that its domestic politics makes it difficult to open all markets 
fully; will the United States accept the outcome if Japan keeps just a few 
of its industries protected? It gradually expands this list, and at any point 
the extra small step is not enough cause for the United States to unleash 
a trade war. This device of defeating a compellent threat by small steps, 
or “slice by slice,” is called salami tactics.

B.  Example of a Promise: The Restaurant Pricing Game

We now illustrate a promise by using the restaurant pricing game of Chapter 5. 
We saw in Chapter 5 that the game is a prisoners’ dilemma, and we simplify it 
here by supposing that only two choices of price are available: the jointly best 
price of $26 or the Nash equilibrium price of $20. The profits for each restaurant 
in this version of the game can be calculated by using the functions in Section 
1 of Chapter 5; the results are shown in Figure 9.6. Without any strategic moves, 
the game has the usual equilibrium in dominant strategies in which both stores 
charge the low price of 20, and both get lower profits than they would if they 
both charged the high price of 26.

If either side can make the credible promise “I will charge a high price if you 
do,” the cooperative outcome is achieved. For example, if Xavier’s makes the 
promise, then Yvonne’s knows that its choice of 26 will be reciprocated, leading 
to the payoff shown in the lower‑right cell of the table, and that its choice of 20 
will bring forth Xavier’s usual action—namely, 20—leading to the upper‑left cell. 
Between the two, Yvonne’s prefers the first and therefore chooses the high price.

The analysis can be done more properly by drawing a tree for the two‑stage 
game in which Xavier’s has the choice of making or not making the promise at 
the first stage. We omit the tree, partly so that you can improve your understand‑
ing of the process by constructing it yourself and partly to show how such de‑
tailed analysis becomes unnecessary as one becomes familiar with the ideas.

The credibility of Xavier’s promise is open to doubt. To respond to what 
Yvonne’s does, Xavier’s must arrange to move second in the second stage of the 
game; correspondingly, Yvonne’s must move first in stage 2. Remember that a 

20 (low) 26 (high)

YVONNE’S BISTRO

20 (low) 

26 (high) 

360, 216288, 288

324, 324216, 360

XAVIER’S 
TAPAS 

 

FIGURE 9.6  Payoff table for restaurant Prisoners’ dilemma ($100s per month)

6841D CH09 UG.indd   357 12/18/14   3:13 PM



3 5 8   [ c h . 9 ]  s t r At e g i c  m o v e s

first move is an irreversible and observable action. Therefore, if Yvonne’s moves 
first and prices high, it leaves itself vulnerable to Xavier’s cheating, and Xavier’s 
is very tempted to renege on its promise to price high when it sees Yvonne’s in 
this vulnerable position. Xavier’s must somehow convince Yvonne’s that it will 
not give in to the temptation to charge a low price when Yvonne’s charges a high 
price.

How can it do so? Perhaps Xavier’s owner can leave the pricing deci‑
sion in the hands of a local manager, with clear written instructions to recip‑
rocate with the high price if Yvonne’s charges the high price. Xavier’s owner 
can invite Yvonne’s to inspect these instructions, after which he leaves on a 
solo round‑the‑world sailing trip so that he cannot rescind them. (Even then, 
Yvonne’s management may be doubtful—Xavier might secretly carry a tele‑
phone or a laptop computer onboard.) This scenario is tantamount to removing 
the cheating action from the choices available to Xavier’s at stage 2.

Or Xavier’s restaurant can develop a reputation for keeping its promises, 
in business and in the community more generally. In a repeated relationship, 
the promise may work because reneging on the promise once may cause future  
cooperation to collapse. In essence, an ongoing relationship means splitting the 
game into smaller segments, in each of which the benefit from reneging is too 
small to justify the costs. In each such game, then, the payoff from cheating is 
altered by the cost of collapse of future cooperation.4

We saw earlier that every threat has an implicit attached promise. Similarly, 
every promise has an implicit attached threat. In this case, the threat is “I will 
charge the low price if you do.” It does not have to be stated explicitly, because 
it is automatically credible—it describes Xavier’s best response to Yvonne’s low 
price.

There is also an important difference between a threat and a promise. If a 
threat is successful, it doesn’t have to be carried out and is then costless to the 
threatener. Therefore, a threat can be bigger than what is needed to make it ef‑
fective (although making it too big may be too risky, even to the point of losing 
its credibility as suggested earlier). If a promise is successful in altering the oth‑
er’s action in the desired direction, then the promisor has to deliver what he had 
promised, and so it is costly. In the preceding example, the cost is simply giving 
up the opportunity to cheat and get the highest payoff; in other instances where 
the promiser offers an actual gift or an inducement to the other, the cost may 
be more tangible. In either case, the player making the promise has a natural 
incentive to keep its size small—just big enough to be effective.

4 In Chapter 10, we will investigate in great detail the importance of repeated or ongoing relation‑
ships in attempts to reach the cooperative outcome in a prisoners’ dilemma.

6841D CH09 UG.indd   358 12/18/14   3:13 PM



t h r e At s  A n d  P r o m i s e s   3 5 9

C.  Example Combining Threat and Promise: Joint U.S.–China Political Action

When we considered threats and promises one at a time, the explicit statement 
of a threat included an implicit clause of a promise that was automatically cred‑
ible, and vice versa. There can, however, be situations in which the credibility 
of both aspects is open to question; then the strategic move has to make both 
aspects explicit and make them both credible.

Our example of an explicit‑threat‑and‑promise combination comes from 
a context in which multiple nations must work together toward some common 
goal in dealing with a dangerous situation in a neighboring country. Specifically, 
we consider an example of the United States and China contemplating whether 
to take action to compel North Korea to give up its nuclear weapons programs. 
We show in Figure 9.7 the payoff table for the United States and China when 
each must choose between action and inaction.

Each country would like the other to take on the whole burden of taking ac‑
tion against the North Koreans; so the top‑right cell has the best payoff for China 
(4), and the bottom‑left cell is best for the United States. The worst situation 
for the United States is where no action is taken, because it finds the increased 
threat of nuclear war in that case to be unacceptable. For China, however, the 
worst outcome arises when it takes on the whole burden of action, because the 
costs of action are so high. Both regard a joint involvement as the second best (a 
payoff of 3). The United States assigns a payoff of 2 to the situation in which it is 
the only one to act. And for China, a payoff of 2 is assigned to the case in which 
no action is taken.

Without any strategic moves, the intervention game is dominance solvable. 
Inaction is the dominant strategy for China, and then Action is the best choice 
for the United States. The equilibrium outcome is the top‑right cell, with payoffs 
of 2 for the United States and 4 for China. Because China gets its best outcome, 
it has no reason to try any strategic moves. But the United States can try to do 
better than a 2.

What strategic move will work to improve the equilibrium payoff for the 
United States? An unconditional move (commitment) will not work, because 
China will respond with “Inaction” to either first move by the United States. 

Action Inaction

CHINA

Action 

Inaction 

2, 43, 3

1, 24, 1

UNITED 
STATES 

 

FIGURE 9.7  Payoff table for U.s. –china Political Action game
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A threat alone (“We won’t take action unless you do”) does not work, because 
the implied promise (“We will if you do”) is not credible—if China does act, the 
United States would prefer to back off and leave everything to China, getting a 
payoff of 4 instead of the 3 that would come from fulfilling the promise. A prom‑
ise alone won’t work: because China knows that the United States will intervene 
if China does not, an American promise of “We will intervene if you do” becomes 
tantamount to a simple commitment to intervene; then China can stay out and 
get its best payoff of 4.

In this game, an explicit promise from the United States must carry the im‑
plied threat “We won’t take action if you don’t,” but that threat is not automati‑
cally credible. Similarly, America’s explicit threat must carry the implied promise 
“We will act if you do,” but that is not automatically credible, either. Therefore, 
the United States has to make both the threat and the promise explicit. It must 
issue the combined threat‑cum‑promise “We will act if, and only if, you do.” It 
needs to make both clauses credible. Usually such credibility has to be achieved 
by means of a treaty that covers the whole relationship, not just with agreements 
negotiated separately when each incident arises.

5 SOME ADDITIONAL TOPICS

A. When Do Strategic Moves Help?

We have seen several examples in which a strategic move brings a better outcome 
to one player or another, compared with the original game without such moves. 
What can be said in general about the desirability of such moves?

An unconditional move—a commitment—need not always be advanta‑
geous to the player making it. In fact, if the original game gives the advantage 
to the second mover, then it is a mistake to commit oneself to move in advance, 
thereby effectively becoming the first mover.

The availability of a conditional move—threat or promise—can never be 
an actual disadvantage. At the very worst, one can commit to a response rule 
that would have been optimal after the fact. However, if such moves bring one 
an actual gain, it must be because one is choosing a response rule that in some 
eventualities specifies an action different from what one would find optimal at 
that later time. Thus, whenever threats and promises bring a positive gain, they 
do so precisely when (one might say precisely because) their credibility is inher‑
ently questionable and must be achieved by some specific credibility “device.” 
We have mentioned some such devices in connection with each earlier example 
and will later discuss the topic of achieving credibility in greater generality.
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What about the desirability of being on the receiving end of a strategic move? 
It is never desirable to let the other player threaten you. If a threat seems likely, 
you can gain by looking for a different kind of advance action—one that makes 
the threat less effective or less credible. We will consider some such actions 
shortly. However, it is often desirable to let the other player make promises to 
you. In fact, both players may benefit when one can make a credible promise, as 
in the prisoners’ dilemma example of restaurant pricing earlier in this chapter, in 
which a promise achieved the cooperative outcome. Thus, it may be in the play‑
ers’ mutual interest to facilitate the making of promises by one or both of them.

B.  Deterrence versus Compellence

In principle, either a threat or a promise can achieve either deterrence or com‑
pellence. For example, a parent who wants a child to study hard (compellence) 
can promise a reward (a new racing bike) for good performance in school or can 
threaten a punishment (a strict curfew the following term) if the performance is 
not sufficiently good. Similarly, a parent who wants the child to keep away from 
bad company (deterrence) can try either a reward (promise) or a punishment 
(threat). In practice, the two types of strategic moves work somewhat differently, 
and that will affect the ultimate decision regarding which to use. Generally, de‑
terrence is better achieved by a threat and compellence by a promise. The rea‑
son is an underlying difference of timing and initiative.

A deterrent threat can be passive—you don’t need to do anything so long as 
the other player doesn’t do what you are trying to deter. And it can be static—you 
don’t have to impose any time limit. Thus, you can set a trip wire and then leave 
things up to the other player. So the parent who wants the child to keep away 
from bad company can say, “If I ever catch you with X again, I will impose a 7 p.m. 
curfew on you for a whole year.” Then the parent can sit back to wait and watch; 
only if the child acts contrary to the parent’s wishes does the parent have to act 
on her threat. Trying to achieve the same deterrence by a promise would require 
more complex monitoring and continual action: “At the end of each month in 
which I know that you did not associate with X, I will give you $25.”

Compellence must have a deadline or it is pointless—the other side can 
defeat your purpose by procrastinating or by eroding your threat in small steps 
(salami tactics). This makes a compellent threat harder to implement than a 
compellent promise. The parent who wants the child to study hard can sim‑
ply say, “Each term that you get an average of B or better, I will give you CDs or 
games worth $500.” The child will then take the initiative in showing the parent 
each time he has fulfilled the conditions. Trying to achieve the same thing by a 
threat—“Each term that your average falls below B, I will take away one of your 
computer games”—will require the parent to be much more vigilant and active. 
The child will postpone bringing the grade report or will try to hide the games.
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The concepts of reward and punishment are relative to those of some sta‑
tus quo. If the child has a perpetual right to the games, then taking one away 
is a punishment; if the games are temporarily assigned to the child on a 
term‑by‑term basis, then renewing the assignment for another term is a reward. 
Therefore, you can change a threat into a promise or vice versa by changing  
the status quo. You can use this change to your own advantage when making a 
strategic move. If you want to achieve compellence, try to choose a status quo 
such that what you do when the other player acts to comply with your demand 
becomes a reward, and so you are using a compellent promise. To give a rather 
dramatic example, a mugger can convert the threat “If you don’t give me your 
wallet, I will take out my knife and cut your throat” into the promise “Here is a 
knife at your throat; as soon as you give me your wallet I will take it away.” But if 
you want to achieve deterrence, try to choose a status quo such that, if the other 
player acts contrary to your wishes, what you do is a punishment, and so you are 
using a deterrent threat.

6 ACQUIRING CREDIBILIT Y

We have emphasized the importance of credibility of strategic moves throughout, 
and we accompanied each example with some brief remarks about how credibil‑
ity could be achieved in that particular context. Devices for achieving credibility 
are indeed often context specific, and there is a lot of art to discovering or devel‑
oping such devices. Some general principles can help you organize your search.

We pointed out two broad approaches to credibility: (1) reducing your own 
future freedom of action in such a way that you have no choice but to carry out 
the action stipulated by your strategic move and (2) changing your own future 
payoffs in such a way that it becomes optimal for you to do what you stipulate in 
your strategic move. We now elaborate some practical methods for implement‑
ing each of these approaches.

A.  Reducing Your Freedom of Action

I. AUTOMATIC FULFILLMENT  Suppose at stage 1 you relinquish your choice at stage 
2 and hand it over to a mechanical device or similar procedure or mechanism 
that is programmed to carry out your committed, threatened, or promised  action 
under the appropriate circumstances. You demonstrate to the other player that 
you have done so. Then he will be convinced that you have no freedom to change 
your mind, and your strategic move will be credible. The doomsday device, a  
nuclear explosive device that would detonate and contaminate the whole world’s 
atmosphere if the enemy launched a nuclear attack, is the best‑known example, 
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popularized by the early 1960s movies Fail Safe and Dr. Strangelove. Luckily, it 
remained in the realm of fiction. But automatic procedures that retaliate with 
import tariffs if another country tries to subsidize its exports to your country 
(countervailing duties) are quite common in the arena of trade policy.

II. DELEGATION  A fulfillment device does not even have to be mechanical. You could 
delegate the power to act to another person or to an organization that is required 
to follow certain preset rules or procedures. In fact, that is how the countervailing 
duties work. They are set by two agencies of the U.S. government—the Commerce 
Department and the International Trade Commission—whose operating proce‑
dures are laid down in the general trade laws of the country.

An agent should not have his own objectives that defeat the purpose of his 
strategic move. For example, if one player delegates to an agent the task of in‑
flicting threatened punishment and the agent is a sadist who enjoys inflicting 
punishment, then he may act even when there is no reason to act—that is, even 
when the second player has complied. If the second player suspects this, then 
the threat loses its effectiveness, because the punishment becomes a case of 
“damned if you do and damned if you don’t.”

Delegation devices are not complete guarantees of credibility. Even the 
doomsday device may fail to be credible if the other side suspects that you con‑
trol an override button to prevent the risk of a catastrophe. And delegation and 
mandates can always be altered; in fact, the U.S. government has often set aside 
the stipulated countervailing duties and reached other forms of agreements 
with other countries so as to prevent costly trade wars.

III. BURNING BRIDGES  Many invaders, from Xenophon in ancient Greece to William 
the Conqueror in England to Cortés in Mexico, are supposed to have deliberately 
cut off their own army’s avenue of retreat to ensure that it will fight hard. Some 
of them literally burned bridges behind them, while others burned ships, but 
the device has become a cliche. Its most recent users in military contexts may 
have been the Japanese kamikaze pilots in World War II, who took only enough  
fuel to reach the U.S. naval ships into which they were to ram their airplanes. 
The principle even appears in the earliest known treatise on war, in a commen‑
tary attributed to Prince Fu Ch’ai: “Wild beasts, when they are at bay, fight des‑
perately. How much more is this true of men! If they know there is no alternative 
they will fight to the death.”5

Related devices are used in other high‑stakes games. Although the Euro‑
pean Monetary Union could have retained separate currencies and merely fixed 
the exchange rates among them, a common currency was adopted precisely to 
make the process irreversible and thereby give the member countries a much 

5 Sun Tzu, The Art of War, trans. Samuel B. Griffith (Oxford: Oxford University Press, 1963), p. 110.
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greater incentive to make the union a success. (In fact, it is the extent of the nec‑
essary commitment that has kept some nations, Great Britain in particular, from 
agreeing to be part of the European Monetary Union.) It is not totally impos‑
sible to abandon a common currency and go back to separate national ones; it 
is just inordinately costly. If things get really bad inside the Union, one or more 
countries may yet choose to get out. As with automatic devices, the credibility of 
burning bridges is not an all‑or‑nothing matter, but one of degree.

IV. CUT TING OFF COMMUNICATION  If you send the other player a message demonstrating 
your commitment and at the same time cut off any means for him to communi‑
cate with you, then he cannot argue or bargain with you to reverse your action. 
The danger in cutting off communication is that, if both players do so simul‑
taneously, then they may make mutually incompatible commitments that can 
cause great mutual harm. Additionally, cutting off communication is harder to 
do with a threat, because you have to remain open to the one message that tells 
you whether the other player has complied and therefore whether you need 
to carry out your threat. In this age, it is also quite difficult for a person to cut  
himself off from all contact.

But players who are large teams or organizations can try variants of this 
device. Consider a labor union that makes its decisions at mass meetings 
of members. To convene such a meeting takes a lot of planning—reserving a 
hall, communicating with members, and so forth—and several weeks of time. 
A meeting is convened to decide on a wage demand. If management does not 
meet the demand in full, the union leadership is authorized to call a strike and 
then it must call a new mass meeting to consider any counteroffer. This process 
puts management under a lot of time pressure in the bargaining; it knows that 
the union will not be open to communication for several weeks at a time. Here, 
we see that cutting off communication for extended periods can establish some 
degree of credibility, but not absolute credibility. The union’s device does not 
make communication totally impossible; it only creates several weeks of delay.

B.  Changing Your Payoffs

I. REPUTATION  You can acquire a reputation for carrying out threats and deliver‑
ing on promises. Such a reputation is most useful in a repeated game against 
the same player. It is also useful when playing different games against different 
players, if each of them can observe your actions in the games that you play 
with others. The circumstances favorable to the emergence of such a reputa‑
tion are the same as those for achieving cooperation in the prisoners’ dilemma, 
and for the same reasons. The greater the likelihood that the interaction will 
continue and the greater the concern for the future relative to the present, the 
more likely the players will be to sacrifice current temptations for the sake of 

6841D CH09 UG.indd   364 12/18/14   3:13 PM



A c q U i r i n g  c r e d i b i l i t y   3 6 5

future gains. The players will therefore be more willing to acquire and maintain 
reputations.

In technical terms, this device links different games, and the payoffs of ac‑
tions in one game are altered by the prospects of repercussions in other games. 
If you fail to carry out your threat or promise in one game, your reputation suf‑
fers and you get a lower payoff in other games. Therefore, when you consider 
any one of these games, you should adjust your payoffs in it to take into consid‑
eration such repercussions on your payoffs in the linked games.

The benefit of reputation in ongoing relationships explains why your regular 
car mechanic is less likely to cheat you by doing an unnecessary or excessively 
costly or shoddy repair than is a random garage that you go to in an emergency. 
But what does your regular mechanic actually stand to gain from acquiring this 
reputation if competition forces him to charge a price so low that he makes no 
profit on any deal? His integrity in repairing your car must come at a price—you 
have to be willing to let him charge you a little bit more than the rates that the 
cheapest garage in the area might advertise.

The same reasoning also explains why, when you are away from home, you 
might settle for the known quality of a restaurant chain instead of taking the risk 
of going to an unknown local restaurant. And a department store that expands 
into a new line of merchandise can use the reputation that it has acquired in its 
existing lines to promise its customers the same high quality in the new line.

In games where credible promises by one or both parties can bring mutual 
benefit, the players can agree and even cooperate in fostering the development 
of reputation mechanisms. But if the interaction ends at a known finite time, 
there is always the problem of the endgame.

In the Middle East peace process that started in 1993 with the Oslo Accord, 
the early steps, in which Israel transferred some control over Gaza and small iso‑
lated areas of the West Bank to the Palestinian Authority and in which the latter 
accepted the existence of Israel and reduced its anti‑Israel rhetoric and violence, 
continued well for a while. But as the final stages of the process approached, 
mutual credibility of the next steps became problematic, and by 1998 the pro‑
cess stalled. Sufficiently attractive rewards could have come from the outside; 
for example, the United States or Europe could have given both parties contin‑
gent offers of economic aid or prospects of expanded commerce to keep the 
process going. The United States offered Egypt and Israel large amounts of aid in 
this way to achieve the Camp David Accords in 1978. But such rewards were not 
offered in the more recent situation and, at the date of this writing, prospects for 
progress do not look bright.

II. DIVIDING THE GAME INTO SMALL STEPS  Sometimes a single game can be divided into 
a sequence of smaller games, thereby allowing the reputation mechanism 
to come into effect. In home‑construction projects, it is customary to pay by  
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installments as the work progresses. In the Middle East peace process, Israel 
would never have agreed to a complete transfer of the West Bank to the Palestin‑
ian Authority in one fell swoop in return for a single promise to recognize Israel 
and cease the terrorism. Proceeding in steps has enabled the process to go at 
least part of the way. But this again illustrates the difficulty of sustaining mo‑
mentum as the endgame approaches.

III. TEAMWORk  Teamwork is yet another way to embed one game into a larger game 
to enhance the credibility of strategic moves. It requires a group of players to 
monitor each other. If one fails to carry out a threat or a promise, others are  
required to inflict punishment on him; failure to do so makes them in turn vul‑
nerable to similar punishment by others, and so on. Thus, a player’s payoffs in 
the larger game are altered in a way that makes adhering to the team’s creed 
credible.

Many universities have academic honor codes that act as credibility devices 
for students. Examinations are not proctored by the faculty; instead, students 
are required to report to a student committee if they see any cheating. Then the 
committee holds a hearing and hands out punishment, as severe as suspension 
for a year or outright expulsion, if it finds the accused student guilty of cheating. 
Students are very reluctant to place their fellow students in such jeopardy. To 
stiffen their resolve, such codes include the added twist that failure to report an 
observed infraction is itself an offense against the code. Even then, the general 
belief is that the system works only imperfectly. A poll conducted at Princeton 
University last year found that only a third of students said that they would re‑
port an observed infraction, especially if they knew the guilty person.

IV. IRRATIONALIT Y  Your threat may lack credibility because the other player knows 
that you are rational and that it is too costly for you to follow through with your 
threatened action. Therefore, others believe you will not carry out the threat‑
ened action if you are put to the test. You can counter this problem by claiming 
to be irrational so that others will believe that your payoffs are different from 
what they originally perceived. Apparent irrationality can then turn into strate‑
gic rationality when the credibility of a threat is in question. Similarly, appar‑
ently irrational motives such as honor or saving face may make it credible that 
you will deliver on a promise even when tempted to renege.

The other player may see through such rational irrationality. Therefore, if 
you attempt to make your threat credible by claiming irrationality, he will not 
readily believe you. You will have to acquire a reputation for irrationality, for 
example, by acting irrationally in some related game. You could also use one of  
the strategies discussed in Chapter 8 and do something that is a credible signal 
of irrationality to achieve an equilibrium in which you can separate from the 
falsely irrational.
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V. CONTRACTS  You can make it costly to yourself to fail to carry out a threat or to 
deliver on a promise by signing a contract under which you have to pay a  
sufficiently large sum in that eventuality. If such a contract is written with suf‑
ficient clarity that it can be enforced by a court or some outside authority, the 
change in payoffs makes it optimal to carry out the stipulated action, and the 
threat or the promise becomes credible.

In regard to a promise, the other player can be the other party to the con‑
tract. It is in his interest that you deliver on the promise, so he will hold you to 
the contract if you fail to fulfill the promise. A contract to enforce a threat is 
more problematic. The other player does not want you to carry out the threat‑
ened action and will not enforce the contract unless he gets some longer‑term 
benefit in associated games from being subject to a credible threat in this one. 
Therefore in regard to a threat, the contract has to be with a third party. But 
when you bring in a third party and a contract merely to ensure that you will 
carry out your threat if put to the test, the third party does not actually benefit 
from your failure to act as stipulated. The contract thus becomes vulnerable to 
any renegotiation that would provide the third‑party enforcer with some posi‑
tive benefits. If the other player puts you to the test, you can say to the third 
party, “Look, I don’t want to carry out the threat. But I am being forced to do 
so by the prospect of the penalty in the contract, and you are not getting any‑
thing out of all this. Here is a real dollar in exchange for releasing me from the 
contract.” Thus, the contract itself is not credible; therefore neither is the threat. 
The third party must have its own longer‑term reasons for holding you to the 
contract, such as wanting to maintain its reputation, if the contract is to be  
renegotiation‑proof and therefore credible.

Written contracts are usually more binding than verbal ones, but even ver‑
bal ones may constitute commitments. When George H. W. Bush said “Read my 
lips; no new taxes” in the presidential campaign of 1988, the American public 
took this promise to be a binding contract; when Bush reneged on it in 1990, the 
public held that against him in the election of 1992.

VI. BRINkMANSHIP  In the U.S.–Japan trade‑policy game, we found that a threat 
might be too “large” to be credible. If a smaller but effective threat cannot be 
found in a natural way, the size of the large threat can be reduced to a credi‑
ble level by making its fulfillment a matter of chance. The United States cannot 
credibly say to Japan, “If you don’t keep your markets open to U.S. goods, we will 
not defend you if the Russians or the Chinese attack you.” But it can credibly 
say, “If you don’t keep your markets open to U.S. goods, the relations between 
our countries will deteriorate, which will create the risk that, if you are faced 
with an invasion, Congress at that time will not sanction U.S. military involve‑
ment in your aid.” As mentioned earlier, such deliberate creation of risk is called 
brinkmanship. This is a subtle idea, difficult to put into practice. Brinkmanship 
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is best understood by seeing it in operation, and the detailed case study of the 
Cuban missile crisis in Chapter 14 serves just that purpose.

We have described several devices for making one’s strategic moves cred‑
ible and examined how well they work. In conclusion, we want to emphasize 
a feature common to the entire discussion. Credibility in practice is not an 
all‑or‑nothing matter but one of degree. Even though the theory is stark— 
rollback analysis shows either that a threat works or that it does not—practical 
application must recognize that between these polar extremes lies a whole spec‑
trum of possibility and probability.

7 COUNTERING YOUR OPPONENT ’S STRATEGIC MOVES

If your opponent can make a commitment or a threat that works to your disad‑
vantage, then, before he actually does so, you may be able to make a strategic 
countermove of your own. You can do so by making his future strategic move less 
effective, for example, by removing its irreversibility or undermining its credibil‑
ity. In this section, we examine some devices that can help achieve this purpose. 
Some are similar to devices that the other side can use for its own needs.

A.  Irrationality

Irrationality can work for the would‑be receiver of a commitment or a threat 
just as well as it does for the other player. If you are known to be so irrational 
that you will not give in to any threat and will suffer the damage that befalls you 
when your opponent carries out that threat, then he may as well not make the 
threat in the first place, because having to carry it out will only end up hurting 
him, too. Everything that we said earlier about the difficulties of credibly con‑
vincing the other side of your irrationality holds true here as well.

B.  Cutting Off Communication

If you make it impossible for the other side to convey to you the message that 
it has made a certain commitment or a threat, then your opponent will see no 
point in doing so. Thomas Schelling illustrates this possibility with the story of 
a child who is crying too loudly to hear his parent’s threats.6 Thus, it is pointless  
for the parent to make any strategic moves; communication has effectively 
been cut off.

6 Thomas C. Schelling, The Strategy of Conflict (Oxford: Oxford University Press, 1960), p. 146.
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C.  Leaving Escape Routes Open

If the other side can benefit by burning bridges to prevent its retreat, you can 
benefit by dousing those fires or perhaps even by constructing new bridges or 
roads by which your opponent can retreat. This device was also known to the 
ancients. Sun Tzu said, “To a surrounded enemy, you must leave a way of es‑
cape.” The intent is not actually to allow the enemy to escape. Rather, “show him 
there is a road to safety, and so create in his mind the idea that there is an alter‑
native to death. Then strike.”7

D.  Undermining Your Opponent’s Motive to Uphold His Reputation

If the person threatening you says, “Look, I don’t want to carry out this threat, 
but I must because I want to maintain my reputation with others,” you can 
respond, “It is not in my interest to publicize the fact that you did not punish 
me. I am only interested in doing well in this game. I will keep quiet; both of 
us will avoid the mutually damaging outcome; and your reputation with others 
will stay intact.” Similarly, if you are a buyer bargaining with a seller and he re‑
fuses to lower his price on the grounds that “if I do this for you, I would have to 
do it for everyone else,” you can point out that you are not going to tell anyone 
else. This may not work; the other player may suspect that you would tell a few 
friends who would tell a few others, and so on.

E.  Salami Tactics

Salami tactics are devices used to whittle down the other player’s threat in the 
way that a salami is cut—one slice at a time. You fail to comply with the other’s 
wishes (whether for deterrence or compellence) to a very small degree so that it 
is not worth the other’s while to carry out the comparatively more drastic and 
mutually harmful threatened action just to counter that small transgression. If 
that works, you transgress a little more, and a little more again, and so on.

You know this perfectly well from your own childhood. Schelling8 gives a 
wonderful description of the process:

Salami tactics, we can be sure, were invented by a child. . . . Tell a child not 
to go in the water and he’ll sit on the bank and submerge his bare feet; he is 
not yet “in” the water. Acquiesce, and he’ll stand up; no more of him is in the 
water than before. Think it over, and he’ll start wading, not going any deeper. 
Take a moment to decide whether this is different and he’ll go a little deeper, 
arguing that since he goes back and forth it all averages out. Pretty soon we 

7 Sun Tzu, The Art of War, pp. 109–110.
8 Thomas C. Schelling, Arms and Influence (New Haven: Yale University Press, 1966), pp. 66–67.
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are calling to him not to swim out of sight, wondering whatever happened 
to all our discipline.

Salami tactics work particularly well against compellence, because they can 
take advantage of the time dimension. When your mother tells you to clean up 
your room “or else,” you can put off the task for an extra hour by claiming that 
you have to finish your homework, then for a half day because you have to go to 
football practice, then for an evening because you can’t possibly miss The Simp-
sons on TV, and so on.

To counter the countermove of salami tactics, you must make a correspond‑
ingly graduated threat. There should be a scale of punishments that fits the scale 
of noncompliance or procrastination. This can also be achieved by gradually 
raising the risk of disaster, another application of brinkmanship.

SUMMARY

Actions taken by players to fix the rules of later play are known as strategic moves. 
These first moves must be observable and irreversible to be true first moves, and 
they must be credible if they are to have their desired effect of altering the equi‑
librium outcome of the game. Commitment is an unconditional first move used 
to seize a first‑mover advantage when one exists. Such a move usually entails 
committing to a strategy that would not have been one’s equilibrium strategy in 
the original version of the game.

Conditional first moves such as threats and promises are response rules de‑
signed either to deter rivals’ actions and preserve the status quo or to compel 
rivals’ actions and alter the status quo. Threats carry the possibility of mutual 
harm but cost nothing if they work; threats that create only the risk of a bad 
outcome fall under the classification of brinkmanship. Promises are costly only 
to the maker and only if they are successful. Threats can be arbitrarily large, al‑
though excessive size compromises credibility, but promises are usually kept just 
large enough to be effective. If the implicit promise (or threat) that accompanies 
a threat (or promise) is not credible, players must make a move that combines 
both a promise and a threat and see to it that both components are credible.

Credibility must be established for any strategic move. There are a number 
of general principles to consider in making moves credible and a number of spe‑
cific devices that can be used to acquire credibility. They generally work either 
by reducing your own future freedom to choose or by altering your own payoffs 
from future actions. Specific devices of this kind include establishing a reputa-
tion, using teamwork, demonstrating apparent irrationality, burning bridges, and 
making contracts, although the acquisition of credibility is often context specific. 
Similar devices exist for countering strategic moves made by rival players.
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Left Right

COLUMN

Up 

Down 

3, 44, 3

1, 22, 1
ROW 

 

(ii)

kEY TERMS

brinkmanship (343) promise (345)
commitment (344) rational irrationality (366)
compellence (345) reputation (364)
contract (367) response rule (345)
deterrence (345) salami tactics (357)
doomsday device (362) strategic moves (342)
irreversible action (343) threat (345)
observable action (343)

SOLVED ExERCISES

 S1. “One could argue that the size of a promise is naturally bounded, while 
in principle a threat can be arbitrarily severe so long as it is credible (and 
error free).” First, briefly explain why the statement is true. Despite the 
truth of the statement, players might find that an arbitrarily severe threat 
might not be to their advantage. Explain why the latter statement is also 
true.

 S2.  For each of the following three games, answer these questions: 
 (a) What is the equilibrium if neither player can use any strategic 

moves? 
 (b) Can one player improve his payoff by using a strategic move (com‑

mitment, threat, or promise) or a combination of such moves? If so, 
which player makes what strategic move(s)?

Left Right

COLUMN

Up 

Down 

2, 10, 0

0, 01, 2
ROW 

 

(i)
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 S3. In the classic film Mary Poppins, the Banks children are players in a 
strategic game with a number of different nannies. In their view of the 
world, nannies are inherently harsh, and playing tricks on nannies is 
great fun. That is, they view themselves as playing a game in which the 
nanny moves first, showing herself to be either Harsh or Nice, and the 
children move second, choosing to be either Good or Mischievous. The 
nanny prefers to have Good children to take care of but is also inherently 
harsh, and so she gets her highest payoff of 4 from (Harsh, Good) and her 
lowest payoff of 1 from (Nice, Mischievous), with (Nice, Good) yielding 3 
and (Harsh, Mischievous) yielding 2. The children similarly most prefer 
to have a Nice nanny and then to be Mischievous; they get their highest 
two payoffs when the nanny is Nice (4 if Mischievous, 3 if Good) and their 
lowest two payoffs when the nanny is Harsh (2 if Mischievous, 1 if Good).

 (a) Draw the game tree for this game and find the subgame‑perfect 
equilibrium in the absence of any strategic moves.

 (b) In the film, before the arrival of Mary Poppins, the children write 
their own ad for a new nanny in which they state: “If you won’t scold 
and dominate us, we will never give you cause to hate us; we won’t 
hide your spectacles so you can’t see, put toads in your bed, or pep‑
per in your tea.” Use the tree from part (a) to argue that this state‑
ment constitutes a promise. What would the outcome of the game 
be if the children keep their promise?

 (c) What is the implied threat that goes with the promise in part (b)? Is 
that implied threat automatically credible? Explain your answer.

 (d) How could the children make the promise in part (b) credible?
 (e) Is the promise in part (b) compellent or deterrent? Explain your 

answer by referring to the status quo in the game—namely, what 
would happen in the absence of the strategic move.

 S4. The following is an interpretation of the rivalry between the United 
States and the Soviet Union for geopolitical influence during the 1970s 
and 1980s.9 Each side has the choice of two strategies: Aggressive and  

Left Right

COLUMN

Up 

Down 

2, 24, 1

1, 43, 3
ROW 

 

(iii)

9 We thank political science professor Thomas Schwartz at UCLA for the idea for this exercise.
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Restrained. The Soviet Union wants to achieve world domination, so 
being Aggressive is its dominant strategy. The United States wants to pre‑
vent the Soviet Union from achieving world domination; it will match 
Soviet aggressiveness with aggressiveness, and restraint with restraint. 
Specifically, the payoff table is:

Restrained Aggressive

SOVIET UNION

Restrained 

Aggressive 

4, 3

3, 1 2, 2

1, 4
UNITED 
STATES 

For each player, 4 is best and 1 is worst.
 (a) Consider this game when the two countries move simultaneously. 

Find the Nash equilibrium.
 (b) Next consider three different and alternative ways in which the 

game could be played with sequential moves: (i) The United States 
moves first, and the Soviet Union moves second. (ii) The Soviet 
Union moves first, and the United States moves second. (iii) The 
Soviet Union moves first, and the United States moves second, 
but the Soviet Union has a further move in which it can change 
its first move. For each case, draw the game tree and find the  
subgame‑perfect equilibrium.

 (c) What are the key strategic matters (commitment, credibility, and so 
on) for the two countries?

 S5. Consider the following games. In each case, (i) identify which player 
can benefit from making a strategic move, (ii) identify the nature of the 
strategic move appropriate for this purpose, (iii) discuss the concep‑
tual and practical difficulties that will arise in the process of making this 
move credible, and (iv) discuss whether and how the difficulties can be  
overcome.

 (a) The other countries of the European Monetary Union (France, Ger‑
many, and so on) would like Britain to join the common currency 
and the common central bank.

 (b) The United States would like North Korea to stop exporting mis‑
siles and missile technology to countries such as Iran and would like 
China to join the United States in working toward this aim.

 (c) The United Auto Workers would like U.S. auto manufacturers not 
to build plants in Mexico and would like the U.S. government to re‑
strict imports of autos made abroad.
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UNSOLVED ExERCISES

 U1. In a scene from the movie Manhattan Murder Mystery, Woody Allen and 
Diane Keaton are at a hockey game in Madison Square Garden. She is ob‑
viously not enjoying herself, but he tells her: “Remember our deal. You 
stay here with me for the entire hockey game, and next week I will come 
to the opera with you and stay until the end.” Later, we see them com‑
ing out of the Met into the deserted Lincoln Center Plaza while inside 
the music is still playing. Keaton is visibly upset: “What about our deal? I 
stayed to the end of the hockey game, and so you were supposed to stay 
till the end of the opera.” Allen answers: “You know I can’t listen to too 
much Wagner. At the end of the first act, I already felt the urge to invade 
Poland.” Comment on the strategic choices made here by using your 
knowledge of the theory of strategic moves and credibility.

 U2. Consider a game between a parent and a child. The child can choose to 
be good (G) or bad (B); the parent can punish the child (P) or not (N). 
The child gets enjoyment worth a 1 from bad behavior, but hurt worth 
22 from punishment. Thus, a child who behaves well and is not pun‑
ished gets a 0; one who behaves badly and is punished gets 1 2 2 5 21; 
and so on. The parent gets 22 from the child’s bad behavior and 21 
from inflicting punishment.

 (a) Set up this game as a simultaneous‑move game, and find the  
equilibrium.

 (b) Next, suppose that the child chooses G or B first and that the parent 
chooses its P or N after having observed the child’s action. Draw the 
game tree and find the subgame‑perfect equilibrium.

 (c) Now suppose that before the child acts, the parent can commit to 
a strategy. For example, the threat “P if B” (“If you behave badly, I 
will punish you”). How many such strategies does the parent have? 
Write the table for this game. Find all pure‑strategy Nash equilibria.

 (d) How do your answers to parts (b) and (c) differ? Explain the reason 
for the difference.

 U3. The general strategic game in Thucydides’ history of the Peloponnesian 
War has been expressed in game‑theoretic terms by Professor William 
Charron of St. Louis University.10 Athens had acquired a large empire of 
coastal cities around the Aegean as part of its leadership role in defend‑
ing the Greek world from Persian invasions. Sparta, fearing Athenian 

10 William C. Charron, “Greeks and Games: Forerunners of Modern Game Theory,” Forum for  
Social Economics, vol. 29, no. 2 (Spring 2000), pp. 1–32.
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power, was contemplating war against Athens. If Sparta decided against 
war, Athens would have to decide whether to retain or relinquish its em‑
pire. But Athens in turn feared that if it gave independence to the cit‑
ies, they could choose to join Sparta in a greatly strengthened alliance 
against Athens and receive very favorable terms from Sparta for doing so. 
Thus there are three players, Sparta, Athens, and Small cities, who move 
in this order. There are four outcomes, and the payoffs are as follows (4 
being best):

Sparta Outcome Athens

War 

Athens retains empire 

2 2 2 

1 4 1 

4 1 4 

3 3 3 

Small cities 

Small cities join Sparta 

Small cities stay independent 

 (a) Draw the game tree and find the rollback equilibrium. Is there an‑
other outcome that is better for all players?

 (b) What strategic move or moves could attain the better outcome? Dis‑
cuss the credibility of such moves.

 U4. It is possible to reconfigure the payoffs in the game in Exercise S3 so that 
the children’s statement in their ad is a threat, rather than a promise.

 (a) Redraw the tree from part (a) of Exercise S3 and fill in payoffs for 
both players so that the children’s statement becomes a threat in the 
full technical sense.

 (b) Define the status quo in your game, and determine whether the 
threat is deterrent or compellent.

 (c) Explain why the threatened action is not automatically credible, 
given your payoff structure.

 (d) Explain why the implied promise is automatically credible.
 (e) Explain why the children would want to make a threat in the first  

place, and suggest a way in which they might make their threatened  
action credible.

 U5. Answer the questions in Exercise S5 for the following situations:
 (a) The students at your university or college want to prevent the ad‑

ministration from raising tuition.
 (b) Most participants, as well as outsiders, want to achieve a durable 

peace in Afghanistan, Iraq, Israel, and Palestine.
 (c) Nearly all nations of the world want Iran to shut down its nuclear  

program.
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 U6. Write a brief description of a game in which you have participated, en‑
tailing strategic moves such as a commitment, threat, or promise and 
paying special attention to the essential aspect of credibility. Provide an 
illustration of the game if possible, and explain why the game that you 
describe ended as it did. Did the players use sound strategic thinking in 
making their choices?
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■

The Prisoners’ Dilemma  

and Repeated Games

In this chapter, we continue our study of broad classes of games with an 
analysis of the prisoners’ dilemma game. It is probably the classic example 
of the theory of strategy and its implications for predicting the behavior of 
game players, and most people who learn only a little bit of game theory 

learn about it. Even people who know no game theory may know the basic story 
behind this game or they may have at least heard that it exists. The prisoners’ di-
lemma is a game in which each player has a dominant strategy, but the equilib-
rium that arises when all players use their dominant strategies provides a worse 
outcome for every player than would arise if they all used their dominated strat-
egies instead. The paradoxical nature of this equilibrium outcome leads to sev-
eral more complex questions about the nature of the interactions that only a 
more thorough analysis can hope to answer. The purpose of this chapter is to 
provide that additional thoroughness.

We already considered the prisoners’ dilemma in Section 3 of Chapter 4. 
There we took note of the curious nature of the equilibrium that is actually a 
“bad” outcome for the players. The “prisoners” can find another outcome that 
both prefer to the equilibrium outcome, but they find it difficult to bring about. 
The focus of this chapter is the potential for achieving that better outcome. 
That is, we consider whether and how the players in a prisoners’ dilemma can 
attain and sustain their mutually beneficial cooperative outcome, overcoming 
their separate incentives to defect for individual gain. We first review the stan-
dard prisoners’ dilemma game and then develop three categories of solutions.  
The first and most important method of solution consists of repetition of the 
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standard one-shot game. The general theory of repeated games was the con-
tribution for which Robert Aumann was awarded the 2005 Nobel Prize in eco-
nomics (jointly with Thomas Schelling). As usual at this introductory level, we 
look at a few simple examples of this general theory. We then consider two other 
potential solutions that rely on penalty (or reward) schemes and on the role of 
leadership. A fourth potential solution to the dilemma incorporates asymmet-
ric information into a finitely repeated dilemma game. We allude briefly to that 
case but present the (quite) technical details only in our collection of online  
appendixes.

This chapter concludes with a discussion of some of the experimental ev-
idence regarding the prisoners’ dilemma as well as several examples of actual 
dilemmas in action. Experiments generally put live players in a variety of prison-
ers’ dilemma–type games and show some perplexing as well as some more pre-
dictable behavior; experiments conducted with the use of computer simulations 
yield additional interesting outcomes. Our examples of real-world dilemmas 
that end the chapter are provided to give a sense of the diversity of situations in 
which prisoners’ dilemmas arise and to show how, in at least one case, players 
may be able to create their own solution to the dilemma.

1 THE BASIC GAME (REVIEW )

Before we consider methods for avoiding the “bad” outcome in the prisoners’ 
dilemma, we briefly review the basics of the game. Recall our example from 
Chapter 4 of the husband and wife suspected of murder. Each is interrogated 
separately and can choose to confess to the crime or to deny any involvement. 
The payoff matrix that they face was originally presented as Figure 4.4 and  
is reproduced here as Figure 10.1. The numbers shown indicate years in jail;  
therefore low numbers are better for both players.

Both players here have a dominant strategy. Each does better to confess, re-
gardless of what the other player does. The equilibrium outcome entails both 
players deciding to confess and each getting 10 years in jail. If they both had 

WIFE

Confess (Defect)

Confess (Defect) Deny (Cooperate)

Deny (Cooperate)

1 yr, 25 yr10 yr, 10 yr

3 yr, 3 yr25 yr, 1 yr
HUSBAND

FIGURE 10.1  Payoffs for the Standard Prisoners’ Dilemma
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chosen to deny any involvement, however, they would have been better off, with 
only 3 years of jail time to serve.

In any prisoners’ dilemma game, there is always a cooperative strategy and 
a cheating or defecting strategy. In Figure 10.1, Deny is the cooperative strategy; 
both players using that strategy yields the best outcome for the players. Confess 
is the cheating or defecting strategy; when the players do not cooperate with one  
another, they choose to Confess in the hope of attaining individual gain at the ri-
val’s expense. Thus, players in a prisoners’ dilemma can always be labeled, accord-
ing to their choice of strategy, as either defectors or cooperators. We will use this 
labeling system throughout the discussion of potential solutions to the dilemma.

We want to emphasize that, although we speak of a cooperative strat-
egy, the prisoners’ dilemma game is noncooperative in the sense explained in  
Chapter 2—namely, the players make their decisions and implement their 
choices individually. If the two players could discuss, choose, and play their 
strategies jointly—as if, for example, the prisoners were in the same room and 
could give a joint answer to the question of whether they were both going to 
confess—there would be no difficulty about their achieving the outcome that 
both prefer. The essence of the questions of whether, when, and how a prison-
ers’ dilemma can be resolved is the difficulty of achieving a cooperative (jointly 
preferred) outcome through noncooperative (individual) actions.

2 SOLUTIONS I: REPETITION

Of all the mechanisms that can sustain cooperation in the prisoners’ dilemma, 
the best known and the most natural is repeated play of the game. Repeated 
or ongoing relationships between players imply special characteristics for the 
games that they play against one another. In the prisoners’ dilemma, this result 
manifests itself in the fact that each player fears that one instance of defecting 
will lead to a collapse of cooperation in the future. If the value of future coopera-
tion is large and exceeds what can be gained in the short term by defecting, then 
the long-term individual interests of the players can automatically and tacitly 
keep them from defecting, without the need for any additional punishments or 
enforcement by third parties.

We consider the meal-pricing dilemma faced by the two restaurants, Xavier’s 
Tapas and Yvonne’s Bistro, introduced in Chapter 5. For our purposes here, we 
have chosen to simplify that game by supposing that only two choices of price 
are available: the jointly best (collusive) price of $26 or the Nash equilibrium 
price of $20. The payoffs (profits measured in hundreds of dollars per month) 
for each restaurant can be calculated by using the quantity (demand) functions 
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in Section 1.A of Chapter 5; these payoffs are shown in Figure 10.2. As in any 
prisoners’ dilemma, each store has a dominant strategy to defect and price its 
meals at $20, although both stores would prefer the outcome in which each  
cooperates and charges the higher price of $26 per meal.

Let us start our analysis by supposing that the two restaurants are initially in 
the cooperative mode, each charging the higher price of $26. If one restaurant—
say, Xavier’s—deviates from this pricing strategy, it can increase its profit from 
324 to 360 (from $32,400 to $36,000) for one month. But then cooperation has 
dissolved and Xavier’s rival, Yvonne’s, will see no reason to cooperate from then 
on. Once cooperation has broken down, presumably permanently, the profit for 
Xavier’s is 288 ($28,800) each month instead of the 324 ($32,400) it would have 
been if Xavier’s had never defected in the first place. By gaining 36 ($3,600) in 
one month of defecting, Xavier’s gives up 36 ($3,600) each month thereafter by 
destroying cooperation. Even if the relationship lasts as little as three months, it 
seems that defecting is not in Xavier’s best interest. A similar argument can be 
made for Yvonne’s. Thus, if the two restaurants competed on a regular basis for 
at least three months, it seems that we might see cooperative behavior and high 
prices rather than the defecting behavior and low prices predicted by theory for 
the one-shot game.

A.  Finite Repetition

But the solution of the dilemma is not actually that simple. What if the rela-
tionship did last exactly three months? Then strategic restaurants would 
want to analyze the full three-month game and choose their optimal pricing  
strategies. Each would use rollback to determine what price to charge each 
month. Starting their analyses with the third month, they would realize that, at 
that point, there was no future relationship to consider. Each restaurant would 
find that it had a dominant strategy to defect. Given that, there is effectively no 
future to consider in the second month either. Each player knows that there 
will be mutual defecting in the third month, and therefore both will defect  
in the second month; defecting is the dominant strategy in month 2 also.  
Then the same argument applies to the first month as well. Knowing that both 

  

 

YVONNE’S BISTRO

20 (Defect)

20 (Defect) 26 (Cooperate)

26 (Cooperate)

360, 216288, 288

324, 324216, 360

XAVIER’S
TAPAS

FIGURE 10.2  Prisoners’ Dilemma of Pricing ($100s per month)

3 8 0   [ C h . 1 0 ]  t h e  P r i S o n e r S ’ D i l e m m a  a n D  r e P e at e D  g a m e S

6841D CH10 UG.indd   380 12/18/14   3:13 PM



will defect in months 2 and 3 anyway, there is no future value of cooperation 
in the first month. Both players defect right from the start, and the dilemma  
is alive and well.

This result is very general. As long as the relationship between the two play-
ers in a prisoners’ dilemma game lasts a fixed and known length of time, the 
dominant-strategy equilibrium with defecting should prevail in the last period 
of play. When the players arrive at the end of the game, there is never any value 
to continued cooperation, and so they defect. Then rollback predicts mutual 
defecting all the way back to the very first play. However, in practice, players in 
finitely repeated prisoners’ dilemma games show a lot of cooperation; more on 
this to come.

B.  Infinite Repetition

Analysis of the finitely repeated prisoners’ dilemma shows that even repetition 
of the game cannot guarantee the players a solution to their dilemma. But what 
would happen if the relationship did not have a predetermined length? What if 
the two restaurants expected to continue competing with one another indefi-
nitely? Then our analysis must change to incorporate this new aspect of their 
interaction, and we will see that the incentives of the players change also.

In repeated games of any kind, the sequential nature of the relationship 
means that players c an adopt strategies that depend on behavior in preceding 
plays of the games. Such strategies are known as contingent strategies, and sev-
eral specific examples are used frequently in the theory of repeated games. Most 
contingent strategies are trigger strategies. A player using a trigger strategy 
plays cooperatively as long as her rival(s) do so, but any defection on their part 
“triggers” a period of punishment, of specified length, in which she plays non-
cooperatively in response. Two of the best-known trigger strategies are the grim 
strategy and tit-for-tat. The grim strategy entails cooperating with your rival 
until such time as she defects from cooperation; once a defection has occurred, 
you punish your rival (by choosing the Defect strategy) on every play for the rest 
of the game.1 Tit-for-tat (TFT) is not so harshly unforgiving as the grim strat-
egy and is famous (or infamous) for its ability to solve the prisoners’ dilemma 
without requiring permanent punishment. Playing TFT involves cooperating 
on the first play and then choosing, in each future period, the action chosen by 
your rival in the preceding period of play. Thus, when playing TFT, you cooper-
ate with your rival if she cooperated during the most recent play of the game 
and defect (as punishment) if your rival defected. The punishment phase lasts 
only as long as your rival continues to defect; you will return to cooperation one 
period after she chooses to do so.

1 Defecting as retaliation under the requirements of a trigger strategy is often termed punishing to 
distinguish it from the original decision to deviate from cooperation.
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Let us consider how play might proceed in the repeated restaurant pricing 
game if one of the players uses the contingent strategy tit-for-tat. We have already 
seen that if Xavier’s Tapas defects one month, it could add 36 to its profits (360 
instead of 324). But if Xavier’s rival is playing TFT, then such defecting would 
induce Yvonne’s Bistro to punish Xavier’s the next month in retaliation. At that 
point, Xavier’s has two choices. One option is to continue to defect by pricing 
at $20 and to endure Yvonne’s continued punishment according to TFT; in this  
case, Xavier’s loses 36 (288 rather than 324) for every month thereafter in the 
foreseeable future. This option appears quite costly. But Xavier’s could get back to 
cooperation, too, if it so desired. By reverting to the cooperative price of $26 after 
one month’s defection, Xavier’s would incur only one month’s punishment from 
Yvonne’s. During that month, Xavier’s would suffer a loss in profit of 108 (216 
rather than the 324 that would have been earned without any defection). In the 
second month after Xavier’s defection, both restaurants could be back at the co-
operative price earning 324 each month. This one-time defection yields an extra 
36 in profit but costs an additional 108 during the punishment, also apparently 
quite costly to Xavier’s.

It is important to realize here, however, that Xavier’s extra $36 from defect-
ing is gained in the first month. Its losses are ceded in the future. Therefore, the 
relative importance of the two depends on the relative importance of the pres-
ent versus the future. Here, because payoffs are calculated in dollar terms, an 
objective comparison can be made. Generally, money (or profit) that is earned 
today is better than money that is earned later because, even if you do not need 
(or want) the money until later, you can invest it now and earn a return on it 
until you need it. So Xavier’s should be able to calculate whether it is worthwhile 
to defect on the basis of the total rate of return on its investment (including 
capital gains and/or dividends and/or interest, depending on the type of in-
vestment). We use the symbol r to denote this rate of return. Thus, one dollar 
invested generates r dollars of interest and/or dividends and/or capital gains, 
or 100 dollars generates 100r, therefore the rate of return is sometimes also said 
to be 100r %.

Note that we can calculate whether it is in Xavier’s interest to defect because 
the firms’ payoffs are given in dollar terms, rather than as simple ratings of out-
comes, as in some of the games in earlier chapters (the street-garden game in 
Chapters 3 and 6, for example). This means that payoff values in different cells 
are directly comparable; a payoff of 4 (dollars) is twice as good as a payoff of 2 
(dollars) here, whereas a payoff of 4 is not necessarily exactly twice as good as 
a payoff of 2 in any two-by-two game in which the four possible outcomes are 
ranked from 1 (worst) to 4 (best). As long as the payoffs to the players are given 
in measurable units, we can calculate whether defecting in a prisoners’ dilemma 
game is worthwhile.
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I. IS IT WORTHWHILE TO dEFECT ONLy ONCE AGAINST A RIVAL PLAyING TFT?  One of Xavier’s options 
when playing repeatedly against a rival using TFT is to defect just once from a 
cooperative outcome and then to return to cooperating. This particular strategy 
gains the restaurant 36 in the first month (the month during which it defects) 
but loses it 108 in the second month. By the third month, cooperation is re-
stored. Is defecting for only one month worth it?

We cannot directly compare the 36 gained in the first month with the 108 
lost in the second month because the additional money value of time must be 
incorporated into the calculation. That is, we need a way to determine how 
much the 108 lost in the second month is worth during the first month. Then we 
can compare that number with 36 to see whether defecting once is worthwhile. 
What we are looking for is the present value (PV) of 108, or how much in profit 
earned this month (in the present) is equivalent to (has the same value as) the 
108 earned next month. We need to determine the number of dollars earned this 
month that, with interest, would give us 108 next month; we call that number 
PV, the present value of 108.

Given that the (monthly) total rate of return is r, getting PV this month and 
investing it until next month yields a total next month of PV  rPV, where the 
first term is the principal being paid back and the second term is the return  
(interest or dividend or capital gain). When the total is exactly 108, then PV 
equals the present value of 108. Setting PV  rPV  108 yields a solution for PV:

PV  
1  r

.
108

For any value of r, we can now determine the exact number of dollars that, 
earned this month, would be worth 108 next month.

From the perspective of Xavier’s Tapas, the question remains whether the 
gain of 36 this month is offset by the loss of 108 next month. The answer de-
pends on the value of PV. Xavier’s must compare the gain of 36 with the PV of the 
loss of 108. To defect once (and then return to cooperation) is worthwhile only if 
36 . 108(1  r). This is the same as saying that defecting once is beneficial only 
if 36(1  r) . 108, which reduces to r . 2. Thus, Xavier’s should choose to defect 
once against a rival playing TFT only if the monthly total rate of return exceeds 
200%. This outcome is very unlikely; for example, prime lending rates rarely ex-
ceed 12% per year. This translates into a monthly interest rate of no more than 
1% (compounded annually, not monthly), well below the 200% just calculated. 
Here, it is better for Xavier’s to continue cooperating than to try a single instance 
of defecting when Yvonne’s is playing TFT.
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II. IS IT WORTHWHILE TO dEFECT FOREVER AGAINST A RIVAL PLAyING TFT?  What about the possibil-
ity of defecting once and then continuing to defect forever? This second option of 
Xavier’s gains the restaurant 36 in the first month but loses it 36 in every month 
thereafter into the future if the rival restaurant plays TFT. To determine whether 
such a strategy is in Xavier’s best interest again depends on the present value of 
the losses incurred. But this time the losses are incurred over an infinite hori-
zon of future months of competition.

Xavier’s option of defecting forever against a rival playing TFT yields a payoff 
(profit) stream equivalent to what Xavier’s would get if it were to defect against a 
rival using the grim trigger strategy. Recall that the grim strategy requires players 
to punish any defection with retaliatory defection in all future periods. In that 
case, it is not worthwhile for Xavier’s to attempt any return to cooperation after 
its initial defection because the rival firm will be choosing to defect, as punish-
ment, forever. Any defection on Xavier’s part against a grim-playing rival would 
then lead to a gain of 36 in the first month and a loss of 36 in all future months, 
exactly the same outcome as if it defected forever against a rival playing TFT. 
The analysis below is therefore also the analysis one would complete to assess 
whether it is worthwhile to defect at all against a rival playing the grim strategy.

To determine whether a defection of this type is worthwhile, we need to 
figure out the present value of all of the 36s that are lost in future months, add 
them all up, and compare them with the 36 gained during the month of de-
fecting. The PV of the 36 lost during the first month of punishment and con-
tinued defecting on Xavier’s part is just 36(1  r); the calculation is identical 
with that used in Section 2.B.i to find that the PV of 108 was 108(1  r). For 
the next month, the PV must be the dollar amount needed this month that, 
with two months of compound interest, would yield 36 in two months. If the 
PV is invested now, then in one month the investor would have that principal 
amount plus a return of rPV, for a total of PV  rPV, as before; leaving this total 
amount invested for the second month means that at the end of two months, 
the investor has the amount invested at the beginning of the second month  
(PV  rPV) plus the return on that amount, which would be r(PV  rPV). The 
PV of the 36 lost two months from now must then solve the equation: PV  rPV 
 r(PV  rPV)  36. Working out the value of PV here yields PV(1  r)2  36, or 
PV  36(1  r)2. You should see a pattern developing. The PV of the 36 lost in 
the third month of continued defecting is 36(1  r)3, and the PV of the 36 lost  
in the fourth month is 36(1  r)4. In fact, the PV of the 36 lost in the nth month 
of continued defecting is just 36(1  r)n. Xavier’s loses an infinite sum of 36s, 
and the PV of each of them gets smaller each month.

More precisely, Xavier’s loses the sum, from n  1 to n   (where n labels 
the months of continued defecting after the initial month, which is month 0), 
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of 36(1  r)n. Mathematically, it is written as the sum of an infinite number of 
terms2:

 
  �  .. . .

1 � r 
36 

(1 � r)2 

36 
�  

(1 � r)3 

36 
�  

(1 � r)4 

36 
�  

Because r is a rate of return and presumably a positive number, the ratio of  
1(1  r) will be less than 1; this ratio is generally called the discount factor and is 
referred to by the Greek letter  . With   1(1  r) , 1, the mathematical rule for 
infinite sums tells us that this sum converges to a specific value, in this case 36r.

It is now possible to determine whether Xavier’s Tapas will choose to defect 
forever. The restaurant compares its gain of 36 with the PV of all the lost 36s, or 
36r. Then it defects forever only if 36 . 36r, or r . 1; defecting forever is ben-
eficial in this particular game only if the monthly rate of return exceeds 100%, 
another unlikely event. Thus, we would not expect Xavier’s to defect against a 
cooperative rival when both are playing tit-for-tat. (Nor would we expect de-
fection against a cooperative rival when both are playing grim.) When both 
Yvonne’s Bistro and Xavier’s Tapas play TFT, the cooperative outcome in which 
both price high is a Nash equilibrium of the game. Both playing TFT is a Nash 
equilibrium, and use of this contingent strategy solves the prisoners’ dilemma 
for the two restaurants.

Remember that tit-for-tat is only one of many trigger strategies that players 
could use in repeated prisoners’ dilemmas. And it is one of the “nicer” ones. Thus, 
if TFT can be used to solve the dilemma for the two restaurants, other, harsher  
trigger strategies should be able to do the same. As noted, the grim strategy can 
also be used to sustain cooperation in this infinitely repeated game and in oth-
ers as well.

C.  Games of Unknown Length

In addition to considering games of finite or infinite length, we can incorporate 
a more sophisticated tool to deal with games of unknown length. It is possible 
that, in some repeated games, players might not know for certain exactly how 
long their interaction will continue. They may, however, have some idea of the 
probability that the game will continue for another period. For example, our 
restaurants might believe that their repeated competition will continue only as 
long as their customers find prix fixe menus to be the dining-out experience of 
choice; if there were some probability each month that à la carte dinners would 
take over that role, then the nature of the game is altered.

2 The appendix to this chapter contains a detailed discussion of the solution of infinite sums.
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Recall that the present value of a loss next month is already worth only  
  1(1  r) times the amount earned. If in addition there is only a probability p 
(less than 1) that the relationship will actually continue to the next month, then 
next month’s loss is worth only p times  times the amount lost. For Xavier’s Tapas, 
this means that the PV of the 36 lost with continued defecting is worth 36   [the 
same as 36(1  r)] when the game is assumed to be continuing with certainty 
but is worth only 36  p   when the game is assumed to be continuing with  
probability p. Incorporating the probability that the game may end next period 
means that the present value of the lost 36 is smaller, because p , 1, than it is 
when the game is definitely expected to continue (when p is assumed to equal 1).

The effect of incorporating p is that we now effectively discount future  
payoffs by the factor p   instead of simply by . We call this effective rate of 
return R, where 1(1  R)  p  , and R depends on p and  as shown3:
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With a 5% actual rate of return on investments (r  0.05, and so   11.05  
0.95) and a 50% chance that the game continues for an additional month (p  
0.5), then R  [1  (0.5)(0.95)](0.5)(0.95)  1.1, or 110%.

Now the high rates of return required to destroy cooperation (encourage  
defection) in these examples seem more realistic if we interpret them as effective 
rather than actual rates of return. It becomes conceivable that defecting forever, 
or even once, might actually be to one’s benefit if there is a large enough probabil-
ity that the game will end in the near future. Consider Xavier’s decision whether 
to defect forever against a TFT-playing rival. Our earlier calculations showed that 
permanent defecting is beneficial only when r exceeds 1, or 100%. If Xavier’s faces 
the 5% actual rate of return and the 50% chance that the game will continue for an 
 additional month, as we assumed in the preceding paragraph, then the effective 
rate of return of 110% will exceed the critical value needed for it to continue defect-
ing. Thus, the cooperative behavior sustained by the TFT strategy can break down 
if there is a sufficiently large chance that the repeated game might be over by the 
end of the next period of play—that is, by a sufficiently small value of p.

3 We could also express R in terms of r and p, in which case R  (1  r)p  1.

� p� 

1 � p�(1 � R)  

1 � p� 

p� 

1
1 � R

R �  .  
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d.  General Theory

We can easily generalize the ideas about when it is worthwhile to defect against  
TFT-playing rivals so that you can apply them to any prisoners’ dilemma game that 
you encounter. To do so, we use a table with general payoffs (delineated in appropri-
ately measurable units) that satisfy the standard structure of payoffs in the dilemma 
as in Figure 10.3. The payoffs in the table must satisfy the relation H . C . D . L for 
the game to be a prisoners’ dilemma, where C is the cooperative outcome, D is the  
payoff when both players defect from cooperation, H is the high payoff that goes to 
the defector when one player defects while the other cooperates, and L is the low 
payoff that goes to the loser (the cooperator) in the same situation.

In this general version of the prisoners’ dilemma, a player’s one-time gain 
from defecting is (H  C). The single-period loss for being punished while you 
return to cooperation is (C  L), and the per-period loss for perpetual defect-
ing is (C  D). To be as general as possible, we will allow for situations in which 
there is a probability p , 1 that the game continues beyond the next period and 
so we will discount payoffs using an effective rate of return of R per period. If  
p  1, as would be the case when the game is guaranteed to continue, then  
R  r, the simple interest rate used in our preceding calculations. Replacing r 
with R, we find that the results attained earlier generalize almost immediately.

We found earlier that a player defects exactly once against a rival playing 
TFT if the one-time gain from defecting (H  C ) exceeds the present value of the 
single-period loss from being punished (the PV of C  L). In this general game, 
that means that a player defects once against a TFT-playing opponent only if  
(H  C ) . (C  L)(1  R), or (1  R)(H  C ) . C  L, or

C  L
H  C

R   1.

Similarly, we found that a player defects forever against a rival playing TFT only 
if the one-time gain from defecting exceeds the present value of the infinite sum 
of the per-period losses from perpetual defecting (where the per-period loss is  
C  D). For the general game, then, a player defects forever against a TFT- playing 

Defect Cooperate

COLUMN

Defect

Cooperate

D, D H, L

L, H C, C
ROW

FIGURE 10.3  general Version of the Prisoners’ Dilemma
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The three critical elements in a player’s decision to defect, as seen in these 
two expressions, are the immediate gain from defection (H  C ), the future 
losses from punishment (C  L or C  D per period of punishment), and the 
value of the effective rate of return (R, which measures the importance of the 
present relative to the future). Under what conditions on these various values do 
players find it attractive to defect from cooperation?

First, assume that the values of the gains and losses from defecting are fixed. 
Then changes in R determine whether a player defects, and defection is more 
likely when R is large. Large values of R  are associated with small values of p 
and small values of  (and large values of r), so defection is more likely when the 
probability of continuation is low or the discount factor is low (or the interest 
rate is high). Another way to think about it is that defection is more likely when 
the future is less important than the present or when there is little future to con-
sider; that is, defection is more likely when players are impatient or when they 
expect the game to end quickly.

Second, consider the case in which the effective rate of return is fixed, as 
is the one-period gain from defecting. Then changes in the per-period losses  
associated with punishment determine whether defecting is worthwhile. Here it 
is smaller values of C  L or C  D that encourage defection. In this case, defec-
tion is more likely when punishment is not very severe.4

Finally, assume that the effective rate of return and the per-period losses as-
sociated with punishment are held constant. Now players are more likely to de-
fect when the gains, H  C, are high. This situation is more likely when defecting 
garners a player large and immediate benefits.

This discussion also highlights the importance of the detection of defecting. 
Decisions about whether to continue along a cooperative path depend on how 
long defecting might be able to go on before it is detected, on how accurately 
it is detected, and on how long any punishment can be made to last before an 
attempt is made to revert back to cooperation. Although our model does not in-
corporate these considerations explicitly, if defecting can be detected accurately 
and quickly, its benefit will not last long, and the subsequent cost will have to 
be paid more surely. Therefore, the success of any trigger strategy in resolving a 
repeated prisoners’ dilemma depends on how well (both in speed and accuracy) 
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cannot identify a defection immediately.

C  D
H  C

R  .

opponent, or defects at all against a grim-playing opponent, only if (H  C ) .  
(C  D)R, or
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players can detect defecting. This is one reason that the TFT strategy is often 
considered dangerous; slight errors in the execution of actions or in the percep-
tion of those actions can send players into continuous rounds of punishment 
from which they may not be able to escape for a long time, until a slight error of 
the opposite kind occurs.

You can use all of these ideas to guide you in when to expect more coopera-
tive behavior between rivals and when to expect more defecting and cutthroat 
actions. If times are bad and an entire industry is on the verge of collapse, for  
example, so that businesses feel that there is no future, competition may  
become fiercer (less cooperative behavior may be observed) than in normal 
times. Even if times are temporarily good but are not expected to last, firms 
may want to make a quick profit while they can, so cooperative behavior 
might again break down. Similarly, in an industry that emerges temporar-
ily because of a quirk of fashion and is expected to collapse when fashion 
changes, we should expect less cooperation. Thus, a particular beach resort 
might become the place to go, but all the hotels there will know that such a 
situation cannot last, and so they cannot afford to collude on pricing. If, in 
contrast, the shifts in fashion are among products made by an unchanging 
group of companies in long-term relationships with each other, cooperation 
might persist. For example, even if all the children want cuddly bears one 
year and Transformers Rescue Bots the next, collusion in pricing may occur 
if the same small group of manufacturers makes both items.

In Chapter 11, we will look in more detail at prisoners’ dilemmas that arise 
in games with many players. We examine when and how players can overcome 
such dilemmas and achieve outcomes better for them all.

3 SOLUTIONS II: PENALTIES ANd REWARdS

Although repetition is the major vehicle for the solution of the prisoners’  
dilemma, there are also several others that can be used to achieve this purpose. 
One of the simplest ways to avert the prisoners’ dilemma in the one-shot ver-
sion of the game is to inflict some direct penalty on the players when they de-
fect. When the payoffs have been altered to incorporate the cost of the penalty, 
players may find that the dilemma has been resolved.5

Consider the husband-wife dilemma from Section 1. If only one player de-
fects, the game’s outcome entails 1 year in jail for the defector and 25 years for 
the cooperator. The defector, though, getting out of jail early, might find the co-
operator’s friends waiting outside the jail. The physical harm caused by those 

5 Note that we get the same type of outcome in the repeated-game case considered in Section 2.
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friends might be equivalent to an additional 20 years in jail. If so, and if the 
players account for the possibility of this harm, then the payoff structure of the 
original game has changed.

The “new” game, with the physical penalty included in the payoffs, is illus-
trated in Figure 10.4. With the additional 20 years in jail added to each player’s 
sentence when one player confesses while the other denies, the game is com-
pletely different.

A search for dominant strategies in Figure 10.4 shows that there are none. A 
cell-by-cell check then shows that there are now two pure-strategy Nash equi-
libria. One of them is the (Confess, Confess) outcome; the other is the (Deny, 
Deny) outcome. Now each player finds that it is in his or her best interest to 
cooperate if the other is going to do so. The game has changed from being a  
prisoners’ dilemma to an assurance game, which we studied in Chapter 4. Solv-
ing the new game requires selecting an equilibrium from the two that exist. 
One of them—the cooperative outcome—is clearly better than the other from 
the perspective of both players. Therefore, it may be easy to sustain it as a focal 
point if some convergence of expectations can be achieved.

Notice that the penalty in this scenario is inflicted on a defector only when 
his or her rival does not defect. However, stricter penalties can be incorporated 
into the prisoners’ dilemma, such as penalties for any confession. Such disci-
pline typically must be imposed by a third party with some power over the two 
players, rather than by the other player’s friends, because the friends would have 
little authority to penalize the first player when their associate also defects. If 
both prisoners are members of a special organization (such as a gang or a crime 
mafia) and the organization has a standing rule of never confessing to the police 
under penalty of extreme physical harm, the game changes again to the one il-
lustrated in Figure 10.5.

Now the equivalent of an additional 20 years in jail is added to all payoffs 
associated with the Confess strategy. (Compare Figures 10.5 and 10.1.) In the 
new game, each player has a dominant strategy, as in the original game. The dif-
ference is that the change in the payoffs makes Deny the dominant strategy for 
each player. And (Deny, Deny) becomes the unique pure-strategy Nash equilib-
rium. The stricter penalty scheme achieved with third-party enforcement makes 
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FIGURE 10.4  Prisoners’ Dilemma with Penalty for the lone Defector
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defecting so unattractive to players that the cooperative outcome becomes the 
new equilibrium of the game.

In larger prisoners’ dilemma games, difficulties arise with the use of penal-
ties. In particular, if there are many players and some uncertainty exists, pen-
alty schemes may be more difficult to maintain. It becomes harder to decide 
whether actual defecting is taking place or it’s just bad luck or a mistaken move. 
In addition, if there really is defecting, it is often difficult to determine the iden-
tity of the defector from among the larger group. And if the game is one-shot, 
there is no opportunity in the future to correct a penalty that is too severe or to 
inflict a penalty once a defector has been identified. Thus, penalties may be less 
successful in large one-shot games than in the two-person game we consider 
here. We study prisoners’ dilemmas with a large number of players in greater de-
tail in Chapter 11.

A further interesting possibility arises when a prisoners’ dilemma that has 
been solved with a penalty scheme is considered in the context of the larger 
society in which the game is played. It might be the case that, although the 
dilemma equilibrium outcome is bad for the players, it is actually good for 
the rest of society or for some subset of persons within the rest of society. If 
so, social or political pressures might arise to try to minimize the ability of 
players to break out of the dilemma. When third-party penalties are the solu-
tion to a prisoners’ dilemma, as is the case with crime mafias that enforce a  
no-confession rule, for instance, society can come up with its own strategy to 
reduce the effectiveness of the penalty mechanism. The Federal Witness Pro-
tection Program is an example of a system that has been set up for just this 
purpose. The U.S. government removes the threat of penalty in return for con-
fessions and testimony in court.

Similar situations can be seen in other prisoners’ dilemmas, such as the 
pricing game between our two restaurants. The equilibrium there entailed 
both firms charging the low price of $20 even though they enjoy higher profits 
when charging the higher price of $26. Although the restaurants want to break 
out of this “bad” equilibrium—and we have already seen how the use of trigger 
strategies can help them do so—their customers are happier with the low price  
offered in the Nash equilibrium of the one-shot game. The customers then have 
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FIGURE 10.5  Prisoners’ Dilemma with Penalty for any Defecting
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an incentive to try to destroy the efficacy of any enforcement mechanism or  
solution process the restaurants might use. For example, because some firms 
facing prisoners’ dilemma pricing games attempt to solve the dilemma through 
the use of a “meet the competition” or “price matching” campaign, customers 
might want to press for legislation banning such policies. We analyze the effects 
of such price-matching strategies in Section 6.B.

Just as a prisoners’ dilemma can be resolved by penalizing defectors, it can 
also be resolved by rewarding cooperators. Because this solution is more diffi-
cult to implement in practice, we mention it only briefly.

The most important question is who is to pay the rewards. If it is a third party, 
that person or group must have sufficient interest of its own in the cooperation 
achieved by the prisoners to make it worth its while to pay out the rewards. A 
rare example of this occurred when the United States brokered the Camp David 
Accords between Israel and Egypt by offering large promises of aid to both.

If the rewards are to be paid by the players themselves to each other, the 
trick is to make the rewards contingent (paid out only if the other player co-
operates) and credible (guaranteed to be paid if the other player cooperates). 
Meeting these criteria requires an unusual arrangement; for example, the 
player making the promise should deposit the sum in advance in an escrow 
account held by an honorable and neutral third party, who will hand the sum 
over to the other player if she cooperates or return it to the promiser if the 
other defects. An end-of-chapter exercise shows how this type of arrangement 
can work.

4 SOLUTIONS III: LEAdERSHIP

The third method of solution for the prisoners’ dilemma pertains to situations in 
which one player takes on the role of leader in the interaction. In most examples 
of the prisoners’ dilemma, the game is assumed to be symmetric. That is, all the 
players stand to lose (and gain) the same amount from defecting (and coopera-
tion). However, in actual strategic situations, one player may be relatively “large” 
(a leader) and the other “small.” If the size of the payoffs is unequal enough,  
so much of the harm from defecting may fall on the larger player that she acts 
 cooperatively, even while knowing that the other will defect. Saudi Arabia,  
for example, played such a role as the “swing producer” in OPEC (Organization 
of Petroleum Exporting Countries) for many years; to keep oil prices high, it cut 
back on its output when one of the smaller producers, such as Libya, expanded.
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As with the OPEC example, leadership tends to be observed more often in 
games between nations than in games between firms or individual persons. 
Thus, our example for a game in which leadership may be used to solve the pris-
oners’ dilemma is one played between countries. Imagine that the populations 
of two countries, Dorminica and Soporia, are threatened by a disease, Sudden 
Acute Narcoleptic Episodes (SANE). This disease strikes 1 person in every 2,000, 
or 0.05% of the population, and causes the victim to fall into a deep sleep state 
for a year.6 There are no aftereffects of the disease, but the cost of a worker being 
removed from the economy for a year is $32,000. Each country has a popula-
tion of 100 million workers, so the expected number of cases in each is 50,000 
(0.0005  100,000,000), and the expected cost of the disease is $1.6 billion to 
each (50,000  32,000). The total expected cost of the disease worldwide—that 
is, in both Dorminica and Soporia—is then $3.2 billion.

Scientists are confident that a crash research program costing $2 billion 
will lead to a vaccine that is 100% effective. Comparing the cost of the research 
program with the worldwide cost of the disease shows that, from the perspec-
tive of the entire population, the research program is clearly worth pursuing. 
However, the government in each country must consider whether to fund the 
full research program on its own. They make this decision separately, but their 
decisions affect the outcomes for both countries. Specifically, if only one gov-
ernment chooses to fund the research, the population of the other country can 
access the information and use the vaccine without cost. But each government’s 
payoff depends only on the costs incurred by its own population.

The payoff matrix for the noncooperative game between Dorminica and 
Soporia is shown in Figure 10.6. Each country chooses from two strategies, Re-
search and No Research; payoffs show the costs to the countries, in billions of 
dollars, of the various strategy combinations. It is straightforward to verify that 
this game is a prisoners’ dilemma and that each country has a dominant strat-
egy to do no research.

6 Think of Rip Van Winkle or of Woody Allen in the movie Sleeper, but the duration is much shorter.
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FIGURE 10.6  Payoffs for equal-Population Sane research game ($billions)
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7 Mancur Olson, The Logic of Collective Action (Cambridge, Mass.: Harvard University Press, 1965), p. 29.

But now suppose that the populations of the two countries are unequal, 
with 150 million in Dorminica and 50 million in Soporia. Then, if no research 
is funded by either government, the cost to Dorminica of SANE will be $2.4 bil-
lion (0.0005  150,000,000  32,000) and the cost to Soporia will be $0.8 billion 
(0.0005  50,000,000  32,000). The payoff matrix changes to the one illustrated 
in Figure 10.7.

In this version of the game, No Research is still the dominant strategy for 
Soporia. But Dorminica’s best response is now Research. What has happened to 
change Dorminica’s choice of strategy? Clearly, the answer lies in the unequal 
distribution of the population in this revised version of the game. Dorminica 
now stands to suffer such a large portion of the total cost of the disease that it 
finds it worthwhile to do the research on its own. This is true even though Dorm-
inica knows full well that Soporia is going to be a free rider and get a share of the 
full benefit of the research.

The research game in Figure 10.7 is no longer a prisoners’ dilemma. Here we 
see that the dilemma has, in a sense, been “solved” by the size asymmetry. The 
larger country chooses to take on a leadership role and provide the benefit for 
the whole world.

Situations of leadership in what would otherwise be prisoners’ dilemma 
games are common in international diplomacy. The role of leader often falls 
naturally to the biggest or most well established of the players, a phenomenon 
labeled “the exploitation of the great by the small.”7 For many decades after 
World War II, for instance, the United States carried a disproportionate share of 
the expenditures of our defense alliances such as NATO and maintained a policy 
of relatively free international trade even when our partners, such as Japan and  
Europe, were much more protectionist. In such situations, it might be reasonable 
to suggest further that a large or well-established player may accept the role of 
leader because its own interests are closely tied to those of the players as a whole; 
if the large player makes up a substantial fraction of the whole group, such a con-
vergence of interests would seem unmistakable. The large player would then be 
expected to act more cooperatively than might otherwise be the case.
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5 EXPERIMENTAL EVIdENCE

Numerous people have conducted experiments in which subjects compete in 
prisoners’ dilemma games against each other.8 Such experiments show that 
cooperation can and does occur in such games, even in repeated versions of 
known and finite length. Many players start off by cooperating and continue to 
cooperate for quite a while, as long as the rival player reciprocates. Only in the 
last few plays of a finite game does defecting seem to creep in. Although this  
behavior goes against the reasoning of rollback, it can be “profitable” if sus-
tained for a reasonable length of time. The pairs get higher payoffs than would 
rational, calculating strategists who defect from the very beginning.

The idea that some level of cooperation may constitute rational—that is, 
equilibrium—behavior has theoretical backing. Consider the fact that when 
asked about their reasoning for cooperating in the early rounds, players will 
usually say something such as, “I was willing to try and see if the other player 
was nice, and when this proved to be the case, I continued to cooperate until the 
time came to take advantage of the other’s niceness.” Of course, the other player 
may not have been genuinely nice, but thinking along similar lines. A rigorous 
analysis of a finitely-repeated prisoners’ dilemma with this type of asymmetric 
information shows that it can actually be another solution to the dilemma. As 
long as there is some chance that players in the dilemma are nice rather than 
selfish, it may pay even a selfish player to pretend to be nice. She can reap the 
higher payoffs from cooperation for a while and then also hope to exploit the 
gains from double crossing near the end of the sequence of plays. For a thor-
ough explication of the case in which just one of the players has the choice be-
tween being selfish and being nice, see the online appendix to this chapter. The 
corresponding two-player version is solved in full in the original article.9 
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8 The literature on experiments involving the prisoners’ dilemma game is vast. A brief overview is 
given by Alvin Roth in The Handbook of Experimental Economics (Princeton: Princeton University 
Press, 1995), pp. 26–28. Journals in both psychology and economics can be consulted for additional 
references. For some examples of the outcomes that we describe, see Kenneth Terhune, “Motives, 
Situation, and Interpersonal Conflict Within Prisoners’ Dilemmas,” Journal of Personality and Social 
Psychology Monograph Supplement, vol. 8, no. 30 (1968), pp. 1–24; R. Selten and R. Stoecker, “End 
Behavior in Sequences of Finite Prisoners’ Dilemma Supergames,” Journal of Economic Behavior 
and Organization, vol. 7 (1986), pp. 47–70; and Lisa V. Bruttel, Werner Güth, and Ulrich Kamecke, 
“Finitely Repeated Prisoners’ Dilemma Experiments Without a Commonly Known End,” Interna-
tional Journal of Game Theory, vol. 41 (2012), pp. 23–47. Robert Axelrod’s Evolution of Cooperation 
(New York: Basic Books, 1984) presents the results of his computer-simulation tournament for the 
best strategy in an infinitely repeated dilemma.
9 David Kreps, Paul Milgrom, John Roberts, and Robert Wilson, “Rational Cooperation in a Finitely 
Repeated Prisoner’s Dilemma,” Journal of Economic Theory, vol. 27 (1982), pp. 245–52.
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Such cooperative behavior in lab experiments can also be rationalized with-
out relying on this type of asymmetric information. Perhaps the players are not 
sure that the relationship will actually end at the stated time. Perhaps they be-
lieve that their reputations for cooperation will carry over to other similar games 
against the same opponent or other opponents. Perhaps they think it possible 
that their opponents are naive cooperators, and they are willing to risk a little 
loss in testing this hypothesis for a couple of plays. If successful, the experiment 
will lead to higher payoffs for a sufficiently long time.

In some laboratory experiments, players engage in multiple-round games, 
each round consisting of a given finite number of repetitions. All of the repeti-
tions in any one round are played against the same rival, but each new round is 
played against a new opponent. Thus, there is an opportunity to develop coop-
eration with an opponent in each round and to “learn” from preceding rounds 
when devising one’s strategy against new opponents as the rounds continue. 
These situations have shown that cooperation lasts longer in early rounds than 
in later rounds. This result suggests that the theoretical argument on the unrav-
eling of cooperation, based on the use of rollback, is being learned from experi-
ence of the play itself over time as players begin to understand the benefits and 
costs of their actions more fully. Another possibility is that players learn simply 
that they want to be the first to defect, and so the timing of the initial defection 
occurs earlier as the number of rounds played increases.

Suppose you were playing a game with a prisoners’ dilemma structure and 
found yourself in a cooperative mode with the known end of the relationship 
approaching. When should you decide to defect? You do not want to do so too 
early, while a lot of potential future gains remain. But you also do not want to 
leave it until too late in the game, because then your opponent might preempt 
you and leave you with a low payoff for the period in which she defects. Similar 
calculations are relevant when you are in a finitely-repeated relationship with 
an uncertain end date as well. Your decision about when to defect cannot be 
deterministic. If it were, your opponent would figure it out and defect in the pe-
riod before you planned to do so. If no deterministic choice is feasible, then the 
unraveling of cooperation must include some uncertainty, such as mixed strate-
gies, for both players. Many thrillers whose plots hinge on tenuous cooperation 
among criminals or between informants and police acquire their suspense pre-
cisely because of this uncertainty.

Examples of the collapse of cooperation as players near the end of a re-
peated game are observed in numerous situations in the real world, as well as 
in the laboratory. The story of a long-distance bicycle (or foot) race is one such 
example. There may be a lot of cooperation for most of the race, as players take 
turns leading and letting others ride in their slipstreams; nevertheless, as the fin-
ish line looms, each participant will want to make a dash for the tape. Similarly, 
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signs saying “no checks accepted” often appear in stores in college towns each 
spring near the end of the semester.

Computer-simulation experiments have matched a range of very simple to 
very complex contingent strategies against each other in two-player prisoners’ 
dilemmas. The most famous of them were conducted by Robert Axelrod at the 
University of Michigan. He invited people to submit computer programs that 
specified a strategy for playing a prisoners’ dilemma repeated a finite but large 
number (200) of times. There were 14 entrants. Axelrod held a “league tourna-
ment” that pitted pairs of these programs against one another, in each case for 
a run of the 200 repetitions. The point scores for each pairing and its 200 rep-
etitions were kept, and each program’s scores over all its runs against differ-
ent opponents were added up to see which program did best in the aggregate 
against all other programs. Axelrod was initially surprised when “nice” programs 
did well; none of the top eight programs were ever the first to defect. The win-
ning strategy turned out to be the simplest program: tit-for-tat, submitted by the  
Canadian game theorist Anatole Rapoport. Programs that were eager to defect 
in any particular run got the defecting payoff early but then suffered repetitions 
of mutual defections and poor payoffs. In contrast, programs that were always 
nice and cooperative were badly exploited by their opponents. Axelrod explains 
the success of tit-for-tat in terms of four properties: it is at once forgiving, nice, 
provocable, and clear.

In Axelrod’s words, one does well in a repeated prisoners’ dilemma to abide 
by these four simple rules: “Don’t be envious. Don’t be the first to defect. Recip-
rocate both cooperation and defection. Don’t be too clever.”10 Tit-for-tat embod-
ies each of the four ideals for a good, repeated prisoners’ dilemma strategy. It is 
not envious; it does not continually strive to do better than the opponent, only 
to do well for itself. In addition, tit-for-tat clearly fulfills the admonitions not to 
be the first to defect and to reciprocate, defecting only in retaliation to the oppo-
nent’s preceding defection and always reciprocating in kind. Finally, tit-for-tat 
does not suffer from being overly clever; it is simple and understandable to the 
opponent. In fact, it won the tournament not because it helped players achieve 
high payoffs in any individual game—the contest was not about “winner takes 
all”—but because it was always close; it simultaneously encourages cooperation 
and avoids exploitation, whereas other strategies cannot.

Axelrod then announced the results of his tournament and invited sub-
missions for a second round. Here, people had a clear opportunity to design 
programs that would beat tit-for-tat. The result: tit-for-tat won again! The pro-
grams that were cleverly designed to beat it could not beat it by very much, 
and they did poorly against one another. Axelrod also arranged a tournament 
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of a different kind. Instead of a league where each program met each other  
program once, he ran a game with a whole population of programs, with a 
number of copies of each program. Each type of program met an opponent ran-
domly chosen from the population. Those programs that did well were given a 
larger proportion of the population; those that did poorly had their proportion 
in the population reduced. This was a game of evolution and natural selection, 
which we will study in greater detail in Chapter 12. But the idea is simple in this 
context, and the results are fascinating. At first, nasty programs did well at the 
expense of nice ones. But as the population became nastier and nastier, each 
nasty program met other nasty programs more and more often, and they began 
to do poorly and fall in numbers. Then tit-for-tat started to do well and eventu-
ally triumphed.

However, tit-for-tat has some flaws. Most importantly, it assumes no errors 
in execution of the strategy. If there is some risk that the player intends to play 
the cooperative action but plays the defecting action in error, then this action 
can initiate a sequence of retaliatory defecting actions that locks two tit-for-tat 
programs playing one another into a bad outcome; another error is required to 
rescue them from this sequence. When Axelrod ran a third variant of his tourna-
ment, which provided for such random mistakes, tit-for-tat could be beaten by 
even “nicer” programs that tolerated an occasional episode of defecting to see 
if it was a mistake or a consistent attempt to exploit them and retaliated only 
when convinced that it was not a mistake.11

Interestingly, a twentieth-anniversary competition modeled after Axelrod’s 
original contest and run in 2004 and 2005 generated a new winning strategy.12 
Actually, the winner was a set of strategies designed to recognize one another 
during play so that one would become docile in the face of the other’s con-
tinued defections. (The authors likened their approach to a situation in which 
prisoners manage to communicate with each other by tapping on their cell 
walls.) This collusion meant that some of the strategies submitted by the win-
ning team did very poorly, whereas others did spectacularly well, a testament 
to the value of working together. Of course, Axelrod’s contest did not permit 
multiple submissions, so such strategy sets were ineligible, but the winners of 
the recent competition argue that with no way to preclude coordination, strat-
egies such as those they submitted should have been able to win the original 
competition as well.
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6 REAL-WORLd dILEMMAS

Games with the prisoners’ dilemma structure arise in a surprisingly varied num-
ber of contexts in the world. Although we would be foolish to try to show you 
every possible instance in which the dilemma can arise, we take the opportu-
nity in this section to consider in detail three specific examples from a variety 
of fields of study. One example comes from evolutionary biology, a field that we 
will study in greater detail in Chapter 12. A second example describes the policy 
of “price matching” as a solution to a prisoners’ dilemma pricing game. And a 
final example concerns international environmental policy and the potential for 
repeated interactions to mitigate the prisoners’ dilemma in this situation.

A.  Evolutionary Biology

In our first example, we consider a game known as the bowerbirds’ dilemma, 
from the field of evolutionary biology.13 Male bowerbirds attract females by 
building intricate nesting spots called bowers, and female bowerbirds are 
known to be particularly choosy about the bowers built by their prospective 
mates. For this reason, male bowerbirds often go out on search-and-destroy 
missions aimed at ruining other males’ bowers. While they are out, however, 
they run the risk of losing their own bower to the beak of another male. The 
ensuing competition between male bowerbirds and their ultimate choice re-
garding whether to maraud or guard has the structure of a prisoners’ dilemma 
game.

Ornithologists have constructed a table that shows the payoffs in a two-bird 
game with two possible strategies, Maraud and Guard. That payoff table is 
shown in Figure 10.8. GG represents the benefits associated with Guarding when 
the rival bird also Guards; GM represents the payoff from Guarding when the 
rival bird is a Marauder. Similarly, MM represents the benefits associated with  
Marauding when the rival bird also is a Marauder; MG represents the payoff 
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FIGURE 10.8  Bowerbirds’ Dilemma

13 Larry Conik, “Science Classics: The Bowerbird’s Dilemma,” Discover, October 1994.
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from Marauding when the rival bird Guards. Careful scientific study of bower-
bird matings led to the discovery that MG . GG . MM . GM. In other words, 
the payoffs in the bowerbird game have exactly the same structure as the prison-
ers’ dilemma. The birds’ dominant strategy is to Maraud, but when both choose 
that strategy, they end up in equilibrium each worse off than if they had both  
chosen to Guard.

In reality, the strategy used by any particular bowerbird is not actually the 
result of a process of rational choice on the part of the bird. Rather, in evolution-
ary games, strategies are assumed to be genetically “hardwired” into individual 
organisms, and payoffs represent reproductive success for the different types. 
Then equilibria in such games define the type of population that naturalists can 
expect to observe—all Marauders, for instance, if Maraud is a dominant strategy 
as in Figure 10.8. This equilibrium outcome is not the best one, however, given 
the existence of the dilemma. In constructing a solution to the bowerbirds’ di-
lemma, we can appeal to the repetitive nature of the interaction in the game. 
In the case of the bowerbirds, repeated play against the same or different op-
ponents in the course of several breeding seasons can allow you, the bird, to 
choose a flexible strategy based on your opponent’s last move. Contingent strat-
egies such as tit-for-tat can be, and often are, adopted in evolutionary games 
to solve exactly this type of dilemma. We will return to the idea of evolution-
ary games and provide detailed discussions of their structure and equilibrium  
outcomes in Chapter 12.

B.  Price Matching

Now we return to a pricing game, in which we consider two specific stores en-
gaged in price competition with each other, using identical price-matching  
policies. The stores in question, Toys “R” Us and Kmart, are both national chains 
that regularly advertise prices for name-brand toys (and other items). In addi-
tion, each store maintains a published policy that guarantees customers that it 
will match the advertised price of any competitor on a specific item (model and 
item numbers must be identical) as long as the customer provides the competi-
tor’s printed advertisement.14

For the purposes of this example, we assume that the firms have only two 
possible prices that they can charge for a particular toy (Low or High). In ad-
dition, we use hypothetical profit numbers and further simplify the analysis by 
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14 The price-matching policy at Toys “R” Us is printed and posted prominently in all stores. A sim-
ple phone call confirmed that Kmart has an identical policy. Similar policies are appearing in many 
industries, including that for credit cards where “interest rate matching” has been observed. See  
Aaron S. Edlin, “Do Guaranteed-Low-Price Policies Guarantee High Prices, and Can Antitrust Rise to 
the Challenge?” Harvard Law Review, vol. 111, no. 2 (December 1997), pp. 529–75.
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assuming that Toys “R” Us and Kmart are the only two competitors in the toy 
market in a particular city—Billings, Montana, for example.

Suppose, then, that the basic structure of the game between the two firms 
can be illustrated as in Figure 10.9. If both firms advertise low prices, they split 
the available customer demand and each earns $2,500. If both advertise high 
prices, they split a market with lower sales, but their markups end up being large 
enough to let them each earn $3,400. Finally, if they advertise different prices, 
then the one advertising a high price gets no customers and earns nothing, 
whereas the one advertising a low price earns $5,000.

The game illustrated in Figure 10.9 is clearly a prisoners’ dilemma. Adver-
tising and selling at a low price is the dominant strategy for each firm, although 
both would be better off if each advertised and sold at the high price. But as 
mentioned earlier, each firm actually makes use of a third pricing strategy: a 
price-matching guarantee to its customers. How does the inclusion of such a 
policy alter the prisoners’ dilemma that would otherwise exist between these two 
firms?

Consider the effects of allowing firms to choose among pricing low, pricing 
high, and price matching. The Match strategy entails advertising a high price 
but promising to match any lower advertised price by a competitor; a firm using 
Match then benefits from advertising high if the rival firm does so also, but it 
does not suffer any harm from advertising a high price if the rival advertises a 
low price. We can see this in the payoff structure for the new game, shown in 
Figure 10.10. In that table, we see that a combination of one firm playing Low 
while the other plays Match is equivalent to both playing Low, while a combi-
nation of one firm playing High while the other plays Match (or both playing 
Match) is equivalent to both playing High.

Using our standard tools for analyzing simultaneous-play games shows that 
High is weakly dominated by Match for both players and that once High is elim-
inated, Low is weakly dominated by Match also. The resulting Nash equilibrium 
entails both firms using the Match strategy. In equilibrium, both firms earn 
$3,400—the profit level associated with both firms pricing high in the original 
game. The addition of the Match strategy has allowed the firms to emerge from 
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the prisoners’ dilemma that they faced when they had only the choice between 
two simple pricing strategies, Low or High.

How did this happen? The Match strategy acts as a penalty mechanism. By 
guaranteeing to match Kmart’s low price, Toys “R” Us substantially reduces the 
benefit that Kmart achieves by advertising a low price while Toys “R” Us is adver-
tising a high price. In addition, promising to meet Kmart’s low price hurts Toys 
“R” Us, too, because the latter has to accept the lower profit associated with the low 
price. Thus, the price-matching guarantee is a method of penalizing both players 
whenever either one defects. This is just like the crime mafia example discussed in 
Section 3, except that this penalty scheme—and the higher equilibrium prices that 
it supports—is observed in markets in virtually every city in the country.

Actual empirical evidence of the detrimental effects of these policies is 
available but limited, and some research has found evidence of lower prices in 
markets with such policies.15 However, more recent experimental evidence does 
support the collusive effect of price-matching policies. This result should put all 
customers on alert.16 Even though stores that match prices promote their poli-
cies in the name of competition, the ultimate outcome when all firms use such 
policies can be better for the firms than if there were no price matching at all, 
and so customers can be the ones who are hurt.

C.  International Environmental Policy: The Kyoto Protocol

Our final example pertains to the international climate control agreement 
known as the Kyoto Protocol. Negotiated by the United Nations Framework 
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15 J. D. Hess and Eitan Gerstner present evidence of increased prices as a result of price-matching 
policies in “Price-Matching Policies: An Empirical Case,” Managerial and Decision Economics, vol. 
12 (1991), pp. 305–315. Contrary evidence is provided by Arbatskaya, Hviid, and Shaffer, who find 
that the effect of matching policies is to lower prices; see Maria Arbatskaya, Morten Hviid, and Greg 
Shaffer, “Promises to Match or Beat the Competition: Evidence from Retail Tire Prices,” Advances in 
Applied Microeconomics, vol. 8: Oligopoly (New York: JAI Press, 1999), pp. 123–138.
16 See Subhasish Dugar, “Price-Matching Guarantees and Equilibrium Selection in a Homoge-
neous Product Market: An Experimental Study,” Review of Industrial Organization, vol. 30 (2007),  
pp. 107–119.
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Convention on Climate Change in 1997 as a tool for reducing greenhouse gas 
emissions, it went into effect in 2005 and its first phase expired in 2012. More 
than 170 countries signed on to the original treaty, although the United States 
was noticeably absent from the list. The protocol was extended at almost the 
last minute, in mid-December of 2012. It is now in place through 2020.

The difficulty in achieving global reduction in greenhouse gas emissions 
comes in part from the prisoners’ dilemma nature of the interaction. Any indi-
vidual country will have no incentive to reduce its own emissions, knowing that 
if it does so alone, it bears significant costs with little benefit to overall climate 
change. If others do reduce their emissions, the first country cannot be stopped 
from enjoying the benefits of the others’ actions.

Consider the emissions reduction problem as a game played between two 
countries, Us and Them. Estimates generated by the British government’s Office 
on Climate Change suggest that coordinated action may come at a cost of about 
1% of GDP per nation, whereas coordinated inaction could cost each nation  
between 5% and 20% of GDP, perhaps 12% on average.17 By extension, the 
cost to cutting emissions on your own may be at the high end of the inaction 
estimate (20%), but holding back and letting the other country cut emissions 
could entail virtually no cost to you at all. We can then summarize the situation  
between Us and Them using the game table in Figure 10.11, where payoffs rep-
resent changes in GDP for each country.

The game in Figure 10.11 is indeed a prisoners’ dilemma. Both countries 
have a dominant strategy to refuse to cut their emissions. The single Nash equi-
librium occurs when neither country cuts emissions, but they suffer as a group 
as a result of the ensuing climate change. From this analysis, we should expect 
little or no progress in greenhouse gas emissions reduction.

This interpretation of the problem inherent in the Kyoto Protocol has been 
challenged by recent research from Michael Liebriech, who argues that the game 
is not a one-off interaction and that countries repeatedly interact and negotiate 
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17 See Nicholas Stern, The Economics of Climate Change: The Stern Review (Cambridge:  
Cambridge University Press, 2007). 
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additional amendments to the existing agreement.18 He argues that the iterated 
nature of this game makes it amenable to solution by way of contingent strategies 
and that countries should use strategies that embody the four critical proper-
ties of TFT as outlined by Axelrod and described in Section 5 earlier. Specifically, 
countries are encouraged to employ strategies that are “nice” (signing on to the 
protocol and beginning emissions reductions), “retaliatory” (employing mecha-
nisms to punish those that do not do their part), “forgiving” (welcoming to those 
newly accepting the protocol), and “clear” (specifying actions and reactions). 

Liebriech assesses the actions of current players, including the European 
Union, the United States, and developing countries (as a group), and provides 
some suggestions for improvements. He explains that the European Union does 
well with nice, forgiving, and clear but not with retaliation, so other countries 
will do best to defect when interacting with the European Union. One solution 
would be for the European Union to institute carbon-related import taxes or 
another retaliatory-type policy for dealing with recalcitrant trade partners. The 
United States, in contrast, ranks high on retaliatory and forgiving, given its his-
tory of such behavior following the end of the cold war. But it has not been nice 
or clear, at least on the national level (individual states may behave differently), 
giving other countries an incentive to retaliate against it quickly and painfully, 
if possible. The solution is for the United States to make a meaningful commit-
ment to carbon-emission reduction, a standard conclusion in most policy circles. 
Developing countries are described as not nice (negotiating no carbon limits for 
themselves), retaliatory, unclear, and quite unforgiving. A more beneficial strat-
egy, argues Liebriech, would be for these countries —particularly China, India, 
and Brazil —to make clear their commitment to sharing in international efforts to 
affect climate change; this approach would leave them less subject to retaliation 
and more likely to benefit from a global improvement in climatic outlook.

The general conclusion is that the process of international carbon emis-
sions reduction does fit the profile of a prisoners’ dilemma game. But the fu-
ture of global greenhouse gas emissions should not be considered a lost cause 
simply because of the prisoners’ dilemma aspects of the one-time interaction. 
Repeated play among the nations involved in the Kyoto Protocol negotiations 
make the game amenable to solutions by way of contingent (nice, clear, and for-
giving, but also retaliatory) strategies.
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18 Michael Liebriech presents his analysis of the Kyoto Protocol as an iterated prisoners’ dilemma 
in his paper “How to Save the Planet: Be Nice, Retaliatory, Forgiving and Clear,” New Energy  
Finance White Paper, September 11, 2007. Available for download from www.bnef.com/ 
InsightDownload/7080/pdf/ (accessed August 1, 2014).
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SUMMARy

The prisoners’ dilemma is probably the most famous game of strategy. Each 
player has a dominant strategy (to Defect), but the equilibrium outcome is 
worse for all players than when each uses her dominated strategy (to Cooper-
ate). The best-known solution to the dilemma is repetition of play. In a finitely 
played game, the present value of future cooperation is eventually zero, and  
rollback yields an equilibrium with no cooperative behavior. With infinite play 
(or an uncertain end date), cooperation can be achieved with the use of an ap-
propriate contingent strategy such as tit-for-tat (TFT) or the grim strategy; 
in either case, cooperation is possible only if the present value of cooperation 
exceeds the present value of defecting. More generally, the prospects of “no  
tomorrow” or of short-term relationships lead to decreased cooperation among 
players.

The dilemma can also be “solved” with penalty schemes that alter the pay-
offs for players who defect from cooperation when their rivals are cooperating 
or when others also are defecting. A third solution method arises if a large or 
strong player’s loss from defecting is greater than the available gain from coop-
erative behavior on that player’s part.

Experimental evidence suggests that players often cooperate longer than 
theory might predict. Such behavior can be explained by incomplete knowledge 
of the game on the part of the players or by their views regarding the benefits of 
cooperation. Tit-for-tat has been observed to be a simple, nice, provocable, and 
forgiving strategy that performs very well on the average in repeated prisoners’ 
dilemmas.

Prisoners’ dilemmas arise in a variety of contexts. Specific examples from 
international environmental policy, evolutionary biology, and product pricing 
show how to explain and predict actual behavior by using the framework of the 
prisoners’ dilemma.

KEy TERMS

compound interest (384) penalty (389)
contingent strategy (381) present value (PV) (383)
discount factor (385) punishment (381)
effective rate of return (386) repeated play (379)
grim strategy (381) tit-for-tat (TFT) (381)
infinite horizon (384) trigger strategy (381)
leadership (392) 
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SOLVEd EXERCISES

 S1. “If a prisoners’ dilemma is repeated 100 times, and both players know 
how many repetitions to expect, they are sure to achieve their coopera-
tive outcome.” True or false? Explain and give an example of a game that 
illustrates your answer.

 S2. Consider a two-player game between Child’s Play and Kid’s Korner, each 
of which produces and sells wooden swing sets for children. Each player 
can set either a high or a low price for a standard two-swing, one-slide 
set. If they both set a high price, each receives profits of $64,000 per year. 
If one sets a low price and the other sets a high price, the low-price firm 
earns profits of $72,000 per year, while the high-price firm earns $20,000. 
If they both set a low price, each receives profits of $57,000.

 (a) Verify that this game has a prisoners’ dilemma structure by look-
ing at the ranking of payoffs associated with the different strategy 
combinations (both cooperate, both defect, one defects, and so 
on). What are the Nash-equilibrium strategies and payoffs in the  
simultaneous-play game if the players meet and make price deci-
sions only once?

 (b) If the two firms decide to play this game for a fixed number of  
periods—say, for 4 years—what would each firm’s total profits be at 
the end of the game? (Don’t discount.) Explain how you arrived at 
your answer.

 (c) Suppose that the two firms play this game repeatedly forever. Let 
each of them use a grim strategy in which they both price high un-
less one of them “defects,” in which case they price low for the rest 
of the game. What is the one-time gain from defecting against an 
opponent playing such a strategy? How much does each firm lose, 
in each future period, after it defects once? If r  0.25 (  0.8), will 
it be worthwhile for them to cooperate? Find the range of values of r 
(or ) for which this strategy is able to sustain cooperation between 
the two firms.

 (d) Suppose the firms play this game repeatedly year after year, neither 
expecting any change in their interaction. If the world were to end 
after 4 years, without either firm having anticipated this event, what 
would each firm’s total profits (not discounted) be at the end of the 
game? Compare your answer here with the answer in part (b). Ex-
plain why the two answers are different, if they are different, or why 
they are the same, if they are the same.

 (e) Suppose now that the firms know that there is a 10% probability 
that one of them may go bankrupt in any given year. If bankruptcy 
occurs, the repeated game between the two firms ends. Will this 
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knowledge change the firms’ actions when r  0.25? What if the 
probability of a bankruptcy increases to 35% in any year?

 S3. A firm has two divisions, each of which has its own manager. Managers 
of these divisions are paid according to their effort in promoting produc-
tivity in their divisions. The payment scheme is based on a comparison 
of the two outcomes. If both managers have expended “high effort,” each 
earns $150,000 a year. If both have expended “low effort,” each earns 
“only” $100,000 a year. But if one of the two managers shows “high effort” 
whereas the other shows “low effort,” the “high effort” manager is paid 
$150,000 plus a $50,000 bonus, but the second (“low effort”) manager 
gets a reduced salary (for subpar performance in comparison with her 
competition) of $80,000. Managers make their effort decisions indepen-
dently and without knowledge of the other manager’s choice.

 (a) Assume that expending effort is costless to the managers and draw 
the payoff table for this game. Find the Nash equilibrium of the 
game and explain whether the game is a prisoners’ dilemma.

 (b) Now suppose that expending high effort is costly to the manag-
ers (such as a costly signal of quality). In particular, suppose that 
“high effort” costs an equivalent of $60,000 a year to a manager who 
chooses this effort level. Draw the game table for this new version of 
the game and find the Nash equilibrium. Explain whether the game 
is a prisoners’ dilemma and how it has changed from the game in 
part (a).

 (c) If the cost of high effort is equivalent to $80,000/year, how does the 
game change from that described in part (b)? What is the new equi-
librium? Explain whether the game is a prisoners’ dilemma and how 
it has changed from the games in parts (a) and (b).

 S4. You have to decide whether to invest $100 in a friend’s enterprise, where 
in a year’s time the money will increase to $130. You have agreed that 
your friend will then repay you $120, keeping $10 for himself. But instead 
he may choose to run away with the whole $130. Any of your money that 
you don’t invest in your friend’s venture you can invest elsewhere safely 
at the prevailing rate of interest r, and get $100(1  r) next year.

 (a) Draw the game tree for this situation and show the rollback  
equilibrium.

Next, suppose this game is played repeatedly infinitely often. That 
is, each year you have the opportunity to invest another $100 in your 
friend’s enterprise, and the agreement is to split the resulting $130 in 
the manner already described. From the second year onward, you get to 
make your decision of whether to invest with your friend in the light of 
whether he made the agreed repayment the preceding year. The rate of 
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interest between any two successive periods is r, the same as the outside 
rate of interest and the same for you and your friend.

 (b) For what values of r can there be an equilibrium outcome of the re-
peated game, in which each period you invest with your friend and 
he repays as agreed?

 (c) If the rate of interest is 10% per year, can there be an alternative 
profit-splitting agreement that is an equilibrium outcome of the 
infinitely repeated game, where each period you invest with your 
friend and he repays as agreed?

 S5. Recall the example from Exercise S3 in which two division managers’ 
choices of High or Low effort levels determine their salary payments. 
In part (b) of that exercise, the cost of exerting High effort is assumed to 
be $60,000 a year. Suppose now that the two managers play the game in 
part (b) of Exercise S3 repeatedly for many years. Such repetition allows 
scope for an unusual type of cooperation in which one is designated to 
choose High effort while the other chooses Low. This cooperative agree-
ment requires that the High-effort manager make a side payment to the  
Low-effort manager so that their payoffs are identical.

 (a) What size of side payment guarantees that the final payoffs of the 
two managers are identical? How much does each manager earn in 
a year in which the cooperative agreement is in place?

 (b) Cooperation in this repeated game entails each manager’s choosing 
her assigned effort level and the High-effort manager making the 
designated side payment. Defection entails refusing to make the side  
payment. Under what values of the rate of return can this agree-
ment sustain cooperation in the managers’ repeated game?

 S6. Consider the game of chicken in Chapter 4, with slightly more general  
payoffs (Figure 4.13 had k  1):
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Suppose this game is played repeatedly, every Saturday evening. If k , 1, 
the two players stand to benefit by cooperating to play (Swerve, Swerve) 
all the time, whereas if k . 1, they stand to benefit by cooperating so that 
one plays Swerve and the other plays Straight, taking turns to go Straight 
in alternate weeks. Can either type of cooperation be sustained?
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 S7.  Recall the example from Exercise S8 of Chapter 5, where South Korea and 
Japan compete in the market for production of VLCCs. As in parts (a) and 
(b) of that exercise, the cost of building ships is $30 (million) in each coun-
try, and the demand for ships is P  180 – Q, where Q  qKorea  qJapan.

 (a) Previously, we found the Nash equilibrium for the game. Now find 
the collusive outcome. What total quantity should be set by the two 
countries in order to maximize their joint profit?

 (b) Suppose the two countries produce equal quantities of VLCCs, so 
that they earn equal shares of this collusive profit. How much profit 
would each country earn? Compare this profit with the amount they 
would earn in the Nash equilibrium.

 (c) Now suppose the two countries are in a repeated relationship. Once 
per year, they choose production quantities, and each can observe 
the amount its rival produced in the previous year. They wish to 
cooperate to sustain the collusive profit levels found in part (b). In 
any one year, one of them can defect from the agreement. If one of 
them holds the quantity at the agreed level, what is the best defect-
ing quantity for the other? What are the resulting profits?

 (d) Write down a matrix that represents this game as a prisoners’  
dilemma.

 (e) For what interest rates will collusion be sustainable when the two 
countries use grim (defect forever) strategies?

UNSOLVEd EXERCISES

 U1. Two people, Baker and Cutler, play a game in which they choose and di-
vide a prize. Baker decides how large the total prize should be; she can 
choose either $10 or $100. Cutler chooses how to divide the prize chosen 
by Baker; Cutler can choose either an equal division or a split where she 
gets 90% and Baker gets 10%. Write down the payoff table of the game 
and find its equilibria for each of the following situations:

 (a) When the moves are simultaneous.
 (b) When Baker moves first.
 (c) When Cutler moves first.
 (d) Is this game a prisoners’ dilemma? Why or why not?

 U2. Consider a small town that has a population of dedicated pizza eaters 
but is able to accommodate only two pizza shops, Donna’s Deep Dish 
and Pierce’s Pizza Pies. Each seller has to choose a price for its pizza, but 
for simplicity, assume that only two prices are available: high and low. If 
a high price is set, the sellers can achieve a profit margin of $12 per pie; 
the low price yields a profit margin of $10 per pie. Each store has a loyal 
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captive customer base that will buy 3,000 pies per week, no matter what 
price is charged by either store. There is also a floating demand of 4,000 
pies per week. The people who buy these pies are price conscious and 
will go to the store with the lower price; if both stores charge the same 
price, this demand will be split equally between them.

 (a) Draw the game table for the pizza-pricing game, using each store’s 
profits per week (in thousands of dollars) as payoffs. Find the Nash 
equilibrium of this game and explain why it is a prisoners’ dilemma.

 (b) Now suppose that Donna’s Deep Dish has a much larger loyal cli-
entele that guarantees it the sale of 11,000 (rather than 3,000) pies a 
week. Profit margins and the size of the floating demand remain the 
same. Draw the payoff table for this new version of the game and 
find the Nash equilibrium.

 (c) How does the existence of the larger loyal clientele for Donna’s Deep 
Dish help “solve” the pizza stores’ dilemma?

 U3. A town council consists of three members who vote every year on their 
own salary increases. Two Yes votes are needed to pass the increase. Each 
member would like a higher salary but would like to vote against it her-
self because that looks good to the voters. Specifically, the payoffs of each 
are as follows:

Raise passes, own vote is No: 10
Raise fails, own vote is No: 5
Raise passes, own vote is Yes: 4
Raise fails, own vote is Yes: 0

Voting is simultaneous. Write down the (three-dimensional) payoff table, 
and show that in the Nash equilibrium the raise fails unanimously. Ex-
amine how a repeated relationship among the members can secure them 
salary increases every year if (i) every member serves a 3-year term, (ii) 
every year in rotation one of them is up for reelection, and (iii) the towns-
people have short memories, remembering only the votes on the salary-
increase motion of the current year and not those of past years.

 U4. Consider the following game, which comes from James Andreoni and Hal 
Varian at the University of Michigan.19 A neutral referee runs the game. 
There are two players, Row and Column. The referee gives two cards to 
each: 2 and 7 to Row and 4 and 8 to Column. This is common knowledge. 
Then, playing simultaneously and independently, each player is asked to 
hand over to the referee either his high card or his low card. The referee 
hands out payoffs—which come from a central kitty, not from the players’ 
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19 James Andreoni and Hal Varian, “Preplay Contacting in the Prisoners’ Dilemma,” Proceedings of 
the National Academy of Sciences, vol. 96, no. 19 (September 14, 1999), pp. 10933–38.
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pockets—that are measured in dollars and depend on the cards that he 
collects. If Row chooses his Low card, 2, then Row gets $2; if he chooses 
his High card, 7, then Column gets $7. If Column chooses his Low card, 4, 
then Column gets $4; if he chooses his High card, 8, then Row gets $8.

 (a) Show that the complete payoff table is as follows:

e x e r C i S e S   4 1 1

  

Low High

COLUMN

Low

High

2, 4

0, 11

10, 0

8, 7
ROW

 (b) What is the Nash equilibrium? Verify that this game is a prisoners’  
dilemma. 

Now suppose the game has the following stages. The referee hands 
out cards as before; who gets what cards is common knowledge. At stage 
I, each player, out of his own pocket, can hand over a sum of money, 
which the referee is to hold in an escrow account. This amount can be 
zero but cannot be negative. When both have made their stage I choices, 
these are publicly disclosed. Then at stage II, the two make their choices 
of cards, again simultaneously and independently. The referee hands out 
payoffs from the central kitty in the same way as in the single-stage game 
before. In addition, he disposes of the escrow account as follows. If Col-
umn chooses his high card, the referee hands over to Column the sum 
that Row put into the account; if Column chooses his low card, Row’s 
sum reverts back to him. The disposition of the sum that Column depos-
ited depends similarly on Row’s card choice. All these rules are common 
knowledge.

 (c) Find the rollback (subgame-perfect) equilibrium of this two-stage 
game. Does it resolve the prisoners’ dilemma? What is the role of the 
escrow account?

 U5. Glassworks and Clearsmooth compete in the local market for windshield 
repairs. The market size (total available profits) is $10 million per year. 
Each firm can choose whether to advertise on local television. If a firm 
chooses to advertise in a given year, it costs that firm $3 million. If one 
firm advertises and the other doesn’t, then the former captures the whole 
market. If both firms advertise, they split the market 50:50. If both firms 
choose not to advertise, they also split the market 50:50.

 (a) Suppose the two windshield-repair firms know they will compete 
for just one year. Write down the payoff matrix for this game. Find 
the Nash equilibrium strategies.
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 (b)  Suppose the firms play this game for five years in a row, and they 
know that at the end of five years, both firms plan to go out of busi-
ness. What is the subgame-perfect equilibrium for this five-period 
game? Explain.

 (c) What would be a tit-for-tat strategy in the game described in part (b)?
 (d)  Suppose the firms play this game repeatedly forever, and suppose 

that future profits are discounted with an interest rate of 20% per 
year. Can you find a subgame-perfect equilibrium that involves 
higher annual payoffs than the equilibrium in part (b)? If so, explain 
what strategies are involved. If not, explain why not.

 U6. Consider the pizza stores introduced in Exercise U2, Donna’s Deep Dish 
and Pierce’s Pizza Pies. Suppose that they are not constrained to choose 
from only two possible prices, but that they can choose a specific value 
for price to maximize profits. Suppose further that it costs $3 to make 
each pizza (for each store) and that experience or market surveys have 
shown that the relation between sales (Q) and price (P) for each firm is 
as follows:

 QPierce  12  PPierce  0.5PDonna.

Then profits per week (Y, in thousands of dollars) for each firm are:

 YPierce  (PPierce  3)QPierce  (PPierce  3)(12  PPierce  0.5PDonna),

   YDonna  (PDonna  3)QDonna  (PDonna  3)(12  PDonna  0.5PPierce).

 (a) Use these profit functions to determine each firm’s best-response 
rule, as in Chapter 5, and use the best-response rules to find the Nash 
equilibrium of this pricing game. What prices do the firms choose in 
equilibrium? How much profit per week does each firm earn?

 (b) If the firms work together and choose a joint best price, P, then the 
profit of each will be:

 YDonna  YPierce  (P  3)(12  P  0.5P)  (P  3)(12  0.5P).

What price do they choose to maximize joint profits?

 (c) Suppose the two stores are in a repeated relationship, trying to sus-
tain the joint profit-maximizing prices calculated in part (b). They 
print new menus each month and thereby commit themselves to 
prices for the whole month. In any one month, one of them can de-
fect from the agreement. If one of them holds the price at the agreed 
level, what is the best defecting price for the other? What are its re-
sulting profits? For what interest rates will their collusion be sus-
tainable by using grim-trigger strategies?

4 1 2   [ C h . 1 0 ]  t h e  P r i S o n e r S ’ D i l e m m a  a n D  r e P e at e D  g a m e S
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 U7. Now we extend the analysis of Exercise S7 to allow for defecting in a 
collusive triopoly. Exercise S9 of Chapter 5 finds the Nash outcome of a 
VLCC triopoly of Korea, Japan, and China. 

 (a)  Now find the collusive outcome of the triopoly. That is, what total 
quantity should be set by the three countries collectively in order to 
maximize their joint profit?

 (b)  Assume that under the collusive outcome found in part (a), the three 
countries produce equal quantities of VLCCs, so that each earns an 
equal share of the collusive profit. How much profit would each coun-
try earn? Compare this profit with the amount each earns in the Nash  
outcome.

 (c)  Now suppose the three countries are in a repeated relationship. 
Once per year, they choose production quantities, and each can ob-
serve the amount its rivals produced in the previous year. They wish 
to cooperate to sustain the collusive profit levels found in part (b). 
In any one year, one of them can defect from the agreement. If the 
other two countries are expected to produce their share of the col-
lusive outcome found in parts (a) and (b), what is the best defecting 
quantity for the third to produce? What is the resulting profit for a 
defecting country when it produces the optimal defecting quantity 
while the other two produce their collusive quantities?

 (d)  Of course, the year after one country defects, both of its rivals will 
also defect. They will all find themselves back at the Nash outcome 
(permanently, if they use grim-trigger strategies). How much does 
the defecting country stand to gain in one year of defecting from 
the collusive outcome? How much will the defecting country then 
lose in every subsequent year from earning the Nash profit instead 
of the collusive profit? 

 (e)  For what interest rates will collusion be sustainable if the three 
countries are using grim-trigger strategies? Is this set of interest 
rates larger or smaller than that found in the duopoly case discussed 
in Exercise S7, part (e)? Why?

e x e r C i S e S   4 1 3
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Appendix:
Infinite Sums

The computation of present values requires us to determine the current value 
of a sum of money that is paid to us in the future. As we saw in Section 2, the 
present value of a sum of money—say, x—that is paid to us n months from 
now is just x(1  r)n, where r is the appropriate monthly rate of return. But 
the present value of a sum of money that is paid to us next month and every 
following month in the foreseeable future is more complicated to determine.  
In that case, the payments continue infinitely, and so there is no defined end 
to the sum of present values that we need to compute. To compute the present 
value of this flow of payments requires some knowledge of the mathematics of 
the summation of infinite series.

Consider a player who stands to gain $36 this month from defecting in a 
prisoners’ dilemma but who will then lose $36 every month in the future as a re-
sult of her choice to continue defecting while her opponent punishes her (using 
the tit-for-tat, or TFT, strategy). In the first of the future months—the first for 
which there is a loss and the first for which values need to be discounted—the 
present value of her loss is 36(1  r); in the second future month, the present 
value of the loss is 36(1  r)2; in the third future month, the present value of the 
loss is 36(1  r)3. That is, in each of the n future months that she incurs a loss 
from defecting, that loss equals 36(1  r)n.

We could write out the total present value of all of her future losses as a large 
sum with an infinite number of components,

 
 

or we could use summation notation as a shorthand device and instead write

 

This expression, which is equivalent to the preceding one, is read as “the sum, 
from n equals 1 to n equals infinity, of 36 over (1   r) to the nth power.” Because 
36 is a common factor—it appears in each term of the sum—it can be pulled out 
to the front of the expression. Thus, we can write the same present value as
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PV � �  , . . . 
1 � r 

36 
(1 � r)2 

36 
�  

(1 � r)3 

36 
�  

(1 � r)4 

36 
�  

(1 � r)5 

36 
�  �  

(1 � r)6 

36 

PV � � 
� 

. 
(1 � r)n 

n � 1

36 

PV � 36 � � 
� 

. 
(1 � r)n 

n � 1

1
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We now need to determine the value of the sum within the present-value ex-
pression to calculate the actual present value. To do so, we will simplify our no-
tation by switching to the discount factor  in place of 1(1  r). Then the sum 
that we are interested in evaluating is

 

It is important to note here that   1(1  r) , 1 because r is strictly positive.
An expert on infinite sums would tell you, after inspecting this last sum, that 

it converges to the finite value (1  ).20 Convergence is guaranteed because 
increasingly large powers of a number less than 1,  in this case, become smaller 
and smaller, approaching zero as n approaches infinity. The later terms in our 
present value, then, decrease in size until they get sufficiently small that the se-
ries approaches (but technically never exactly reaches) the particular value of 
the sum. Although a good deal of more sophisticated mathematics is required to 
deduce that the convergent value of the sum is (1  ), proving that this is the 
correct answer is relatively straightforward.

We use a simple trick to prove our claim. Consider the sum of the first m 
terms of the series, and denote it by Sm. Thus

 

Now we multiply this sum by (1  ) to get

 

 
 

Dividing both sides by (1  ), we have

 

Finally, we take the limit of this sum as m approaches infinity to evaluate 
our original infinite sum. As m goes to infinity, the value of m1 goes to zero be-
cause very large and increasing powers of a number less than 1 get increasingly 
small but stay nonnegative. Thus, as m goes to infinity, the right-hand side of 

a P P e n D i x : i n f i n i t e  S u m S   4 1 5

� 
� 

�n   �   �   �   �2   �   �3   �       �   �m – 1   �   �m.S
m

 � 
n � 1

. . .

.

(1 � �)S
m

   �   �   �   �2   �   �3   �          �   �m – 1   �   �m

� �2   �   �3   �   �4   �         � �m   �   �m – 1

�   �   �   �m – 1

. . .

. . .

.S
m 

� 
1   �   �

�   �   �m � 1

� 
� 

�n. 
n � 1

20 An infinite series converges if the sum of the values in the series approaches a specific value, get-
ting closer and closer to that value as additional components of the series are included in the sum. 
The series diverges if the sum of the values in the series gets increasingly larger (more negative) 
with each addition to the sum. Convergence requires that the components of the series get progres-
sively smaller.
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the preceding equation goes to (1  ), which is therefore the limit of Sm as m 
approaches infinity. This completes the proof.

We need only convert back into r to be able to use our answer in the calcula-
tion of present values in our prisoners’ dilemma games. Because   1(1  r), it 
follows that

 

The present value of an infinite stream of $36s earned each month, starting next 
month, is then

 

This is the value that we use to determine whether a player should defect for-
ever in Section 2. Notice that incorporating a probability of continuation, p 
# 1, into the discounting calculations changes nothing in the summation 
procedure used here. We could easily substitute R for r in the preceding  
calculations, and p for the discount factor, .

Remember that you need to find present values only for losses (or gains) in-
curred (or accrued) in the future. The present value of $36 lost today is just $36. 
So if you wanted the present value of a stream of losses, all of them $36, that 
begins today, you would take the $36 lost today and add it to the present value 
of the stream of losses in the future. We have just calculated that present value 
as 36r. Thus, the present value of the stream of lost $36s, including the $36 lost 
today, would be 36  36r, or 36[(r  1)r ], which equals 36(1  ). Similarly, 
if you wanted to look at a player’s stream of profits under a particular contin-
gent strategy in a prisoners’ dilemma, you would not discount the profit amount 
earned in the very first period; you would only discount those profit figures that 
represent money earned in future periods.

. � � 
r�(1 � r)
1�(1 � r)

1 � � 

� 

r  
1 

. 36 � � 
(1 � r)n 

1 
r  

36 � 
� 

n � 1
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■

Collective-Action Games

T he games and strategic situations considered in the preceding chap-
ters have usually included only two or three players interacting with each 
other. Such games are common in our own academic, business, politi-
cal, and personal lives and so are important to understand and analyze. 

But many social, economic, and political interactions are strategic situations 
in which numerous players participate at the same time. Strategies for career 
paths, investment plans, rush-hour commuting routes, and even studying have 
associated benefits and costs that depend on the actions of many other people. 
If you have been in any of these situations, you likely thought something was 
wrong—too many students, investors, and commuters crowding just where you 
wanted to be, for example. If you have tried to organize fellow students or your 
community in some worthy cause, you probably faced frustration of the oppo-
site kind—too few willing volunteers. In other words, multiple-person games 
in society often seem to produce outcomes that are not deemed satisfactory by 
many or even all of the people in that society. In this chapter, we will examine 
such games from the perspective of the theory that we have already developed. 
We present an understanding of what goes wrong in such situations and what 
can be done about it.

In the most general form, such many-player games concern problems of 
collective action. The aims of the whole society or collective are best served if its 
members take some particular action or actions, but these actions are not in the 
best private interests of those individual members. In other words, the socially 
optimal outcome is not automatically achievable as the Nash equilibrium of the 
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game. Therefore, we must examine how the game can be modified to lead to the 
optimal outcome or at least to improve on an unsatisfactory Nash equilibrium. 
To do so, we must first understand the nature of such games. We find that they 
come in three forms, all of them familiar to you by now: the prisoners’ dilemma, 
chicken, and assurance games. Although our main focus in this chapter is on 
situations where numerous individuals play such games at the same time, we 
build on familiar ground by beginning with games between just two players.

1 COLLECTIVE-ACTION GAMES WITH T WO PLAYERS

Imagine that you are a farmer. A neighboring farmer and you can both benefit 
by constructing an irrigation and flood-control project. The two of you can join 
together to undertake this project, or one of you might do so on your own. How-
ever, after the project has been constructed, the other automatically benefits 
from it. Therefore, each is tempted to leave the work to the other. That is the es-
sence of your strategic interaction and the difficulty of securing collective action.

In Chapter 4, we encountered a game of this kind: three neighbors were 
each deciding whether to contribute to a street garden that all of them would 
enjoy. That game became a prisoners’ dilemma in which all three shirked; our 
analysis here will include an examination of a more general range of possible 
payoff structures. Also, in the street-garden game, we rated the outcomes on a 
scale of 1 to 6; when we describe more general games, we will have to consider 
more general forms of benefits and costs for each player.

Our irrigation project has two important characteristics. First, its benefits 
are nonexcludable: a person who has not contributed to paying for it cannot be 
prevented from enjoying the benefits. Second, its benefits are nonrival: any one 
person’s benefits are not diminished by the mere fact that someone else is also 
getting the benefit. Economists call such a project a pure public good; national 
defense is often given as an example. In contrast, a pure private good is fully ex-
cludable and rival: nonpayers can be excluded from its benefits, and if one per-
son gets the benefit, no one else does. A loaf of bread is a good example of a pure 
private good. Most goods fall somewhere on the two-dimensional spectrum of 
varying degrees of excludability and rivalness. We will not go any deeper into 
this taxonomy, but we mention it to help you relate our discussion to what you 
may encounter in other courses and books.1

1 Public goods are studied in more detail in textbooks on public economics such as those by  
Jonathan Gruber, Public Finance and Public Policy, 4th ed. (New York: Worth, 2012), Harvey Rosen 
and Ted Gayer, Public Finance, 9th ed. (Chicago: Irwin/McGraw-Hill, 2009), and Joseph Stiglitz, Eco-
nomics of the Public Sector, 3rd ed. (New York: W. W. Norton & Company, 2000).
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A.  Collective Action as a Prisoners’ Dilemma

The costs and the benefits associated with building the irrigation project de-
pend, as do those associated with all collective actions, on which players partici-
pate. In turn, the relative size of the costs and benefits determine the structure 
of the game that is played. Suppose each of you acting alone could complete the 
project in 7 weeks, whereas if the two of you acted together, it would take only 4 
weeks of time from each. The two-person project is also of better quality; each 
farmer gets benefits worth 6 weeks of work from a one-person project (whether 
constructed by you or by your neighbor) and 8 weeks’ worth of benefit from a 
two-person project.

More generally, we can write benefits and costs as functions of the number 
of players participating. So the cost to you of choosing to build the project de-
pends on whether you build it alone or with help; costs can be written as C(n) 
where cost, C, depends on the number, n, of players participating in the project. 
Then C(1) would be the cost to you of building the project alone. C(2) would 
be the cost to you of building the project with your neighbor; here C(1) 5 7 and  
C(2) 5 4. Similarly, benefits (B) from the completed project may vary depend-
ing on how many (n) participate in its completion. In our example, B(1) 5 6 and 
B(2) 5 8. Note that these benefits are the same for each farmer regardless of par-
ticipation due to the public-good nature of this particular project. 

In this game, each farmer has to decide whether to work toward the con-
struction of the project or not—that is, to shirk. (Presumably, there is a short 
window of time in which the work must be done, and you could pretend to be 
called away on some very important family matter at the last minute, as could 
your neighbor.) Figure 11.1 shows the payoff table of the game, where the num-
bers measure the values in weeks of work. Payoffs are determined on the basis 
of the difference between the cost and the benefit associated with each action. 
So the payoff for choosing Build will be B(n) 2 C(n) with n 5 1 if you build alone 
and with n 5 2 if your neighbor also chooses Build. The payoff for choosing Not 
is just B(1) if your neighbor chooses Build, because you incur no cost if you do 
not participate in the project.

  

Build Not

NEIGHBOR

Build

Not

4, 4

6, –1

–1, 6

0, 0
YOU

FIGURE 11.1  Collective action as a prisoners’ Dilemma: version i
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Given the payoff structure in Figure 11.1, your best response if your neigh-
bor does not participate is not to participate either: your benefit from com-
pleting the project by yourself (6) is less than your cost (7), for a net payoff of 
21, whereas you can get 0 by not participating. Similarly, if your neighbor does 
participate, then you can reap the benefit (6) from his work at no cost to your-
self; this is better for you than working yourself to get the larger benefit of the 
two-person project (8) while incurring the cost of the work (4), for a net payoff 
of 4. The general feature of the game is that it is better for you not to participate 
no matter what your neighbor does; the same logic holds for him. (In this case, 
each farmer is said to be a free rider on his neighbor’s effort if he lets the other 
do all the work and then reaps the benefits all the same.) Thus, not building is 
the dominant strategy for each. But both would be better off if the two were to 
work together to build (payoff 4) than if neither builds (payoff 0). Therefore, the 
game is a prisoners’ dilemma.

We see in this prisoners’ dilemma one of the main difficulties that arises 
in games of collective action. Individually optimal choices—in this case, not to 
build regardless of what the other farmer chooses—may not be optimal from the 
perspective of society as a whole, even if the society is made up of just two farm-
ers. The social optimum in a collective-action game is achieved when the sum 
total of the players’ payoffs is maximized; in this prisoners’ dilemma, the social 
optimum is the (Build, Build) outcome. Nash-equilibrium behavior of the play-
ers does not consistently bring about the socially optimal outcome, however. 
Hence, the study of collective-action games has focused on methods to improve 
on observed (generally Nash) equilibrium behavior to move outcomes toward 
the socially best ones. As we will see, the divergence between Nash equilibrium 
and socially optimum outcomes appears in every version of collective-action 
games.

Now consider what the game would look like if the numbers were to change 
slightly. Suppose the two-person project yields benefits that are not much better 
than those in the one-person project: 6.3 weeks’ worth of work to each farmer. 
Then each of you gets 6.3 2 4 5 2.3 when both of you build. The resulting payoff 
table is shown in Figure 11.2. The game is still a prisoners’ dilemma and leads to 

  

Build Not

NEIGHBOR

Build

Not

2.3, 2.3

6, –1

–1, 6

0, 0
YOU

FIGURE 11.2  Collective action as a prisoners’ Dilemma: version ii
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the equilibrium (Not, Not). However, when both farmers build, the total payoff 
for both of you is only 4.6. The social optimum occurs when one of you builds 
and the other does not, in which case together you get payoff 6 1 (21) 5 5. 
There are two possible ways to get this outcome. Achieving the social optimum 
in this case then poses a new problem: Who should build and suffer the payoff 
of 21 while the other is allowed to be a free rider and enjoy the payoff of 6?

B.  Collective Action as Chicken

Yet another variation in the numbers of the original prisoners’ dilemma game of 
Figure 11.1 changes the nature of the game. Suppose the cost of the work is re-
duced so that it becomes better for you to build your own project if your neigh-
bor does not. Specifically, suppose the one-person project requires 4 weeks of 
work, so C(1) 5 4, and the two-person project takes 3 weeks from each, so C(2) 
5 3 (to each); the benefits are the same as before. Figure 11.3 shows the payoff 
matrix resulting from these changes. Now your best response is to shirk when 
your neighbor works and to work when he shirks. In form, this game is just like 
a game of chicken, where shirking is the Straight strategy (tough or uncoopera-
tive), and working is the Swerve strategy (conciliatory or cooperative).

If this game results in one of its pure-strategy equilibria, the two payoffs sum 
to 8; this total is less than the total outcome that both players could get if both 
of them build. That is, neither of the Nash equilibria provides so much bene-
fit to society as a whole as that of the coordinated outcome, which entails both 
farmers’ choosing to build. The social optimum yields a total payoff of 10. If the 
outcome of the chicken game is its mixed-strategy equilibrium, the two farmers 
will fare even worse than in either of the pure-strategy equilibria: their expected 
payoffs will add up to something less than 8 (4, to be precise).

The collective-action chicken game has another possible structure if we 
make some additional changes to the benefits associated with the project. As 
with version II of the prisoners’ dilemma, suppose the two-person project is not 
much better than the one-person project. Then each farmer’s benefit from the 
two-person project, B(2), is only 6.3, whereas each still gets a benefit of B(1) 5 6 

  

Build Not

NEIGHBOR

Build

Not

5, 5

6, 2

2, 6

0, 0
YOU

FIGURE 11.3  Collective action as Chicken: version i
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from the one-person project. We ask you to practice your skill by constructing 
the payoff table for this game. You will find that it is still a game of chicken—
call it chicken II. It still has two pure-strategy Nash equilibria in each of which 
only one farmer builds, but the sum of the payoffs when both build is only 6.6, 
whereas the sum when only one farmer builds is 8. The social optimum is for 
only one farmer to build. Each farmer prefers the equilibrium in which the other 
builds. This may lead to a new dynamic game in which each waits for the other 
to build. Or the original game might yield its mixed-strategy equilibrium with its 
low expected payoffs.

C.  Collective Action as Assurance

Finally, let us change the payoffs of the original prisoners’ dilemma case in a 
different way altogether, leaving the benefits of the two-person project and the 
costs of building as originally set out and reducing the benefit of a one-person 
project to B(1) 5 3. This change reduces your benefit as a free rider so much that 
now if your neighbor chooses Build, your best response also is Build. Figure 11.4 
shows the payoff table for this version of the game. This is now an assurance 
game with two pure-strategy equilibria: one where both of you participate and 
the other where neither of you does.

As in the chicken II version of the game, the socially optimal outcome here is 
one of the two Nash equilibria. But there is a difference. In chicken II, the two play-
ers differ in their preferences between the two equilibria, either of which achieves 
the social optimum. In the assurance game, both of them prefer the same equi-
librium, and that is the sole socially optimal outcome. Therefore, achieving the 
social optimum should be easier in the assurance game than in chicken.

D.  Collective Inaction

Many games of collective action have payoff structures that differ somewhat 
from those in our irrigation project example. Our farmers find themselves in a 
situation in which the social optimum generally entails that at least one, if not 

Build Not

NEIGHBOR

Build

Not

4, 4

3, –4

–4, 3

0, 0
YOU

FIGURE 11.4  Collective action as an assurance game
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both, of them participates in the project. Thus the game is one of collective  
action. Other multiplayer games might better be called games of collective inac-
tion. In such games, society as a whole prefers that some or all of the individual 
players do not participate or do not act. Examples of this type of interaction in-
clude choices between rush-hour commuting routes, investment plans, or fish-
ing grounds. 

All of these games have the attribute that players must decide whether to 
take advantage of some common resource, be it a freeway, a high-yielding stock 
fund, or an abundantly stocked pond. These collective “inaction” games are bet-
ter known as common-resource games; the total payoff to all players reaches its 
maximum when players refrain from overusing the common resource. The diffi-
culty associated with not being able to reach the social optimum in such games 
is known as the “tragedy of the commons,” a phrase coined by Garrett Hardin in 
his paper of the same name.2 

We supposed above that the irrigation project yielded equal benefits to 
both you and your farmer-neighbor. But what if the outcome of both farmers’ 
building was that the project used so much water that the farms had too little 
water for their livestock? Then each player’s payoff could be negative when both 
choose Build, lower than when both choose Not. This would be yet another vari-
ant of the prisoners’ dilemma we encountered in Section 1.A, in which the so-
cially optimal outcome entails neither farmer’s building even though each one 
still has an individual incentive to do so. Or suppose that one farmer’s activity 
causes harm to the other, as would happen if the only way to prevent one farm 
from being flooded is to divert the water to the other. Then each player’s payoffs 
could be negative if his neighbor chose Build. Thus, another variant of chicken 
could also arise. In this variant, each of you wants to build when the other does 
not, whereas it would be collectively better if neither of you did.

Just as the problems pointed out in these examples of both collective action 
and collective inaction are familiar, the various alternative ways of tackling the 
problems also follow the general principles discussed in earlier chapters. Before 
turning to solutions, let us see how the problems manifest themselves in the more 
realistic setting where several players interact simultaneously in such games.

2 COLLECTIVE-ACTION PROBLEMS IN LARGE GROUPS

In this section, we extend our irrigation-project example to a situation in which 
a population of N farmers must each decide whether to participate. Here we 
make use of the notation we introduced above, with C(n) representing the cost 

2  Garrett Hardin, “The Tragedy of the Commons,” Science, vol. 162 (1968), pp. 1243–48.
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each participant incurs when n of the N total farmers have chosen to partici-
pate. Similarly, the benefit to each, regardless of participation, is B(n). Each par-
ticipant then gets the payoff P(n) 5 B(n) 2 C(n), whereas each nonparticipant, 
or shirker, gets the payoff S(n) 5 B(n).

Suppose you are contemplating whether to participate or to shirk. Your 
decision will depend on what the other (N 2 1) farmers in the population are 
doing. In general, you will have to make your decision when the other (N 2 1) 
players consist of n participants and (N 2 1 2 n) shirkers. If you decide to shirk, 
the number of participants in the project is still n, so you get a payoff of S(n). If 
you decide to participate, the number of participants becomes n 1 1, so you get 
P(n 1 1). Therefore, your final decision depends on the comparison of these two 
payoffs; you will participate if P(n 1 1) . S(n), and you will shirk if P(n 1 1) , 
S(n). This comparison holds true for every version of the collective-action game 
analyzed in Section 1; differences in behavior in the different versions arise be-
cause the changes in the payoff structure alter the values of P(n + 1) and S(n).

We can relate the two-person examples of Section 1 to this more general 
framework. If there are just two people, then P(2) is the payoff to one from 
building when the other also builds, S(1) is the payoff to one from shirking when 
the other builds, and so on. Therefore, we can generalize the payoff tables of Fig-
ures 11.1 through 11.4 into an algebraic form. This general payoff structure is 
shown in Figure 11.5.

The game illustrated in Figure 11.5 is a prisoners’ dilemma if the inequalities

 P(2) , S(1), P(1) , S(0), P(2) . S(0)

all hold at the same time. The first says that the best response to Build is Not, 
the second says that the best response to Not also is Not, and the third says 
that (Build, Build) is jointly preferred to (Not, Not). The dilemma is of type I if  
2P(2) . P(1) 1 S(1), so the total payoff is higher when both build than when 
only one builds. You can establish similar inequalities concerning these payoffs 
that yield the other types of games in Section 1.

Return now to the multiplayer version of the game with a general n. Given 
the payoff functions for the two actions, P(n 1 1) and S(n), we can use graphs to 

    

Build Not

NEIGHBOR

Build 

Not 

P(2), P(2)

S(1), P(1)

P(1), S(1)

S(0), S(0)
YOU 

FIGURE 11.5  general Form of a two-person Collective-action game
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help us determine which type of game we have encountered and its Nash equi-
librium. We can also then compare the Nash equilibrium to the game’s socially 
optimal outcome. 

A. Multiplayer Prisoners’ Dilemma

Take a specific version of our irrigation project example in which an entire vil-
lage of 100 farmers must decide which action to take. Suppose that the irriga-
tion project raises the productivity of each farmer’s land in proportion to the 
size of the project; specifically, suppose the benefit to each farmer when n peo-
ple work on the project is P(n) 5 2n. Suppose also that if you are not working on 
the project, you can enjoy this benefit and use your time to earn an extra 4 in 
some other occupation, so S(n) 5 2n 1 4. Remember that your decision about 
whether to participate in the project depends on the relative magnitudes of  
P(n 1 1) 5 2(n 1 1) and S(n) 5 2n 1 4. We draw the two separate graphs of these 
functions for an individual farmer in Figure 11.6, showing n over its full range 
from 0 to (N – 1) along the horizontal axis and the payoff to the farmer along the 
vertical axis. If there are currently very few participants (thus mostly shirkers), 
your choice will depend on the relative locations of P(n 1 1) and S(n) on the left 
end of the graph. Similarly, if there are already many participants, your choice 
will depend on the relative locations of P(n 1 1) and S(n) on the right end of the 
graph.

Because n actually takes on only integer values, each function P(n 1 1) and 
S(n) technically consists only of a discrete set of points rather than a continuous 

Pa yoff 

N  –  1 

S(n)
P ( n  + 1) 

0 
Number n of

other participants

FIGURE 11.6  multiplayer prisoners’ Dilemma payoff graph
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set as implied by our smooth lines. But when N is large, the discrete points are 
sufficiently close together that we can connect the successive points and show 
each payoff function as a continuous curve. We also use linear P(n + 1) and S(n) 
functions in this section to bring out the basic considerations and will discuss 
more complicated possibilities later.

Recall that you determine your choice of action by considering the number 
of current participants in the project, n, and the payoffs associated with each 
action at that n. Figure 11.6 illustrates a case in which the curve S(n) lies en-
tirely above the curve P(n 1 1). Therefore, no matter how many others partici-
pate (that is, no matter how large n gets), your payoff is higher if you shirk than 
if you participate; shirking is your dominant strategy. These payoffs are identical 
for all players, so everyone has a dominant strategy to shirk. Therefore, the Nash 
equilibrium of the game entails everyone shirking, and the project is not built. 

Note that both curves are rising as n increases. For each action you can take, 
you are better off if more of the others participate. And the left intercept of the 
S(n) curve is below the right intercept of the P(n 1 1) curve, or S(0) 5 4 , P(N) 
5 102. This says that if everyone including you shirks, your payoff is less than if 
everyone including you participates. Everyone would be better off than they are 
in the Nash equilibrium of the game if the outcome in which everyone partici-
pates could be sustained. This makes the game a prisoners’ dilemma.

How does the Nash equilibrium found using the curves in Figure 11.6 com-
pare with the social optimum of this game? To answer this question we need a 
way to describe the total social payoff at each value of n; we do that by using the 
payoff functions P(n) and S(n) to construct a third function T(n), showing the 
total payoff to society as a function of n. The total payoff to society when there 
are n participants consists of the value P(n) for each of the n participants and 
the value S(n) for each of the (N 2 n) shirkers:

 T(n) 5 nP(n) 1 (N 2 n) S(n).

The social optimum occurs when the allocation of people between par-
ticipants and shirkers maximizes the total payoff T(n), or at the number of 
participants—that is, the value of n—that maximizes T(n). To get a better un-
derstanding of where this might be, it is convenient to write T(n) differently,  
rearranging the expression above to get

 T(n) 5 NS(n) 2 n [S(n) 2 P(n)].

This version of the total social payoff function shows that we can calculate it as 
if we gave every one of the N people the shirker’s payoff but then removed the 
shirker’s extra benefit [S(n) – P(n)] from each of the n participants.

In collective-action games, as opposed to common-resource games, we 
normally expect S(n) to increase as n increases. Therefore, the first term in this 
expression, NS(n), also increases as n increases. If the second term does not  
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increase too fast as n increases—as would be the case if the shirker’s extra benefit, 
[S(n) 2 P(n)], is small and constant—then the effect of the first term dominates 
in determining the value of T(n). 

This is exactly what happens with the total social payoff function for our cur-
rent 100-farmer example. Here T(n) 5 n P(n) 1 (N 2 n) S(n) becomes T(n) 5 
n(2n) 1 (100 2 n) (2n 1 4) 5 2n 2 1 200n – 2n 2 1 400 2 4n 5 400 1 196n. In 
this case, T(n) increases steadily with n and is maximized at n 5 N when no one 
shirks.

The large-group version of our two-person example holds the same lesson as 
above. Society as a whole would be better off if all of the farmers participated in 
building the irrigation project and n 5 N. But payoffs are such that each farmer 
has an individual incentive to shirk. The Nash equilibrium of the game, at n 5 0, 
is not socially optimal. Figuring out how to achieve the social optimum is one of 
the most important topics in the study of collective action and one to which we 
return later in this chapter.

In other situations, T(n) can be maximized for a different value of n, not 
just at n 5 N. That is, society’s aggregate payoff could be maximized by allow-
ing some shirking. Even in the prisoners’ dilemma case, it is not automatic that 
the total payoff function is maximized when n is as large as possible. If the gap 
between S(n) and P(n) widens sufficiently fast as n increases, then the nega-
tive effect of the second term in the expression for T(n) outweighs the positive  
effect of the first term as n approaches N ; then it may be best to let some people 
shirk—that is, the socially optimal value for n may be less than N. This result 
mirrors that of our prisoners’ dilemma II case in Section 1.

This type of outcome would arise in our village if S(n) were 4n 1 4, rather 
than 2n 1 4. Then T(n) 5 22n 2 1 396n 1 400, which is no longer linear in n. In 
fact, a graphing calculator or some basic calculus shows that this T(n) is maxi-
mized at n 5 99 rather than at n 5 100 as was true before. The change to the 
payoff structure has created an inequality in the payoffs—the shirkers fare better 
than the participants—which adds another dimension of difficulty to society’s 
attempts to resolve the dilemma. How, for example, would the village designate 
exactly one farmer to be the shirker?

B.  Multiplayer Chicken

Now we consider some of the other configurations that can arise in the payoffs. 
For example, when P(n) 5 4n 1 36, so P(n 1 1) 5 4n 1 40, and S(n) 5 5n, the two 
payoff curves will cross in the figure. This case is illustrated in Figure 11.7. Here, 
for small values of n, P(n 1 1) . S(n), so if few others are participating, your 
choice is to participate. For large values of n, P(n 1 1) , S(n), so if many oth-
ers are participating, your choice is to shirk. Note the equivalence of these two 
statements to the idea in the two-person chicken game that “you shirk if your  
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neighbor works and you work if he shirks.” This case is indeed that of chicken. 
More generally, the chicken case occurs when you are given a choice between 
two actions, and you prefer to do the one that most others are not doing.

We can also use Figure 11.7 to determine the location of the Nash equilib-
rium of this version of the game. Because you choose to participate when n is 
small and to shirk when n is large, the equilibrium must be some intermedi-
ate value of n. Only at that n where the two curves intersect are you indifferent  
between your two choices. This location represents the equilibrium value of n. 
In our graph, P(n 1 1) 5 S(n) when 4n 1 40 5 5n or when n 5 40; that is the 
Nash equilibrium number of farmers from the village who will participate in the 
irrigation project.

If the two curves intersect at a point corresponding to an integer value of n, 
then that is the Nash equilibrium number of participants. If that is not the case, 
then strictly speaking the game has no Nash equilibrium. But in practice, if the 
current value of n in the population is the integer just to the left of the point of 
intersection, then one more person will just want to participate, whereas if the 
current value of n is the integer just to the right of the point of intersection, one 
person will want to switch to shirking. Therefore, the number of participants 
will stay in a small neighborhood of the point of intersection, and we can justifi-
ably speak of the intersection as the equilibrium in some approximate sense.

The payoff structure illustrated in Figure 11.7 shows both lines positively 
sloped, although they don’t have to be. It is conceivable that the benefit for each 
person is smaller when more people participate, so the lines could be negatively 
sloped instead. The important feature of the chicken collective-action game is 
that when few people are taking one action, it is better for any one person to 

0 

Payoff 

N –1 

P(n + 1) 

S(n)

Number n of
other participants

FIGURE 11.7  multiplayer Chicken payoff graph
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take that action; when many people are taking one action, it is better for any one 
person to take the other action.

What is the socially optimal outcome in the chicken form of collective  
action? If each participant’s payoff P(n) increases as the number of participants 
increases, and if each shirker’s payoff S(n) does not become too much greater 
than the P(n) of each participant, then the total social payoff is maximized 
when everyone participates. This is the outcome in our example where T(n) 5 
536n 2 n 2 ; total social payoff increases in n beyond the value of N (100 here), so 
n 5 N is the social optimum.

But more generally, some cases of chicken will entail social optima in which 
it is better to let some shirk. If our group of farmers numbered 300 instead of 100, 
our example here would yield such an outcome. The socially optimal number 
of participants, found on a graphing calculator or using calculus, would be 268. 
This is exactly the difference between versions I and II of chicken in our example 
in Section 1. For an exercise, you may try generating a payoff structure that leads 
to such an outcome for our village of 100 farmers. In these more general chicken 
games, the optimal number of participants could even be smaller than that in the 
Nash equilibrium. We return to examine the question of the social optimum of all 
of these versions of the game in greater detail in Section 3.

C.  Multiplayer Assurance

Finally, we consider the third possible type of collective-action game, assurance. 
Figure 11.8 shows the payoff lines for the assurance case, where we suppose that 
the village farmers get P(n 1 1) 5 4n 1 4 and S(n) 5 2n 1 100. Here S(n) .  

Number n of
other participants

0 

Payoff 

N –1 

P(n + 1) 

S(n)

FIGURE 11.8  multiplayer assurance payoff graph
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P(n 1 1) for small values of n, so if few others are participating, then you want to 
shirk, too. But P(n 1 1) . S(n) for large values of n, so if many others are partici-
pating, then you want to participate too. In other words, unlike chicken, assur-
ance is a collective-action game in which you want to make the choice that the 
others are making. 

Except for the labels, the graph in Figure 11.8 looks nearly identical to that 
in Figure 11.7. The location of the Nash equilibrium depends critically on the 
labels associated with the two lines, however. In Figure 11.8, for any initial value 
of n to the left of the intersection, each farmer will want to shirk, and there will 
be a Nash equilibrium at n 5 0 where everyone shirks. But the opposite is true to 
the right of the intersection. In that portion of the graph, each farmer will want 
to participate, and there will be a second Nash equilibrium at n 5 N. 

Technically, there is also a third Nash equilibrium of this game if the value of 
n at the intersection is an integer value as it is in our example. There we find that 
P(n 1 1) 5 4n 1 4 5 2n 1 100 5 S(n) when n 5 48. Then if n were exactly 48, we 
would see an outcome in which there were some participants and some shirk-
ers. This situation could be an equilibrium only if the value of n is exactly right.
Even then, it would be a highly unstable situation. If any one farmer acciden-
tally joined the wrong group, his choice would alter the incentives for everyone 
else, driving the game to one of the endpoint equilibria. Those are the two stable 
Nash equilibria of the game. 

The social optimum in this game is fairly easy to see on the graph in Figure 
11.8. Because both curves are rising—so each person is better off if more people  
participate—then clearly the right-hand extreme equilibrium is the better one 
for society. This is confirmed in our example by noting that T(n) 5 2n 2  1 100n
 1 10,000, which is increasing in n for all positive values of n; thus the socially 
optimal value of n is the largest one possible, or n 5 N. In the assurance case, 
then, the socially optimal outcome is actually one of the stable Nash equilibria 
of the game. As such, it may be easier to achieve than in some of the other cases. 
The critical question regarding the social optimum, regardless of whether it rep-
resents a Nash equilibrium of the underlying game, is how to bring it about.

So far, our examples have focused on relatively small groups of 2 or 100 per-
sons. When the total number of people in the group, N, is very large, however, and 
any one person makes only a very small difference, then P(n 1 1) is almost the 
same as P(n). Thus, the condition under which any one person chooses to shirk 
is P(n) , S(n). Expressing this inequality in terms of the benefits and costs of the 
common project in our example—namely, P(n) 5 B(n) – C(n) and S(n) 5 B(n)—
we see that P(n) [unlike P(n 1 1) in our preceding calculations] is always less than 
S(n); individual persons will always want to shirk when N is very large. That is why 
problems of collective provision of public projects in a large group almost always 
manifest themselves as prisoners’ dilemmas. But as we have seen, this result is 
not necessarily true for smaller groups. Neither is it true for large groups in other  
contexts such as congestion, a case we discuss later in this chapter. 
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In general, we must allow for a broader interpretation of the payoffs P(n) and 
S(n) than we did in the specific case involving the benefits and the costs of a proj-
ect. We cannot assume, for example, that the payoff functions will be linear. In 
fact, in the most general case, P(n) and S(n) can be any functions of n and can 
intersect many times. Then there can be multiple equilibria, although each can 
be thought of as representing one of the types described so far.3 And some games 
will be of the common-resource type as well, so when we allow for completely 
general games, we will speak of two actions labeled P and S, which have no  
necessary connotation of “participation” and “shirking” but allow us to con-
tinue with the same symbols for the payoffs. Thus, when n players are taking the 
action P, P(n) becomes the payoff of each player taking the action P , and S(n)  
becomes that of each player taking the action S.

3 SPILLOVERS, OR EXTERNALITIES

So far, we have seen that collective-action games occur in prisoners’ dilemma, 
chicken, and assurance forms. We have also seen that the Nash equilibria in 
such games rarely yield the socially optimal level of participation (or restraint). 
And even when the social optimum is a Nash equilibrium, it is usually only one 
of several equilibria that may arise. Now we delve further into the differences 
between the individual (or private) incentives in such games and the group (or 
social) incentives. We also describe more carefully the effects of each individual’s 
decision on other individuals as well as on the collective. This analysis makes 
explicit why differences in incentives exist, how they are manifested, and how 
one might go about achieving socially better outcomes than those that arise in 
Nash equilibrium.

A.  Commuting and Spillovers

We start by thinking about a large group of 8,000 commuters who drive every 
day from a suburb to the city and back. As one of these commuters, you may 
take either the expressway (action P) or a network of local roads (action S). The 

3 Several exercises at the end of this chapter present some examples of simple situations with non-
linear payoff curves and multiple equilibria. For a more general analysis and classification of such 
diagrams, see Thomas Schelling, Micromotives and Macrobehavior (New York: W. W. Norton & Com-
pany, 1978), ch. 7. The theory can be taken further by allowing each player a continuous choice (for 
example, the number of hours of participation) instead of just a binary choice of whether to par-
ticipate. Many such situations are discussed in more specialized books on collective action, for ex-
ample, Todd Sandler, Collective Action: Theory and Applications (Ann Arbor: University of Michigan 
Press, 1993), and Richard Cornes and Todd Sandler, The Theory of Externalities, Public Goods, and 
Club Goods, 2nd ed. (New York: Cambridge University Press, 1996).
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local-roads route takes a constant 45 minutes, no matter how many cars are 
going that way. The expressway takes only 15 minutes when uncongested. But 
every driver who chooses the expressway increases the time for every other 
driver on the expressway by 0.005 minutes (about one-quarter of a second).

Measure the payoffs in minutes of time saved—by how much the com-
mute time is less than 1 hour, for instance. Then the payoff to drivers on the 
local roads, S(n), is a constant 60 2 45 5 15, regardless of the value of n. But 
the payoff to drivers on the expressway, P(n), depends on n; in particular, 
P(n) 5 60 2 15 5 45 for n 5 0, but P(n) decreases by 51,000 (or 1200) for every 
commuter on the expressway. Thus, P(n) 5 45 2 0.005n. We graph the two pay-
off lines in Figure 11.9.

Suppose that initially 4,000 cars are on the expressway; n 5 4,000. With so 
many cars on that road, it takes each of them 15 + 4,000 × 0.005 5 15 1 20 5 35 
minutes to commute to work; each gets a payoff of P(n) 5 25 [which is 60 2 35,  
or P(4,000)]. As shown in Figure 11.9, that payoff is better than what local-road 
drivers obtain. You, a local-road driver, might therefore decide to switch from 
driving the local roads to driving on the expressway. Your switch would increase 
by 1 the value of n and would thereby affect the payoffs of all the other com-
muters. There would now be 4,001 drivers (including you) on the expressway, 
and the commute time for each would be 35 and 1200, or 35.005, minutes; each 
would now get a payoff of P(n 1 1) 5 P(4,001) 5 24.995. This payoff is still higher 
than the 15 from driving on the local roads. Thus, you have a private incentive to 
make the switch, because for you, P(n 1 1) . S(n) (24.995 . 15). 

Number on
expressway, n (000)

Payoff 
(minutes 

under 60) 

S(n)

P(n + 1)

3 4 5 6 8 7 2 0 1 

45 

15 

25

FIGURE 11.9  Commuting route-Choice game
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Your switch yields you a private gain—because it is privately enjoyed by 
you  —equal to the difference between your payoffs before and after the switch; 
this private gain is P(n 1 1) 2 S(n) 5 9.995 minutes. Because you are only one 
person and therefore a small part of the whole group, the gain in payoff that you 
receive in relation to the total group payoff is small, or marginal. Thus, we call 
your gain the marginal private gain associated with your switch. 

But now the 4,000 other drivers on the expressway each take 0.005 of a min-
ute more as a result of your decision to switch; the payoff to each changes by 
P(4,001) 2 P(4,000) 5 20.005. Similarly, the drivers on the local roads face a 
payoff change of S(4,001) 2 S(4,000), but this is zero in our example. The cumu-
lative effect on all of these other drivers is 4,000 3 20.005 5 220 (minutes). Your 
action, switching from local roads to expressway, has caused this effect on the 
others’ payoffs. Whenever one person’s action affects others like this, it is called 
a spillover effect, external effect, or externality. Again, because you are but a 
very small part of the whole group, we should actually call your effect on others 
the marginal spillover effect. 

Taken together, the marginal private gain and the marginal spillover effect 
are the full effect of your switch on the group of commuters, or the overall mar-
ginal change in the whole group’s or the whole society’s payoff. We call this the 
marginal social gain associated with your switch. This “gain” may actually be 
positive or negative, so the use of the word gain is not meant to imply that all 
switches will benefit the group as a whole. In fact, in our commuting example, 
the overall marginal social gain is 9.995 2 20 5 210.005 (minutes). Thus, the 
overall social effect of your switch is bad; the social payoff is reduced by a total 
of just over 10 minutes.

B.  Spillovers: The General Case

We can describe the effects we observe in the commuting example more gen-
erally by returning to our total social payoff function, T(n), where n represents 
the number of people choosing P, so N 2 n is the number of people choosing S.  
Suppose that initially n people have chosen P and that one person switches from 
S to P. Then the number choosing P increases by 1 to (n 1 1), and the number 
choosing S decreases by 1 to (N 2 n 2 1), so the total social payoff becomes

 T(n 1 1) 5 (n 1 1) P(n 1 1) 1 [N 2 (n 1 1)] S(n 1 1).

The increase in the total social payoff is the difference between T(n) and T(n 11):

 T(n 1 1) 2 T(n) 5 (n 1 1) P(n 1 1) + [N 2 (n 1 1)] S(n 1 1) 2 n P(n) 1 (N 2 n) S(n)
         5 [P(n 1 1) 2 S(n)] 1 n [P(n 1 1) 2 P(n)]
 1 [N 2 (n 1 1)] [S(n 1 1) 2 S(n)]      (11.1)

after collecting and rearranging terms.
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Equation (11.1) describes mathematically the various different effects of 
one person’s switch from S to P that we saw earlier in the commuting example. 
The equation shows how the marginal social gain is divided into the marginal 
change in payoffs for the subgroups of the population.

The first of the three terms in Eq. (11.1)—namely, [P(n 1 1) 2 S(n)]—is the 
marginal private gain enjoyed by the person who switches. As we saw above, this 
term is what drives a person’s choice, and all such individual choices then deter-
mine the Nash equilibrium.

The second and third terms in Eq. (11.1) are just the quantifications of the 
spillover effects of one person’s switch on the others in the group. For the n other 
people choosing P, each sees his payoff change by the amount [P(n 1 1) 2 P(n)] 
when one more person switches to P; this spillover effect is seen in the second 
group of terms in Eq. (11.1). There are also N 2 (n 1 1) (or N 2 n 2 1) others 
still choosing S after the one person switches, and each of these players sees his  
payoff change by [S(n 1 1) 2 S(n)]; this spillover effect is shown in the third 
group of terms in the equation. Of course, the effect that one driver’s switch has 
on the time for any one driver on either route is very small, but, when there are 
numerous other drivers (that is, when N is large), the full spillover effect can be 
substantial.

Thus, we can rewrite Eq. (11.1) for a general switch of one person from ei-
ther S to P or P to S as:

 Marginal social gain 5 marginal private gain 1 marginal spillover effect.

For an example in which one person switches from S to P, we have

         Marginal social gain 5 T(n 1 1) 2 T(n),
      Marginal private gain 5 P(n 1 1) 2 S(n), and
 Marginal spillover effect 5 n[P(n 1 1) 2 P(n)] 1 [N 2 (n 1 1)] [S(n 1 1) 2 S(n)].

USING CALCULUS fOR THE GENERAL CASE Before examining some spillover situations in 
more detail to see what can be done to achieve socially better outcomes, we re-
state the general concepts of the analysis in the language of calculus. If you do 
not know this language, you can omit the remainder of this section without loss 
of continuity; if you do know it, you will find the alternative statement much 
simpler to grasp and to use than the algebra employed earlier.

If the total number N of people in the group is very large—say, in the hun-
dreds or thousands—then one person can be regarded as a very small, or infini-
tesimal, part of this whole. This allows us to treat the number n as a continuous 
variable. If T (n) is the total social payoff, we calculate the effect of changing n 
by considering an increase of an infinitesimal marginal quantity dn, instead of 
a full unit increase from n to (n 1 1). To the first order, the change in payoff is 
T 9(n)dn, where T 9(n) is the derivative of T (n) with respect to n. Using the expres-
sion for the total social payoff,

6841D CH11 UG.indd   434 12/18/14   3:14 PM



s p i l l o v e r s , o r  e x t e r n a l i t i e s   4 3 5

 T (n) 5 nP(n) 1 (N 2 n) S(n),

and differentiating, we have

 T 9(n) 5 P(n) 1 nP 9(n) 2 S 9(n) 1 (N 2 n)S 9(n)
            5 [P(n) 2 S(n)] 1 nP 9(n) 1 (N 2 n)S 9(n).        (11.2)

This is the calculus equivalent of Eq. (11.1). T 9(n) represents the marginal so-
cial gain. The marginal private gain is P(n) 2 S(n), which is just the change in 
the payoff of the person making the switch from S to P. In Eq. (11.1), we had  
P(n + 1) 2 S(n) for this change in payoff; now we have P(n) 2 S(n). This is be-
cause the infinitesimal addition of dn to the group of the n people choosing P 
does not change the payoff to any one of them by a significant amount. However, 
the total change in their payoff, nP9(n), is sizable and is recognized in the calcu-
lation of the spillover effect [it is the second term in Eq. (11.2)] as is the change 
in the payoff of the (N 2 n) people choosing S [namely, (N 2 n) S9(n)], the third 
term in Eq. (11.2). These last two terms constitute the marginal-spillover-effect 
part of Eq. (11.2).

In the commuting example, we had P(n) 5 45 2 0.005n, and S(n) 5 15. 
Then with the use of calculus, we see that the private marginal gain for each 
driver who switches to the expressway when n drivers are already using it is  
P(n) 2 S(n) 5 30 2 0.005n. Because P 9(n) 5 20.005 and S 9(n) 5 0, the spillover ef-
fect is n 3 (20.005) 1 (N 2 n) 3 0 5 20.005n, which equals 220 when n 5 4,000. 
The answer is the same as before, but calculus simplifies the derivation and 
helps us find the optimum directly.

C.  Commuting Revisited: Negative Externalities

A negative externality exists when the action of one person lowers others’ payoffs; 
it imposes some extra costs on the rest of society. We saw this in our commut-
ing example, where the marginal spillover effect of one person’s switch to the 
expressway was negative, entailing an extra 20 minutes of drive time for other 
commuters. But the individual who changes his route to work does not take the 
spillover—the externality—into account when making his choice. He is moti-
vated only by his own payoffs. (Remember that any guilt that he may suffer from 
harming others should already be reflected in his payoffs.) He will change his 
action from S to P as long as this change has a positive marginal private gain. He 
is then made better off by the change.

But society would be better off if the commuter’s decision were governed 
by the marginal social gain. In our example, the marginal social gain is nega-
tive (210.005), but the marginal private gain is positive (9.995), so the individual 
driver makes the switch even though society as a whole would be better off if 
he did not do so. More generally, in situations with negative externalities, the 
marginal social gain will be smaller than the marginal private gain due to the 
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existence of the negative spillover effect. Individuals will make decisions based 
on a cost-benefit calculation that is the wrong one from society’s perspective. 
As a result, individual persons will choose actions with negative spillover effects 
more often than society would like them to do.

We can use Eq. (11.1) to calculate the precise conditions under which a 
switch will be beneficial for a particular person versus for society as a whole. 
Recall that if n people are already using the expressway and another driver is 
contemplating switching from the local roads to the expressway, he stands to 
gain from this switch if P(n 1 1) . S(n), whereas the total social payoff increases 
if T(n 1 1) 2 T(n) . 0. The private gain is positive if

 45 2 (n 1 1) × 0.005  . 15

 44.995 2 0.005n  . 15

 n  , 200 (44.995 2 15) = 5,999,

whereas the condition for the social gain to be positive is

 45 2 (n 1 1) × 0.005 2 15 2 0.005n  . 0

 29.995 2 0.01n  . 0

 n  , 2,999.5.

Thus, if given the free choice, commuters will crowd onto the expressway 
until there are almost 6,000 of them, but all crowding beyond 3,000 reduces the 
total social payoff. Society as a whole would be best off if the number of com-
muters on the expressway were kept down to 3,000.

We show this result graphically in Figure 11.10; this figure replicates Figure 
11.9 with the addition of marginal private and social gain lines. The two lines in-
dicating P(n 1 1) and S(n) meet at n 5 5,999; that is, at the value of n for which 
P(n 1 1) 5 S(n) or for which the marginal private gain is just zero. Everywhere to 
the left of this value of n, any one driver on the local roads calculates that he gets 
a positive gain by switching to the expressway. As some drivers make this switch, 
the numbers on the expressway increase—the value of n in society rises as was 
the case in our example in Section 3.A. Conversely, to the right of the intersection 
point (that is, for n . 5,999), S(n) . P(n 1 1); so each of the (n 1 1) drivers on the 
expressway stands to gain by switching to the local road. As some do so, the num-
bers on the expressway decrease and n falls. From the left of the intersection, this 
process converges to n 5 5,999 and, from the right, it converges to 6,000.

If we had used the calculus approach, we would have regarded 1 as a very 
small increment in relation to n and graphed P(n) instead of P(n 1 1). Then the 
intersection point would have been at n 5 6,000 instead of at 5,999. As you can 
see, it makes very little difference in practice. What this means is that we can 
call n 5 6,000 the Nash equilibrium of the route-choice game when choices are 
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governed by purely individual considerations. Given a free choice, 6,000 of the 
8,000 total commuters will choose the expressway, and only 2,000 will drive on 
the local roads.

But we can also interpret the outcome in this game from the perspective of 
the whole society of commuters. Society benefits from an increase in the num-
ber of commuters, n, on the expressway when T(n 1 1) 2 T(n) . 0 and loses 
from an increase in n when T(n 1 1) 2 T(n) , 0. To figure out how to show this 
on the graph, we express the idea somewhat differently; we rearrange Eq. (11.1) 
into two pieces, one depending only on P and the other depending only on S:

 T(n 1 1) 2 T(n)  5 (n 1 1) P(n 1 1) 1 [N 2 (n 1 1)] S(n 1 1) 2 nP(n) 2 [N 2 n] S(n) 

   5 {P(n 1 1) + n[P(n 1 1) 2 P(n)]}

      2 {S(n) 1 [N 2 (n 1 1)][S(n 1 1) 2 S(n)]}.

The expression in the first set of braces is the effect on the payoffs of the 
set of commuters who choose P; this expression includes the P(n 1 1) of the 
switcher and the spillover effect, n[P(n 1 1) 2 P(n)], on all the other n commut-
ers who choose P. We call this the marginal social payoff for the P-choosing sub-
group, when their number increases from n to n 1 1, or MP(n 1 1) for short. 
Similarly, the expression in the second set of braces is the marginal social pay-
off for the S-choosing subgroup, or MS(n) for short. Then, the full expression for 
T(n 1 1) 2 T(n) tells us that the total social payoff increases when one person 
switches from S to P (or decreases if the switch is from P to S) if MP(n 1 1) . 
MS(n). The total social payoff decreases when one person switches from S to P 
(or increases when the switch is from P to S) if MP(n 1 1) , MS(n).

Number on
expressway, n (000)

Payoff 
(minutes 

under 60) 

MP(n + 1) 

S(n) = MS(n)

P(n + 1) 

3 4 5 6 8 7 2 0 1 

45 

15 

30 

FIGURE 11.10  equilibrium and optimum in route-Choice game
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Using our expressions for P(n 1 1) and S(n) in the commuting example, we 
have

 MP(n 1 1) = 45 2 (n 1 1) × 0.005 1 n 3 (20.005) 5 44.995 2 0.01n

while MS(n) 5 15 for all values of n. Figure 11.10 includes graphs of the rela-
tions MP(n 1 1) and MS(n). Note that the MS(n) coincides with S(n) everywhere  
because the local roads are never congested. But the MP(n 1 1) curve lies below 
the P(n 1 1) curve. Because of the negative spillover, the social gain from one 
person’s switching to the expressway is less than the private gain to the switcher.

The MP(n 1 1) and MS(n) curves meet at n = 2,999, or approximately 3,000. 
To the left of this intersection, MP(n 1 1) . MS(n), and society stands to gain by 
allowing one more person on the expressway. To the right, the opposite is true, 
and society stands to gain by shifting one person from the expressway to the 
local roads. Thus, the socially optimal allocation of drivers is 3,000 on the ex-
pressway and 3,000 on the local roads.

If you wish to use calculus, you can write the total payoff for the expressway 
drivers as nP(n) 5 n(45 2 0.005n) 5 45n − 0.005n2. Then MP(n 1 1) is the de-
rivative of this with respect to n—namely, 45 2 0.005 × 2n 5 45 2 0.01n. The rest 
of the analysis can proceed as before.

How might this society achieve the optimum allocation of its drivers? Differ-
ent cultures and political groups use different systems, each with its own mer-
its and drawbacks. The society could simply restrict access to the expressway to 
3,000 drivers. But how would it choose those 3,000? It could adopt a first-come, 
first-served rule, but then drivers would race each other to get there early and 
waste a lot of time. A bureaucratic society could set up criteria based on complex 
calculations of needs and merits as defined by civil servants; then everyone will 
undertake some costly activities to meet these criteria. In a politicized society, 
the important “swing voters” or organized pressure groups or contributors may 
be favored. In a corrupt society, those who bribe the officials or the politicians 
may get the preference. A more egalitarian society could allocate the rights to 
drive on the expressway by lottery or could rotate them from one month to the 
next. A scheme that lets you drive only on certain days, depending on the last 
digit of your car’s license plate, is an example. But such a scheme is not so egali-
tarian as it seems, because the rich can have two cars and choose license-plate 
numbers that will allow them to drive every day.

Many economists prefer a more open system of charges. Suppose each 
driver on the expressway is made to pay a tax t, measured in units of time. Then 
the private benefit from using the expressway becomes P(n) 2 t, and the num-
ber n in the Nash equilibrium will be determined by P(n) 2 t 5 S(n). (Here, we 
are ignoring the tiny difference between P(n) and P(n 1 1), which is possible 
when N is very large.) We know that the socially optimal value of n is 3,000. Using 
the expressions P(n) 5 45 2 0.005n and S(n) = 15, and plugging in 3,000 for n, 
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we find that P(n) 2 t 5 S(n)—that is, drivers are indifferent between the express-
way and the local roads—when 45 2 15 2 t 5 15, or t 5 15. If we value time at 
the minimum wage of about $5 an hour, 15 minutes comes to $1.25. This is the 
tax or toll that, when charged, will keep the numbers on the expressway down to 
what is socially optimal.

Note that when 3,000 drivers are on the expressway, the addition of one 
more increases the time spent by each of them by 0.005 minute, for a total of 15 
minutes. This is exactly the tax that each driver is being asked to pay. In other 
words, each driver is made to pay the cost of the negative spillover that he im-
poses on the rest of society. This “brings home” to each driver the extra cost of 
his action and therefore induces him to take the socially optimal action; econ-
omists say the individual person is being made to internalize the externality. 
This idea, that people whose actions hurt others are made to pay for the harm 
that they cause, adds to the appeal of this approach. But the proceeds from the 
tax are not used to compensate the others directly. If they were, then each ex-
pressway user would count on receiving from others just what he pays, and the 
whole purpose would be defeated. Instead, the proceeds of the tax go into gen-
eral government revenues, where they may or may not be used in a socially ben-
eficial manner.

Those economists who prefer to rely on markets argue that if the expressway 
has a private owner, his profit motive will induce him to charge just enough for 
its use to reduce the number of users to the socially optimal level. An owner 
knows that if he charges a tax t for each user, the number of users n will be de-
termined by P(n) 2 t 5 S(n). His revenue will be tn = n[P(n) 2 S(n)], and he 
will act in such a way as to maximize this revenue. In our example, the revenue 
is n[45 2 0.005n 2 15] 5 n[30 2 0.005n] 5 30n 2 0.005n2. It is easy to see this 
revenue is maximized when n = 3,000. But in this case, the revenue goes into the 
owner’s pocket; most people regard that as a bad solution.

D.  Positive Spillovers

Many matters pertaining to positive spillovers or positive externalities can be 
understood simply as mirror images of those for negative spillovers. A person’s 
private benefits from undertaking activities with positive spillovers are less than 
society’s marginal benefits from such activities. Therefore, such actions will be 
underutilized and their benefits underprovided in the Nash equilibrium. A bet-
ter outcome can be achieved by augmenting people’s incentives; providing 
those persons whose actions create positive spillovers with a reward just equal 
to the spillover benefit will achieve the social optimum.

Indeed, the distinction between positive and negative spillovers is to some 
extent a matter of semantics. Whether a spillover is positive or negative depends 
on which choice you call P and which you call S. In the commuting example, 
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suppose we called the local roads P and the expressway S. Then one commuter’s 
switch from S to P will reduce the time taken by all the others who choose S, so 
this action will convey a positive spillover to them. In another example, consider 
vaccination against some infectious disease. Each person getting vaccinated re-
duces his own risk of catching the disease (marginal private gain) and reduces the  
risk of others’ getting the disease through him (spillover). If being unvaccinated 
is called the S action, then getting vaccinated has a positive spillover effect. If re-
maining unvaccinated is called the P action, then the act of remaining unvacci-
nated has a negative spillover effect. This has implications for the design of policy 
to bring individual action into conformity with the social optimum. Society can 
either reward those who get vaccinated or penalize those who fail to do so.

But actions with positive spillovers can have one very important new fea-
ture that distinguishes them from actions with negative spillovers—namely, 
positive feedback. Suppose the spillover effect of your choosing P is to increase 
the payoff to the others who are also choosing P. Then your choice increases the 
attraction of that action (P) and may induce some others to take it also, setting 
in train a process that culminates in everyone’s taking that action. Conversely, if 
very few people are choosing P, then it may be so unattractive that they, too, give 
it up, leading to a situation in which everyone chooses S. In other words, posi-
tive feedback can give rise to multiple Nash equilibria, which we now illustrate 
by using a very real example.

When you buy a computer, you have to choose between one with a Win-
dows operating system and one with an operating system based on Unix, such 
as Linux. As the number of Unix users rises, the better it will be to purchase 
such a computer. The system will have fewer bugs because more users will 
have detected those that exist, more application software will be available, and 
more experts will be available to help with any problems that arise. Similarly, 
a Windows-based computer will be more attractive the more Windows users 
there are. In addition, many computing aficionados would argue that the Unix  
system is superior. Without necessarily taking a position on that matter, we 
show what will happen if that is the case. Will individual choice lead to the  
socially best outcome?

A diagram similar to Figures 11.6 through 11.8 can be used to show the  
payoffs to an individual computer purchaser of the two strategies, Unix and 
Windows. As shown in Figure 11.11, the Unix payoff rises as the number of Unix 
users rises, and the Windows payoff rises as the number of Unix owners falls (the 
number of Windows users rises). As already explained, the diagram is drawn as-
suming that the payoff to Unix users when everyone in the population is a Unix 
user (at the point labeled U) is higher than the payoff to Windows users when 
everyone in the population is a Windows user (at W).

If the current population has only a small number of Unix users, then the 
situation is represented by a point to the left of the intersection of the two payoff  
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lines at I, and each individual user finds it better to choose Windows. When there 
is a larger number of Unix users in the population, placing the society to the 
right of I, it is better for each person to choose Unix. Thus, a mixed population of  
Unix and Windows users is sustainable as an equilibrium only when the current 
population has exactly I Unix users; only then will no member of the population 
have any incentive to switch platforms. And even that situation is unstable. Sup-
pose just one person accidentally makes a different decision. If he switches to 
Windows, his choice will push the population to the left of I, in which case oth-
ers will have an incentive to switch to Windows, too. If he switches to Unix, the 
population point moves to the right of I, creating an incentive for more people 
to switch to Unix. The cumulative effect of these switches will eventually push 
the society to an all-Unix or an all-Windows outcome; these are the two stable 
equilibria of the game.4

But which of the two stable equilibria will be achieved in this game? The 
answer depends on where the game starts. If you look at the configuration of 
today’s computer users, you will see a heavily Windows-oriented population. 
Thus, it seems that because there are so few Unix users (or so many PC users), 
the world is moving toward the all-Windows equilibrium. Schools, businesses, 
and private users have become locked in to this particular equilibrium as a re-
sult of an accident of history. If it is indeed true that Unix provides more ben-
efits to society when used by everyone, then the all-Unix equilibrium should 

4  The term positive feedback may create the impression that it is a good thing, but in technical lan-
guage the term merely characterizes the process and includes no general value judgment about the 
outcome. In this example, the same positive feedback mechanism could lead to either an all-Unix 
outcome or an all-Windows outcome; one outcome could be worse than the other.

Users’
benefits

Number of Unix users

I

Benefits 
from 

Windows

Benefits
from
Unix

All Windows All Unix

W

U

FIGURE 11.11  payoffs in operating-system-Choice game
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be preferred over the all-Windows one that we are approaching. Unfortunately, 
although society as a whole might be better off with the change, no individual 
computer user has an incentive to make a change from the current situation. 
Only coordinated action can swing the pendulum toward Unix. A critical mass 
of individual users, more than I in Figure 11.11, must use Unix before it becomes 
individually rational for others to choose the same operating system.

There are many examples of similar choices of convention being made by 
different groups of people. The most famous cases are those in which it has been 
argued, in retrospect, that a wrong choice was made. Advocates claim that steam 
power could have been developed for greater efficiency than gasoline; it cer-
tainly would have been cleaner. Proponents of the Dvorak typewriter/computer 
keyboard configuration claim that it would be better than the QWERTY  
keyboard if used everywhere. Many engineers agree that Betamax had more 
going for it than VHS in the video recorder market. In such cases, the whims of 
the public or the genius of advertisers help determine the ultimate equilibrium 
and may lead to a “bad” or “wrong” outcome from society’s perspective. Other 
situations do not suffer from such difficulties. Few people concern themselves 
with fighting for a reconfiguration of traffic-light colors, for example.5

The ideas of positive feedback and lock-in find an important application in 
macroeconomics. Production is more profitable the higher the level of demand 
in the economy, which happens when national income is higher. In turn, in-
come is higher when firms are producing more and are therefore hiring more 
workers. This positive feedback creates the possibility of multiple equilibria, 
of which the high-production, high-income one is better for society, but indi-
vidual decisions may lock the economy into the low-production, low-income 
equilibrium. The better equilibrium could be turned into a focal point by public  
declaration—“the only thing we have to fear is fear itself”—but the government 
can also inject demand into the economy to the extent necessary to move it to 
the better equilibrium. In other words, the possibility of unemployment due 
to a deficiency of aggregate demand—as discussed in the supply-and-demand 
language of economic theory by the British economist John Maynard Keynes 
in his well-known 1936 book titled Employment, Interest, and Money—can 
be seen from a game-theoretic perspective as the result of a failure to solve a  
collective-action problem.6

5 Not everyone agrees that the Dvorak keyboard and the Betamax video recorder were clearly su-
perior alternatives. See two articles by S. J. Liebowitz and Stephen E. Margolis, “Network External-
ity: An Uncommon Tragedy,” Journal of Economic Perspectives, vol. 8 (Spring 1994), pp. 146–49, and 
“The Fable of the Keys,” Journal of Law and Economics, vol. 33 (April 1990), pp. 1–25.
6 John Maynard Keynes, Employment, Interest, and Money (London: Macmillan, 1936). See also John 
Bryant, “A Simple Rational-Expectations Keynes-type Model,” Quarterly Journal of Economics, vol. 
98 (1983), pp. 525–28, and Russell Cooper and Andrew John, “Coordination Failures in a Keynesian 
Model,” Quarterly Journal of Economics, vol. 103 (1988), pp. 441–63, for formal game-theoretic mod-
els of unemployment equilibria.
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4 A BRIEf HISTORY Of IDEAS

A.  The Classics

The problem of collective action has been recognized by social philosophers 
and economists for a very long time. The seventeenth-century British philoso-
pher Thomas Hobbes argued that society would break down in a “war of all 
against all” unless it was ruled by a dictatorial monarch, or Leviathan (the title 
of his book). One hundred years later, the French philosopher Jean-Jacques 
Rousseau described the problem of a prisoners’ dilemma in his Discourse on 
Inequality. A stag hunt needs the cooperation of the whole group of hunters to 
encircle and kill the stag, but any individual hunter who sees a hare may find 
it better for himself to leave the circle to chase the hare. But Rousseau thought 
that such problems were the product of civilization and that people in the nat-
ural state lived harmoniously as “noble savages.” At about the same time, two 
Scots pointed out some dramatic solutions to such problems. David Hume in 
his Treatise on Human Nature argued that the expectations of future returns of 
favors can sustain cooperation. Adam Smith’s Wealth of Nations developed a 
grand vision of an economy in which the production of goods and services mo-
tivated purely by private profit could result in an outcome that was best for soci-
ety as a whole.7

The optimistic interpretation persisted, especially among many economists 
and even several political scientists, to the point where it was automatically  
assumed that if an outcome was beneficial to a group as a whole, the actions 
of its members would bring the outcome about. This belief received a neces-
sary rude shock in the mid-1960s when Mancur Olson published The Logic of 
Collective Action. He pointed out that the best collective outcome would not 
prevail unless it was in each individual person’s private interest to perform his 
assigned action—that is, unless it was a Nash equilibrium. However, Olson did 
not specify the collective-action game very precisely. Although it looked like a  
prisoners’ dilemma, Olson insisted that it was not necessarily so, and we have 

7 The great old books cited in this paragraph have been reprinted many times in many different 
versions. For each, we list the year of original publication and the details of one relatively easily 
accessible reprint. In each case, the editor of the reprinted version provides an introduction that 
conveniently summarizes the main ideas. Thomas Hobbes, Leviathan; or the Matter, Form, and 
Power of Commonwealth Ecclesiastical and Civil, 1651 (Everyman Edition, London: J. M. Dent, 
1973); David Hume, A Treatise of Human Nature, 1739 (Oxford: Clarendon Press, 1976); Jean-Jacques 
Rousseau, A Discourse on Inequality, 1755 (New York: Penguin Books, 1984); Adam Smith, An Inquiry 
into the Nature and Causes of the Wealth of Nations, 1776 (Oxford: Clarendon Press, 1976).
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already seen that the problem can also take the form of a chicken game or an 
assurance game.8

Another major class of collective-action problems—namely, those concern-
ing the depletion of common-access resources—received attention at about 
the same time. If a resource such as a fishery or a meadow is open to all, each 
user will exploit it as much as he can, because any self-restraint on his part will 
merely make more available for the others to exploit. As we mentioned earlier, 
Garrett Hardin wrote a well-known article on this subject titled “The Tragedy of 
the Commons.” Common-resource problems are unlike our irrigation-project 
game, in which each person has a strong private incentive to free-ride off the 
efforts of others. In regard to a common resource, each person has a strong pri-
vate incentive to exploit it to the full, making everyone else pay the social cost 
that results from the degradation of the resource.

B.  Modern Approaches and Solutions

Until recently, many social scientists and most physical scientists took a Hobbes-
ian line on the common-resource problem, arguing that it can be solved only by 
a government that forces everyone to behave cooperatively. Others, especially 
economists, retained their Smithian optimism. They argued that placing the re-
source in proper private ownership, where its benefits can be captured in the 
form of profit by the owner, will induce the owner to restrain its use in a socially 
optimal manner. He will realize that the value of the resource (fish or grass, 
for example) may be higher in the future because less will be available, and  
therefore he can make more profit by saving some of it for that future.

Nowadays, thinkers from all sides have begun to recognize that  
collective-action problems come in diverse forms and that there is no uniquely 
best solution to all of them. They also understand that groups or societies do 
not stand helpless in the face of such problems, and they devise various ways to 
cope with them. Much of this work has been informed by game-theoretic analy-
sis of repeated prisoners’ dilemmas and similar games.9

Solutions to collective-action problems of all types must induce individual 
persons to act cooperatively or in a manner that would be best for the group, 
even though the person’s interests may best be served by doing something else—
in particular, taking advantage of the others’ cooperative behavior.10 Humans 

8 Mancur Olson, The Logic of Collective Action (Cambridge, Mass.: Harvard University Press, 1965). 
9 Prominent in this literature are Michael Taylor, The Possibility of Cooperation (New York: Cam-
bridge University Press, 1987); Elinor Ostrom, Governing the Commons (New York: Cambridge Uni-
versity Press, 1990); and Matt Ridley, The Origins of Virtue (New York: Viking Penguin, 1996).
10 The problem of the need to attain cooperation and its solutions are not unique to human socie-
ties. Examples of cooperative behavior in the animal kingdom have been explained by biologists in 
terms of the advantage of the gene and of the evolution of instincts. For more, see Chapter 12 and 
Ridley, Origins of Virtue.
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exhibit much in the way of cooperative behavior. The act of reciprocating gifts 
and skills at detecting cheating are so common in all societies and throughout  
history, for example, that there is reason to argue that they may be instincts.11 But 
human societies generally rely heavily on purposive social and cultural customs, 
norms, and sanctions in inducing cooperative behavior from their individual 
members. These methods are conscious, deliberate attempts to design the game 
in order to solve the collective-action problem.12 We approach the matter of  
solution methods from the perspective of the type of game being played.

A solution is easiest if the collective-action problem takes the form of an 
assurance game. Then it is in every person’s private interest to take the socially 
best action if he expects all other persons to do likewise. In other words, the 
socially optimal outcome is a Nash equilibrium. The only problem is that the 
same game has other, socially worse, Nash equilibria. Then all that is needed to 
achieve the best Nash equilibrium and thereby the social optimum is to make it 
a focal point—that is, to ensure the convergence of the players’ expectations on 
it. Such a convergence can result from a social custom, or convention—namely, 
a mode of behavior that finds automatic acceptance because it is in everyone’s 
interest to follow it so long as others are expected to do likewise. For example, if 
all the farmers, herders, weavers, and other producers in an area want to get to-
gether to trade their wares, all they need is the assurance of finding others with 
whom to trade. Then the custom that the market is held in village X on day Y of 
every week makes it optimal for everyone to be there on that day.13 

11 See Ridley, Origins of Virtue, ch. 6 and ch. 7.
12 The social sciences do not have precise and widely accepted definitions of terms such as custom 
and norm; nor are the distinctions among such terms always clear and unambiguous. We set out 
some definitions in this section, but be aware that you may find different usage in other books. Our 
approach is similar to those found in Richard Posner and Eric Rasmusen, “Creating and Enforcing 
Norms, with Special Reference to Sanctions,” International Review of Law and Economics, vol. 19, 
no. 3 (September 1999), pp. 369–82, and in David Kreps, “Intrinsic Motivation and Extrinsic Incen-
tives,” American Economic Review, Papers and Proceedings, vol. 87, no. 2 (May 1997), pp. 359–64; 
Kreps uses the term norm for all the concepts that we classify under different names. 

Sociologists have a different taxonomy of norms from that of economists; it is based on the im-
portance of the matter (trivial matters such as table manners are called folkways, and weightier mat-
ters are called mores), and on whether the norms are formally codified as laws. They also maintain 
a distinction between values and norms, recognizing that some norms may run counter to persons’ 
values and therefore require sanctions to enforce them. This distinction corresponds to ours be-
tween customs, internalized norms, and enforced norms. The conflict between individual values 
and social goals arises for enforced norms but not for customs or conventions, as we label them, or 
for internalized norms. See Donald Light and Suzanne Keller, Sociology, 4th ed. (New York: Knopf, 
1987), pp. 57–60. 
13 In his study of the emergence of cooperation, Cheating Monkeys and Citizen Bees (New York: Free 
Press, 1999), the evolutionary biologist Lee Dugatkin labels this case “selfish teamwork.” He argues 
that such behavior is likelier to arise in times of crisis, because each person is pivotal at those times. 
In a crisis, the outcome of the group interaction is likely to be disastrous for everyone if even one 
person fails to contribute to the group’s effort to get out of the dire situation. Thus, each person is 
willing to contribute so long as the others do. We will mention Dugatkin’s full classification of alter-
native approaches to cooperation in Chapter 12 on evolutionary games.
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One complication remains. For the desired outcome to be a focal point, 
each person must have confidence that all others understand it, which in turn 
requires that they have confidence that all others understand. . . . In other 
words, the point must be common knowledge. Usually, some prior social action 
is necessary to ensure that this is true. Publication in a medium that is known 
by everyone to be sufficiently widely read, and discussion in an inward-facing 
circle so everyone knows that everyone else was present and paying attention, 
are some methods used for this purpose.14 

Our analysis in Section 2 suggested that individual payoffs are often config-
ured in such a way that collective-action problems, particularly of large groups, 
take the form of a prisoners’ dilemma. Not surprisingly, the methods for coping 
with such problems have received the most attention.

The simplest method attempts to change people’s preferences so that the 
game is no longer a prisoners’ dilemma. If individuals get sufficient pleasure 
from cooperating, or suffer enough guilt or shame when they cheat, they will 
cooperate to maximize their own payoffs. If the extra payoff from cooperation is 
conditional—one gets pleasure from cooperating or guilt or shame from cheat-
ing if, but only if, many others are cooperating—then the game can turn into an 
assurance game. In one of its equilibria, everyone cooperates because everyone 
else does, and in the other, no one cooperates because no one else does. Then 
the collective-action problem is the simpler one of making the better equilib-
rium the focal point. If the extra payoff from cooperation is unconditional—
one gets pleasure from cooperating or guilt or shame from cheating regardless 
of what the others do—then the game can have a unique equilibrium where  
everyone cooperates. In many situations, it is not even necessary for everyone 
to have such payoffs. If a substantial proportion of the population does, that 
may suffice for the desired collective outcome. 

Some such prosocial preferences may be innate, hard wired in a biological 
evolutionary process. But they are more likely to be social or cultural products. 
Most societies make deliberate efforts to instill prosocial thinking in children 
during the process of socialization in families and schools. Growth of such pref-
erences is seen in experiments on ultimatum and dictator games of the kind we 
discussed in Chapter 3. When these experiments are conducted on children of 
different ages, very young children behave selfishly. By age eight, however, they 
develop a significant sense of equality. True prosocial preferences develop grad-
ually thereafter, with some relapses, finally to an adult fair-mindedness. Thus, a 

14 See Michael Chwe, Rational Ritual: Culture, Coordination, and Common Knowledge (Prince-
ton: Princeton University Press, 2001), for a discussion of this issue and numerous examples and  
applications of it.
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long process of education and experience instills internalized norms into peo-
ple’s preferences.15

However, people do differ in the extent to which they internalize pro-
social preferences, and the process may not go far enough to solve many  
collective-action problems. Most people have sufficiently broad understanding 
of what the socially cooperative action is in most situations, but individuals re-
tain the personal temptation to cheat. Therefore, a system of external sanctions 
or punishments is needed to sustain the cooperative actions. We call these widely 
understood but not automatically followed rules of behavior enforced norms.

In Chapter 10, we described in detail several methods for achieving a co-
operative outcome in prisoners’ dilemma games, including repetition, penalties 
(or rewards), and leadership. In that discussion, we were mainly concerned with 
two-person dilemmas. The same methods apply to enforcement of norms in 
collective-action problems in large groups, with some important modifications 
or innovations.

We saw in Chapter 10 that repetition was the most prominent of these meth-
ods; so we focus the most attention on it. Repetition can achieve cooperative 
outcomes as equilibria of individual actions in a repeated two-person prison-
ers’ dilemma by holding up the prospect that cheating will lead to a breakdown 
of cooperation. More generally, what is needed to maintain cooperation is the 
expectation in the mind of each player that his personal benefits from cheating 
are transitory and that they will quickly be replaced by a payoff lower than that 
associated with cooperative behavior. For players to believe that cheating is not 
beneficial from a long-term perspective, cheating should be detected quickly, 
and the punishment that follows (reduction in future payoffs) should be suffi-
ciently swift, sure, and painful.

A group has one advantage in this respect over a pair of individual persons. 
The same pair may not have occasion to interact all that frequently, but each 
of them is likely to interact with someone in the group all the time. Therefore, 
B’s temptation to cheat A can be countered by his fear that others, such as C, D, 
and so on, whom he meets in the future will punish him for this action. An ex-
treme case where bilateral interactions are not repeated and punishment must 
be inflicted on one’s behalf by a third party is, in Yogi Berra’s well-known saying, 
“Always go to other people’s funerals. Otherwise they won’t go to yours.”

But a group has some offsetting disadvantages over direct bilateral interac-
tion when it comes to sustaining good behavior in repeated interactions. The re-
quired speed and certainty of detection and punishment suffer as the numbers  

15 Colin Camerer, Behavioral Game Theory (Princeton: Princeton University Press, 2003), pp. 65–67. 
See also pp. 63–75 for an account of differences in prosocial behavior along different dimensions of 
demographic characteristics and across different cultures.

6841D CH11 UG.indd   447 12/18/14   3:14 PM



4 4 8   [ C h . 1 1 ]  C o l l e C t i v e - a C t i o n  g a m e s

in the group increase. One sees many instances of successful cooperation in 
small village communities that would be unimaginable in a large city or state.

Start with the detection of cheating, which is never easy. In most real situa-
tions, payoffs are not completely determined by the players’ actions but are sub-
ject to some random fluctuations. Even with two players, if one gets a low payoff, 
he cannot be sure that the other cheated; it may have been just a bad draw of 
the random shock. With more people, an additional question enters the picture: 
If someone cheated, who was it? Punishing someone without being sure of his 
guilt beyond a reasonable doubt is not only morally repulsive but also counter-
productive. The incentive to cooperate gets blunted if even cooperative actions 
are susceptible to punishment by mistake.

Next, with many players, even when cheating is detected and the cheater 
identified, this information has to be conveyed sufficiently quickly and accu-
rately to others. For this, the group must be small or else must have a good com-
munication or gossip network. Also, members should not have much reason to 
accuse others falsely.

Finally, even after cheating is detected and the information spread to the 
whole group, the cheater’s punishment—enforcement of the social norm—
has to be arranged. A third person often has to incur some personal cost to 
inflict such punishment. For example, if C is called on to punish B, who had 
previously cheated A, C may have to forgo some profitable business that he 
could have transacted with B. Then the inflicting of punishment is itself a  
collective-action game and suffers from the same temptation to “shirk,” that 
is, not to participate in the punishment. A society could construct a second-
round system of punishments for shirking, but that in turn may be yet another 
collective-action problem! However, humans seem to have evolved an instinct 
whereby people get some personal pleasure from punishing cheaters even when 
they have not themselves been the victims of this particular act of cheating.16 In-
terestingly, the notion that “one should impose sanctions, even at personal cost, 
on violators of enforced social norms” seems itself to have become an internal-
ized norm.17

Norms are reinforced by observation of society’s general adherence to them, 
and they lose their force if they are frequently seen to be violated. Before the 

16 For evidence of such altruistic punishment instinct, see Ernst Fehr and Simon Gächter, “Altruistic 
Punishment in Humans,” Nature, vol. 415 (January 10, 2002), pp. 137–40.
17 Our distinction between internalized norms and enforced norms is similar to Kreps’s distinction 
between functions (iii) and (iv) of norms (Kreps, “Intrinsic Motivation and Extrinsic Incentives,” p. 
359). Society can also reward desirable actions just as it can punish undesirable ones. Again, the 
rewards, financial or otherwise, can be given externally, or players’ payoffs can be changed so that 
they take pleasure in doing the right thing. The two types of rewards can interact; for example, the 
peerages and knighthoods given to British philanthropists and others who do good deeds for British 
society are external rewards, but individual persons value them only because respect for knights and 
peers is a British social norm.
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advent of the welfare state, when those who fell on hard economic times had 
to rely on help from family or friends or their immediate small social group, the 
work ethic constituted a norm that held in check the temptation to slacken one’s 
own efforts and become a free rider on the support of others. As government 
took over the supporting role and unemployment compensation or welfare 
became an entitlement, this norm of the work ethic weakened. After the sharp 
increases in unemployment in Europe in the late 1980s and early 1990s, a sig-
nificant fraction of the population became users of the official support system, 
and the norm weakened even further.18

Different societies or cultural groups may develop different conventions 
and norms to achieve the same purpose. At the trivial level, each culture has its 
own set of good manners—ways of greeting strangers, indicating approval of 
food, and so on. When two people from different cultures meet, misunderstand-
ings can arise. More important, each company or office has its own ways of get-
ting things done. The differences between these customs and norms are subtle 
and difficult to pin down, but many mergers fail because of a clash of these “cor-
porate cultures.” 

Next, consider the chicken form of collective-action games. Here, the na-
ture of the remedy depends on whether the largest total social payoff is attained 
when everyone participates (what we called “chicken version I” in Section 
1.B) or when some cooperate and others are allowed to shirk (chicken II). For 
chicken I, where everyone has the individual temptation to shirk, the problem 
is much like that of sustaining cooperation in the prisoners’ dilemma, and all 
the earlier remarks for that game apply here, too. Chicken II is different—easier 
in one respect and harder in another. Once an assignment of roles between par-
ticipants and shirkers is made, no one has the private incentive to switch: if the 
other driver is assigned the role of going straight, then you are better off swerv-
ing, and the other way around. Therefore, if a custom creates the expectation of 
an equilibrium, it can be maintained without further social intervention such as 
sanctions. However, in this equilibrium, the shirkers get higher payoffs than the 
participants do, and this inequality can create its own problems for the game; 
the conflicts and tensions, if they are major, can threaten the whole fabric of the 
society. Often the problem can be solved by repetition. The roles of participants 
and shirkers can be rotated to equalize payoffs over time.

Sometimes the problem of differential payoffs in version II of the prisoners’ 
dilemma or chicken is “solved,” not by restoring equality but by oppression or 
coercion, which forces a dominated subset of society to accept the lower pay-
off and allows the dominant subgroup to enjoy the higher payoff. In many soci-
eties throughout history, the work of handling animal carcasses was forced on  

18 Assar Lindbeck, “Incentives and Social Norms in Household Behavior,” American Economic  
Review, Papers and Proceedings, vol. 87, no. 2 (May 1997), pp. 370–77.
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particular groups or castes in this way. The history of the maltreatment of racial 
and ethnic minorities and of women provides vivid examples of such practices. 
Once such a system becomes established, no one member of the oppressed 
group can do anything to change the situation. The oppressed must get together 
as a group and act to change the whole system, itself another problem of collec-
tive action.

Finally, consider the role of leadership in solving collective-action problems. 
In Chapter 10, we pointed out that, if the players are of very unequal “size,” the 
prisoners’ dilemma may disappear because it may be in the private interests 
of the larger player to continue cooperation and to accept the cheating of the 
smaller player. Here we recognize the possibility of a different kind of bigness—
namely, having a “big heart.” People in most groups differ in their preferences, 
and many groups have one or a few who take genuine pleasure in expending 
personal effort to benefit the whole. If there are enough such people for the task 
at hand, then the collective-action problem disappears. Most schools, churches, 
local hospitals, and other worthy causes rely on the work of such willing volun-
teers. This solution, like others before it, is more likely to work in small groups, 
where the fruits of their actions are more closely and immediately visible to the 
benefactors, who are therefore encouraged to continue.

C.  Applications

In her book Governing the Commons, Elinor Ostrom describes several examples 
of resolution of common-resource problems at local levels. Most of them require 
taking advantage of features specific to the context in order to set up systems of 
detection and punishment. A fishing community on the Turkish coast, for ex-
ample, assigns and rotates locations to its members; the person who is assigned 
a good location on any given day will naturally observe and report any intruder 
who tries to usurp his place. Many other users of common resources, includ-
ing the grazing commons in medieval England, actually restricted access and 
controlled overexploitation by allocating complex, tacit, but well-understood  
rights to individual persons. In one sense, this solution bypasses the com-
mon-resource problem by dividing up the resource into a number of privately 
owned subunits.

The most striking feature of Ostrom’s range of cases is their immense vari-
ety. Some of the prisoners’ dilemmas of the exploitation of common-property 
resources that she examined were solved by private initiative by the group of 
people actually in the dilemma; others were solved by external public or gov-
ernmental intervention. In some instances, the dilemma was not resolved at all, 
and the group remained trapped in the all-shirk outcome. Despite this variety, 
Ostrom identifies several common features that make it easier to solve prison-
ers’ dilemmas of collective action: (1) it is essential to have an identifiable and 
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stable group of potential participants; (2) the benefits of cooperation have to be 
large enough to make it worth paying all the costs of monitoring and enforc-
ing the rules of cooperation; and (3) it is very important that the members of 
the group can communicate with each other. This last feature accomplishes 
several things. First, it makes the norms clear—everyone knows what behav-
ior is expected, what kind of cheating will not be tolerated, and what sanctions 
will be imposed on cheaters. Next, it spreads information about the efficacy of 
the detection of the cheating mechanism, thereby building trust and removing 
the suspicion that each participant might hold that he is abiding by the rules 
while others are getting away with breaking them. Finally, it enables the group 
to monitor the effectiveness of the existing arrangements and to improve on 
them as necessary. All these requirements look remarkably like those identified 
in Chapter 10 from our theoretical analysis of the prisoners’ dilemma and from 
the observations of Axelrod’s tournaments.

Ostrom’s study of the fishing village also illustrates what can be done if the 
collective optimum requires different persons to do different things, in which 
case some get higher payoffs than others. In a repeated relationship, the advan-
tageous position can rotate among the participants, thereby maintaining some 
sense of equality over time.

Ostrom finds that an external enforcer of cooperation may not be able to 
detect cheating or impose punishment with sufficient clarity and swiftness. 
Thus, the frequent reaction that centralized or government policy is needed to 
solve collective-action problems is often proved wrong. Another example comes 
from village communities or “communes” in late-nineteenth-century Russia. 
These communities solved many collective-action problems of irrigation, crop 
rotation, management of woods and pastures, and road and bridge construc-
tion and repair in just this way. “The village . . . was not the haven of commu-
nal harmony. . . . It was simply that the individual interests of the peasants were 
often best served by collective activity.” Reformers of early twentieth-century 
czarist governments and Soviet revolutionaries of the 1920s alike failed, partly  
because the old system had such a hold on the peasants’ minds that they resisted 
anything new, but also because the reformers failed to understand the role that 
some of the prevailing practices played in solving collective-action problems 
and thus failed to replace them with equally effective alternatives.19

The difference between small and large groups is well illustrated by Avner 
Greif’s comparison of two groups of traders in countries around the Mediter-
ranean Sea in medieval times. The Maghribis were Jewish traders who relied on 
extended family and social ties. If one member of this group cheated another, 

19 Orlando Figes, A People’s Tragedy: The Russian Revolution 1891–1924 (New York: Viking Pen-
guin, 1997), pp. 89–90, 240–41, 729–30. See also Ostrom, Governing the Commons, p. 23, for other 
instances where external, government-enforced attempts to solve common-resource problems  
actually made them worse.
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the victim informed all the others by writing letters. When guilt was convincingly 
proved, no one in the group would deal with the cheater. This system worked 
well on a small scale of trade. But as trade expanded around the Mediterranean, 
the group could not find sufficiently close or reliable insiders to go to the coun-
tries with the new trading opportunities. 

In contrast, the Genoese traders established a more official legal system. A 
contract had to be registered with the central authorities in Genoa. The victim of 
any cheating or violation of the contract had to take a complaint to the authori-
ties, who carried out the investigation and imposed the appropriate fines on the 
cheater. This system, with all its difficulties of detection, could be more easily 
expanded with the expansion of trade.20 As economies grow and world trade 
expands, we see a similar shift from tightly linked groups to more arm’s-length 
trading relationships and from enforcement based on repeated interactions to 
that of the official law.

The idea that small groups are more successful at solving collective-action 
problems forms the major theme of Olson’s Logic of Collective Action (see  
footnote 8) and has led to an insight important in political science. In a democ-
racy, all voters have equal political rights, and the majority’s preference should 
prevail. But we see many instances in which this does not happen. The effects 
of policies are generally good for some groups and bad for others. To get its pre-
ferred policy adopted, a group has to take political action—lobbying, publicity, 
campaign contributions, and so on. To do these things, the group must solve a 
collective-action problem, because each member of the group may hope to shirk 
and enjoy the benefits that the others’ efforts have secured. If small groups are 
better able to solve this problem, then the policies resulting from the political 
process will reflect their preferences, even if other groups who fail to organize 
are more numerous and suffer greater losses than the successful groups’ gains.

The most dramatic example of policies reflecting the preferences of the 
organized group comes from the arena of trade policy. A country’s import re-
strictions help domestic producers whose goods compete with these imports, 
but they hurt the consumers of the imported goods and the domestic compet-
ing goods alike, because prices for these goods are higher than they would be 
otherwise. The domestic producers are few in number, and the consumers are 
almost the whole population; the total dollar amount of the consumers’ losses 
is typically far bigger than the total dollar amount of the producers’ gains. Politi-
cal considerations based on constituency membership numbers and economic 
considerations of dollar gains and losses alike would lead us to expect a con-
sumer victory in this policy arena; we would expect to see at least a push for the 

20 Avner Greif, “Cultural Beliefs and the Organization of Society: A Historical and Theoretical Reflec-
tion on Collectivist and Individualist Societies,” Journal of Political Economy, vol. 102, no. 5 (October 
1994), pp. 912–50.
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idea that import restrictions should be abolished, but we don’t. The smaller and 
more tightly knit associations of producers are better able to organize for politi-
cal action than the numerous, dispersed consumers.

More than 70 years ago, the American political scientist E. E. Schattsch-
neider provided the first extensive documentation and discussion of how pres-
sure politics drives trade policy. He recognized that “the capacity of a group for 
organization has a great influence on its activity,” but he did not develop any 
systematic theory of what determines this capacity.21 The analysis of Olson and 
others has improved our understanding of the issue, but the triumph of pres-
sure politics over economics persists in trade policy to this day. For example, 
in the late 1980s, the U.S. sugar policy cost each of the 240 million people in 
the United States about $11.50 per year for a total of about $2.75 billion, while 
it increased the incomes of about 10,000 sugar-beet farmers by about $50,000 
each, and the incomes of 1,000 sugarcane farms by as much as $500,000 each, 
for a total of about $1 billion. The net loss to the U.S. economy was $1.75 bil-
lion.22 Each of the unorganized consumers continues to bear his small share of 
the costs in silence; many of them are not even aware that each is paying $11.50 
a year too much for his sweet tooth.

If this overview of the theory and practice of solving collective-action prob-
lems seems diverse and lacking a neat summary statement, that is because the 
problems are equally diverse, and the solutions depend on the specifics of each 
problem. The one general lesson that we can provide is the importance of letting 
the participants themselves devise solutions by using their local knowledge of the 
situation, their advantage of proximity in monitoring the cooperative or shirk-
ing actions of others in the community, and their ability to impose sanctions on 
shirkers by exploiting various ongoing relationships within the social group.

Finally, a word of caution. You might be tempted to come away from this 
discussion of collective-action problems with the impression that individual  
freedom always leads to harmful outcomes that can and must be improved by 
social norms and sanctions. Remember, however, that societies face problems 
other than those of collective action; some of them are better solved by indi-
vidual initiative than by joint efforts. Societies can often get hidebound and 
autocratic, becoming trapped in their norms and customs and stifling the inno-
vation that is so often the key to economic growth. Collective action can become 
collective inaction.23

21 E. E. Schattschneider, Politics, Pressures, and the Tariff (New York: Prentice-Hall, 1935); see espe-
cially pp. 285–86.
22 Stephen V. Marks, “A Reassessment of the Empirical Evidence on the U.S. Sugar Program,” in 
The Economics and Politics of World Sugar Policies, ed. Stephen V. Marks and Keith E. Maskus (Ann 
Arbor: University of Michigan Press, 1993), pp. 79–108.
23 David Landes, The Wealth and Poverty of Nations (New York: W. W. Norton & Company, 1998), ch. 3 
and ch. 4, makes a spirited case for this effect.
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5 “HELP!”: A GAME Of CHICKEN WITH MIXED STRATEGIES

In the chicken variant of collective-action problems discussed in earlier sec-
tions, we looked only at the pure-strategy equilibria. But we know from Chapter 
7 that such games have mixed-strategy equilibria, too. In collective-action prob-
lems, where each participant is thinking, “It is better if I wait for enough others 
to participate so that I can shirk; but then again, maybe they won’t, in which 
case I should participate,” mixed strategies nicely capture the spirit of such vac-
illation. Our last story is a dramatic, even chilling application of such a mixed-
strategy equilibrium.

In 1964 in New York City (in Kew Gardens, Queens), a woman named Kitty 
Genovese was killed in a brutal attack that lasted more than half an hour. She 
screamed through it all and, although her screams were heard by many people 
and at least 3 actually witnessed some part of the attack, no one went to help 
her or even called the police.

The story created a sensation and found several ready theories to explain 
it. The press and most of the public saw this episode as a confirmation of their 
belief that New Yorkers—or big-city dwellers or Americans or people more  
generally—were just apathetic or didn’t care about their fellow human beings.

However, even a little introspection or observation will convince you that 
people do care about the well-being of other humans, even strangers. Social sci-
entists offered a different explanation for what happened, which they labeled 
pluralistic ignorance. The idea behind this explanation is that no one can be 
sure about what is happening or whether help is really needed and how much. 
People look to each other for clues or guidance about these matters and try to 
interpret other people’s behavior in this light. If they see that no one else is doing 
anything to help, they interpret it as meaning that help is probably not needed, 
and so they don’t do anything either. This explanation has some intuitive appeal 
but is unsatisfactory in the Kitty Genovese context. There is a very strong pre-
sumption that a screaming woman needs help. What did the onlookers think—
that a movie was being shot in their obscure neighborhood? If so, where were 
the lights, the cameras, the director, other crew?

A better explanation would recognize that although each onlooker may ex-
perience strong personal loss from Kitty’s suffering and get genuine personal 
pleasure if she were saved, each must balance that against the cost of getting 
involved. You may have to identify yourself if you call the police; you may then 
have to appear as a witness, and so on. Thus, we see that each person may pre-
fer to wait for someone else to call and hope to get for himself the free rider’s 
benefit of the pleasure of a successful rescue.

Social psychologists have a slightly different version of this idea of free rid-
ing, which they label diffusion of responsibility. In this version, the idea is that 

6841D CH11 UG.indd   454 12/18/14   3:14 PM



“ h e l p ! ” :  a  g a m e  o F  C h i C k e n  w i t h  m i x e D  s t r at e g i e s   4 5 5

everyone might agree that help is needed, but they are not in direct commu-
nication with each other and so cannot coordinate on who should help. Each 
person may believe that help is someone else’s responsibility. And the larger the 
group, the more likely it is that each person will think that someone else would 
probably help, and therefore he can save himself the trouble and the cost of get-
ting involved.

Social psychologists conducted some experiments to test this hypothesis. 
They staged situations in which someone needed help of different kinds in dif-
ferent places and with different-sized crowds. Among other things, they found 
that the larger the size of the crowd, the less likely was help to come forth.

The concept of diffusion of responsibility seems to explain this finding, but 
not quite completely. It claims that the larger the crowd, the less likely is any 
one person to help. But there are more people, and only one person is needed to 
act and call the police to secure help. To make it less likely that even one person 
helps, the chance of any one person helping has to decrease sufficiently fast to 
offset the increase in the total number of potential helpers. To find out whether 
it does so requires game-theoretic analysis, which we now supply.24

We consider only the aspect of diffusion of responsibility in which action is 
not consciously coordinated, and we leave aside all other complications of in-
formation and inference. Thus, we assume that everyone believes the action is 
needed and is worth the cost.

Suppose N people are in the group. The action brings each of them a benefit 
B. Only one person is needed to take the action; more are redundant. Anyone 
who acts bears the cost C. We assume that B . C; so it is worth any one person’s 
while to act even if no one else is acting. Thus, the action is justified in a very 
strong sense.

The problem is that anyone who takes the action gets the value B and pays 
the cost C for a net payoff of (B 2 C), whereas he would get the higher payoff 
B if someone else took the action. Thus, each person has the temptation to let 
someone else go ahead and to become a free rider on another’s effort. When all 
N people are thinking thus, what will be the equilibrium or outcome?

If N 5 1, the single person has a simple decision problem rather than a 
game. He gets B 2 C . 0 if he takes the action and 0 if he does not. Therefore, he 
goes ahead and helps.

24 For a fuller account of the Kitty Genovese story and for the analysis of such situations from the 
perspective of social psychology, see John Sabini, Social Psychology, 2nd ed. (New York: W. W. Norton 
& Company, 1995), pp. 39–44. Our game-theoretic model is based on Thomas Palfrey and Howard 
Rosenthal, “Participation and the Provision of Discrete Public Goods,” Journal of Public Economics, 
vol. 24 (1984), pp. 171–93. Many purported facts of the story have been recently challenged in Kitty 
Genovese: The Murder, the Bystanders, and the Crime that Changed America by Kevin Cook (New York:  
W. W. Norton & Company, 2014), but the power and impact of the originally reported story on Amer-
ican thinking about urban crime remains, and it is still a good example for game-theoretic analysis.
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If N . 1, we have a game of strategic interaction with several equilibria. Let us 
begin by ruling out some possibilities. With N . 1, there cannot be a pure-strategy 
Nash equilibrium in which all people act, because then any one of them would 
do better by switching to free ride. Likewise, there cannot be a pure-strategy 
Nash equilibrium in which no one acts, because given that no one else is acting 
(remember that under the Nash assumption each player takes the others’ strate-
gies as given), it pays any one person to act.

There are Nash equilibria where exactly one person acts; in fact, there are 
N such equilibria, one corresponding to each member. But when everyone 
is making the decision individually in isolation, there is no way to coordinate 
and designate who is to act. Even if members of the group were to attempt such  
coordination, they might try to negotiate over the responsibility and not reach a 
conclusion, at least not in time to be of help. Therefore, it is of interest to examine  
symmetric equilibria in which all members have identical strategies.

We already saw that there cannot be an equilibrium in which all N people 
follow the same pure strategy. Therefore, we should see whether there can be 
an equilibrium in which they all follow the same mixed strategy. Actually, mixed 
strategies are quite appealing in this context. The people are isolated, and each 
is trying to guess what the others will do. Each is thinking: Perhaps I should call 
the police . . . but maybe someone else will . . . but what if they don’t . . . ? Each 
breaks off this process at some point and does the last thing that he thought of 
in this chain, but we have no good way of predicting what that last thing is. A 
mixed strategy carries the flavor of this idea of a chain of guesswork being bro-
ken at a random point.

So suppose P is the probability that any one person will not act. If one par-
ticular person is willing to mix strategies, he must be indifferent between the 
two pure strategies of acting and not acting. Acting gets him (B 2 C) for sure. 
Not acting will get him 0 if none of the other (N 2 1) people act and B if at least 
one of them does act. Because the probability that any one person fails to act 
is P and because they are deciding independently, the probability that none of 
the (N 2 1) others acts is PN21, and the probability that at least one does act is  
(1 2 PN21). Therefore, the expected payoff to the one person when he does not 
act is

 0 3 P N21 1 B(1 2 PN21) 5 B(1 2 PN21).

And that one person is indifferent between acting and not acting when

 B 2 C 5 B(1 2 PN21) or when PN21 5 
C

B

   or P 5 �C

B

 

�

1(N21).

Note how this indifference condition of one selected player determines the 
probability with which the other players mix their strategies.

Having obtained the equilibrium mixture probability, we can now see how it 
changes as the group size N changes. Remember that CB , 1. As N increases from  
2 to infinity, the power 1(N 2 1) decreases from 1 to 0. Then CB raised to this 
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power—namely, P—increases from CB to 1. Remember that P is the probability 
that any one person does not take the action. Therefore, the probability of ac-
tion by any one person—namely, (1 2 P)—falls from 1 2 CB = (B 2 C )B to 0.25

In other words, the more people there are, the less likely is any one of them 
to act. This is intuitively true, and in good conformity with the idea of diffusion 
of responsibility. But it does not yet give us the conclusion that help is less likely 
to be forthcoming in a larger group. As we said before, help requires action by 
only one person. Because there are more and more people, each of whom is less 
and less likely to act, we cannot conclude immediately that the probability of at 
least one of them acting gets smaller. More calculation is needed to see whether 
this is the case.

Because the N persons are randomizing independently in the Nash equilib-
rium, the probability Q that not even one of them helps is

 Q 5 P N 5 �C

B

 

�

N(N21).

As N increases from 2 to infinity, N(N 2 1) decreases from 2 to 1, and then Q 
increases from (CB)2 to CB. Correspondingly, the probability that at least one 
person helps—namely (1 2 Q)—decreases from 1 2 (CB)2 to 1 2 CB.26

So our exact calculation does bear out the hypothesis: the larger the group, 
the less likely is help to be given at all. The probability of provision does not, 
however, reduce to zero even in very large groups; instead it levels off at a  
positive value—namely, (B 2 C)B—which depends on the benefit and cost of 
action to each individual.

We see how game-theoretic analysis sharpens the ideas from social psychol-
ogy with which we started. The diffusion of responsibility theory takes us part 
of the way—namely, to the conclusion that any one person is less likely to act 
when he is part of a larger group. But the desired conclusion—that larger groups 
are less likely to provide help at all—needs further and more precise probability 
calculation based on the analysis of individual mixing and the resulting interac-
tive (game) equilibrium.

And now we ask, did Kitty Genovese die in vain? Do the theories of plural-
istic ignorance, diffusion of responsibility, and free-riding games still play out 
in the decreased likelihood of individual action within increasingly large cit-
ies? Perhaps not. John Tierney of the New York Times has publicly extolled the  
virtues of “urban cranks.”27 They are people who encourage the civility of 

25 Consider the case in which B 5 10 and C 5 8. Then P equals 0.8 when N 5 2, rises to 0.998 when 
N 5 100, and approaches 1 as N continues to rise. The probability of action by any one person is  
1 2 P, which falls from 0.2 to 0 as N rises from 2 toward infinity.
26 With the same sample values for B (10) and C (8), this result implies that increasing N from 2 to in-
finity increases the probability that not even one person helps from 0.64 to 0.8. And the probability 
that at least one person helps falls from 0.36 to 0.2.
27 John Tierney, “The Boor War: Urban Cranks, Unite—Against All Uncivil Behavior. Eggs Are a Last 
Resort,” New York Times Magazine, January 5, 1997.
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the group through prompt punishment of those who exhibit unacceptable  
behavior—including litterers, noise polluters, and the generally obnoxious boors 
of society. Such “cranks” are essentially enforcers of a cooperative norm for  
society. And as Tierney surveys the actions of known “cranks,” he reminds the 
rest of us that “[n]ew cranks must be mobilized! At this very instant, people 
are wasting time reading while norms are being flouted out on the street. . . . 
You don’t live alone in this world! Have you enforced a norm today?” In other 
words, we need social norms and some people who have internalized the norm 
of enforcing norms.

SUMMARY

Multiplayer games generally concern problems of collective action. The general 
structure of collective-action games may be manifested as a prisoners’ dilemma, 
chicken, or an assurance game. The critical difficulty with such games in any 
form is that the Nash equilibrium arising from individually rational choices may 
not be the socially optimal outcome—the outcome that maximizes the sum of 
the payoffs of all the players.

In collective-action games, when a person’s action has some effect on the 
payoffs of all the other players, we say that there are spillovers, or externali-
ties. They can be positive or negative and lead to individually driven outcomes 
that are not socially optimal. When actions create negative spillovers, they are  
overused from the perspective of society; when actions create positive spillovers, 
they are underused. The additional possibility of positive feedback exists when 
there are positive spillovers; in such a case, the game may have multiple Nash 
equilibria.

Problems of collective action have been recognized for many centuries and 
discussed by scholars from diverse fields. Several early works professed no hope 
for the situation, but others offered up dramatic solutions. The most recent 
treatments of the subject acknowledge that collective-action problems arise in 
diverse areas and that there is no single optimal solution. Social scientific analy-
sis suggests that social custom, or convention, can lead to cooperative behavior. 
Other possibilities for solutions come from the creation of norms of acceptable 
behavior. Some of these norms are internalized in individuals’ payoffs; others 
must be enforced by the use of sanctions in response to the uncooperative be-
havior. Much of the literature agrees that small groups are more successful at 
solving collective-action problems than large ones.

In large-group games, diffusion of responsibility can lead to behavior in 
which individual persons wait for others to take action and free ride off the  
benefits of that action. If help is needed, it is less likely to be given at all as the 
size of the group available to provide it grows.
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SOLVED EXERCISES

 S1. Suppose that 400 people are choosing between Action X and Action Y. 
The relative payoffs of the two actions depend on how many of the 400 
people choose Action X and how many choose Action Y. The payoffs are 
as shown in the following diagram, but the vertical axis is not labeled, so 
you do not know whether the lines show the benefits or the costs of the 
two actions.

e x e r C i s e s   4 5 9

KEY TERMS

?

Number using Action X

Action X Action Y

200

coercion (449)
collective action problem (417)
convention (445)
custom (445)
diffusion of responsibility (454)
external effect (433)
externality (433)
free rider (420)
internalize the externality (439)
locked in (441)
marginal private gain (433)

marginal social gain (433)
nonexcludable benefits (418)
nonrival benefits (418)
norm (445)
oppression (449)
pluralistic ignorance (454)
positive feedback (440)
pure public good (418)
sanction (445)
social optimum (420)
spillover effect (433)

 (a) You are told that the outcome in which 200 people choose Action 
X is an unstable equilibrium. If 100 people are currently choosing 
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Action X, would you expect the number of people choosing X to in-
crease or decrease over time? Why?

 (b) For the graph to be consistent with the behavior that you described 
in part (a), should the lines be labeled as indicating the costs or ben-
efits of Action X and Action Y? Explain your answer.

 S2. A group has 100 members. Each person can choose to participate or not 
participate in a common project. If n of them participate in the proj-
ect, then each participant derives the benefit p(n) 5 n, and each of the  
(100 2 n) shirkers derives the benefit s(n) 5 4 1 3n.

 (a) Is this an example of a prisoners’ dilemma, a game of chicken, or an  
assurance game?

 (b) Write the expression for the total benefit of the group.
 (c) Show, either graphically or mathematically, that the maximum total 

benefit for the group occurs when n 5 74.
 (d) What difficulties will arise in trying to get exactly 74 participants and  

allowing the remaining 26 to shirk?
 (e) How might the group try to overcome these difficulties?

 S3. Consider a small geographic region with a total population of 1 million 
people. There are two towns, Alphaville and Betaville, in which each 
person can choose to live. For each person, the benefit from living in a 
town increases for a while with the size of the town (because larger towns 
have more amenities and so on), but after a point it decreases (because 
of congestion and so on). If x is the fraction of the population that lives in 
the same town as you do, your payoff is given by

                  x if 0 # x # 0.4

 0.6 2 0.5x if 0.4 , x # 1.

 (a) Draw a graph like Figure 11.11, showing the benefits of living in the 
two towns, as the fraction living in one versus the other varies con-
tinuously from 0 to 1.

 (b) Equilibrium is reached either when both towns are populated 
and their residents have equal payoffs or when one town—say  
Betaville—is totally depopulated, and the residents of the other 
town (Alphaville) get a higher payoff than would the very first per-
son who seeks to populate Betaville. Use your graph to find all such 
equilibria.

 (c) Now consider a dynamic process of adjustment whereby people 
gradually move toward the town whose residents currently enjoy a 
larger payoff than do the residents of the other town. Which of the 
equilibria identified in part (b) will be stable with these dynamics? 
Which ones will be unstable?
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 S4. Suppose an amusement park is being built in a city with a population of 
100. Voluntary contributions are being solicited to cover the cost. Each 
citizen is being asked to give $100. The more people contribute, the 
larger the park will be and the greater the benefit to each citizen. But it is 
not possible to keep out the noncontributors; they get their share of this 
benefit anyway. Suppose that when there are n contributors in the popu-
lation, where n can be any whole number between 0 and 100, the benefit 
to each citizen in monetary unit equivalents is n 2 dollars.

 (a) Suppose that initially no one is contributing. You are the mayor of 
the city. You would like everyone to contribute and can use persua-
sion on some people. What is the minimum number whom you 
need to persuade before everyone else will join in voluntarily?

 (b) Find the Nash equilibria of the game where each citizen is deciding 
whether to contribute.

 S5. Put the idea of Keynesian unemployment described at the end of  
Section 3.D into a properly specified game, and show the multiple equi-
libria in a diagram. Show the level of production (national product) on 
the vertical axis as a function of a measure of the level of demand (na-
tional income) on the horizontal axis. Equilibrium is reached when 
national product equals national income—that is, when the function re-
lating the two cuts the 458 line. For what shapes of the function can there 
be multiple equilibria? Why might you expect such shapes in reality? 
Suppose that income increases when current production exceeds cur-
rent income, and that income decreases when current production is less 
than current income. In this dynamic process, which equilibria are stable 
and which ones unstable?

 S6. Write a brief description of a strategic game that you have witnessed 
or participated in that includes a large number of players and in which 
individual players’ payoffs depend on the number of other players and 
their actions. Try to illustrate your game with a graph if possible. Discuss 
the outcome of the actual game in light of the fact that many such games 
have inefficient outcomes. Do you see evidence of such an outcome in 
your game?

UNSOLVED EXERCISES

 U1. Figure 11.5 illustrates the payoffs in a general, two-person, collective-action 
game. There we showed various inequalities on the algebraic payoffs [p(1), 
etc.] that made the game a prisoners’ dilemma. Now you are asked to find 
similar inequalities corresponding to other kinds of games:

e x e r C i s e s   4 6 1
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 (a) Under what condition(s) on the payoffs is the two-person game a 
chicken game? What further condition(s) make the game version I 
of chicken (as in Figure 11.3)?

 (b) Under what condition(s) on the payoffs is the two-person game an  
assurance game?

 U2. A class with 30 students enrolled is given a homework assignment 
with five questions. The first four are the usual kinds of problems,  
totaling to 90 points. But the fifth is an interactive game for the class. 
The question reads: “You can choose whether to answer this question. 
If you choose to do so, you merely write ‘I hereby answer Question 5.’ 
If you choose not to answer Question 5, your score for the assignment 
will be based on your performance on the first four problems. If you 
choose to answer Question 5, then your scoring will be as follows: If 
fewer than half of the students in the class answer Question 5, you get 
10 points for Question 5; 10 points will be added to your score on the 
other four questions to get your total score for the assignment. If half 
or more than half of the students in the class answer Question 5, you  
get 210 points; that is, 10 points will be subtracted from your score on 
the other questions.”

 (a) Draw a diagram illustrating the payoffs from the two possible strate-
gies, “Answer Question 5” and “Don’t Answer Question 5,” in rela-
tion to the number of other students who answer it. Find the Nash 
equilibrium of the game.

 (b) What would you expect to see happen in this game if it were actu-
ally played in a college classroom? Why? Consider two cases: (i) the 
students make their choices individually with no communication; 
and (ii) the students make their choices individually but can discuss 
these choices ahead of time in a discussion forum available on the 
class Web site.

 U3. There are two routes for driving from A to B. One is a freeway, and the 
other consists of local roads. The benefit of using the freeway is constant 
and equal to 1.8, irrespective of the number of people using it. Local 
roads get congested when too many people use this alternative, but if 
not enough people use it, the few isolated drivers run the risk of becom-
ing victims of crimes. Suppose that when a fraction x of the population is 
using the local roads, the benefit of this mode to each driver is given by

 1 1 9x 2 10x 2.

 (a) Draw a graph showing the benefits of the two driving routes as func-
tions of x, regarding x as a continuous variable that can range from  
0 to 1.
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 (b) Identify all possible equilibrium traffic patterns from your graph in 
part (a). Which equilibria are stable? Which ones are unstable? Why?

 (c) What value of x maximizes the total benefit to the whole population?

 U4. Suppose a class of 100 students is comparing two careers—lawyer or 
engineer. An engineer gets take-home pay of $100,000 per year, irre-
spective of the numbers who choose this career. Lawyers make work 
for each other, so as the total number of lawyers increases, the income 
of each lawyer increases—up to a point. Ultimately, the competition 
between them drives down the income of each. Specifically, if there 
are N lawyers, each will get 100N 2 N 2 thousand dollars a year. The 
annual cost of running a legal practice (office space, secretary, para-
legals, access to online reference services, and so forth) is $800,000. 
Therefore, each lawyer takes home 100N 2 N 2 2 800 thousand dollars 
a year when there are N of them.

 (a) Draw a graph showing the take-home income of each lawyer on the 
vertical axis and the number of lawyers on the horizontal axis. (Plot 
a few points—say, for 0, 10, 20, . . . , 90, 100 lawyers. Fit a curve to the 
points, or use a computer graphics program if you have access to 
one.)

 (b) When career choices are made in an uncoordinated way, what are 
the possible equilibrium outcomes?

 (c) Now suppose the whole class decides how many should become 
lawyers, aiming to maximize the total take-home income of the 
whole class. What will be the number of lawyers? (If you can, use 
calculus, regarding N as a continuous variable. Otherwise, you can 
use graphical methods or a spreadsheet.)

 U5. A group of 12 countries is considering whether to form a monetary 
union. They differ in their assessments of the costs and benefits of this 
move, but each stands to gain more from joining, and lose more from 
staying out, when more of the other countries choose to join. The coun-
tries are ranked in order of their liking for joining, 1 having the highest 
preference for joining and 12 the least. Each country has two actions, IN 
and OUT. Let

    B(i,n) 5 2.2 1 n 2 i

be the payoff to country with ranking i when it chooses IN and n others 
have chosen IN. Let

    S(i,n) 5 i 2 n

be the payoff to country with ranking i when it chooses OUT and n oth-
ers have chosen IN. 
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 (a) Show that for country 1, IN is the dominant strategy.
 (b) Having eliminated OUT for country 1, show that IN becomes the 

dominant strategy for country 2.
 (c) Continuing in this way, show that all countries will choose IN.
 (d) Contrast the payoffs in this outcome with those where all choose 

OUT. How many countries are made worse off by the formation of 
the union?
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Evolutionary Games

W e have so far studied games with many different features— 
simultaneous and sequential moves, zero-sum and non-zero-sum  
payoffs, strategic moves to manipulate rules of games to come, 
one-shot and repeated play, and even games of collective action in 

which a large number of people play simultaneously. In all of these, we main-
tained the ground rules of conventional game theory—namely, that every player 
in these games has an internally consistent value system, can calculate the con-
sequences of her strategic choices, and makes the choice that best favors her 
interests. In our discussions, especially when assessing empirical evidence, we 
recognized the possibility that players’ value systems include regard for others, 
and occasionally, for example in our discussion of quantal response equilibrium 
in Chapter 5, we allowed that the players recognize the possibility of errors. But 
we maintained the assumption that each player makes a conscious and calcu-
lated choice from her available strategies.

However, recent theories have challenged this assumption. The most cogent 
and persuasive critique comes from the psychologist and 2002 Nobel laureate 
in economics, Daniel Kahneman.1 He argues that people have two different sys-
tems of decision making. System 1 is instinctive and fast, System 2 is calculat-
ing and slow. The fast, instinctive system may be partly hardwired into the brain 
by evolution but is also substantially the result of extensive experience and 
practice, which build intuition. This system is valuable because it saves much  

1212

1  Daniel Kahneman, Thinking, Fast and Slow (New York: Farrar, Straus and Giroux, 2011).
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mental effort and time and is often the first to be deployed when making a deci-
sion. Given enough time and attention, it may be supplemented or supplanted 
by the calculating and slower system. When the instinctive system is used on 
any one occasion, its outcome constitutes an addition to the stock of experience 
and may lead to a gradual modification of the instinct.

This suggests a very different mode of game playing and analysis of games. 
Players come to a game with the instinctive System 1 and play the strategy it in-
dicates. This may or may not be optimal for the occasion. Its outcome, if good, 
reinforces the instinct; otherwise it contributes to gradual change in the in-
stinct. Of course, the outcome depends on what strategies the other player or 
players deploy, which depends on the state of their instinctive systems, which in 
turn depends on their experiences, and so forth. We need to find out where this 
process of interactive dynamics of instincts goes. In particular, we need to de-
termine whether it converges to some fixed strategy choices and, if so, whether 
these choices correspond to what the calculating slow system would have dic-
tated. The biological theory of evolution and evolutionary dynamics offers one 
approach to this analysis; we develop it in this chapter.

1 THE FRAMEWORK

The biological theory of evolution rests on three fundamentals: heterogeneity, 
fitness, and selection. The starting point is that a significant part of animal be-
havior is genetically determined; a complex of one or more genes (genotype) 
governs a particular pattern of behavior, called a behavioral phenotype. Natural 
diversity of the gene pool ensures a heterogeneity of phenotypes in the popula-
tion. Some behaviors are better suited than others to the prevailing conditions, 
and the success of a phenotype is given a quantitative measure called its fitness. 
People are used to thinking of this success as meaning the common but mis-
leading phrase “survival of the fittest”; however, the ultimate test of biological 
fitness is not mere survival, but reproductive success. That is what enables an 
animal to pass on its genes to the next generation and perpetuate its phenotype. 
The fitter phenotypes then become relatively more numerous in the next gener-
ation than the less fit phenotypes. This process of selection is the dynamic that 
changes the mix of genotypes and phenotypes and perhaps leads eventually to 
a stable state.

From time to time, chance produces new genetic mutations. Many of these 
mutations produce behaviors (that is, phenotypes) that are ill suited to the envi-
ronment, and they die out. But occasionally a mutation leads to a new phenotype 
that is fitter. Then such a mutant gene can successfully invade a population—
that is, spread to become a significant proportion of the population.
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At any time, a population may contain some or all of its biologically con-
ceivable phenotypes. Those that are fitter than others will increase in propor-
tion, some unfit phenotypes may die out, and other phenotypes not currently 
in the population may try to invade it. Biologists call a configuration of a 
population and its current phenotypes evolutionary stable if the population 
cannot be invaded successfully by any mutant. This is a static test, but often a 
more dynamic criterion is applied: a configuration is evolutionary stable if it is 
the limiting outcome of the dynamics of selection, starting from any arbitrary 
mixture of phenotypes in the population.2

The fitness of a phenotype depends on the relationship of the individual  
organism to its environment; for example, the fitness of a particular bird depends 
on the aerodynamic characteristics of its wings. It also depends on the whole com-
plex of the proportions of different phenotypes that exist in the environment— 
how aerodynamic its wings are relative to those of the rest of its species. Thus, 
the fitness of a particular animal—with its behavioral traits, such as aggression 
and sociability—depends on whether other members of its species are predom-
inantly aggressive or passive, crowded or dispersed, and so on. For our purpose, 
this interaction between phenotypes within a species is the most interesting as-
pect of the story. Sometimes an individual member of a species interacts with 
members of another species; then the fitness of a particular type of sheep, for 
example, may depend on the traits that prevail in the local population of wolves. 
We consider this type of interaction as well, but only after we have covered the 
within-species case.

All of this finds a ready parallel in game theory. The behavior of a phenotype 
can be thought of as a strategy of the animal in its interaction with others—for 
example, whether to fight or to retreat. The difference is that the choice of strat-
egy is not a purposive calculation as it would be in standard game theory; rather, 
it is a genetically predetermined fixture of the phenotype. The interactions lead 
to payoffs to the phenotypes. In biology, the payoffs measure the evolutionary 
or reproductive fitness; when we apply these ideas outside of biology, they can 
have other connotations of success in the social, political, or economic games in 
question.

The payoffs or fitness numbers can be shown in a payoff table just like that 
for a standard game, with all conceivable phenotypes of one animal arrayed 
along the rows of the matrix and those of the other along the columns of the  
matrix. If more animals interact simultaneously—which is called playing the field 
in biology—the payoffs can be shown by functions like those for collective-action  

2 The dynamics of phenotypes is driven by an underlying dynamics of genotypes but, at least  
at the elementary level, evolutionary biology focuses its analysis at the phenotype level and conceals 
the genetic aspects of evolution. We will do likewise in our exposition of evolutionary games. Some 
theories at the genotypes level can be found in the materials cited in footnote 3.
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games in Chapter 11. We will consider pair-by-pair matches for most of this 
chapter and will look at the other case briefly in Section 7.

Because the population is a mix of phenotypes, different pairs selected from 
it will bring to their interactions different combinations of strategies. The actual 
quantitative measure of the fitness of a phenotype is the average payoff that 
it gets in all its interactions with others in the population. Those animals with 
higher fitness will have greater evolutionary success. The eventual outcome of 
the population dynamics will be an evolutionary stable configuration of the 
population.

Biologists have used this approach very successfully. Combinations of ag-
gressive and cooperative behavior, locations of nesting sites, and many more 
phenomena that elude more conventional explanations can be understood as 
the stable outcomes of an evolutionary process of selection of fitter strategies. 
Interestingly, biologists developed the idea of evolutionary games by using the 
preexisting body of game theory, drawing from its language but modifying the 
assumption of conscious maximizing to suit their needs. Now game theorists 
are in turn using insights from the research on biological evolutionary games to 
enrich their own subject.3

Indeed, the theory of evolutionary games seems a ready-made framework 
for studying Kahneman’s two systems of decision making.4 The idea that ani-
mals play genetically fixed strategies can be interpreted more broadly in ap-
plications of the theory other than in biology. In human interactions, a strategy 
may be embedded in a player’s mind for a variety of reasons—not only genet-
ics but also (and probably more important) socialization, cultural background, 
education, or a rule of thumb based on past experience. All of these can be 
captured in Kahneman’s instinctive, fast System 1. The population can consist 
of a mixture of different people with different backgrounds or experiences that 
embed different System 1 strategies into them. Thus, some politicians may be 
motivated to adhere to certain moral or ethical codes even at the cost of elec-
toral success, whereas others are mainly concerned with their own reelection; 

3 Robert Pool, “Putting Game Theory to the Test,” Science, vol. 267 (March 17, 1995), pp. 1591–93, is 
a good article for general readers and has many examples from biology. John Maynard Smith deals 
with such games in biology in his Evolutionary Genetics, 2nd ed., (Oxford: Oxford University Press, 
1998), ch. 7, and Evolution and the Theory of Games (Cambridge: Cambridge University Press, 1982); 
the former also gives much background on evolution. Recommended for advanced readers are Peter 
Hammerstein and Reinhard Selten, “Game Theory and Evolutionary Biology,” in Handbook of Game 
Theory, vol. 2, ed. R. J. Aumann and S. Hart (Amsterdam: North Holland, 1994), pp. 929–93; and Jor-
gen Weibull, Evolutionary Game Theory (Cambridge, Mass.: MIT Press, 1995).
4 Indeed, applications of the evolutionary perspective need not stop with game theory. The fol-
lowing joke offers an “evolutionary theory of gravitation” as an alternative to Newton’s or Einstein’s 
physical theories:

Question:  Why does an apple fall from the tree to earth?
Answer:   Originally, apples that came loose from trees went in all directions. But only those 

that were genetically predisposed to fall to the earth could reproduce.
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similarly, some firms may pursue profit alone, whereas others are motivated by 
social or ecological objectives. We can call each logically conceivable strategy 
that can be embedded in this way a phenotype for the population of players in 
the context being studied.

From a population with its heterogeneity of embedded strategies, pairs of 
phenotypes are repeatedly randomly selected to interact (play the game) with 
others of the same or different “species.” In each interaction, the payoff of each 
player depends on the strategies of both; this dependence is governed by the 
usual “rules of the game” and illustrated in the game table or tree. The fitness 
of a particular strategy is defined as its aggregate or average payoff in its pair-
ings with all the strategies in the population. Some strategies have a higher level 
of fitness than others; in the next generation—that is, the next round of play—
these higher-fitness strategies will be used by more players and will proliferate. 
Strategies with lower fitness will be used by fewer players and will decay or die 
out. Occasionally, someone may experiment or adopt a previously unused strat-
egy from the collection of those that are logically conceivable. This corresponds 
to the emergence of a mutant. 

Although we use the biological analogy, the reason that the fitter strategies 
proliferate and the less fit ones die out in socioeconomic games differs from the 
strict genetic mechanism of biology: players who fared well in the last round will 
transmit the information to their friends and colleagues playing the next round, 
those who fared poorly in the last round will observe which strategies succeeded 
better and will try to imitate them, and some purposive thinking and revision 
of previous rules of thumb will take place between successive rounds. Such “so-
cial” and “educational” mechanisms of transmission are far more important in 
most strategic games than any biological genetics; indeed, this is how the re-
election orientation of legislators and the profit-maximization motive of firms 
are reinforced. Finally, conscious experimentation with new strategies substi-
tutes for the accidental mutation in biological games. The gradual modification 
in the light of outcomes, experience, observation, and experiment constitutes 
the dynamics of Kahneman’s calculating, slower System 2.

Evolutionary stable configurations of biological games can be of two kinds. 
First, a single phenotype may prove fitter than any others, and the population 
may come to consist of it alone. Such an evolutionary stable outcome is called 
monomorphism—that is, a single (mono) form (morph). In that case, the unique 
prevailing strategy is called an evolutionary stable strategy (ESS). The other 
possibility is that two or more phenotypes may be equally fit (and fitter than 
some others not played), so they may be able to coexist in certain proportions. 
Then the population is said to exhibit polymorphism—that is, a multiplicity 
(poly) of forms (morph). Such a state will be stable if no new phenotype or fea-
sible mutant can achieve a higher fitness against such a population than the 
fitness of the types that are already present in the polymorphic population.
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Polymorphism comes close to the game-theoretic notion of a mixed strat-
egy. However, there is an important difference. To get polymorphism, no indi-
vidual player need follow a mixed strategy. Each can follow a pure strategy, but 
the population exhibits a mixture because different individual players pursue 
different pure strategies.

The whole setup—the population, its conceivable collection of phenotypes, 
the payoff matrix in the interactions of the phenotypes, and the rule for the evo-
lution of population proportions of the phenotypes in relation to their fitness—
constitutes an evolutionary game. An evolutionary stable configuration of the 
population can be called an equilibrium of the evolutionary game.

In this chapter, we develop some of these ideas, as usual through a series of 
illustrative examples. We begin with symmetric games, in which the two players 
are on similar footing—for example, two members of the same species compet-
ing with each other for food or mates; in a social science interpretation, they 
could be two elected officials competing for the right to continue in public of-
fice. In the payoff table for the game, each can be designated as the row player 
or the column player with no difference in outcome.

2 PRISONERS’ DILEMMA

Suppose a population is made up of two phenotypes. One type consists of 
players who are natural-born cooperators; they always work toward the out-
come that is jointly best for all players. The other type consists of the defectors; 
they work only for themselves. As an example, we use the restaurant pricing 
game described in Chapter 5 and presented in a simplified version in Chap-
ter 10. Here, we use the simpler version in which only two pricing choices are 
available, the jointly best price of $26 or the Nash equilibrium price of $20. A 
cooperator restaurateur would always choose $26, whereas a defector would 
always choose $20. The payoffs (profits) of each type in a single play of this dis-
crete dilemma are shown in Figure 12.1, reproduced from Figure 10.2. Here we 
call the players simply Row and Column because each can be any individual  

COLUMN

20 (Defect) 

20 (Defect) 26 (Cooperate)

26 (Cooperate) 

360, 216288, 288

324, 324216, 360
ROW 

FIGURE 12.1  Prisoners’ Dilemma of Pricing ($100s per month)
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restaurateur in the population who is chosen at random to compete against  
another random rival.

Remember that under the evolutionary scenario, no one has the choice 
between defecting and cooperating; each is “born” with one trait or the other  
predetermined. Which is the more successful (fitter) trait in the population?

A defecting-type restaurateur gets a payoff of 288 ($28,800 a month) if 
matched against another defecting type and a payoff of 360 ($36,000 a month) 
if matched against a cooperating type. A cooperating type gets 216 ($21,600 a 
month) if matched against a defecting type and 324 ($32,400 a month) if matched 
against another cooperating type. No matter what the type of the matched rival, 
the defecting type does better than the cooperating type.5 Therefore, the defect-
ing type has a better expected payoff (and is thus fitter) than does the cooperating 
type, irrespective of the proportions of the two types in the population.

A little more formally, let x be the proportion of cooperators in the popula-
tion. Consider any one particular cooperator. In a random draw, the probability 
that she will meet another cooperator (and get 324) is x and that she will meet 
a defector (and get 216) is (1 2 x). Therefore, a typical cooperator’s expected  
payoff is 324x  216(1 2 x). For a defector, the probability of meeting a coopera-
tor (and getting 360) is x and that of meeting another defector (and getting 288) is  
(1 2 x). Therefore, a typical defector’s expected profit is 360x  288(1 2 x). Now 
it is immediately apparent that

 360x  288(1 2 x) . 324x  216(1 2 x) for all x between 0 and 1.

Therefore, a defector has a higher expected payoff and is fitter than a coopera-
tor. This will lead to an increase in the proportion of defectors (a decrease in x) 
from one “generation” of players to the next, until the whole population consists 
of defectors.

What if the population initially consists of all defectors? Then in this case 
no mutant (experimental) cooperator will survive and multiply to take over the 
population; in other words, mutant cooperators cannot successfully invade a 
population of defectors. Even for a very small value of x—that is, when the pro-
portion of cooperators in the population is very small—the cooperators remain 
less fit than the prevailing defectors, and their population proportion will not 
increase but will be driven to zero; the mutant strain will die out.

Our analysis shows both that defectors have higher fitness than cooperators 
and that an all-defector population cannot be invaded by mutant cooperators. 
Thus, the evolutionary stable configuration of the population is monomorphic, 
consisting of the single strategy or phenotype Defect. We therefore call Defect 
the evolutionary stable strategy for this population engaged in this dilemma 

5 In the rational behavior context of the preceding chapters, we would say that Defect is the strictly 
dominant strategy.
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game. Note that Defect is a strictly dominant strategy in the rational behavior 
analysis of this same game. This result is very general: if a game has a strictly 
dominant strategy, that strategy will also be the ESS.

A.  The Repeated Prisoners’ Dilemma

We saw in Chapter 10 how a repetition of the prisoners’ dilemma permitted con-
sciously rational players to sustain cooperation for their mutual benefit. Let us 
see if a similar possibility exists in the evolutionary story. Suppose each chosen 
pair of players plays the dilemma three times in succession. The overall payoff to 
a player from such an interaction is the sum of what she gets in the three rounds.

Each individual player is still programmed to play just one strategy, but that 
strategy has to be a complete plan of action. In a game with three moves, a strat-
egy can stipulate an action in the second or third play that depends on what hap-
pened in the first or second play. For example, “I will always cooperate no matter 
what” and “I will always defect no matter what” are valid strategies. But “I will 
begin by cooperating and continue to cooperate as long as you cooperated on 
the preceding play; and I will defect in all later plays if you defect in an early play” 
is also a valid strategy; in fact, this last strategy is just tit-for-tat (TFT).

To keep the initial analysis simple, we suppose in this section that there 
are just two types of strategies that can possibly exist in the population: always 
defect (A) and tit-for-tat (T). Pairs are randomly selected from the population, 
and each selected pair plays the game a specified number of times. The fitness 
of each player is simply the sum of her payoffs from all the repetitions played 
against her specific opponent. We examine what happens with two, three, and 
more generally n such repetitions in each pair.

I. T WICE-REPEATED PLAY  Figure 12.2 shows the payoff table for the game in which two 
members of the restaurateur population meet and play against one another ex-
actly twice. If both players are A types, both defect both times, and Figure 12.1 
shows that then each gets 288 each time, for a total of 576. If both are T types, 
defection never starts, and each gets 324 each time, for a total of 648. If one is an 
A type and the other a T type, then on the first play the A type defects and the T 
type cooperates, so the former gets 360 and the latter 216. On the second play 
both defect and get 288. So the A type’s total payoff is 360  288  648, and the T 
type’s total is 216  288  504.

In the twice-repeated dilemma, we see that A is only weakly dominant. It is 
easy to see that if the population is all A, then T-type mutants cannot invade, and 
A is an ESS. But if the population is all T, then A-type mutants cannot do any bet-
ter than the T types. Does this mean that T must be another ESS, just as it would 
be a Nash equilibrium in the rational-game-theoretic analysis of this game? The 
answer is no. If the population is initially all T and a few A mutants enter, then 
the mutants would meet the predominant T types most of the time and would 
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do as well as T does against another T. But occasionally an A mutant would meet 
another A mutant, and in this match she does better than would a T against an A. 
Thus, the mutants have just slightly higher fitness than that of a member of the 
predominant phenotype. This advantage leads to an increase, albeit a slow one, 
in the proportion of mutants in the population. Therefore, an all-T population 
can be invaded successfully by A mutants; T is not an ESS.

Our reasoning relies on two tests for an ESS. First we see if the mutant does 
better or worse than the predominant phenotype when each is matched against 
the predominant type. If this primary criterion gives a clear answer, that settles 
the matter. But if the primary criterion gives a tie, then we use a tie-breaking, 
or secondary, criterion: does the mutant fare better or worse than a predomi-
nant phenotype when each is matched against a mutant? Ties are exceptional 
and most of the time we do not need the secondary criterion, but it is there in 
reserve for situations such as the one illustrated in Figure 12.2.6

II. THREEFOLD REPETITION  Now suppose each matched pair from the (A, T) popu-
lation plays the game three times. Figure 12.3 shows the fitness outcomes, 
summed over the three meetings, for each type of player when matched against 
rivals of each type.

To see how these fitness numbers arise, consider a couple of examples. When 
two T players meet each other, both cooperate the first time, and therefore both 
cooperate the second time and the third time as well; both get 324 each time, for 
a total of 972 each over 3 months. When a T player meets an A player, the latter 
does well the first time (360 for the A type versus 216 for the T player), but then 
the T player also defects the second and third times, and each gets 288 in both of 
those plays (for totals of 936 for A and 792 for T).

The relative fitness of the two types depends on the composition of the popu-
lation. If the population is almost wholly A type, then A is fitter than T (because A 

A T

COLUMN

A 

T 

576, 576

504, 648

648, 504

648, 648
ROW 

FIGURE 12.2  outcomes in the twice-repeated Prisoners’ Dilemma ($100s)

6 This game is just one example of a twice-repeated dilemma. With other payoffs in the basic game, 
twofold repetition may not have ties. That is so in the husband–wife jail story of Chapter 4. If both 
the primary and secondary criteria yield ties, neither phenotype satisfies our definition of ESS, and 
we need to broaden our understanding of what constitutes an equilibrium in the evolutionary game. 
We consider such a possibility in Section 5 and provide the general theory for dealing with such an 
outcome in Section 6.
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A T

COLUMN

A 

T 

864, 864

792, 936

936, 792

972, 972
ROW 

FIGURE 12.3  outcomes in the thrice-repeated Prisoners’ Dilemma ($100s)

types meeting mostly other A types earn 864 most of the time, but T types most 
often get 792). But if the population is almost wholly T type, then T is fitter than A 
(because T types earn 972 when they meet mostly other Ts, but A types earn 936 
in such a situation). Each type is fitter when it already predominates in the popu-
lation. Therefore, T cannot invade successfully when the population is all A, and 
vice versa. Now there are two possible evolutionary stable configurations of the 
population: in one configuration, A is the ESS, and in the other, T is the ESS.

Next consider the evolutionary dynamics when the initial population is 
made up of a mixture of the two types. How will the composition of the popula-
tion evolve over time? Suppose a fraction x of the population is T type and the 
rest, (1 2 x), is A type.7 An individual A player, pitted against various opponents 
chosen from such a population, gets 936 when confronting a T player, which 
happens a fraction x of the times, and 864 against another A player, which hap-
pens a fraction (1 2 x) of the times. This gives an average expected payoff of

 936x  864(1 2 x)  864  72x

for each A player. Similarly, an individual T player gets an average expected  
payoff of

 972x  792(1 2 x)  792  180x.

Then a T player is fitter than an A player if the former earns more on average; 
that is, if

 792  180x . 864  72x
 108x . 72
 x . 23.

7 Literally, the fraction of any particular type in the population is finite and can only take on val-
ues such as 11,000,000, 21,000,000, and so on. But, if the population is sufficiently large and we 
show all such values as points on a straight line, as in Figure 12.4, then these points are very tightly 
packed together, and we can regard them as forming a continuous line. This amounts to letting the 
fractions take on any real value between 0 and 1. We can then talk of the population proportion of  
a certain behavioral type. By the same reasoning, if one individual member goes to jail and is  
removed from the population, her removal does not change the population’s proportions of the  
various phenotypes.
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In other words, if more than two-thirds (67%) of the population is already T type, 
then T players are fitter and their proportion will grow until it reaches 100%. If 
the population starts with less than 67% T, then A players will be fitter, and the 
proportion of T players will go on declining until there are 0% of them, or 100% 
of the A players. The evolutionary dynamics move the population toward one 
of the two extremes, each of which is a possible ESS. The dynamics leads to the 
same conclusion as the static test of mutants’ invasion. This is a common, al-
though not universal, feature of evolutionary games.

Thus, we have identified two evolutionary stable configurations of the pop-
ulation. In each one the population is all of one type (monomorphic). For ex-
ample, if the population is initially 100% T, then even after a small number of 
mutant A types arise, the population mix will still be more than 66.66 . . . % T; 
T will remain the fitter type, and the mutant A strain will die out. Similarly, if 
the population is initially 100% A, then a small number of T-type mutants will 
leave the population mix with less than 66.66 . . . % T, so the A types will be fitter 
and the mutant T strain will die out. And as we saw earlier, experimenting mu-
tants of type N can never succeed in a population of A and T types that is either 
largely T or largely A.

What if the initial population has exactly 66.66 . . . % T players (and 33.33 . . . % 
A players)? Then the two types are equally fit. We could call this polymorphism. 
But it is not really a suitable candidate for an evolutionary stable configura-
tion. The population can sustain this delicately balanced outcome only until a 
mutant of either type surfaces. By chance, such a mutant must arise sooner or 
later. The mutant’s arrival will tip the fitness calculation in favor of the mutant 
type, and the advantage will accumulate until the ESS with 100% of that type is 
reached. This is just an application of the secondary criterion for evolutionary 
stability. We will sometimes loosely speak of such a configuration as an unsta-
ble equilibrium, so as to maintain the parallel with ordinary game theory where 
mutations are not a consideration and a delicately balanced equilibrium can 
persist. But in the strict logic of the biological process, it is not an equilibrium 
at all.

This reasoning can be shown in a simple graph that closely resembles 
the graphs that we drew when calculating the equilibrium proportions in a 
mixed-strategy equilibrium with consciously rational players. The only differ-
ence is that in the evolutionary context, the proportion in which the separate 
strategies are played is not a matter of choice by any individual player but a 
property of the whole population, as shown in Figure 12.4. Along the horizontal 
axis, we measure the proportion x of T players in the population from 0 to 1. We 
measure fitness along the vertical axis. Each line shows the fitness of one type. 
The line for the T type starts lower (at 792 compared with 864 for the A-type 
line) and ends higher (972 against 936). The two lines cross when x  0.66. . . . 
To the right of this point, the T type is fitter, so its population proportion  
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increases over time and x increases toward 1. Similarly, to the left of this point, 
the A type is fitter, so its population proportion increases over time and x de-
creases toward 0. Such diagrams often prove useful as visual aids, and we will 
use them extensively.8

B.  Multiple Repetitions

What if each pair plays some unspecified number of repetitions of the game? 
Let us focus on a population consisting of only A and T types in which interac-
tions between random pairs occur n times (where n . 2). The table of the total 
outcomes from playing n repetitions is shown in Figure 12.5. When two A types 
meet, they always defect and earn 288 every time, so each gets 288n in n plays. 
When two T types meet, they begin by cooperating, and no one is the first to 
defect, so they earn 324 every time, for a total of 324n. When an A type meets a T 
type, on the first play the T type cooperates and the A type defects, and so the A 
type gets 360 and the T type gets 216; thereafter the T type retaliates against the 
preceding defection of the A type for all remaining plays, and each gets 288 in  
all of the remaining (n 2 1) plays. Thus, the A type earns a total of 360  288 
(n 2 1)  288n  72 in n plays against a T type, whereas the T type gets 216  
288(n 2 1)  288n 2 72 in n plays against an A type.

Proportion x of
T types in population

0 

Fitness 

1 

936 

972 

A type

T type 

864 

792 

FIGURE 12.4  fitness Graphs and Equilibria for the thrice-repeated Prisoners’ Dilemma

8 You should now draw a similar graph for the twice-repeated case. You will see that the A line is 
above the T line for all values of x less than 1, but the two meet on the right-hand edge of the figure 
where x  1.
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If the proportion of T types in the population is x, then a typical A type gets 
x(288n  72)  (1 2 x)288n on average, and a typical T type gets x(324n)   
(1 2 x)(288n 2 72) on average. Therefore, the T type is fitter if

                   x(324n)  (1 2 x)(288n 2 72) . x(288n  72)  (1 2 x)288n

  36xn . 72

 

Once again we have two monomorphic ESSs, one all T (or x  1, to which the 
process converges starting from any x . 2n) and the other all A (or x  0, to 
which the process converges starting from any x , 2n). As in Figure 12.4, there 
is also an unstable polymorphic equilibrium at the balancing point x  2n.

Notice that the proportion of T at the balancing point depends on n; it is 
smaller when n is larger. When n  10, it is 210, or 0.2. So if the population ini-
tially is 20% T players, in a situation where each pair plays 10 repetitions, the 
proportion of T types will grow until they reach 100%. Recall that when pairs 
played three repetitions (n  3), the T players needed an initial strength of 67% 
or more to achieve this outcome, and only two repetitions meant that T types 
needed to be 100% of the population to survive. (We see the reason for this  
outcome in our expression for the critical value for x, which shows that when  
n  2, x must be above 1 before the T types are fitter.) Remember, too, that a 
population consisting of all T players achieves cooperation. Thus, cooperation 
emerges from a larger range of the initial conditions when the game is repeated 
more times. In this sense, with more repetition, cooperation becomes more 
likely. What we are seeing is the result of the fact that the value of establishing 
cooperation increases as the length of the interaction increases.

C.  Comparing the Evolutionary and Rational-Player Models

Finally, let us return to the thrice-repeated game illustrated in Figure 12.3 and, 
instead of using the evolutionary model, consider it played by two consciously 
rational players. What are the Nash equilibria? There are two in pure strategies, 

COLUMN

A T

A 

T 288n – 72, 288n + 72 324n, 324n

288n, 288n 288n + 72, 288n – 72
ROW 

 

FIGURE 12.5  outcomes in the n-fold-repeated Dilemma

72
36n

2
n

.x  
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one in which both play A and the other in which both play T. There is also an 
equilibrium in mixed strategies, in which T is played 67% of the time and A 33% 
of the time. The first two are just the monomorphic ESSs that we found, and 
the third is the unstable polymorphic evolutionary equilibrium. In other words, 
there is a close relation between evolutionary and consciously rational perspec-
tives on games.

That is not a coincidence. An ESS must be a Nash equilibrium of the game 
played by consciously rational players with the same payoff structure. To see 
this, suppose the contrary for the moment. If all players using some strategy 
(call it S) is not a Nash equilibrium, then some other strategy (call it R) must 
yield a higher payoff for one player when played against S. A mutant playing R 
will achieve greater fitness in a population playing S and so will invade success-
fully. Thus, S cannot be an ESS. In other words, if all players using S is not a Nash 
equilibrium, then S cannot be an ESS. This is the same as saying that, if S is an 
ESS, it must be a Nash equilibrium for all players to use S.

Thus, the evolutionary approach provides a backdoor justification for the ra-
tional approach. Even when players are not consciously maximizing, if the more 
successful strategies get played more often and the less successful ones die out 
and if the process converges eventually to a stable strategy, then the outcome  
must be the same as that resulting from consciously rational play.

Although an ESS must be a Nash equilibrium of the corresponding  
rational-play game, the converse is not true. We have seen two examples of this. 
In the twice-repeated dilemma game of Figure 12.2 played rationally, T would 
be a Nash equilibrium in the weak sense that if both players choose T, neither 
has any positive gain from switching to A. But in the evolutionary approach, A 
can arise as a mutation and can successfully invade the T population. And in 
the thrice-repeated dilemma game of Figures 12.3 and 12.4, rational play would 
produce a mixed-strategy equilibrium. But the biological counterpart to this 
mixed-strategy equilibrium, the polymorphic state, can be successfully invaded 
by mutants and is therefore not a true evolutionary stable equilibrium. Thus, 
the biological concept of stability can help us select from a multiplicity of Nash 
equilibria of a rationally played game.

There is one limitation of our analysis of the repeated game. At the outset, 
we allowed just two strategies: A and T. Nothing else was supposed to exist or 
arise as a mutation. In biology, the kinds of mutations that arise are determined 
by genetic considerations. In social or economic or political games, the genesis 
of new strategies is presumably governed by history, culture, and the experience 
of the players; the ability of people to assimilate and process information and 
to experiment with different strategies must also play a role. However, in our 
model of this situation, the restrictions that we place on the set of strategies that 
can possibly exist in a particular game have important implications for which of 
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these strategies (if any) can be evolutionary stable. In the thrice-repeated pris-
oners’ dilemma example, if we had allowed for a strategy S that cooperated on 
the first play and defected on the second and third, then S-type mutants could 
have successfully invaded an all-T population, so T would not have been an ESS. 
We develop this possibility further in the exercises at the end of this chapter.

3 CHICKEN

Remember our 1950s youths racing their cars toward one another and seeing 
who will be the first to swerve to avoid a collision? Now we suppose the players  
have no choice in the matter: each is genetically hardwired to be either a Wimp 
(always swerve) or a Macho (always go straight). The population consists of 
a mixture of the two types. Pairs are picked at random every week to play the 
game. Figure 12.6 shows the payoff table for any two such players—say, A and B. 
(The numbers replicate those we used in Figure 4.13 from Chapter 4.)

How will the two types fare? The answer depends on the initial population 
proportions. If the population is almost all Wimps, then a Macho mutant will 
win and score 1 lots of times, whereas all the Wimps meeting their own types 
will get mostly zeroes. But if the population is mostly Macho, then a Wimp mu-
tant scores 21, which may look bad but is better than the 22 that all the Machos 
get. You can think of this appropriately in terms of the biological context and the 
sexism of the 1950s: in a population of Wimps, a Macho newcomer will show all 
the rest to be chickens and so will impress all the girls. But if the population con-
sists mostly of Machos, they will be in the hospital most of the time and the girls 
will have to go for the few Wimps who are healthy.

In other words, each type is fitter when it is relatively rare in the population. 
Therefore, each can successfully invade a population consisting of the other 
type. We should expect to see both types in the population in equilibrium; that 
is, we should expect an ESS with a mixture, or polymorphism.

Wimp Macho

B

Wimp 

Macho 

0, 0

1, –1

–1, 1

–2, –2
A 

FIGURE 12.6  Payoff table for Chicken
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To find the proportions of Wimps and Machos in such an ESS, let us calcu-
late the fitness of each type in a general mixed population. Write x for the frac-
tion of Machos and (1 2 x) for the proportion of Wimps. A Wimp meets another 
Wimp and gets 0 for a fraction (1 2 x) of the time and meets a Macho and gets 
21 for a fraction x of the time. Therefore, the fitness of a Wimp is 0  (1 2 x) 2  
1  x  2x. Similarly, the fitness of a Macho is 1  (1 2 x) 2 2x  1 2 3x. The 
Macho type is fitter if

 1 2 3x . 2x

 2x , 1

 x , 12.

If the population is less than half Macho, then the Machos will be fitter and 
their proportion will increase. In contrast, if the population is more than half 
Macho, then the Wimps will be fitter and the Macho proportion will fall. Either 
way, the population proportion of Machos will tend toward 12, and this 50–50 
mix will be the stable polymorphic ESS.

Figure 12.7 shows this outcome graphically. Each straight line shows the fitness 
(the expected payoff in a match against a random member of the population) for 
one type, in relation to the proportion x of Machos. For the Wimp type, this func-
tional relation showing their fitness as a function of the proportion of the Machos 
 is 2x, as we saw two paragraphs ago. This is the gently falling line that starts at 
the height 0 when x  0 and goes to 21 when x  1. The corresponding function 
for the Macho type is 1 2 3x. This is the rapidly falling line that starts at height 1 
when x  0 and falls to 22 when x  1. The Macho line lies above the Wimp line for  
x , 12 and below it for x . 12, showing that the Macho types are fitter when the 
value of x is small and the Wimps are fitter when x is large.

Macho 

– 1 

– 2 

Wimp

1 

0 

Fitness 

Proportion x of 
Machos in population 

0 
1
2

FIGURE 12.7  fitness Graphs and Polymorphic Equilibrium for Chicken
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Now we can compare and contrast the evolutionary theory of this game with 
our earlier theory of Chapters 4 and 7, which was based on the assumption that 
the players were conscious rational calculators of strategies. There we found 
three Nash equilibria: two in pure strategies, where one player goes straight and 
the other swerves, and one in mixed strategies, where each player goes straight 
with a probability of 12 and swerves with a probability of 12.

If the population is truly 100% Macho, then all players are equally fit (or equally 
unfit). Similarly, in a population of nothing but Wimps, all are equally fit. But these 
monomorphic configurations are unstable. In an all-Macho population, a Wimp 
mutant will outscore them and invade successfully.9 Once some Wimps get estab-
lished, no matter how few, our analysis shows that their proportion will rise inex-
orably toward 12. Similarly, an all-Wimp population is vulnerable to a successful 
invasion of mutant Machos, and the process again goes to the same polymorphism. 
Thus, the polymorphic configuration is the only true evolutionary stable outcome.

Most interesting is the connection between the mixed-strategy equilibrium 
of the rationally played game and the polymorphic equilibrium of the evolution-
ary game. The mixture proportions in the equilibrium strategy of the former are 
exactly the same as the population proportions in the latter: a 50–50 mixture of 
Wimp and Macho. But the interpretations differ: in the rational framework, each 
player mixes his own strategies; in the evolutionary framework, every member 
of the population uses a pure strategy, but different members use different strat-
egies, and so we see a mixture in the population.10

This correspondence between Nash equilibria of a rationally played game and 
stable outcomes of a game with the same payoff structure when played according 
to the evolutionary rules is a very general proposition, and we see it in its generality 
later, in Section 6. Indeed, evolutionary stability provides an additional rationale 
for choosing one of the many Nash equilibria in such rationally played games.

When we looked at chicken from the rational perspective, the mixed-strategy  
equilibrium seemed puzzling. It left open the possibility of costly mistakes. Each 
player went straight one time in two, so one time in four they collided. The pure-
strategy equilibria avoided the collisions. At that time, this may have led you to 
think that there was something undesirable about the mixed-strategy equilib-
rium, and you may have wondered why we were spending time on it. Now you 
see the reason. The seemingly strange equilibrium emerges as the stable outcome  
of a natural dynamic process in which each player tries to improve his payoff 
against the population that he confronts.

9 The Invasion of the Mutant Wimps could be an interesting science-fiction comedy movie.
10 There can also be evolutionary stable mixed strategies in which each member of the population 
adopts a mixed strategy. We investigate this idea further in Section 6.E.
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4 THE ASSURANCE GAME

Among the important classes of strategic games introduced in Chapter 4, we 
have studied prisoners’ dilemma and chicken from the evolutionary perspective.  
That leaves the assurance game. We illustrated this type of game in Chapter 4 
with the story of two undergraduates, Harry and Sally, deciding where to meet 
for coffee. In the evolutionary context, each player is born liking either Star-
bucks or Local Latte and the population includes some of each type. Here we 
assume that pairs of players, which we classify generically as men and women, 
are chosen at random each day to play the game. We denote the strategies now 
by S (for Starbucks) and L (for Local Latte). Figure 12.8 shows the payoff table 
for a random pairing in this game; the payoffs are the same as those illustrated 
earlier in Figure 4.11.

If this were a game played by rational strategy-choosing players, there would 
be two equilibria in pure strategies: (S, S) and (L, L). The latter is better for both 
players. If they communicate and coordinate explicitly, they can settle on it quite 
easily. But if they are making the choices independently, they need to coordinate 
through a convergence of expectations—that is, by finding a focal point.

The rationally played game has a third equilibrium, in mixed strategies, that 
we found in Chapter 7. In that equilibrium, each player chooses Starbucks with 
a probability of 23 and Local Latte with a probability of 13; the expected payoff 
for each player is 23. As we showed in Chapter 7, this payoff is worse than the 
one associated with the less attractive of the two pure-strategy equilibria, (S, S), 
because independent mixing leads the players to make clashing or bad choices 
quite a lot of the time. Here, the bad outcome (a payoff of 0) has a probability of 
49: the two players go to different meeting places almost half the time.

What happens when this is an evolutionary game? In the large population, 
each member is hardwired, either to choose S or to choose L. Randomly chosen 
pairs of such people are assigned to attempt a meeting. Suppose x is the propor-
tion of S types in the population and (1 2 x) is that of L types. Then the fitness of 
a particular S type—her expected payoff in a random encounter of this kind—is 
x  1  (1 2 x)  0  x. Similarly, the fitness of each L type is x  0  (1 2 x)  2  

S L

WOMAN

S 

L 

1, 1

0, 0

0, 0

2, 2
MAN

FIGURE 12.8  Payoff matrix for the assurance Game
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 2(1 2 x). Therefore, the S type is fitter when x . 2(1 2 x), or for x . 23. The 
L type is fitter when x , 23. At the balancing point x  23, the two types are 
equally fit.

As in chicken, once again the probabilities associated with the mixed-strategy  
equilibrium that would obtain under rational choice seem to reappear under 
evolutionary rules as the population proportions in a polymorphic equilibrium. 
But now this mixed equilibrium is not stable. The slightest chance departure of 
the proportion x from the balancing point 23 will set in motion a cumulative 
process that takes the population mix farther away from the balancing point.  
If x increases from 23, the S type becomes fitter and propagates faster, increas-
ing x even more. If x falls from 23, the L type becomes fitter and propagates 
faster, lowering x even more. Eventually x will either rise all the way to 1 or fall 
all the way to 0, depending on which disturbance occurs. The difference is that 
in chicken, each type was fitter when it was rarer, so the population propor-
tions tended to move away from the extremes and toward a mid-range balanc-
ing point. In contrast, in the assurance game, each type is fitter when it is more 
numerous; the risk of failing to meet falls when more of the rest of the popula-
tion is the same type as you—so population proportions tend to move toward  
the extremes.

Figure 12.9 illustrates the fitness graphs and equilibria for the assurance 
game; this diagram is very similar to Figure 12.7. The two lines show the fitness 
of the two types in relation to the population proportion. The intersection of the 
lines gives the balancing point. The only difference is that, away from the bal-
ancing point, the more numerous type is the fitter, whereas in Figure 12.7 it was 
the less numerous type.

Proportion x of 
S types in population

L type

S type 

2 

1 

1 0 

Fitness 

2
3

FIGURE 12.9  fitness Graphs and Equilibria for the assurance Game
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Because each type is less fit when it is rare, only the two extreme monomor-
phic configurations of the population are possible evolutionary stable states.  
It is easy to check that both outcomes are ESS according to the static test: an 
invasion by a small mutant population of the other type will die out because the 
mutants, being rare, will be less fit. Thus, in assurance or coordination games, 
unlike in chicken, the evolutionary process does not preserve the bad equilib-
rium, where there is a positive probability that the players choose clashing strat-
egies. However, the dynamics do not guarantee convergence to the better of the 
two equilibria when starting from an arbitrary initial mixture of phenotypes—
where the population ends up depends on where it starts.

5 THREE PHENOT YPES IN THE POPULATION

If there are only two possible phenotypes (strategies), we can carry out static 
checks for ESS by comparing the type being considered with just one type of 
mutant. We can show the dynamics of the population in an evolutionary game 
with graphs similar to those in Figures 12.4, 12.7, and 12.9. Now we illustrate 
how the ideas and methods can be used if there are three (or more) possible 
phenotypes and what new considerations arise.

A.  Testing for ESS

Let us reexamine the thrice-repeated prisoners’ dilemma of Section 12.2.A.II 
and Figure 12.3 by introducing a third possible phenotype. This strategy, labeled 
N, never defects. Figure 12.10 shows the fitness table with the three strategies—
A, T, and N.

To test whether any of these strategies is an ESS, we consider whether a 
population of all one type can be invaded by mutants of one of the other types. 
An all-A population, for example, cannot be invaded by mutant N or T types; so 
A is an ESS. An all-N population can be invaded by type-A mutants, however; N 
lets itself get fooled thrice (shame on it). So N cannot be an ESS. 

A T

COLUMN

A 

T 

864, 864 936, 792

792, 936 972, 972

N

1080, 648

972, 972

N 648, 1080 972, 972 972, 972

ROW 

FIGURE 12.10  thrice-repeated Prisoners’ Dilemma with three types ($100s)
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What about T? An all-T population cannot be invaded by A. But when faced 
with type-N mutants, the T types find themselves equally matched; notice that 
the four cells showing T and N competing only with each other show identical 
payoffs for both phenotypes. In this situation, the mutant N types would not 
proliferate, but they would not die out either. A small proportion of mutants 
could coexist with the (almost) all-T population. Thus, T does not satisfy either 
of the criteria for being an ESS, but it does exhibit some resistance to invasion. 

We recognize the resilience shown by the T type in our example by introduc-
ing the concept of a neutral ESS.11 In contrast to the standard ESS, in which a 
member of the main population needs to be strictly fitter than a mutant in a 
population with a small proportion of mutants, neutral stability requires only 
that a member of the main population have at least as high a fitness as does a 
mutant. Then the mutant proportion does not increase but can stay at an ini-
tially small level. This is the case when our all-T population is invaded by a small 
number of mutant N types. In the game illustrated in Figure 12.10, then, we have 
one standard ESS, strategy A, and one neutral ESS, strategy T. 

Let us consider further the situation when an all-T population is invaded by 
type-N mutants. If the proportion of mutants is sufficiently small, the two types 
can coexist happily. But if the mutant population is too large a proportion of the 
full population, then type-A mutants can invade; A types do well against N but 
poorly against T. To be specific, consider a population with proportions x of N 
and (1 2 x) of T. The fitness of each of these types is 972. The fitness of a type-A 
mutant in this population is 936(1 2 x)  1,080x  144x  936. This exceeds 972 if 
144x . 972 2 936  36, or x . 14. Thus, we can have T as a neutral ESS coexisting  
with some small proportion of N-type mutants, but only so long as the propor-
tion of Ns is less than 25%.

B.  Dynamics

To motivate our discussion of dynamics in games with three possible pheno-
types, we turn to another well-known game, rock-paper-scissors (RPS). In ratio-
nal game-theoretic play of this game, each player simultaneously chooses one of 
the three available actions, either rock (make a fist), paper (lay your hand flat), or 
scissors (make a scissorlike motion with two fingers). The rules of the game state 
that rock beats (“breaks”) scissors, scissors beat (“cut”) paper, and paper beats 
(“covers”) rock; identical actions tie. If players choose different actions, the win-
ner gets a payoff of 1 and the loser gets a payoff of 21; ties yield both players 0.

For an evolutionary example, we turn to the situation faced by the  
side-blotched lizards living along the California coast. That species supports 
three types of male mating behavior, each type associated with a particular 

11 Weibull describes neutral stability as a weakening of the standard evolutionary stability criteria in 
his Evolutionary Game Theory (p. 46). 
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throat color. Males with blue throats guard a small number of female mates and 
fend off advances made by yellow-throated males who attempt to sneak in and 
mate with unguarded females. The yellow-throated sneaking strategy works well 
against males with orange throats, who maintain large harems and are often 
out aggressively pursuing additional mates; those mates tend to belong to the  
blue-throated males, which can be overpowered by the orange-throat’s aggres-
sion.12 Their interactions can be modeled by using the payoff structure of the 
RPS game in Figure 12.11, which shows payoffs to the row player only. We in-
clude a column for a q-mix to allow us to consider the evolutionary equivalent 
of the game’s mixed-strategy equilibrium, a mixture of types in the population.13

Suppose q1 is the proportion of lizards in the population that are yel-
low throated, q2 the proportion of blue throats, and the rest, (1 2 q1 2 q2), the  
proportion of orange throats. The right-hand column of the table shows each 
Row player’s payoffs when meeting this mixture of phenotypes; that is, just 
Row’s fitness. Suppose, as has been shown to be true in the side-splotched lizard 
population, that the proportion of each type in the population grows when its 
fitness is positive and declines when it is negative.14 Then

 q1 increases if and only if  2q2  (1 2 q1 2 q2) . 0, or q1  2q2 , 1.

The proportion of yellow-throated types in the population increases when 
q2, the proportion of blue-throated types, is small or when (1 2 q1 2 q2), 

COLUMN

–q2 + (1 – q1 – q2) 

 

Yellow- 
throated 
sneaker 

Blue- 
throated 
guarder 

Orange- 
throated 

aggressor 

Blue-
throated
guarder

Yellow-
throated
sneaker

Orange-
throated

aggressor

0 –1 1 

q1 – (1 – q1 – q2) 

 

1 0 –1

 –q1 + q2 –1 1 0 

q-mix

ROW 

FIGURE 12.11  Payoffs in the three-type Evolutionary Game

12 For more information about the side-blotched lizards, see Kelly Zamudio and Barry Sinervo, “Po-
lygyny, Mate-Guarding, and Posthumous Fertilizations As Alternative Mating Strategies,” Proceed-
ings of the National Academy of Sciences, vol. 97, no. 26 (December 19, 2000), pp. 14427–32.
13 One exercise in Chapter 7 considers the rational game-theoretic equilibrium of a version of the RPS 
game. You should be able to verify relatively easily that the game has no equilibrium in pure strategies.
14 A little more care is necessary to ensure that the three proportions sum to 1, but that can be done, 
and we hide the mathematics so as to convey the ideas in a simple way. In the exercises, we develop 
the dynamics more rigorously for readers with sufficient mathematical training.
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the proportion of orange-throated types, is large. This makes sense; yellow  
throats do poorly against blue throats but well against orange throats. Similarly, 
we see that

 q2 increases if and only if  q1 2 (1 2 q1 2 q2) . 0, or 2q1  q2 . 1.

Blue-throated males do better when the proportion of yellow-throated competi-
tors is large or the proportion of orange-throated types is small.

Figure 12.12 shows graphically the population dynamics and resulting equi-
libria for this game. The triangular area defined by the axes and the line q1   
q2  1 contains all the possible equilibrium combinations of q1 and q2. There 
are also two straight lines within this area. The first is q1  2q2  1 (the flatter 
one), which is the balancing line for q1; for combinations of q1 and q2 below 
this line, q1 (the proportion of yellow-throated players) increases; for combi-
nations above this line, q1 decreases. The second, steeper line is 2q1  q2  1, 
which is the balancing line for q2. To the right of this line (when 2q1  q2 . 1),  
q2 increases; to the left of the line (when 2q1  q2 , 1), q2 decreases. Arrows 
on the diagram show directions of motion of these population proportions;  
blue curves show typical dynamic paths. The general idea is the same as that of 
Figure 12.10.

On each of the two gray lines, one of q1 and q2 neither increases nor de-
creases. Therefore, the intersection of the two lines represents the point 
where q1, q2, and therefore also (1 2 q1 2 q2) are all constant; this point thus  

0 

  

1 

1 

2q1 + q2 = 1 

q1 + q2 = 1 

q1 + 2q2 = 1 

q2 

q1 

1
2

1
2

FIGURE 12.12  Population Dynamics in the Evolutionary rPs Game 
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corresponds to a polymorphic equilibrium. It is easy to check that here q1  q2 
 1 2 q1 2 q2  13. These proportions are the same as the probabilities in the 
rational mixed-strategy equilibrium of the RPS game.

Is this polymorphic outcome stable? In general, we cannot say. The dynam-
ics indicate paths (shown in Figure 12.12 as a single ellipse) that wind around 
it. Whether these paths wind in a decreasing spiral toward the intersection (in 
which case we have stability) or in an expanding spiral away from the intersec-
tion (indicating instability) depends on the precise response of the population 
proportions to the fitnesses. It is even possible that the paths circle as drawn, 
neither approaching nor departing from the equilibrium.

Evidence suggests that the side-splotched lizard population is cycling 
around the evenly split polymorphic equilibrium point, with one type being 
slightly more common for a period of a few years but then being overtaken by 
its stronger competitor. Whether the cycle is approaching the stable equilibrium 
remains a topic for future study. At least one other example of an RPS-type inter-
action in an evolutionary game entails three strains of food-poisoning-related  
E. coli bacteria. Each strain displaces one of the others but is displaced by the 
third, as in the three-type game described earlier. Scientists studying the com-
petition among the three strains have shown that a polymorphic equilibrium 
can persist if interactions between pairs stay localized, with small clumps of 
each strain shifting position continuously.15

6 THE HAWK–DOVE GAME

The hawk–dove game was the first example biologists studied in their develop-
ment of the theory of evolutionary games. It has instructive parallels with our 
analyses so far of the prisoners’ dilemma and chicken, so we describe it here to 
reinforce and improve your understanding of the concepts.

The game is played not by birds of these two species, but by two animals of 
the same species, and Hawk and Dove are merely the names for their strategies. 
The context is competition for a resource. The Hawk strategy is aggressive and 
fights to try to get the whole resource of value V. The Dove strategy is to offer 
to share but to avoid a fight. When two Hawk types meet each other, they fight. 
Each animal is equally likely (probability 12) to win and get V or to lose, be  
injured, and get 2C. Thus, the expected payoff for each is (V 2 C)2. When two 

15 The research on E. coli is reported in Martin Nowak and Karl Sigmund, “Biodiversity: Bacte-
rial Game Dynamics,” Nature, vol. 418 (July 11, 2002), p. 138. If the three strains were forcibly dis-
persed on a regular basis, a single strain could take over in a matter of days; the “winning” strain  
out-multiplied a second strain, which could quickly kill off the third.
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Dove types meet, they share without a fight, so each gets V2. When a Hawk type 
meets a Dove type, the latter retreats and gets a 0, whereas the former gets V. 
Figure 12.13 shows the payoff table.

The analysis of the game is similar to that for the prisoners’ dilemma and 
chicken games, except that the numerical payoffs have been replaced by algebraic 
symbols. We will compare the equilibria of this game when the players rationally 
choose to play Hawk or Dove and then compare the outcomes when players are 
acting mechanically and success is being rewarded with faster reproduction.

A.  Rational Strategic Choice and Equilibrium

 1. If V . C, then the game is a prisoners’ dilemma in which the Hawk strat-
egy corresponds to “defect” and Dove corresponds to “cooperate.” Hawk is the 
dominant strategy for each, but (Dove, Dove) is the jointly better outcome.
 2. If V , C, then it’s a game of chicken. Now (V 2 C)2 , 0, and so Hawk is 
no longer a dominant strategy. Rather, there are two pure-strategy Nash equilib-
ria: (Hawk, Dove) and (Dove, Hawk). There is also a mixed-strategy equilibrium, 
where B’s probability p of choosing Hawk is such as to keep A indifferent:

 
V

2

p(V � C )
2

(1 � p)

V
C

0 �(1 � p)V � � �

p              .�

p

B.  Evolutionary Stability for V  C

We start with an initial population predominantly of Hawks and test whether it 
can be invaded by mutant Doves. Following the convention used in analyzing 
such games, we could write the population proportion of the mutant phenotype 
as m, for mutant, but for clarity in our case we will use d for mutant Dove. The 
population proportion of Hawks is then (1 2 d). Then, in a match against a ran-
domly drawn opponent, a Hawk will meet a Dove a proportion d of the time and 
get V on each of those occasions and will meet another Hawk a proportion (1 2 d )  
of the time and get (V 2 C )2 on each of those occasions. Therefore, the fitness 

B

Hawk Dove

Hawk 

Dove 

V, 0(V – C)�2, (V – C)�2

0, V V�2, V�2
A 

FIGURE 12.13  Payoff table for the hawk–Dove Game

6841D CH12 UG.indd   489 12/18/14   3:14 PM



4 9 0   [ C h . 1 2 ]  E v o l u t i o n a r y  G a m E s

of a Hawk is [dV  (1 2 d )(V 2 C )2]. Similarly, the fitness of one of the mutant 
doves is [d(V2)  (1 2 d )  0]. Because V . C, it follows that (V 2 C )2 . 0. 
Also, V . 0 implies that V . V2. Then, for any value of d between 0 and 1, we 
have

 V
2

(1 � d )(V � C )
2

dV d (1 � d )  �  0,� � � 

and so the Hawk type is fitter. The Dove mutants cannot successfully invade. 
The Hawk strategy is evolutionary stable, and the population is monomorphic 
(all Hawk).

The same holds true for any population proportion of Doves for all values 
of d. Therefore, from any initial mix, the proportion of Hawks will grow and 
they will predominate. In addition, if the population is initially all Doves, mu-
tant Hawks can invade and take over. Thus, the dynamics confirm that the Hawk 
strategy is the only ESS. This algebraic analysis affirms and generalizes our  
earlier finding for the numerical example of the prisoners’ dilemma of restau-
rant pricing (Figure 12.1).

C.  Evolutionary Stability for V , C

If the initial population is again predominantly Hawks, with a small proportion 
d of Dove mutants, then each has the same fitness function derived in Section 
6.B. When V , C, however, (V 2 C )2 , 0. We still have V . 0, and so V . V2. 
But because d is very small, the comparison of the terms with (1 2 d) is much 
more important than that of the terms with d, so

 V
2

(1 � d )(V � C )
2

dV                                      .d (1 � d )  �  0 � � � 

Thus, the Dove mutants are fitter than the predominant Hawks and can invade 
successfully.

But if the initial population is almost all Doves, then we must consider 
whether a small proportion h of Hawk mutants can invade. (Note that because 
the mutant is now a Hawk, we have used h for the proportion of the mutant in-
vaders.) The Hawk mutants have a fitness of [h(V 2 C )2  (1 2 h)V ] compared 
with [h  0  (1 2 h)(V2)] for the Doves. Again, V , C implies that (V 2 C )2 , 0,  
and V . 0 implies that V . V2. But, when h is small, we get

 V
2

h(V � C )
2

h � 0 � (1 � h)      .(1 � h)V  � � 

This inequality shows that Hawks are fitter and will successfully invade a Dove 
population. Thus, mutants of each type can invade populations of the other 
type. The population cannot be monomorphic, and neither pure phenotype can 
be an ESS. The algebra again confirms our earlier finding for the numerical ex-
ample of chicken (Figures 12.6 and 12.7).
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What happens in the population then when V , C ? There are two possibili-
ties. In one, every player follows a pure strategy, but the population has a stable 
mix of players following different strategies. This is the polymorphic equilibrium 
developed for chicken in Section 12.3. The other possibility is that every player 
uses a mixed strategy. We begin with the polymorphic case.

D.  V  C: Stable Polymorphic Population

When the population proportion of Hawks is h, the fitness of a Hawk is  
h(V 2 C)2  (1 2 h)V, and the fitness of a Dove is h  0  (1 2 h)(V2). The 
Hawk type is fitter if

 V
2

h(V � C )
2

(1 � h)     ,(1 � h)V  � � 

which simplifies to:

 

V
2

h(V � C )
2

(1 � h) 0

V � hC

� � 

0� 

V
C

h              .�

The Dove type is then fitter when h . VC, or when (1 2 h) , 1 2 (VC )   
(C 2 V )C. Thus, each type is fitter when it is rarer. Therefore, we have a stable 
polymorphic equilibrium at the balancing point, where the proportion of Hawks 
in the population is h  VC. This is exactly the probability with which each in-
dividual member plays the Hawk strategy in the mixed-strategy Nash equilib-
rium of the game under the assumption of rational behavior, as calculated in 
Section 6.A. Again, we have an evolutionary “justification” for the mixed-strategy 
outcome in chicken.

We leave it to you to draw a graph similar to that in Figure 12.7 for this case. 
Doing so will require you to determine the dynamics by which the population 
proportions of each type converge to the stable equilibrium mix.

E.  V  C: Each Player Mixes Strategies

Recall the equilibrium mixed strategy of the rational-play game calculated ear-
lier in Section 6.A in which p  VC was the probability of choosing to be a 
Hawk, while (1 2 p) was the probability of choosing to be a Dove. Is there a par-
allel in the evolutionary version, with a phenotype playing a mixed strategy? Let 
us examine this possibility. We still have H types who play the pure Hawk strat-
egy and D types who play the pure Dove strategy. But now a third phenotype 
called M can exist; such a type plays a mixed strategy in which it is a Hawk with 
probability p  VC and a Dove with probability 1 2 p  1 2 (VC )  (C 2 V )C.
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When an H or a D meets an M, their expected payoffs depend on p, the prob-
ability that M is playing H, and on (1 2 p), the probability that M is playing D. 
Then each player gets p times her payoff against an H, plus (1 2 p) times her pay-
off against a D. So when an H type meets an M type, she gets the expected payoff

C  V 
V

V(C  V )  
V

V
2

V
2

.p  0  (1  p)  

V 
C 

V � C
2

V � C 
2 

C � V  
C 

p � (1 � p)V  � � V  

V
C

1
2

 � � �(C � V )  
V
C

(C � V )  

C � V  
2C

.V�

hp(V � C )  

2
. � (1 � h)K

And when a D type meets an M type, she gets

 

The two fitnesses are equal. This should not be a surprise; the proportions 
of the mixed strategy are determined to achieve exactly this equality. Then an M 
type meeting another M type also gets the same expected payoff. For brevity of 
future reference, we call this common payoff K, where K  V(C 2 V )2C.

But these equalities create a problem when we test M for evolutionary 
stability. Suppose the population consists entirely of M types and that a few 
mutants of the H type, constituting a very small proportion h of the total popu-
lation, invade. Then the typical mutant gets the expected payoff h(V 2 C)2   
(1 2 h)K. To calculate the expected payoff of an M type, note that she faces an-
other M type a fraction (1 2 h) of the time and gets K in each instance. She then 
faces an H type for a fraction h of the interactions; in these interactions she 
plays H a fraction p of the time and gets (V 2 C)2, and she plays D a fraction  
(1 2 p) of the time and gets 0. Thus, the M type’s total expected payoff (fitness) is

Because h is very small, the fitnesses of the M types and the mutant H types are 
almost equal. The point is that when there are very few mutants, both the H type 
and the M type meet only M types most of the time, and in this interaction the 
two have equal fitness as we just saw.

Evolutionary stability hinges on whether the original population M type is 
fitter than the mutant H when each is matched against one of the few mutants. 
Algebraically, M is fitter than H against other mutant H types when pV(C 2 V ) 
2C  pK . (V 2 C)2. In our example here, this condition holds because  
V , C [so (V 2 C) is negative] and because K is positive. Intuitively, this condi-
tion tells us that an H-type mutant will always do badly against another H-type 
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mutant because of the high cost of fighting, but the M type fights only part of 
the time and therefore suffers this cost only a fraction p of the time. Overall, the 
M type does better when matched against the mutants.

Similarly, the success of a Dove invasion against the M population depends 
on the comparison between a mutant Dove’s fitness and the fitness of an M 
type. As before, the mutant faces another D a fraction d of the time and faces 
an M a fraction (1 2 d ) of the time. An M type also faces another M type a frac-
tion (1 2 d ) of the time; but a fraction d of the time, the M faces a D and plays 
H a fraction p of these times, thereby gaining pV, and plays D a fraction (1 2 p) 
of these times, thereby gaining (1 2 p)V2. The Dove’s fitness is then [dV2   
(1 2 d )K], while the fitness of the M type is d  [pV  (1 2 p)V2]  (1 2 d )K. The 
final term in each fitness expression is the same, so a Dove invasion is success-
ful only if V2 is greater than pV  (1 2 p)V2. This condition does not hold; the 
latter expression includes a weighted average of V and V2 that must exceed V2 
whenever V  . 0. Thus, the Dove invasion cannot succeed either.

This analysis tells us that M is an ESS. Thus, if V , C, the population can ex-
hibit either of two evolutionary stable outcomes. One entails a mixture of types 
(a stable polymorphism), and the other entails a single type that mixes its strate-
gies in the same proportions that define the polymorphism.

F. Some General Theory

We now generalize the ideas illustrated in this section to get a theoretical frame-
work and set of tools that can then be applied further. This generalization 
unavoidably requires some slightly abstract notation and a bit of algebra. There-
fore, we cover only monomorphic equilibria in a single species. Readers who are 
adept at this level of mathematics can readily develop the polymorphism cases 
with two species by analogy. Readers who are not prepared for this material or 
interested in it can omit this section without loss of continuity.16

We consider random matchings from a single species whose population has 
available strategies I, J, K. . . . Some of them may be pure strategies; some may 
be mixed. Each individual member is hardwired to play just one of these strate-
gies. We let E(I, J) denote the payoff to an I player in a single encounter with a J 
player. The payoff of an I player meeting another of her own type is E(I, I) in the 
same notation. We write W(I) for the fitness of an I player. This is just her ex-
pected payoff in encounters with randomly picked opponents, when the prob-
ability of meeting a type is just the proportion of this type in the population.

16 Conversely, readers who want more details can find them in Maynard Smith, Evolution and the 
Theory of Games, especially pp. 14–15. John Maynard Smith is a pioneer in the theory of evolution-
ary games.
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Suppose the population is all I type. We consider whether this can be an 
evolutionary stable configuration. To do so, we imagine that the population is 
invaded by a few J-type mutants; so the proportion of mutants in the population 
is a very small number, m. Now the fitness of an I type is

 W(I)  mE(I, J)  (1 2 m)E(I, I),

and the fitness of a mutant is

 W(J)  mE(J, J)  (1 2 m)E(J, I).

Therefore, the difference in fitness between the population’s main type and its 
mutant type is

 W(I) 2 W(J)  m[E(I, J) 2 E(J, J)]  (1 2 m)[E(I, I) 2 E(J, I)].

Because m is very small, the main type’s fitness will be higher than the mutant’s 
if the second half of the preceding expression is positive; that is, 

 W(I) . W(J)  if  E(I, I) . E(J, I).

Then the main type in the population cannot be invaded; it is fitter than the mu-
tant type when each is matched against a member of the main type. This forms 
the primary criterion for evolutionary stability. Conversely, if W(I) , W(J), 
owing to E(I, I) , E(J, I), the J-type mutants will invade successfully, and an all-I 
population cannot be evolutionary stable.

However, it is possible that E(I, I)  E(J, I), as indeed happens if the pop-
ulation initially consists of a single phenotype that plays a strategy of mix-
ing between the pure strategies I and J (a monomorphic equilibrium with a  
mixed strategy), as was the case in our final variant of the Hawk–Dove 
game (Section 6.E). Then the difference between W(I) and W(J) is governed 
by how each type fares against the mutants.17 When E(I, I)  E(J, I), we get  
W(I) . W(J) if E(I, J) . E(J, J). This is the secondary criterion for the evolu-
tionary stability of I, to be invoked only if the primary one is inconclusive—
that is, only if E(I, I)  E(J, I).

If the secondary condition is invoked—because E(I, I) = E(J, I)—there is the 
additional possibility that it may also be inconclusive. That is, it may also be the 
case that E(I, J) = E(J, J). This is the case of neutral stability introduced in Section 
5. If both the primary and secondary conditions for the evolutionary stability of 
I are inconclusive, then I is considered a neutral ESS.

Note that the primary criterion carries a punch. It says that if the strategy I is 
evolutionary stable, then for all other strategies J that a mutant might try, E(I, I)  

17 If the initial population is polymorphic and m is the proportion of J types, then m may not  
be “very small” any more. The size of m is no longer crucial, however, because the second term in 
W(I) 2 W(J) is now assumed to be zero.
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E(J, I). This means that I is the best response to itself. In other words, if the mem-
bers of this population suddenly started playing as rational calculators, everyone 
playing I would be a Nash equilibrium. Evolutionary stability thus implies Nash 
equilibrium of the corresponding rationally played game!18

This is a remarkable result. If you were dissatisfied with the rational behav-
ior assumption underlying the theory of Nash equilibria given in earlier chap-
ters and you came to the theory of evolutionary games looking for a better  
explanation, you would find that it yields the same results. The very appeal-
ing biological description—fixed nonmaximizing behavior, but selection in re-
sponse to resulting fitness—does not yield any new outcomes. If anything, it 
provides a backdoor justification for Nash equilibrium. When a game has sev-
eral Nash equilibria, the evolutionary dynamics may even provide a good argu-
ment for choosing among them.

However, your reinforced confidence in Nash equilibrium should be cau-
tious. Our definition of evolutionary stability is static rather than dynamic. It 
only checks whether the configuration of the population (monomorphic, or 
polymorphic in just the right proportions) that we are testing for equilibrium 
cannot be successfully invaded by a small proportion of mutants. It does not 
test whether, starting from an arbitrary initial population mix, all the un-
wanted types will die out and the equilibrium configuration will be reached. 
And the test is carried out for those particular classes of mutants that are 
deemed logically possible; if the theorist has not specified this classification 
correctly and some type of mutant that she overlooked could actually arise, 
that mutant might invade successfully and destroy the supposed equilibrium. 
Our remark at the end of the twice-played prisoners’ dilemma in Section 2.A 
warned of this possibility, and you will see in the exercises how it can arise. 
Finally, in Section 5 we saw how evolutionary dynamics can fail to converge 
at all.

7 INTERACTIONS BY POPULATION AND ACROSS SPECIES

We have thus far looked at situations where each game is played between just 
two players who are randomly chosen from the population. There are other situ-
ations, however, when the whole population plays at once or when two different 
species interact. These situations require separate analysis. We will provide that 
in this section.

18 In fact, the primary criterion is slightly stricter than the standard definition of Nash equilibrium, 
which conforms more closely to that of neutral stability.
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A. Playing the Field

It is possible that evolutionary interactions may entail an entire population 
playing at once rather than by pairs. In biology, a whole flock of animals with a 
mixture of genetically determined behaviors may compete for some resource or 
territory. In economics or business, many firms in an industry, each following 
the strategy dictated by its corporate culture, may compete all with all.

Such evolutionary games stand in the same relation to the rationally played 
collective-action games of Chapter 11 as do the pair-by-pair played evolutionary 
games of the preceding sections to the rationally played two-person games of 
Chapters 4 through 7. Just as we converted the expected payoff graphs of those 
chapters into the fitness diagrams in Figures 12.4, 12.7, and 12.9, we can convert 
the graphs for collective-action games (Figures 11.6 through 11.8) into fitness 
graphs for evolutionary games. 

For example, consider an animal species all of whose members come to 
a common feeding ground. There are two phenotypes: one fights for food ag-
gressively, and the other hangs around and sneaks what it can. If the propor-
tion of aggressive ones is small, they will do better; but, if there are too many 
of them, the sneakers will do better by ignoring the ongoing fights. This will 
be a collective chicken game whose fitness diagram will be exactly like Figure 
11.7. Because no new principles or techniques are required, we leave it to you 
to pursue this idea further.

B. Interactions across Species

We now consider a final type of evolutionary interaction, one that occurs be-
tween members of different species rather than between two members of the 
same species. In all of our previous analyses, the players from a given population 
were identical in their preferences. In the assurance game of Section 4, for ex-
ample, L-type players were born liking Local Latte and S-type players were born 
liking Starbucks, but each type’s fitness was higher when a meeting occurred at 
Local Latte. A battle-of-the-sexes game structure, the one class of games that we 
have not yet considered, provides an appropriately different payoff structure. 
Although players in that game are still interested in meeting at either Starbucks 
or Local Latte—no meeting yields each a payoff of 0—now each type prefers a 
different café. These preferences distinguish the two types. In the language of 
biology, they can no longer be considered random draws from a homogeneous 
population of animals.19 Rather, they must belong to different species.

19 In evolutionary biology, games of this type are labeled “asymmetric” games. Symmetric games are 
those in which a player cannot distinguish the type of another player simply from observing that 
player’s outward characteristics; in asymmetric games, players can tell each other apart.

6841D CH12 UG.indd   496 12/18/14   3:14 PM



i n t E r a C t i o n s  b y  P o P u l at i o n  a n D  a C r o s s  s P E C i E s   4 9 7

To study such games from an evolutionary perspective, we extend our 
methodology to the case in which the matches are between randomly drawn 
members of different species or populations. We suppose that there is a large 
population of “men” and a large population of “women.” One of each “species” 
is picked at random, and the two are asked to attempt a meeting.20 All men agree 
among themselves about the valuation (payoffs) of Starbucks, Local Latte, and 
no meeting. Likewise, all women agree among themselves. But within each 
population, some members are hard-liners and others are compromisers. A 
hard-liner will always go to his or her species’ preferred café. A compromiser 
recognizes that the other species wants the opposite and goes to that location, 
to get along.

If the random draws happen to have picked a hard-liner of one species and 
a compromiser of the other, the outcome is that preferred by the hard-liner’s 
species. We get no meeting if two hard-liners are paired and, strangely, also if 
two compromisers are chosen, because they go to each other’s preferred café. 
(Remember, they have to choose independently and cannot negotiate. Perhaps 
even if they did get together in advance, they would reach an impasse of “No, I 
insist on giving way to your preference.”)

We alter the payoff table in Figure 4.12 from Chapter 4 as shown in Figure 
12.14; what were choices are now interpreted as actions predetermined by type 
(hard-liner or compromiser).

In comparison with all the evolutionary games studied so far, the new fea-
ture here is that the row player and the column player come from different 
species. Although each species is a heterogeneous mixture of hard-liners and 
compromisers, there is no reason why the proportions of the types should be 
the same in both species. Therefore, we must introduce two variables to repre-
sent the two mixtures and study the dynamics of both.

We let x be the proportion of hard-liners among the men and y that among 
the women. Consider a particular hard-liner man. He meets a hard-liner woman 
a proportion y of the time and gets a 0, and he meets a compromising woman 

20 We assume that classifying men and women as separate species is a possibility that many of you 
have considered at some point in your own lives! 

WOMAN

Hard-liner 

Hard-liner Compromiser

Compromiser 

2, 10, 0

0, 01, 2
MAN

FIGURE 12.14  Payoffs in the battle-of-the-sexes Game
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the rest of the time and gets a 2. Therefore, his expected payoff (fitness) is y  0   
(1 2 y)  2  2(1 2 y). Similarly, a compromising man’s fitness is y  1  (1 2 y)  0  
 y. Among men, therefore, the hard-liner type is fitter when 2(1 2 y) . y, or  
y , 23. The hard-liner men will reproduce faster when they are fitter; that is, x 
increases when y , 23. Note the new, and at first sight surprising, feature of the  
outcome: the fitness of each type within a given species depends on the proportion 
of types found in other species. This is not surprising; remember that the games 
that each species plays are now all against the members of the other species.21

Similarly, considering the other species, we have the result that the 
hard-liner women are fitter; so y increases when x , 23. To understand the re-
sult intuitively, note that it says that the hard-liners of each species do better 
when the other species does not have too many hard-liners of its own, because 
then they meet compromisers of the other species quite frequently.

Figure 12.15 shows the dynamics of the configurations of the two species. 
Each of x and y can range from 0 to 1, so we have a graph with a unit square and x 
and y on their usual axes. Within that, the vertical line AB shows all points where 
x  23, the balancing point at which y neither increases nor decreases. If the 
current population proportions lie to the left of this line (that is, x , 23), y is 
increasing (moving the population proportion of hard-liner women in the verti-
cally upward direction). If the current proportions lie to the right of AB (x . 23), 
then y is decreasing (motion vertically downward). Similarly, the horizontal line 
CD shows all points where y  23, which is the balancing point for x. When the 
population proportion of hard-liner women is below this line (that is, when y 
, 23), the proportion of hard-liner men, x, increases (motion horizontal and 
rightward) and decreases for population proportions above it, when y . 23 
(motion horizontal and leftward).

When we combine the motions of x and y, we can follow their dynamic 
paths to determine the location of the population equilibrium. From a starting 
point in the bottom-left quadrant of Figure 12.15, for example, the dynamics  
entail both y and x increasing. This joint movement (to the northeast) continues 
until either x  23 and y begins to decrease (motion now to the southeast) or  
y  23 and x begins to decrease (motion now to the northwest). Similar pro-
cesses in each quadrant yield the curved dynamic paths shown in the diagram. 
The vast majority of these paths lead to either the southeast or northwest cor-
ners of the diagram; that is, they converge either to (1, 0) or (0, 1). Thus, in most 
cases evolutionary dynamics will lead to a configuration in which one species 
is entirely hard-line and the other is entirely compromising. Which species 
will be which type depends on the initial conditions. Note that the population  

21 And this finding supports and casts a different light on the property of mixed-strategy equilibria, 
that each player’s mixture keeps the other player indifferent among her pure strategies. Now we can 
think of it as saying that in a polymorphic evolutionary equilibrium of a two-species game, the pro-
portion of each species’ type keeps all the surviving types of the other species equally fit.
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dynamics starting from a situation with a small value of x and a larger value 
of y are more likely to cross the CD line first and head for (0, 1)—all hard-line 
women, y  1—than to hit the AB line first and head for (1, 0); similar results 
follow for a starting position with a small y but a larger x. The species that starts 
out with more hard-liners will have the advantage of ending up all hard-line and 
getting the payoff of 2.

If the initial proportions are balanced just right, the dynamics may lead 
to the polymorphic point (23, 23). But unlike the polymorphic outcome in 
chicken, the polymorphism in the battle of the sexes is unstable. Most chance 
departures will set in motion a cumulative process that leads to one of the 
two extreme equilibria; those are the two ESSs for this game. This is a general  
property—such multispecies games can have only ESSs that are monomorphic 
for each species.

8 EVOLUTION OF COOPERATION AND ALTRUISM

Evolutionary game theory rests on two fundamental ideas: first, that individual 
organisms are engaged in games with others in their own species or with mem-
bers of other species and, second, that the genotypes that lead to higher-payoff  
(fitter) strategies proliferate while the rest decline in their proportions of the 
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FIGURE 12.15  Population Dynamics in the battle of the sexes
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22 See his excellent exposition in Cheating Monkeys and Citizen Bees: The Nature of Cooperation in 
Animals and Humans (Cambridge, Mass.: Harvard University Press, 2000). 
23 In this very brief account, we cannot begin to do justice to all the issues and the debates. An excel-
lent popular account, and the source of many examples cited in this section, is Matt Ridley, The Origins 
of Virtue (New York: Penguin, 1996). We should also point out that we do not examine the connection 
between genotypes and phenotypes in any detail or the role of sex in evolution. Another book by 
Ridley, The Red Queen (New York: Penguin, 1995), gives a fascinating treatment of this subject.

population. These ideas suggest a vicious struggle for survival like that depicted 
by some interpreters of Darwin who understood “survival of the fittest” in a lit-
eral sense and who conjured up images of a “nature red in tooth and claw.” In 
fact, nature shows many instances of cooperation (in which individual animals 
behave in a way that yields greater benefit to everyone in a group) and even al-
truism (in which individual animals incur significant costs in order to benefit 
others). Beehives and ant colonies are only the most obvious examples. Can 
such behavior be reconciled with the perspective of evolutionary games?

Biologists use a fourfold classification of the ways in which cooperation 
and altruism can emerge among selfish animals (or phenotypes or genes). Lee 
Dugatkin names the four categories (1) family dynamics, (2) reciprocal transac-
tions, (3) selfish teamwork, and (4) group altruism.22

The behavior of ants and bees is probably the easiest to understand as an 
example of family dynamics. All the individual members of an ant colony or a 
beehive are closely related and have genes in common to a substantial extent. 
All worker ants in a colony are full sisters and therefore have half their genes 
in common; the survival and proliferation of one ant’s genes is helped just as 
much by the survival of two of its sisters as by its own survival. All worker bees 
in a hive are half-sisters and therefore have a quarter of their genes in com-
mon. An individual ant or bee does not make a fine calculation of whether it 
is worthwhile to risk its own life for the sake of two or four sisters, but the un-
derlying genes of those groups whose members exhibit such behavior (pheno-
type) will proliferate. The idea that evolution ultimately operates at the level 
of the gene has had enormous implications for biology, although it has been 
misapplied by many people, just as Darwin’s original idea of natural selec-
tion was misapplied.23 The interesting idea is that a “selfish gene” may pros-
per by behaving unselfishly in a larger organization of genes, such as a cell.  
Similarly, a cell and its genes may prosper by participating cooperatively and ac-
cepting their allotted tasks in a body.

Reciprocal altruism can arise among unrelated individual members of the 
same or different species. This behavior is essentially an example of the resolu-
tion of prisoners’ dilemmas through repetition in which the players use strate-
gies that are remarkably like tit-for-tat. For example, some small fish and shrimp 
thrive on parasites that collect in the mouths and gills of some large fish; the 
large fish let the small ones swim unharmed through their mouths for this 
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“cleaning service.” A more fascinating, although gruesome, example is that of 
vampire bats, who share blood with those who have been unsuccessful in their 
own hunting. In an experiment in which bats from different sites were brought 
together and selectively starved, “only bats that were on the verge of starving 
(that is, would die within twenty-four hours without a meal) were given blood 
by any other bat in the experiment. But, more to the point, individuals were 
given a blood meal only from bats they already knew from their site. . . . Fur-
thermore, vampires were much more likely to regurgitate blood to the specific 
individual(s) from their site that had come to their aid when they needed a bit 
of blood.”24 Once again, it is not to be supposed that each animal consciously 
calculates whether it is in its individual interest to continue the cooperation or to 
defect. Instead, the behavior is instinctive.

Selfish teamwork arises when it is in the interests of each individual organ-
ism to choose cooperation when all others are doing so. In other words, this 
type of cooperative behavior applies to the selection of the good outcome in as-
surance games. Dugatkin argues that populations are more likely to engage in 
selfish teamwork in harsh environments than in mild ones. When conditions are 
bad, the shirking of any one animal in a group could bring disaster to the whole 
group, including the shirker. Then in such conditions, each animal is crucial for 
survival, and none shirk so long as others are also pulling their weight. In milder 
environments, each may hope to become a free rider on the others’ effort with-
out thereby threatening the survival of the whole group, including itself.

The next step goes beyond biology and into sociology: a body (and its cells 
and ultimately its genes) may benefit by behaving cooperatively in a collection 
of bodies—namely, a society. This brings us to the idea of group altruism, which 
suggests that we should see some cooperation even among individual members 
of a group who are not close relatives. We do indeed find instances of it. Groups 
of predators such as wolves are a case in point, and groups of apes often behave 
like extended families. Even among species of prey, cooperation arises when in-
dividual fishes in a school take turns looking out for predators. And cooperation 
can also extend across species.

The general idea is that a group whose members behave cooperatively 
is more likely to succeed in its interactions with other groups than one whose 
members seek benefit of free-riding within the group. If, in a particular context  
of evolutionary dynamics, between-group selection is a stronger force than 
within-group selection, then we will see group altruism.25

24 Dugatkin, Cheating Monkeys, p. 99. 
25 Group altruism used to be thought impossible according to the strict theory of evolution that em-
phasizes selection at the level of the gene, but the concept is being revived in more sophisticated 
formulations. See Dugatkin, Cheating Monkeys, pp. 141–145, for a fuller discussion.
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26 Apsley Cherry-Garrard, The Worst Journey in the World (London: Constable, 1922; reprinted New 
York: Carroll and Graf, 1989), pp. 485–86.
27 For the evidence on altruistic punishment, see Ernst Fehr and Simon Gachter, “Altruistic Punish-
ment in Humans,” Nature, vol. 415 (January 10, 2002), pp. 137–40.
28 Ridley, Origins of Virtue, p. 83.

An instinct is hardwired into an individual organism’s brain by genetics, but 
reciprocity and cooperation can arise from more purposive thinking or experi-
mentation within the group and can spread by socialization—through explicit 
instruction or observation of the behavior of elders—instead of genetics. The rel-
ative importance of the two channels—nature and nurture—will differ from one 
species to another and from one situation to another. One would expect social-
ization to be relatively more important among humans, but there are instances of 
its role among other animals. We cite a remarkable one. The expedition that Rob-
ert F. Scott led to the South Pole in 1911–1912 used teams of Siberian dogs. This 
group of dogs, brought together and trained for this specific purpose, developed  
within a few months a remarkable system of cooperation and sustained it by 
using punishment schemes. “They combined readily and with immense effect 
against any companion who did not pull his weight, or against one who pulled 
too much . . . their methods of punishment always being the same and ending, if 
unchecked, in what they probably called justice, and we called murder.”26

This is an encouraging account of how cooperative behavior can be com-
patible with evolutionary game theory and one that suggests that dilemmas 
of selfish actions can be overcome. Indeed, scientists investigating altruistic  
behavior have recently reported experimental support for the existence of such 
altruistic punishment, or strong reciprocity (as distinguished from reciprocal 
altruism), in humans. Their evidence suggests that people are willing to pun-
ish those who don’t pull their own weight in a group setting, even when it is 
costly to do so and when there is no expectation of future gain. This tendency 
toward strong reciprocity may even help to explain the rise of human civiliza-
tion if groups with this trait were better able to survive the traumas of war and 
other catastrophic events.27 Despite these findings, strong reciprocity may not 
be widespread in the animal world. “Compared to nepotism, which accounts 
for the cooperation of ants and every creature that cares for its young, reciproc-
ity has proved to be scarce. This, presumably, is due to the fact that reciprocity  
requires not only repetitive interactions, but also the ability to recognize other 
individuals and keep score.”28 In other words, precisely the conditions that our 
theoretical analysis in Section 2.D of Chapter 10 identified as being necessary 
for a successful resolution of the repeated prisoners’ dilemma are seen to be  
relevant in the context of evolutionary games.
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SUMMARY

The biological theory of evolution parallels the theory of games used by social 
scientists. Evolutionary games are played by behavioral phenotypes with ge-
netically predetermined, rather than rationally chosen, strategies. In an evo-
lutionary game, phenotypes with higher fitness survive repeated interactions 
with others to reproduce and to increase their representation in the popula-
tion. A population containing one or more phenotypes in certain proportions is 
called evolutionary stable if it cannot be invaded successfully by other, mutant  
phenotypes or if it is the limiting outcome of the dynamics of proliferation of 
fitter phenotypes. If one phenotype maintains its dominance in the population 
when faced with an invading mutant type, that phenotype is said to be an evolu-
tionary stable strategy, and the population consisting of it alone is said to exhibit 
monomorphism. If two or more phenotypes coexist in an evolutionary stable 
population, it is said to exhibit polymorphism.

When the theory of evolutionary games is applied more generally to non-
biological games, the strategies followed by individual players are understood to 
be standard operating procedures or rules of thumb, instead of being genetically 
fixed. The process of reproduction stands for more general methods of transmis-
sion including socialization, education, and imitation; and mutations represent 
experimentation with new strategies.

Evolutionary games may have payoff structures similar to those analyzed in 
Chapters 4 and 7, including the prisoners’ dilemma and chicken. In each case, 
the evolutionary stable strategy mirrors either the pure-strategy Nash equilib-
rium of a game with the same structure played by rational players or the pro-
portions of the equilibrium mixture in such a game. In a prisoners’ dilemma, 
“always defect” is evolutionary stable; in chicken, types are fitter when rare, and 
so there is a polymorphic equilibrium; in the assurance game, types are less fit 
when rare, and so the polymorphic configuration is unstable and the equilib-
ria are at the extremes. When play is between two different types of members of 
each of two different species, a more complex but similarly structured analysis 
is used to determine equilibria.

The hawk–dove game is the classic biological example. Analysis of this game 
parallels that of the prisoners’ dilemma and chicken versions of the evolution-
ary game; evolutionary stable strategies depend on the specifics of the payoff 
structure. The analysis can also be performed when more than two types inter-
act or in very general terms. This theory shows that the requirements for evo-
lutionary stability yield an equilibrium strategy that is equivalent to the Nash 
equilibrium obtained by rational players.
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KEY TERMS

evolutionary stable (467) mutation (466)
evolutionary stable strategy  neutral ESS (485) 
  (ESS) (469) phenotype (466)
fitness (466) playing the field (467)
genotype (466) polymorphism (469)
hawk–dove game (488) primary criterion (494)
invasion by a mutant (466) secondary criterion (494)
monomorphism (469) selection (466)

SOLVED ExERCISES

 S1. Two travelers buy identical handcrafted souvenirs and pack them in their 
respective suitcases for their return flight. Unfortunately, the airline man-
ages to lose both suitcases. Because the airline doesn’t know the value of 
the lost souvenirs, it asks each traveler to report independently a value. The  
airline agrees to pay each traveler an amount equal to the minimum of 
the two reports. If one report is higher than the other, the airline takes 
a penalty of $20 away from the traveler with the higher report and gives 
$20 to the traveler with the lower report. If the reports are equal to one 
another, there is no reward or penalty. Neither traveler remembers ex-
actly how much the souvenir cost, so that value is irrelevant; each trav-
eler simply reports the value that her type determines she should report.

There are two types of travelers. The High type always reports $100, 
and the Low type always reports $50. Let h represent the proportion of 
High types in the population.

 (a) Draw the payoff table for the game played between two travelers se-
lected at random from the population.

 (b) Graph the fitness of the High type, with h on the horizontal axis. On 
the same figure, graph the fitness of the Low type.

 (c) Describe all of the equilibria of this game. For each equilibrium, 
state whether it is monomorphic or polymorphic and whether it is 
stable.

 S2. In Section 5.A, we considered testing for ESSs (evolutionary stable strate-
gies) in the thrice-repeated restaurant-pricing prisoners’ dilemma.

 (a) Explain completely (using Figure 12.10) why an all-type-A popula-
tion cannot be invaded by either N- or T-type mutants.

 (b) Explain why an all-N-type population can be invaded by type A mu-
tants, and to what extent it can be invaded by type T mutants. Relate 
this explanation to the concept of neutral stability in the chapter.
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Confess Not

COLUMN

Confess 

Not 

10 yr, 10 yr

25 yr, 1 yr

1 yr, 25 yr

3 yr, 3 yr
ROW 

 (c) Finally, explain why an all-T-type population cannot be invaded by 
type A mutants but can be invaded by mutants that are type N.

 S3. Consider a population in which there are two phenotypes: natural-born 
cooperators (who do not confess under questioning) and natural-born 
defectors (who confess readily). If two members of this population are 
drawn at random, their payoffs in a single play are the same as those of 
the husband–wife prisoners’ dilemma game of Chapter 4, reproduced 
below. In repeated interactions there are two strategies available in the 
population, as there were in the restaurant-dilemma game of Section 
12.2. The two strategies are A (always confess) and T (play tit-for-tat, 
starting with not confessing). 

 (a) Suppose that a pair of players plays this dilemma twice in succes-
sion. Draw the payoff table for the twice-repeated dilemma.

 (b) Find all of the ESSs in this game.
 (c) Now add a third possible strategy, N, which never confesses. Draw 

the payoff table for the twice-repeated dilemma with three possible 
strategies and find all of the ESSs of this new version of the game.

 S4. In the assurance (meeting-place) game in this chapter, the payoffs were 
meant to describe the value of something material that the players 
gained in the various outcomes; they could be prizes given for a success-
ful meeting, for example. Then other individual persons in the popula-
tion might observe the expected payoffs (fitness) of the two types, see 
which was higher, and gradually imitate the fitter strategy. Thus, the pro-
portions of the two types in the population would change. But we can 
make a more biological interpretation. Suppose the column players are 
always female and the row players always male. When two of these play-
ers meet successfully, they pair off, and their children are of the same 
type as the parents. Therefore, the types would proliferate or die off as 
a result of successful or unsuccessful meetings. The formal mathematics 
of this new version of the game makes it a “two-species game” (although 
the biology of it does not). Thus, the proportion of S-type females in the 
population—call this proportion x—need not equal the proportion of  
S-type males—call this proportion y.
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 (a) Examine the dynamics of x and y by using methods similar to those 
used in the chapter for the battle-of-the-sexes game. 

 (b) Find the stable outcome or outcomes of this dynamic process.

 S5. Recall from Exercise S1 the travelers reporting the value of their lost sou-
venirs. Assume that a third traveler phenotype exists in the population. 
The third traveler type is a mixer; she plays a mixed strategy, sometimes 
reporting a value of $100 and sometimes reporting a value of $50.

 (a) Use your knowledge of mixed strategies in rationally played games 
to posit a reasonable mixture for the mixer phenotype to use in this 
game.

 (b) Draw the three-by-three payoff table for this game when the mixer 
type uses the mixed strategy that you found in part (a).

 (c) Determine whether the mixer phenotype is an ESS of this game. 
(Hint: Test whether a mixer population can be invaded successfully 
by either the High type or the Low type.)

 S6. Consider a simplified model in which everyone gets electricity either 
from solar power or from fossil fuels, which are both in relatively inelas-
tic supply. (In the case of solar power, think of the required equipment 
as being in inelastic supply.) The upfront costs of using solar energy are 
high, so when the price of fossil fuels is low (that is, when few people 
are using fossil fuels and there is a high demand for solar equipment), 
the cost of solar can be prohibitive. In contrast, when many individuals 
are using fossil fuels, the demand for them (and thus the price) is high, 
whereas the demand (and thus the price) for solar energy is relatively 
lower. Assume the payoff table for the two types of energy consumers to 
be as follows:

Solar Fossil fuels

COLUMN

Solar 

Fossil fuels 

2, 2

4, 3

3, 4

2, 2
ROW 

 (a) Describe all possible ESSs of this game in terms of s, the proportion 
of solar users, and explain why each is either stable or unstable.

 (b) Suppose there are important economies of scale in producing solar 
equipment, such that the cost savings increase the payoffs in the 
(solar, solar) cell of the table to (y, y ) where y . 2. How large would 
y need to be for the polymorphic equilibrium to have s  0.75? 
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 S7. There are two types of racers—tortoises and hares—who race against one 
another in randomly drawn pairs. In this world, hares beat tortoises every 
time without fail. If two hares race they tie, and they are completely ex-
hausted by the race. When two tortoises race they also tie, but they enjoy a  
pleasant conversation along the way. The payoff table is as follows  
(where c . 0):

X Y

COLUMN

X 

Y 

2, 2

3, 5

5, 3

1, 1
ROW 

 (a) Assume that the proportion of tortoises in the population, t, is 0.5. 
For what values of c will tortoises have greater fitness than hares? 

 (b) For what values of c will tortoises be fitter than hares if t  0.1?
 (c) If c  1, will a single hare successfully invade a population of pure 

tortoises? Explain why or why not.
 (d) In terms of t, how large must c be for tortoises to have greater fitness 

than hares?
 (e) In terms of c, what is the level of t in a polymorphic equilibrium? For 

what values of c will such an equilibrium exist? Explain.

 S8. Consider a population with two types, X and Y, with a payoff table as  
follows:

Tortoise Hare

COLUMN

Tortoise 

Hare 

c, c

1, –1

–1, 1

0, 0
ROW 

 (a) Find the fitness for X as a function of x, the proportion of X in the 
population, and the fitness for Y as a function of x.

Assume that the population dynamics from generation to generation 
conform to the following model:

 
x

t 
� F

Xt 

x
t 

� F
Xt  

� (1 � x
t
)  � F

Yt

x
t�1  

�
                                                                                            

,

where xt is the proportion of X in the population in period t, xt+1 is the 
proportion of X in the population in period t + 1, FXt is the fitness of X in 
period t, and FYt is the fitness of Y in period t.
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 (b) Assume that x0, the proportion of X in the population in period 0, is 
0.2. What are FX0 and FY0?

 (c) Find x1, using x0, FX0, FY0, and the model given above.
 (d) What are FX1 and FY1?
 (e) Find x2 (rounded to five decimal places).
 (f) What are FX2 and FY2 (rounded to five decimal places)? 

 S9. Consider an evolutionary game between green types and purple types 
with a payoff table as follows:

Green Purple

COLUMN

Green 

Purple 

a, a

3, 4

4, 3

2, 2
ROW 

Let g be the proportion of greens in the population.
 (a) In terms of g, what is the fitness of the purple type?
 (b) In terms of g and a, what is the fitness of the green type?
 (c) Graph the fitness of the purple types against the fraction g of green 

types in the population. On the same diagram, show three lines for 
the fitness of the green types when a  2, 3, and 4. What can you 
conclude from this graph about the range of values of a that guaran-
tees a stable polymorphic equilibrium?

 (d) Assume that a is in the range found in part (c). In terms of a, what is 
the proportion of greens, g, in the stable polymorphic equilibrium?

 S10. Prove the following statement: “If a strategy is strictly dominated in the 
payoff table of a game played by rational players, then in the evolution-
ary version of the same game it will die out, no matter what the initial 
population mix. If a strategy is weakly dominated, it may coexist with 
some other types but not in a mixture of all types.”

UNSOLVED ExERCISES

 U1. Consider a survival game in which a large population of animals meet 
and either fight over or share a food source. There are two phenotypes in 
the population: one always fights, and the other always shares. For the 
purposes of this question, assume that no other mutant types can arise 
in the population. Suppose that the value of the food source is 200 calo-
ries and that caloric intake determines each player’s reproductive fitness. 
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Cooperate Defect

PLAYER 2

Cooperate 

Defect 

3, 3

4, 1

1, 4

2, 2

PLAYER 
1 

If two sharing types meet one another, they each get half the food, but if 
a sharer meets a fighter, the sharer concedes immediately, and the fighter 
gets all the food.

 (a) Suppose that the cost of a fight is 50 calories (for each fighter) and that 
when two fighters meet, each is equally likely to win the fight and the 
food or to lose and get no food. Draw the payoff table for the game 
played between two random players from this population. Find all  
of the ESSs in the population. What type of game is being played in  
this case?

 (b) Now suppose that the cost of a fight is 150 calories for each fighter. 
Draw the new payoff table and find all of the ESSs for the popula-
tion in this case. What type of game is being played here?

 (c) Using the notation of the hawk–dove game of Section 12.6, indicate 
the values of V and C in parts (a) and (b), and confirm that your an-
swers to those parts match the analysis presented in the chapter.

 U2. Suppose that a single play of a prisoners’ dilemma has the following  
payoffs:

In a large population in which each member’s behavior is genetically 
determined, each player will be either a defector (that is, always defects 
in any play of a prisoners’ dilemma game) or a tit-for-tat player. (In mul-
tiple rounds of a prisoners’ dilemma, she cooperates on the first play, 
and on any subsequent play she does whatever her opponent did on the 
preceding play.) Pairs of randomly chosen players from this population 
will play “sets” of n single plays of this dilemma (where n  2). The payoff 
to each player in one whole set (of n plays) is the sum of her payoffs in 
the n plays.

Let the population proportion of defectors be p and the proportion 
of tit-for-tat players be (1 2 p). Each member of the population plays sets 
of dilemmas repeatedly, matched against a new, randomly chosen oppo-
nent for each new set. A tit-for-tat player always begins each new set by 
cooperating on its first play.

 (a) Show in a two-by-two table the payoffs to a player of each type when, 
in one set of plays, each player meets an opponent of each of the two 
types.
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 (b) Find the fitness (average payoff in one set against a randomly cho-
sen opponent) for a defector.

 (c) Find the fitness for a tit-for-tat player.
 (d) Use the answers to parts (b) and (c) to show that, when p . (n 2 

2)(n 21),the defector type has greater fitness and that, when p ,  
(n 2 2)(n 21), the tit-for-tat type has greater fitness.

 (e) If evolution leads to a gradual increase in the proportion of the fitter 
type in the population, what are the possible eventual equilibrium 
outcomes of this process for the population described in this exer-
cise? (That is, what are the possible equilibria, and which are evo-
lutionary stable?) Use a diagram with the fitness graphs to illustrate 
your answer.

 (f) In what sense does more repetition (larger values of n) facilitate the 
evolution of cooperation?

 U3. Suppose that in the twice-repeated prisoners’ dilemma of Exercise S3, a 
fourth possible type (type S) also can exist in the population. This type 
does not confess on the first play and confesses on the second play of 
each episode of two successive plays against the same opponent.

 (a)  Draw the four-by-four fitness table for the game.
 (b)  Can the newly conceived type S be an ESS of this game?
 (c)  In the three-types game of Exercise S3, A and T were both ESS, but T 

was only neutrally stable because a small proportion of N mutants 
could coexist. Show that in the four-types game here, T cannot be ESS.

 U4. Following the pattern of Exercise S4, analyze an evolutionary version of 
the tennis point game (Figure 4.14 in Chapter 4). Regard servers and re-
ceivers as separate species, and construct a figure like Figure 12.15. What 
can you say about the ESS and its dynamics?

 U5. Recall from Exercise U1 the population of animals fighting over a food 
source worth 200 calories. Assume that, as in part (b) of that exercise, the 
cost of a fight is 150 calories per fighter. Assume also that a third pheno-
type exists in the population. That phenotype is a mixer; it plays a mixed 
strategy, sometimes fighting and sometimes sharing.

 (a) Use your knowledge of mixed strategies in rationally played games 
to posit a reasonable mixture for the mixer phenotype to use in this 
game.

 (b) Draw the three-by-three payoff table for this game when the mixer 
type uses the mixed strategy that you found in part (a).

 (c) Determine whether the mixer phenotype is an ESS of this game. 
(Hint: Test whether a mixer population can be invaded successfully 
by either the fighting type or the sharing type.)
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 U6. Consider an evolutionary version of the game between Baker and Cutler, 
from Exercise U1 of Chapter 10. This time Baker and Cutler are not two 
individuals but two separate species. Each time a Baker meets a Cutler, 
they play the following game. The Baker chooses the total prize to be ei-
ther $10 or $100. The Cutler chooses how to divide the prize chosen by 
the Baker: the Cutler can choose either a 50:50 split or a 90:10 split in the 
Cutler’s own favor. The Cutler moves first, and the Baker moves second.

There are two types of Cutlers in the population: type F chooses a 
fair (50:50) split, whereas type G chooses a greedy (90:10) split. There are 
also two types of Bakers: type S simply chooses the large prize ($100) no 
matter what the Cutler has done, whereas type T chooses the large prize 
($100) if the Cutler chooses a 50:50 split, but the small prize ($10) if the 
Cutler chooses a 90:10 split.

Let f  be the proportion of type F in the Cutler population, so that  
(1 2 f ) represents the proportion of type G. Let s be the proportion of 
type S in the Baker population, so that (1 2 s) represents the proportion 
of type T.

 (a) Find the fitness of the Cutler types F and G in terms of s.
 (b)  Find the fitness of the Baker types S and T in terms of f.
 (c) For what value of s are types F and G equally fit?
 (d) For what value of f are types S and T equally fit?
 (e) Use the answers above to sketch a graph displaying the population 

dynamics. Assign f as the horizontal axis and s as the vertical axis. 
 (f) Describe all of the equilibria of this evolutionary game, and indicate 

which ones are stable.

 U7. Recall Exercise S7. Hares, it turns out, are very impolite winners. When-
ever hares race tortoises, they mercilessly mock their slow-footed (and 
easily defeated) rivals. The poor tortoises leave the race not only in de-
feat, but with their tender feelings crushed by the oblivious hares. The 
payoff table is thus:

Tortoise Hare

COLUMN

Tortoise 

Hare 

c, c

1, –2

–2, 1

0, 0
ROW 

 (a) For what values of c are tortoises fitter than hares if t, the proportion 
of tortoises in the population, is 0.5? How does this compare with 
the answer in Exercise S7, part (a)?
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Recall that the population dynamics from generation to generation 
are given by:

 

x
t 

� F
Xt 

x
t 

� F
Xt  

� (1 � x
t
)  � F

Yt

x
t�1  

�
                                                                                           

 ,

where xt is the proportion of X in the population in period t, xt+1 is the 
proportion of X in the population in period t + 1, FXt is the fitness of X in 
period t, and FYt is the fitness of Y in period t. 

Use a spreadsheet to extend these calculations to many generations. 
[Hint: Assign three horizontally adjacent cells to hold the values of xt, FXt, 
and FYt, and have each successive row represent a different period (t  0, 
1, 2, 3, . . .). Use spreadsheet formulas to relate FXt and FYt to xt and xt+1 to 
xt, FXt, and FYt according to the population model given above.] 

 (a) If there are initially equal proportions of X and Y in the population 
in period 1 (that is, if x0  0.5), what is the proportion of X in the next  
generation, x1? What are FX1 and FY1? 

 (b) Use a spreadsheet to extend these calculations to the next genera-
tion, and the next, and so on. To four decimal places, what is the 
value of x20? What are FX20 and FY20? 

 (b) For what values of c are tortoises fitter than hares if t  0.1? How 
does this compare with the answer in Exercise S7, part (b)?

 (c) If c  1, will a single hare successfully invade a population of pure 
tortoises? Explain why or why not.

 (d) In terms of t, how large must c be for tortoises to be fitter than hares?
 (e) In terms of c, what is the level of t in a polymorphic equilibrium? For 

what values of c will such an equilibrium exist? Explain.
 (f) Will the polymorphic equilibria found to exist in part (e) be stable? 

Why or why not?

 U8. (Use of spreadsheet software recommended) This problem explores 
more thoroughly the generation-by-generation population dynamics 
seen in Exercise S8. Since the math can quickly become very compli-
cated and tedious, it is much easier to do this analysis with the aid of a 
spreadsheet.

Again, consider a population with two types, X and Y, with a payoff 
table as follows:

X Y

COLUMN

X 

Y 

2, 2

3, 5

5, 3

1, 1
ROW 
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 (c) What is x*, the equilibrium level of x? How many generations does it 
take for the population to be within 1% of x*?

 (d) Answer the questions in part (b), but with a starting value of x0  
0.1. 

 (e) Repeat part (b), but with x0  1.
 (f) Repeat part (b), but with x0  0.99.
 (g) Are monomorphic equilibria possible in this model? If so, are they  

stable? Explain.

 U9. Consider an evolutionary game between green types and purple types, 
with a payoff table as follows:

Green Purple

COLUMN

Green 

Purple 

a, a

c, b

b, c

d, d
ROW 

In terms of the parameters a, b, c, and d, find the conditions that will 
guarantee a stable polymorphic equilibrium.

 U10. (Optional, for mathematically trained students) In the three-type evo-
lutionary game of Section 5 and Figure 12.11, let q3  1 2 q1 2 q2 denote 
the proportion of the orange-throated aggressor types. Then the dynam-
ics of the population proportions of each type of lizard can be stated as

 q1 increases if and only if 2q2  q3 . 0

and

 q2 increases if and only if q1 2 q3 . 0.

We did not state this explicitly in the chapter, but a similar rule for q3 
is

 q3 increases if and only if 2q1  q2 . 0.

 (a) Consider the dynamics more explicitly. Let the speed of change 
in a variable x in time t be denoted by the derivative dxdt. Then  
suppose

              dq
1

dt

dq
2

dt
�  �q

2 
� q

3
,

dq
3

dt
�  q

1 
� q

3
, and �  �q

1 
� q

2
. 

Verify that these derivatives conform to the preceding statements 
regarding the population dynamics.
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 (b) Define X = (q1)2  (q2)2  (q3)2. Using the chain rule of differentia-
tion, show that dXdt  0, that is, show that X remains constant over 
time.

 (c) From the definitions of the entities, we know that q1  q2  q3  
1. Combining this fact with the result from part (b) show that over 
time, in three-dimensional space, the point (q1, q2, q3) moves along 
a circle.

 (d) What does the answer to part (c) indicate regarding the stabil-
ity of the evolutionary dynamics in the colored-throated lizard  
population?
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Mechanism Design

5 1 5

1313

James mirrlees won the nobel Prize  in economics in 1996 for his  
pioneering work on optimal nonlinear income taxation and related policy 
issues. Many noneconomists, and some economists too, found his work 
difficult to understand. But the Economist magazine gave a brilliant charac

terization of the broad importance and relevance of the work. It said that Mirrlees  
showed us “how to deal with someone who knows more than you do.”1

In Chapter 8, we observed some of the ways in which such asymmetric in
formation affects the analysis of games. But the underlying problem for Mirr
lees differed slightly from the situations we considered earlier. In his work, one 
player (the government) needed to devise a set of rules so that the other play
ers’ (the taxpayers’) incentives were aligned with the first player’s goals. Mod
els with this general framework, in which a lessinformed player works to create 
motives for the moreinformed player to take actions beneficial to the less in
formed, now abound and are relevant to a wide range of social and economic 
interactions. Generally, the lessinformed player is called the principal while the 
moreinformed is called the agent ; hence these models are termed principal–
agent models. And the process that the principal uses to devise the correct set of 
incentives for the agent is known as mechanism design. 

In Mirrlees’s model, the government seeks a balance between efficiency and 
equity. It wants the more productive members of society to contribute effort to 
increase total output; it can then redistribute the proceeds to benefit the poorer 

1 “Economics Focus: Secrets and the Prize,” Economist, October 12, 1996.
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members. If the government knew the exact productive potential of every per
son and could observe the quantity and quality of his effort, it could simply 
order everyone to contribute according to their ability, and it could distribute 
the fruits of their work according to people’s needs. But such detailed informa
tion is costly or even impossible to obtain, and such redistribution schemes 
can be equally difficult to enforce. Each person has a good idea of his abilities 
and needs and chooses his own effort level, but stands to benefit by concealing 
this information from the government. Pretending to have less ability and more 
needs will enable him to get away with paying less tax or getting larger checks 
from the government; the incentive to provide effort is reduced if the govern
ment takes part of the yield. The government must calculate its tax policy, or 
design its fiscal mechanism, taking into account these problems of information 
and incentives. Mirrlees’s contribution was to solve this complex mechanism 
design problem within the principal–agent framework.

The economist William Vickrey shared the 1996 Nobel Prize in economics 
with Mirrlees for his own work in mechanism design in the presence of asym
metric information. Vickrey is best known for designing an auction mechanism 
to elicit truthful bidding, a topic we will study in greater detail in Chapter 16. But 
his work extended to other mechanisms, such as congestion pricing on highways,  
and he and Mirrlees laid the groundwork for extensive research in the subfield. 

Indeed, in the past thirty years, the general theory of mechanism design 
has made great advances. The 2007 Nobel Prize in economics was awarded to  
Leonid Hurwicz, Roger Myerson, and Eric Maskin for their contributions to it. 
Their work, and that of many others, has taken the theory and applied it to nu
merous specific contexts, including the design of compensation schemes, insur
ance policies, and of course tax schedules and auctions. In this chapter, we will 
develop a few prominent applications, using our usual method of numerical ex
amples followed by exercises. 

1 PRICE DISCRIMINATION

A firm generally sells to diverse customers with different levels of willingness to 
pay for its product. Ideally, the firm would like to extract from each customer 
the maximum that he would be willing to pay. If the firm could do so, charging 
each customer an individualized price based on willingness to pay, economists 
would say that it was practicing perfect (or firstdegree) price discrimination.

Such perfect price discrimination may not be possible for many reasons. 
The most general underlying reason is that even a customer who is willing to 
pay a lot prefers to pay less. Therefore, the customer will prefer a lower price, 
and this firm may have to compete with other firms or resellers who undercut its 
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high price. But even if there are no close competitors, the firm usually does not 
know how much each individual customer is willing to pay, and the customers 
will try to get away with pretending to be unwilling to pay a high price so as to 
secure a lower price. Sometimes even if the firm could detect the willingness to 
pay, it may be illegal to practice blatant firstdegree price discrimination based 
on the identity of the buyer. In such situations, the firm must devise a product 
line and prices so that the customers’ choices of what they buy (and therefore 
what they pay) go some way toward the firm’s goal of increasing its profit by way 
of price discrimination.

In our terminology of asymmetric information games developed in Chap
ter 8, the process by which the firm identifies customer willingness to pay 
from purchase decisions involves screening to achieve separation of types (by  
selfselection). The firm does not know each customer’s type (willingness to 
pay), so it tries to acquire this information from their actions. An example that 
should be familiar to most readers is that of airlines. These firms try to sepa
rate business flyers, who are willing to pay more for their tickets, from tourists, 
who are not willing to pay that much, by offering low prices in return for vari
ous restrictions on fares that the business flyers are not willing to accept, such as  
advancepurchase and minimumstay requirements.2 We develop this particular 
example in more detail to make the ideas more precise and quantifiable. 

We consider the pricing decisions of a firm called PieInTheSky (PITS), an 
airline running a service from Podunk to South Succotash. It carries some busi
ness passengers and some tourists; the former type are willing to pay a higher 
price than the latter for any particular ticketed seat. To serve the tourists profit
ably without having to offer the same low price to the business passengers, PITS 
has to develop a way of creating different versions of the same flight; it then 
needs to price these options in such a way that each type will choose a differ
ent version. As mentioned above, the airline could distinguish between the two 
types of passengers by offering restricted and unrestricted fares. The practice 
of offering firstclass and economyclass tickets is another way to distinguish  
between the two groups; we will use that practice as our example. 

Suppose that 30% of PITS’s customers are businesspeople and 70% are  
tourists. The table in Figure 13.1 shows the (maximum) willingness to pay for 
each type of customer for each class of service, along with the costs of providing 
the two types of service and the potential profits available under each option. 

2 This type of pricing policy, offering different prices to different groups of customers on the basis 
of some distinguishable characteristic, is generally known as third-degree price discrimination. It is 
thus differentiated from the first-degree discrimination described earlier. There is also second-degree 
price discrimination, which occurs when firms charge different unit prices for customers purchas
ing different quantities of a product.
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We begin by setting up a ticketpricing scheme that is ideal from PITS’s point 
of view. Suppose it knows the type of each individual customer; salespeople de
termine customer type, for example, by observing their style of dress when they 
come to make their reservations. Also suppose that there are no legal prohibitions 
on differential pricing and no possibility that lowerpriced tickets can be resold 
to other passengers. (Actual airlines prevent such resale by requiring positive 
ID for each ticketed passenger.) Then PITS could practice perfect (firstdegree)  
price discrimination. 

How much would PITS charge to each type of customer? It could sell a  
firstclass ticket to each businessperson at $300 for a profit of $300 2 $150 5 
$150 per ticket or sell him an economy ticket at $225 for a profit of $225 2 $100 
5 $125 per ticket. The former is better for PITS, so it would want to sell $300  
firstclass tickets to these business customers. It could sell a firstclass ticket to 
each tourist at $175 for a profit of $175 2 $150 5 $25 or an economy ticket at $140 
for a profit of $140 2 $100 5 $40. Here the latter is better for PITS, so it would 
want to sell $140 economyclass tickets to the tourists. Ideally, PITS would like to 
sell only firstclass tickets to business travelers and only economyclass tickets to 
tourists, in each case at a price equal to the relevant group’s maximum willing
ness to pay. PITS’s total profit per 100 customers from this strategy would be 

(140 2 100) 3 70 1 (300 2 150) 3 30 5 40 3 70 1 150 3 30 5 2,800 1 4,500 5 7,300.

Thus, PITS’s best possible outcome earns it a profit of $7,300 for every 100 cus
tomers it serves.

Now turn to the more realistic scenario in which PITS cannot identify the 
type of each customer or is not allowed to use the information for purposes of 
overt discrimination. How can it use the different ticket versions to screen its 
customers?

The first thing PITS should realize is that the pricing scheme devised above 
will not be the most profitable in the absence of identifying information about 
each customer. Most important, it cannot charge the business travelers their 
full $300 willingness to pay for firstclass seats while charging only $140 for an 
economyclass seat. Then the businesspeople could buy economyclass seats, 

100

150

Reservation price

Tourist

PITS’s 
cost

Type 
of service

140

175

Business

225

300

PITS’s potential profit

Tourist

40

25

Business

125

150First

Economy

FIGURE 13.1  airline Price discrimination

5 1 8   [ C h . 1 3 ]  m e C h a n i s m  d e s i g n

6841D CH13 UG.indd   518 12/18/14   3:15 PM



for which they are willing to pay $225, and get an extra benefit, or “consumer 
surplus” in the jargon of economics, of $225 2 $140 5 $85. They might use this 
surplus, for example, for better food or accommodation on their travels. Paying 
the maximum $300 that they are willing to pay for a firstclass seat would leave 
them no consumer surplus. Therefore, they would switch to economy class in 
this situation, and screening would fail. PITS’s profit per 100 customers would 
drop to (140 2 100) 3 100 5 $4,000.

The maximum that PITS will be able to charge for firstclass tickets must 
give business travelers at least as much extra benefit as the $85 they can get if 
they buy an economyclass ticket. Thus, the price of firstclass tickets can be at 
most $300 2 $85 5 $215. (Perhaps it should be $214 to give business travelers a 
definite positive reason to choose first class, but we will ignore the trivial differ
ence.) PITS can still charge $140 for an economyclass ticket to extract as much 
profit as possible from the tourists, so its total profit in this case (from every 100 
customers) would be

(140 2 100) 3 70 1 (215 2 150) 3 30 5 40 3 70 1 65 3 30 5 2,800 1 1,950 5 4,750.

This profit is more than the $4,000 that PITS would get if it tried unsuccessfully 
to implement its perfect discrimination scheme despite its limited information, 
but less than the $7,300 it would get if it had full information and successfully 
practiced perfect price discrimination.

By pricing firstclass seats at $215 and economyclass seats at $140, PITS can 
successfully screen and separate the two types of travelers on the basis of their 
selfselection of the two types of services. But PITS must sacrifice some profit 
to achieve this indirect discrimination. PITS loses this profit because it must 
charge the business travelers less than their full willingness to pay. As a result, its 
profit per 100 passengers drops from the $7,300 it could achieve if it had full and 
complete information, to the $4,750 it achieves from the indirect discrimina
tion based on selfselection. The difference, $2,550, is precisely 85 3 30, where 
85 is the drop in the firstclass fare below the business travelers’ full willingness 
to pay for this service, and 30 is the number of these business travelers per 100 
passengers served.

Our analysis shows that, in order to achieve separation with its  
ticketpricing mechanism, PITS has to keep the firstclass fare sufficiently low 
to give the business travelers enough incentive to choose this service. Those 
travelers have the option of choosing economy class if it provides more benefit 
(or surplus) to them; PITS has to ensure that they do not “defect” to making the 
choice that PITS intends for the tourists. Such a requirement, or constraint, on 
the screener’s strategy arises in all problems of mechanism design and is called 
an incentive-compatibility constraint. 

The only way PITS could charge business travelers more than $215 without  
inducing their defection would be to increase the economyclass fare. For  
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example, if the firstclass fare is $240 and the economyclass fare is $165, then 
business travelers get equal consumer surplus from each class; their surplus is  
$300 2 $240 from first class and $225 2 $165 from economy class, or $60 from 
each. At those higher prices, they are still (only just) willing to buy firstclass 
tickets, and PITS could enjoy higher profits from each firstclass ticket sale.

But at $140, the economyclass fare is already at the limit of the tourists’ 
willingness to pay. If PITS raised that fare to $165, say, it would lose these cus
tomers altogether. In order to keep these customers willing to buy, PITS’s pricing 
mechanism must meet an additional requirement, namely the tourists’ partici-
pation constraint. 

PITS’s pricing strategy is thus squeezed between the participation constraint 
of the tourists and the incentivecompatibility constraint of the businesspeople. 
If it charges X for economy and Y for first class, it must keep X , 140 to ensure 
that the tourists still buy tickets, and it must keep 225 2 X < 300 2 Y, or Y , X 175,  
to ensure that the business travelers choose firstclass and not economy. Sub
ject to these constraints, PITS wants to charge prices that are as high as possible. 
Therefore, its profitmaximizing screening strategy is to make X as close to 140 
and Y as close to 215 as possible. Ignoring the small differences that are needed 
to preserve the , signs, let us call the prices 140 and 215. Then charging $215 
for firstclass seats and $140 for economyclass seats is the solution to PITS’s  
mechanismdesign problem.

This pricing strategy being optimal for PITS depends on the specific num
bers in our example. If the proportion of business travelers were much higher, 
say 50%, PITS would have to revise its optimal ticket prices. With 50% of its cus
tomers being businesspeople, the sacrifice of $85 on each business traveler may 
be too high to justify keeping the few tourists. PITS may do better not to serve 
the tourists at all, that is, to violate their participation constraint and to raise the 
price of firstclass service. Indeed, the strategy of discrimination by screening 
with these percentages of travelers yields PITS a profit, per 100 customers, of

(140 2 100) 3 50 1 (215 2 150) 3 50 5 40 3 50 1 65 3 50 5 2,000 1 3,250 5 5,250. 

The strategy of serving only business travelers in $300 firstclass seats would 
yield a profit (per 100 customers) of

 (300 2 150) 3 50 5 150 3 50 5 7,500,

which is higher than with the screening prices. Thus, if there are only relatively 
few customers with low willingness to pay, the seller might find it better not to 
serve them at all than to offer sufficiently low prices to the mass of highpaying 
customers to prevent their switching to the lowpriced version.

Precisely what proportion of business travelers constitutes the borderline be
tween the two cases? We leave this as an exercise for you. And we will just point 
out that an airline’s decision to offer low tourist fares may be a profitmaximizing 
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response to the existence of asymmetric information, rather than an indication 
of some soft spot for vacationers! 

2 SOME TERMINOLOGY

We have now seen one example of mechanism design in action. There are many 
others, of course, and we will see additional ones in later sections. We pause 
briefly here, however, to set out the specifics of the terminology used in most 
models of this type.

Mechanismdesign problems are broadly of two kinds. In the first, which is 
similar to the pricediscrimination example above, one player is better informed 
(in the example, the customer knows his own willingness to pay), and his infor
mation affects the payoff of the other player (in the example, the airline’s pricing 
and therefore its profits). The lessinformed player designs a scheme in which 
the betterinformed player must make some choice that will reveal the infor
mation, albeit at some cost to the first (in the example, the airline’s inability to 
charge the business flyers their full willingness to pay). 

In the second kind of mechanismdesign problem, one player takes some 
action that is not observable to others. For example, an employer cannot ob
serve the quality, or sometimes even the quantity, of the effort an employee ex
erts, and an insurance company cannot observe all the actions that an insured 
driver or homeowner takes to reduce the risk of an accident or robbery. In the 
language of Chapter 8, this problem is one of moral hazard. The lessinformed 
player designs a scheme—for example, profit sharing for the employee or de
ductibles and copayments for insurance—that aligns the other player’s incen
tives to some extent with those of the mechanism designer. 

In each case, the lessinformed player designs the mechanism; he is called 
the principal in the strategic game. The moreinformed player is then called the 
agent; this is most accurate in the case of the employee and less so in the cases 
of the customer or the insured, but the jargon has become established and we 
will adopt it. The game is then called a principal–agent, or agency, problem. 

The principal in each case designs the mechanism to maximize his own pay
off, subject to two types of constraints. First, the principal knows that the agent 
will utilize the mechanism to maximize his own (the agent’s) payoff. In other 
words, the principal’s mechanism has to be consistent with the agent’s incen
tives. As we saw in Chapter 8, Section 4.B, this is called the incentive-compatibility  
constraint. Second, given that the agent responds to the mechanism in his 
own best interests, the agency relationship has to give the agent at least as 
much expected utility as he would get elsewhere, for example by working for 
someone else, or by driving instead of flying. In Chapter 8, we termed this the  
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participation constraint. We saw specific examples of both constraints in the  
airline pricediscrimination story in the previous section; we will meet many 
other examples and applications later in this chapter. 

3 COST-PLUS AND FIXED-PRICE CONTRACTS

When writing procurement contracts for the acquisition of certain services, 
perhaps highway or officespace construction, governments and firms face  
mechanismdesign problems of the kind we have been describing. Two com
mon methods for writing such contracts are “costplus” and “fixedprice.” In a 
costplus contract, the supplier of the services is paid a sum equal to his cost, 
plus an allowance for normal profit. In a fixedprice contract, a specific price for 
the services is agreed on in advance; the supplier keeps any extra profit if his ac
tual cost turns out to be less than anticipated, and he bears the loss if his actual 
costs are higher. 

Each type of contract has its own good and bad points. The costplus con
tract appears not to give the supplier excessive profit; this characteristic is  
especially important for publicsector procurement contracts, where the citizens  
are the ones who ultimately pay for the procured services. But the supplier typi
cally has better information about his cost than does the buyer of his services; 
therefore the supplier can be tempted to overstate the cost or to pad the costs 
in order to extract some benefit from the wasteful excess. The fixedprice con
tract, in contrast, gives the supplier every incentive to keep the cost at a mini
mum and thus to achieve an efficient use of resources. But with this kind of  
publicsector contract, society has to pay the set price and give away any excess 
profit (to the supplier). The optimal procurement mechanism should balance 
these two considerations. 

A. Highway Construction: Full Information

We will consider the example of a state government designing a procurement 
mechanism for a roadconstruction project. Specifically, suppose that a major 
highway is to be built by the state’s road contractor and that the government has 
to decide how many lanes it should have.3 More lanes yield more social benefit 
in the form of faster travel and fewer accidents (at least up to a point, beyond 

3 Generally, numerous contractors could be competing for the highwayconstruction contract. For 
this example, we restrict ourselves to the case in which there is only one contractor.
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which the harm to the countryside will be too great). To be specific, we suppose 
that the social value V (measured in billions of dollars) from having N lanes on 
the highway is given by the formula:

 N 2

2
V  �  15N

  
�       .  

The cost of construction per lane, including an allowance for normal profit, 
could be either $3 billion or $5 billion per lane, depending on the types of soil 
and minerals located in the construction zone. For now, we will assume that the 
government can identify the construction cost as well as the contractor. So it 
chooses N and writes a contract to maximize the benefit to the state (V ) net of 
the fee paid to the contractor (call it F ); that is, the government’s objective is to 
maximize net benefit, G, where G 5 V 2 F.4

Suppose first that the government knows the actual cost is 3 (billion dollars 
per lane of highway). At this cost level, the government has to pay 3N to the con
tractor for an Nlane highway. The government then chooses N to maximize G, 
as above, where the appropriate formula in this situation is:

 N 2

2
N 2

2
G  �  V  � F  � 15N

  
�         � 3N  � 12N

  
�

  
      .

Recall that in the appendix to Chapter 5, we gave a formula for finding the 
correct value to maximize this type of function. Specifically, the solution to the 
problem of choosing X to maximize 

 Y 5 A 1 BX 2 CX 2

is X 5 B(2C). Here Y is V, X is N, and A 5 0, B 5 12, and C 5 12. Applying our 
solution formula yields the government’s optimal choice of N 5 12(2 3 12) 
5 12. The best highway to choose therefore has 12 lanes, and the cost of that 
12lane highway is $36 billion. So the government offers the contract: “Build a 
12lane highway and we will pay you $36 billion.”5 This price includes normal 
profit, so the contractor is happy to take the contract. 

Similarly, if the cost is $5 billion per lane, the optimal N will be 10. The gov
ernment will offer a $50 billion contract for the 10lane highway. And the con
tractor will accept the contract. 

4 In reality, the cost per lane would not have only two discrete values, but could take any value along 
a continuous range of possibilities. The probabilities of each value would then correspondingly  
form a density function on this range. Our methods will not always yield an integer solution, N, for 
each possible cost along this range. But we leave these matters to more advanced treatments and 
confine ourselves to this simple illustrative example.
5 In reality, there will be many clauses specifying quality, timing, inspections, and so forth. We leave 
out these details to keep the exposition of the basic idea of mechanism design simple.
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B. Highway Construction: Asymmetric Information

Now suppose that the contractor knows how to assess the relevant terrain to 
determine the actual per lane building cost, but the government does not. 
The government can only estimate what the cost will be. We will assume that 
it thinks that there is a twothirds probability of the cost being 3 (billion dollars 
per lane) and a onethird probability of the cost being 5.

What if the government tries to go ahead with the ideal optimum and offers 
a pair of contracts: “12lane highway for $36 billion” and “10lane highway for 
$50 billion”? If the cost is really only $3 billion per lane, the contractor will get 
more profit by taking the latter contract even though that one was designed for 
the situation in which the cost is $5 billion per lane. The true cost of the 10lane 
highway would be only $30 billion, and the contractor would earn $20 billion in 
excess profit.6

This outcome is not very satisfying. The contracts offered do not give the 
contractor sufficient incentive to choose between them on the basis of cost; he 
will always take the $50 billion contract. There must be a better way for the gov
ernment to design its procurement contract system.

So now we allow the government the freedom to design a more general 
mechanism to separate the types of projects. Suppose it offers a pair of con
tracts: “Contract L: Build NL lanes and get paid RL dollars” and “Contract H: Build 
NH lanes and get paid RH dollars.” If contracts L and H are designed correctly, 
when cost is low ($3 billion per lane) the contractor will pick contract L (L stands 
for “low”), and when cost is high ($5 billion per lane) he will pick contract H (H 
stands for “high”). The numbers that the symbols NL, RL, NH, and RH represent 
must satisfy certain conditions for this screening mechanism to work.

First, under each contract, the contractor facing the relevant cost (low 
for contract L and high for contract H) must receive enough to cover his cost  
(inclusive of normal profit). Otherwise he will not agree to the terms; he will not 
participate in the contract. Thus, the contract must satisfy two participation  
constraints: 3NL # RL for the contractor when the cost is 3, and 5NH # RH for the 
contractor when the cost is 5.

Next, the government needs the two contracts to be such that a con
tractor who knows his cost is low would not benefit by taking contract H and 
vice versa. That is, the contracts must also satisfy two incentivecompatibility  
constraints. For example, if the true cost is low, contract L will yield excess profit  

6 If multiple contractors are competing for the job, the ones not selected may spill the beans about 
the true cost here. But for large highway projects (as for many other large government projects, such 
as defense contracts), there are often only a few potential contractors, and they do better by collud
ing among themselves and not revealing the private information. For simplicity, we keep the analy
sis confined to the case where there is just one contractor.
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RL 2 3NL, whereas contract H will yield RH 2 3NH. (Note that in the latter expres
sion, the number of lanes and the payment are as specified in the H contract, 
but the contractor’s cost is still only 3, not 5.) To be incentive compatible for 
the lowcost case, the contracts must keep the latter expression no larger than 
the former. Thus, we need RL 2 3NL $ RH 2 3NH. Similarly, if the true cost is 
high, the contractor’s excess profit from the L contract must be no larger than 
his excess profit from the H contract, so to be incentive compatible, we need  
RH 2 5NH $ RL 2 5NL.

The government wants to maximize the net expected social value of the 
payment and uses the probabilities of the two types as weights to calculate the 
expectation. Therefore, the government’s objective here is to maximize

 2
3

G  �         15N
L  

�          
 
�  R

L
  �          15N

H  
�            � R

H
 .

2
(N

L
)2

2
(N

H
)2

�

� 1
3�

� ��

� �
The problem looks formidable, with four choice variables and four inequality 
constraints. But it simplifies greatly, because two of the constraints are redun
dant, and the other two must hold as exact equalities, allowing us to solve and 
substitute for two of the variables. 

Note that if the participation constraint when cost is high, 5NH # RH, and the 
incentive compatibility constraint when cost is low, RL 2 3NL $ RH 2 3NH, both 
hold, then we can get the following string of inequalities (where we have used 
the fact that NH will be positive):

 RL 2 3NL $ RH 2 3NH $ 5NH 2 3NH $ 5NH $ 0.

The first and last expressions in the inequality string tell us that RL 2 3NL $ 0. 
Therefore, we need not consider the participation constraint when cost is low,  
3NL # RL, separately; it is automatically satisfied when the two other constraints 
are satisfied. 

It is also intuitive that the highcost firm will not want to pretend to be low 
cost; it would get compensated for the smaller cost while incurring the larger 
cost. However, this intuition needs to be verified by the rigorous logic of the 
analysis. Therefore, we proceed as follows. We will begin by ignoring the second 
incentive compatibility constraint, RH 2 5NH $ RL 2 5NL, and we will solve the 
problem with just the remaining two constraints. Then we will return and verify 
that the solution to the twoconstraint problem satisfies the ignored third con
straint anyway. So our solution must also be the solution to the threeconstraint  
problem. (If something better was available, it would also work better for the 
lessconstrained problem.) 

Thus, we have two constraints to consider: 5NH # RH and RL 2 3NL $ RH 2 3NH.  
Write these as RH $ 5NH and RL $ RH 1 3(NL 2 NH). Then observe that RL and RH 
each enter negatively in the government’s objective; it wants to make them as 
small as is compatible with the constraints. This result is achieved by satisfying 
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each constraint with equality. So we set RH 5 5NH and RL 5 RH 1 3(NL 2 NH) 5 
3NL 1 2NH. These expressions for the contract payments can now be substituted 
into the objective function, G. This substitution yields:

       6
      �  8N

L
  �              �  2N

H
  �              .

(N
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The objective function now splits cleanly into two parts; one (the first two terms) 
involves only NL, and the other (the second two terms) involves only NH. We 
can apply our maximization formula separately to each part. In the NL part, the  
A 5 0, B 5 8, and C 5 13, so the optimal NL 5 8(2 3 13) 5 242 5 12. In the NH 
part, the A 5 0 again, B 5 2, and C 516, so the optimal NH 5 2(2 3 16) 5 122 5 6.

Now we can use the optimal values for NL and NH to derive the optimal  
payment (R) values, using the formulas for RL and RH that we derived just above. 
Substituting NL 5 12 and NH 5 6 into those formulas gives us RH 5 5 3 6 5 30 and 
RL 5 3 3 12 + 2 3 6 5 48. We thus have optimal values for all of the unknowns in 
the government’s objective function. But remember that we ignored one of the 
incentivecompatibility constraints, so we need to go back to that now. 

We must ensure that the ignored third constraint, RH 2 5NH $ RL 2 5NL, 
holds with our calculated values for the Rs and the Ns. In fact, it does. The  
lefthand side of the expression equals 30 2 5 3 6 5 0. And the righthand side 
equals 48 2 5 3 12 5 –12, so the constraint is indeed satisfied.

Our solution indicates that the government should offer the following two 
contracts: “contract L: build 12 lanes and get paid 48 (billion dollars)” and “Con
tract H: build 6 lanes and get paid 30 (billion dollars).” How can we interpret this 
solution so as best to understand the intuition for it? The intuition is most easily 
seen when we compare the solution here with the ideal one we found in Section 
3.A under full information about costs. Figure 13.2 shows the comparisons in 
the optimal N and R values.

The optimal mechanism under asymmetric information differs in two im
portant respects from the one we found when information was perfect. First, 
although the contract intended to be chosen if the contractor’s cost is low has 
the same number of lanes (12) as in the fullinformation case, its payment to 
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FIGURE 13.2  highway-Building Contract Values
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the contractor is larger in the asymmetric case (48 instead of 36). Second, the 
highcost asymmetricinformation contract has a smaller number of lanes (six 
instead of 10) but pays just the full cost for that number (30 5 6 3 5). Both of 
these differences separate the types. 

Under asymmetric information, the contractor may be tempted to pretend 
that the cost is high when it is in fact low. The optimal payment mechanism 
then incorporates both a carrot for truthfully admitting to low cost and a stick 
for trying to pretend to be high cost. The carrot is the excess profit, 48 2 36 5 12,  
that comes from the admission made implicitly by the choice of contract L. The 
stick is the reduction in excess profit from contract H, achieved by reducing 
the number of lanes that will be constructed in that case. The ideal highcost  
mechanism would have the highway be 10 lanes and would pay $50 billion; the 
contractor whose true cost is low would make excess profit of 50 2 3 3 10 5 $20 
billion. In the informationconstrained optimal contract, only six lanes are con
structed, and the contractor is paid $30 billion. If the true cost is low, he makes an 
excess profit of 30 2 3 3 6 5 $12 billion. His benefit from the pretense (implicitly 
made by the choice of contract H even though his true cost is low) is reduced.  
In fact it is reduced exactly to the amount that he is guaranteed by the carrot part 
of the mechanism, thereby exactly offsetting his temptation to pretend high cost.

4 EVIDENCE CONCERNING INFORMATION REVELATION MECHANISMS

The mechanisms considered so far have the common feature that the agent has 
some private information, which we called the player’s type in Chapter 8. Fur
ther, the principal requires the agent to take some action that is designed to re
veal this information. In the terminology of Chapter 8, these mechanisms are 
examples of screening for the separation of types by selfselection. 

We see such mechanisms everywhere. Those for price discrimination are the 
most ubiquitous. All firms have customers who are diverse in their willingness 
to pay for the firms’ products. As long as a customer is willing to pay more than 
the firm’s incremental cost of supplying the product to him, the firm can turn a 
profit by dealing with this customer. But this customer’s willingness to pay may 
be relatively low in comparison to that of other potential buyers. If a firm must 
charge the same price to all of its customers, including those who would have 
been willing to pay more than this one, charging this customer’s willingness to 
pay means the firm has to sacrifice some profit from its higherwillingness cus
tomers. Ideally, the firm would like to discriminate by giving a price break to the 
lesswilling customers without giving the same break to the morewilling ones.

The ability of a firm to practice price discrimination may be limited for rea
sons other than those of information. It may be illegal to price discriminate. 
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Competition from other firms may limit this firm’s ability to charge high prices 
to some of its customers. And if the product can be bought by one customer and 
resold to others, such competition from other buyers may be just as effective a 
constraint on discriminatory pricing as competition from other firms. But here 
we focus on the information reasons for price discrimination, keeping the other 
reasons in the background of the discussion.

Your local coffee shop probably has a “frequentdrinker card”; for every ten 
cups you buy, you get one free. Why is it in the firm’s interest to do this? Fre
quent drinkers are more likely to be locals, who have the time and incentive to 
search out the best deals in the neighborhood. To attract those customers away 
from other competing coffee shops, this one must offer a sufficiently attrac
tive price. In contrast, infrequent customers are more likely to be strangers in 
the town or in a hurry and have less time and incentive to search for the best 
deals; when they need a cup of coffee and see a coffee shop, they are willing to 
pay whatever the price is (within reason). So posting a higher price and giving 
out frequentdrinker cards enables this coffee shop to give a price break to the 
pricesensitive regular customers without giving the same price break to the oc
casional buyers. If you don’t have the card, you are revealing yourself as the lat
ter type, willing to pay a higher price.

In a similar manner, many restaurants offer fixedprice threecourse menus 
or blueplate specials, as well as regular à la carte offerings. This strategy enables 
them to separate diverse customer types with different tastes for soups, salads, 
main courses, desserts, and so on. 

Book publishers start selling new books in a hardback version and issue a 
paperback version a year or more later. The price difference between the two 
versions is generally far greater than the difference in the costs of production of 
the two kinds of books. The idea behind the pricing scheme is to separate two 
types of customers, those who need or want to read the book immediately and 
are willing to pay more for the privilege, and those who are willing to wait until 
they can get a better price. 

We invite you to look for other examples of such screening mechanisms for 
price discrimination in your own purchases. They appear in myriad ways. You 
can also read good accounts of such practices. One good source is Tim Harford’s 
Undercover Economist.7 

There is a lot of research literature on procurement mechanisms of the kind 
we sketched in Section 3.8 These models pertain to situations where the buyer 

7 Tim Harford, The Undercover Economist: Exposing Why the Rich Are Rich, the Poor Are Poor—and 
Why You Can Never Buy a Decent Used Car! (New York: Oxford University Press, 2005). The first two 
chapters give examples of pricing mechanisms.
8 JeanJacques Laffont and Jean Tirole, A Theory of Incentives in Procurement and Regulation (Cam
bridge, Mass.: MIT Press, 1993), is the classic of this literature. 
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confronts just one potential seller whose cost is private information. This type 
of interaction accurately describes how contracts for major defense weapons 
systems or very specialized equipment are designed; there is usually only one 
reliable supplier of such products or services. However, in reality buyers often 
have the choice of several suppliers, and mechanisms that set the suppliers in 
competition with each other are beneficial to the buyer. Many such mecha
nisms take the form of auctions. For example, construction contracts are often 
awarded by inviting bids and choosing the bidder that offers to do the job for 
the lowest price (after adjusting for the promised quality of the work and speed 
of completion or other relevant known attributes of the bid). We will give some 
examples and discussion of such mechanisms in the chapter on auctions. 

5 INCENTIVES FOR EFFORT: THE SIMPLEST CASE

We now turn from the first type of mechanismdesign problem, those in which 
the principal’s goal is to achieve information revelation, to the second type, in 
which there is moral hazard. The principal’s goal in such situations is to write a 
contract that will induce the best effort level from the agent, even though that 
effort level is unobservable by the principal.

A. Managerial Supervision 

Suppose you are the owner of a company that is undertaking a new project. You 
have to hire a manager to supervise it. The success of the project is uncertain, 
but good supervision can increase the probability of success. Managers are only 
human, though; they will try to get away with as little effort as they can! If their 
effort is observable, you can write a contract that compensates the manager for 
his trouble sufficiently to bring forth good supervisory effort.9 But if you cannot  
observe the effort, you have to try to give him incentives based on success of 
the project, for example a bonus. Unless good effort absolutely guarantees suc
cess, however, such bonuses make the manager’s income uncertain. And the 
manager is likely to be averse to risk, so you have to compensate him for fac
ing such risk. You have to design your compensation policy to maximize your 
own expected profit, recognizing that the manager’s choice of effort depends 

9 Most important, if a dispute arises, you or the manager must be able to prove to a third party, such 
as an arbitrator or a court, whether the manager made the stipulated effort or shirked. This condi
tion, often called verifiability, is more stringent than mere observability by the parties to the contract 
(you and the manager). We intend such public observability or verifiability when we use the more 
common term observability.
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on the nature and amount of the compensation. This is a mechanismdesign  
problem whose solution is intended to cope with the moralhazard problem of 
the manager’s shirking.

Let us consider a numerical example. Suppose that if the project succeeds, 
it will earn the company a profit of $1 million over material and wage costs.  
If it fails, the profit will be zero. With good supervision, the probability of suc
cess is onehalf, but if supervision is poor, the probability of success is only 
onequarter.

As mentioned above, the manager is risk averse. We saw in the appendix 
to Chapter 8 how risk aversion can be captured by a concave utility function. 
So let us take a simple case, where the manager’s utility u from income y (mea
sured in millions of dollars) is the squareroot function: u = y . Suppose also 
that the manager gets disutility 0.1 from the extra effort that is needed for good 
supervision. Finally, suppose that if the manager does not work for you, he can 
get another job that does not require any extra effort and that pays $90,000, or 
$0.09 million, yielding utility 0.09 5 0.3. Thus, if you want to hire the manager 
without requiring good supervision, you have to pay at least $90,000. If you want 
good supervision, you have to guarantee the manager at least as much utility as 
he could get from taking the other job; you must pay the y that ensures y  2 0.1 
is at least 0.3, or y  $ 0.4, or y $ 0.16, or $160,000. 

If effort is observable, you can write one of two contracts: (1) I pay you 
$90,000, and I don’t care if you shirk; or (2) I pay you $160,000, and you have  
to make a good supervisory effort. This second contract can be enforced by  
a court, so if the manager accepts it, he will in fact make good effort. Your  
expected profit from each contract depends on the probability that the project 
succeeds with the specified level of effort. So expected profit from the first is  
(14) 3 1 2 0.09 5 0.160, or $160,000, and that from the second is (12) 3 1 2 0.16 5 
0.340 5 $340,000. Therefore, you are better off paying the manager to provide good  
effort. In an ideal world of full information, you will use the second contract.

Now consider the more realistic scenario in which the manager’s effort is 
not observable. This situation presents no extra problems if you would like the  
manager to exert low effort, and the first contract above applies. But if you would 
like good supervisory effort, you must use an incentive mechanism based on the 
only observable, namely success or failure of the project. So suppose you offer a 
contract that pays the manager x if the project fails and y if it succeeds. (Note 
that x may be zero, but if that is optimal, it should emerge from the solution. In 
fact it will not be zero, because of the manager’s risk aversion.) 

To induce the manager to choose high effort, you must ensure that his ex
pected utility from doing so is higher than his expected utility from shirking. 
With high effort, he can guarantee a onehalf chance that the project succeeds, 
and he therefore faces a onehalf chance that it fails. With ordinary effort, he 
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can guarantee only a onequarter chance of success (a threequarter chance of  
failure). So your contract must ensure the following:

 (12)y  1 (12) x  2 0.1 . (14) y  1 (34) x , or

 (14)(y  2 x) $ 0.1, or y 2 x  $ 0.4.

This expression is the incentive-compatibility constraint in this problem. 
Next, you have to ensure that the manager gets enough expected utility to 

be willing to work for you in the way you want (exerting high supervisory effort) 
rather than taking his other possible offer. So his expected utility from accepting 
your job and exerting high effort must exceed his utility from the alternate job; 
your contract must then satisfy the following:

 (12) y  1 (12) x  2 0.1 $ 0.3, or y  1 x  $ 0.8.

This expression is the participation constraint for your contract intended to 
elicit high supervisory effort. 

Subject to these constraints, you want to maximize your expected profit, P. 
You calculate that expected profit under the assumption that by meeting the 
constraints above, you are eliciting high supervisory effort. Thus, you assume 
that your project succeeds with probability onehalf and your expected profit 
expression is:

 P 5 (12) (1 2 y) 1 (12)(0 2 x) 5 (1 2 y 2 x)2.

The mathematics in this problem becomes much easier if we work with the 
square roots of x and y instead of x and y themselves (that is, we work with the 
utilities of income instead of the incomes). Write these utilities as X 5 x  and  
Y 5 y , so x 5 X 2 and y 5 Y 2. Then you want to maximize

 P 5 (1 2Y 2 2 X 2)2

subject to the participation constraint

 Y 1 X $ 0.8

and the incentivecompatibility constraint

 Y 2 X $ 0.4.

Both X and Y enter negatively into the expression for your expected profit, 
so you want to make both as small as is compatible with the constraints. The 
participation constraint eventually holds with equality when both X and Y are 
made small. What about the incentivecompatibility constraint? If it does not 
also eventually hold with equality, then it does not constrain the choices and can 
be ignored. Let us suppose that is the case. Then we can substitute X 5 0.8 – Y  
from the participation constraint into your profit expression and write
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 P 5 (1 2 Y 2 2 X 2)2 5 [1 2 Y 2 2 (0.8 2 Y )2]2

  5 (1 2 Y 2 2 0.64 1 1.6Y 2 Y 2 )2

  5 (0.36 1 1.6Y 2 2Y 2)2 5 0.18 1 0.8Y 2 Y 2.

To maximize this profit expression, we again use the formula from the appendix to 
Chapter 5; we have B 5 0.8 and C 5 1. This yields the optimal Y 5 0.8(2 3 1) 5 0.4.  
Then X 5 0.8 2 0.4 5 0.4 also.

This solution implies that if the incentivecompatibility constraint is ig
nored, the optimal mechanism requires equal payment to the manager whether 
the project succeeds or fails. This payment is just enough to give the manager a 
utility of 0.4 5 0.3 1 0.1 (his utility from easy work elsewhere plus compensa
tion for the disutility of the extra effort for high supervision) to meet the partici
pation constraint. This result is intuitive and in keeping with our discussion of 
optimal risk bearing in Chapter 8, Section 1. The manager is risk averse and you 
are risk neutral (concerned with expected profit alone), so it is efficient for you 
to bear all of the risk and to keep the manager’s income nonrandom.10

But if the manager gets the same income whether the project succeeds 
or fails, he has no incentive to make the unobservable effort. So the ignored  
incentivecompatibility constraint is not going to be fulfilled automatically, 
and we must make sure that X and Y do satisfy it. We therefore need both of the 
constraints to hold with equality: Y 1 X 5 0.8 and Y 2 X 5 0.4. Adding the two 
constraints together, we get 2Y 5 1.2 or Y 5 0.6; this result immediately yields  
X 5 0.2. Translating from utilities into dollar amounts, we have x 5 X 2 = 0.04 
and y 5 Y 2 5 0.36. Thus, the manager should be paid $40,000 if the project fails 
and $360,000 if it succeeds. The payment for failure is less than the $90,000 he 
would be paid for the loweffort contract 1 in the fullinformation case, and the 
payment for success is more than the $160,000 for the higheffort contract 2 in 
the fullinformation case. Thus, the manager faces a combination of a stick (low 
pay if the project fails) and a carrot (high pay if it succeeds), just as does the con
tractor in the highway construction example of Section 3. 

With this scheme, you (the owner) make an expected profit of:

 P 5 (1 2 0.36 2 0.04)2 5 0.30,

or $300,000. This amount is less than the $340,000 you would make in the  
fullinformation ideal, when you could write an enforceable contract stipulat
ing high effort. The $40,000 difference is an unavoidable cost of the information 
asymmetry.

The manager’s compensation scheme can be described as a base salary of 
$40,000 and a success bonus of $320,000, or equivalently, a $40,000 salary and a 
32% share in the operating profit of $1 million. It would not be desirable for you 

10 The case in which the owner is also risk averse can be treated by similar methods.
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to rely on profit sharing alone, offering the manager no base salary. Why not? If 
the salary component were zero, then in the event of the project’s success you 
would have to pay the manager an amount y defined by (12)y  2 0.1 5 0.3, or 
y 5 0.64, or $640,000 to ensure his participation. Your expected profit would be

 P 5 (1 2 0.64 2 0)2 5 0.180, or $180,000.

Thus, your profit in this case would be $120,000 lower than when you offered a 
$40,000 base salary with bonus (and a full $160,000 below what you could earn in 
the fullinformation case). The reduction in profit is due to the fact that the man
ager is risk averse. A purebonus scheme makes his income very risky, so to en
sure his participation you have to make the bonus so large that it cuts into your 
profit. The optimal asymmetric information payment scheme balances the stick 
and the carrot optimally to provide enough incentive for the manager to make 
high supervisory effort, but without imposing too much risk on his income.

B. Insurance Provision

Moral hazard can arise in other relationships beyond those in the labor mar
ket described above. Insurance markets in particular are subject to problems of 
moral hazard. And insurance companies must determine whether and how to 
offer appropriate insurance contracts that encourage their clients to take appro
priate actions to reduce their likelihood of needing to file a claim with the com
pany. For example, insurers would like those to whom they sell health insurance 
to continue regular wellness visits to their physicians and those to whom they 
sell car insurance to continue to practice defensivedriving techniques.11 Be
cause the insurance company cannot usually observe the clients’ actions, how
ever, creating the appropriate insurance policy will require an understanding of 
the theory of mechanism design in the face of asymmetric information.

Here we return to our example of a farmer facing the risk of crop failure due 
to some badweather outcome, such as a drought. We met this farmer originally 
in Chapter 8, Section 1. There we supposed that the farmer’s income would be 
$160,000 if the weather proved favorable and $40,000 if not. When the two pos
sibilities are equally likely, probability 0.5 each, the farmer’s expected income is 
0.5 3 $160,000 1 0.5 3 $40,000 5 $100,000. The farmer faces considerable risk 
around this average value, however, and if he is risk averse, he will care about 
the expected utility of the outcomes rather than just about his expected income.

Suppose then that the farmer is indeed risk averse. His utility function is  
u 5 I , where I represents his income. The farmer therefore gets utility of 400 5 
160,000 if the weather is good (wet) and utility of 200 5 40,000 if the weather 
is bad (dry). His expected utility is then 0.5 3 400 1 0.5 3 200 5 300. 

11 Indeed, insurance companies regard the policyholders’ failure to take such riskreducing precau
tions as immoral behavior; this is the origin of the term moral hazard.
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What would happen if this farmer could avoid the risk associated with a 
year of drought? Specifically, what would his situation be if he could ensure that 
his income was always $100,000 (the expected value here) rather than $160,000 
half of the time and $40,000 the other half of the time? Ignoring for a moment 
how he could make this happen, we note that the farmer gets utility of about  
316 < 100,000 every year under this outcome. The farmer therefore would 
enjoy higher expected utility (316 . 300) if he could find a way to smooth his 
income (and his utility) across the good and badweather years.

One possible way for the farmer to achieve income smoothing is by way of 
insurance. A riskneutral insurance company could offer the farmer a contract 
where the farmer pays the company $60,000 in goodweather years and the in
surer pays the farmer $60,000 in badweather years. Because the probability of 
each outcome is 50%, the company’s expected profit from this contract is ex
actly zero, making it just willing to offer the contract to the farmer. The farmer 
is strictly better off accepting the contract, however; his expected utility rises. So 
an insurance contract that is full (completely covers the cost of a bad outcome) 
and fair (priced just to offset the cost of the farmer’s claims) would be accept
able to both parties.

So far, this example has no information problem. But the farmer could take 
various actions to reduce the probability of the low income level associated with 
drought. He may be able to construct some watercatchment basins, for exam
ple, that would allow him to water his crops in all but the driest of years. How
ever, the construction and maintenance of the basins will be at some cost to the 
farmer. If the basins are of good quality and well maintained, they will help pro
tect the farmer from the risks associated with a drought. If the basins are shoddy 
ones that leak and are not well cared for, they will fail to do their job and so do 
not reduce the risk of crop failure from drought. If the farmer is well insured 
and the quality of the basins and their level of maintenance is not observable by 
simple inspection, he may be tempted to shirk the task to save himself the costs; 
this potential for shirking is the source of moral hazard in our example.

Suppose that the farmer’s disutility of making the extra effort to construct 
and maintain highquality water basins is 25,12 and that with them in existence 
the farmer reduces the probability of the bad outcome to 25%. Then the farmer’s 
expected income with the basins is 0.75 3 $160,000 + 0.25 3 $40,000 = $130,000 
and his expected utility (in the absence of insurance) is 0.75 3 160,000 + 0.25 
3 40,000 2 25 5 0.75 3 400 + 0.25 3 200 2 25 5 350 2 25 5 325. The farmer’s 
expected utility is higher with the basins than without them (325 . 300), so if no 

12 Formally, the farmer’s utility function is now u = I  – E, where I is again income, and E is the  
dis utility of effort, 25 if the basins are of good quality and 0 if they are shoddy.

5 3 4   [ C h . 1 3 ]  m e C h a n i s m  d e s i g n

6841D CH13 UG.indd   534 12/18/14   3:15 PM



insurance is available, the farmer will definitely want to make the riskreducing 
effort to construct the water basins.

The farmer could still benefit from insurance in this case. An  
incomesmoothing policy that guaranteed him $130,000 every year would  
ensure an expected utility of 360(< 130,000) 2 25 5 335, even when he builds 
and maintains highquality basins. This utility is higher than the 325 he receives 
when he builds the basins but has no insurance, so the farmer would definitely 
prefer the insurance.

Suppose that a full and fair insurance contract could be written that stip
ulated that the farmer exert the effort necessary to reduce the probability of a 
bad outcome to 25%. Suppose further that the insurance company could verify 
the farmer’s effort by sending an insurance agent to the farm to check on the 
water basins. Then the contract that guaranteed the farmer $130,000 income 
each year would entail the farmer’s paying the insurance company $30,000 in a  
goodweather year and the insurer paying the farmer $90,000 in a badweather 
year. As before, the insurance company reaps an expected profit of exactly zero 
with this contract (0.75 3 30,000 2 0.25 3 90,000 5 0) but the farmer’s expected 
utility increases (to 335), so both parties will agree to the contract.

If the insurer cannot verify the farmer’s effort, then the situation changes. 
The farmer could cheat and accept the “pay $30,000 in a good year, get $90,000 in 
a bad year” insurance contract but not make the stipulated effort (build shoddy 
basins and provide no maintenance). Then the probability of having a bad year 
reverts to 50%, but the farmer’s income is $130,00 every year. His expected util
ity from accepting such a contract but making no effort is 360 (< 130,000), 
which is better than all of the other possibilities we have so far considered. Of 
course, the insurance company does badly in this case. Its expected profit is  
0.5 3 $30,000 2 0.5 3 $90,000 5 2$30, 000. The insurer cannot survive this con
tract, given the moralhazard problem, and so will not offer it to the farmer.

Does this mean that the farmer cannot get insurance at all when he has 
the option to build and maintain water basins, but his insurer can’t verify 
their quality and maintenance? No. But it does mean that he cannot get full 
insurance. There is still the option of a partial insurance contract in which the  
insurance company takes on a part, but not all, of the risk associated with a 
bad outcome.

Recall that when the farmer can build and maintain highquality basins, 
full insurance entails his paying the insurer $30,000 in a good year and receiv
ing $90,000 in a bad year. This contract gave the farmer no incentive actually to 
build or maintain the basins and left the insurer with a negative expected profit. 
To design the optimal insurance scheme here, the insurance company needs 
to determine the right X to require as payment from the farmer in a good year 
(leaving the farmer $160,000 2 X ) and the right Y to pay out to the farmer in a  
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bad year (boosting the farmer’s income to $40,000 1 Y  ). Then the optimal mech
anism must maximize the insurance company’s expected profit, given X, Y, and 
the probabilities of the different outcomes while ensuring both that the farmer 
retains the incentive to build the catch basins and that he is willing to accept the 
insurance contract. 

Because calculating the optimal values for X and Y here is quite complex, 
we will instead consider a specific pair of numbers that offers the farmer some 
insurance, gives him enough incentive to make the effort to reduce his risk, and 
breaks even for the company. Suppose the insurance company offers a contract 
that goes onethird of the way toward full insurance. Such a contract would stip
ulate a payment from the farmer of $10,000 in a good year (leaving him with 
$150,000) and a payment to the farmer of $30,000 in a bad year (bringing him 
to $70,000). If the farmer does build and maintain the highquality basins, then 
this contract leaves the insurance company with an expected profit of 0.75 3 
$10,000 2 0.25 3 $30,000 = $7,500 2 $7,500 = 0, so the company is just willing to 
offer insurance at this level. 

But will the farmer make the stipulated effort? In other words, is the contract 
incentive compatible? It is if the farmer’s expected utility with the insurance and 
the effort exceed his expected utility of accepting the insurance but not putting 
out the effort. That is, the contract must satisfy the following inequality13:

 0.75 3 150,000 1 0.25 3 70,000 2 25 . 0.50 3 150,000 1 0.50 3 70,000.

Calculating out the values of the two expressions yields (approximately) 331 . 
326, which is true. So the partial insurance contract is incentive compatible; 
it will induce the appropriate badoutcomereducing effort on the part of the 
farmer.

And does the contract satisfy the participation constraint as well? Yes. It 
must provide the farmer with an expected utility at least as large as he could 
achieve in the absence of insurance. That level, which we calculated earlier, is 
325; here he gets 331. The farmer is better off with this partial insurance contract 
than with no insurance at all, and both parties will agree to this contract.

Evidence supporting this theory of insurance and moral hazard can be 
found in any of your insurance contracts. Most policies come with various re
quirements of deductibles and copayments that leave some of the policyhold
er’s risk uninsured in order to reduce moral hazard. 

13 Compare the first term on the lefthand side with the first term on the righthand side of the 
incentivecompatibility constraint. Exerting the effort to construct highquality basins raises the  
coefficient multiplying the high utility, 150,000, from 0.50 to 0.75. Similarly, comparing the second 
terms on either side, you will see that failure to make the effort raises the coefficient multiplying the 
low utility, 70,000, from 0.25 to 0.50. These differences are analogous to the carrot and stick aspects 
of the incentive scheme in Section 5.A above.
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6 INCENTIVES FOR EFFORT: EVIDENCE AND EXTENSIONS

The theme of the managerialeffortincentive scheme of Section 5.A was the 
tradeoff between giving the manager a more powerful incentive to provide 
the optimal effort level and requiring him to bear more of the risk in the firm’s 
profit. This tradeoff is an important consideration in practice, but it must be 
considered in combination with other features of the relationship between the 
firm and its employee. Most of these other features have to do with multiple di
mensions of the activities that go on within the firm. The quality and quantity 
of effort are not just a matter of good or bad, and outcomes are not just a matter 
of success or failure; each can range over many possibilities, and such entities 
as hours and profits can vary continuously. The firm has many employees, and 
the overall outcome for the firm depends on some combination of their actions. 
Most firms have multiple outputs, and each employee performs multiple tasks. 
And the firm and its employees interact over a long period of time, not just for 
one project or over a short duration. All of these features correspondingly re
quire more complex incentive schemes. In this section, we outline a few of these 
and refer you to a rich body of literature for further details.14 The mathematics 
of these schemes gets correspondingly complex, so we will merely give you the 
intuition behind them and leave formal rigorous analyses to more advanced 
courses. 

A. Nonlinear Incentive Schemes

Can the optimal managerial effort scheme always be characterized by a base sal
ary with a profitshare component? No. If there are three possible outcomes—
failure, modest success, and huge success—then the percentage bonus for going 
from failure to modest success may not equal that for going from modest to 
huge success. So the optimal scheme may be nonlinear. 

Suppose we alter the managerial supervision example in Section 5.A to allow 
for three possible outcomes: profit over material and wage cost of 0, $500,000, or $1 
million. Suppose also that good supervisory effort yields probabilities of success  

14 Canice Prendergast, “The Provision of Incentives in Firms,” Journal of Economic Literature, vol. 37, 
no. 1 (March 1999), pp. 7–63, is an excellent survey of the theory and practice of incentive mecha
nisms. Prendergast gives references to the original research literature from which many findings and 
anecdotes are mentioned in this section, so we will not repeat the specific citations. James N. Baron 
and David M. Kreps, Strategic Human Resources: Frameworks for General Managers (New York: Wiley, 
1999), is a widerranging book on personnel management, combining perspectives from economics, 
sociology, and social psychology; chapters 8, 11, and 16 and appendixes C and D are closest to the 
concerns of this chapter and this book.
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of onesixth, onethird, and onehalf for the three possible outcomes in the  
same order. Poor supervision reverses the probabilities of success to onehalf, 
onethird, and onesixth, respectively. Then a somewhat harder calculation 
along the same lines as above, which we relegate to an optional exercise, shows 
that the optimal payments are $30,625 for failure, $160,000 for the modest suc
cess, and $225,625 for the top outcome. If we interpret this payment scheme as 
a $30,625 base salary with a bonus for success, then the bonus is $129,375 for 
achieving the $500,000 profit and $195,000 for achieving the $1 million profit. 
The bonus represents a 26% share of profits for the first level of success but only 
a 13% share for the second level.

Special forms of nonlinear schemes are often used in practice. The most 
common of such schemes incorporates a stipulated, fixed bonus that is paid if a 
certain performance standard or quota is achieved. When might such a scheme 
be desirable?

A quotabonus scheme constitutes a powerful incentive if it can be set at 
such a level that an increase in the worker’s effort substantially increases the 
probability of meeting the quota. To illustrate such a case, consider a firm that 
wants each salesman to produce $1 million in sales, and it is willing to pay 
up to $100,000 for this level of performance. If it pays a flat 10% commission, 
the salesman’s incremental effort in pushing sales from $900,000 to $1 million 
will bring him $10,000. But if the firm offers a wage of $60,000 and a bonus of 
$40,000 for meeting the quota of $1 million, then this last bit of effort pushes the  
salesman up to his quota and earns him an extra $40,000. Thus, the quota gives the  
salesman a much stronger incentive to make the incremental effort. 

But the quotabonus scheme is not without its drawbacks. The level at 
which the quota is set must be judged quite precisely. Suppose the firm mis
judges and sets the quota at $1.2 million, and the salesman knows that the 
probability of reaching that level of sales, even with superhuman effort, is quite 
small. The salesman may then give up, make very little effort, and settle for 
earning just the base salary. The salesman’s resulting sales may fall far short of 
even $1 million. Conversely, the pure quotabonus scheme gives him no incen
tive to go beyond the $1 million level. Finally, the quota must be applied over a 
specific period, usually the calendar year. This requirement produces even more 
perverse incentives. A salesman who has bad luck in the first few months of a 
year will realize that he has no chance of making his quota that year, so he will 
take things easy for the rest of the year. If in contrast he has very good luck and 
meets the quota by July, again he has no incentive to exert himself for the rest 
of the year. And he may be able to manipulate the scheme by conspiring with 
his customers to shift sales from one year to another to improve his chances of 
making the quota in both years. A linear scheme like the one with profit sharing 
described above is less open to such manipulation.
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Therefore, firms usually combine a quota scheme with a more graduated 
piecewise linearpayment scheme. For example, the salesman may get a base sal
ary, a low rate of commission for sales between $500,000 and $1 million, a higher 
rate of commission for sales between $1 million and $2 million, and so on.

Managers of mutual funds, for example, are rewarded for good performance 
over a calendar year. These rewards come from their firm in the form of bonuses 
but also from the public when they invest more in those specific funds. If these 
reward schemes are nonlinear, the managers respond by changing the risk pro
file of their funds’ portfolios. We saw in the appendix to Chapter 8 that a per
son with a concave utility function is risk averse and one with a convex utility 
function is a risk lover. In the same way that a riskloving individual prefers risky 
situations to safe ones, a manager facing a convex reward scheme will take ex
cessive risk with his fund’s portfolio.

B. Incentives in Teams

Rarely do the employees of a firm act as individuals on separate tasks. Salesmen 
working in distinct assigned regions come closest to being so separate, although 
even in that case the performance of an individual salesman is affected by the 
support of others in the office. Usually people work in teams, and the outcome 
for the team and for each member depends on the efforts of all. A firm’s profit 
as a whole, for example, depends on the performance of all of its workers and 
managers. This interaction creates special problems for the design of incentives.

When one worker’s earnings depend on the profit of the firm as whole, each 
worker will see only a weak link between his effort and the aggregate profit, and 
each will have only a small fractional share in that aggregate profit. This share is 
a very weak incentive for other workers to exert effort. Even in a smaller team, 
each member will be tempted to shirk and become a free rider on the efforts of 
the others. This outcome mirrors the prisoners’ dilemma of collective action we 
saw in the streetgarden example of Chapters 3 and 4, and throughout Chapter 
10. If the team is small and stable over a sufficiently long time, we can expect 
its members to resolve the dilemma by devising internal and perhaps nonmon
etary schemes of rewards and punishments like the ones we saw in Chapter 10, 
Section 3.

In another context, the existence of many workers on a team can sharpen 
incentives. Suppose a firm has many workers performing similar tasks, perhaps 
selling different components from the firm’s product line. If there is a common 
(positively correlated) random component to each worker’s sales, perhaps based 
on the strength of the underlying economy, then the sales of one worker relative 
to those of another worker are a good indicator of their relative effort levels. For 
example, the efforts of workers 1 and 2, denoted by x1 and x2, might be related to 
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their sales, y1 and y2, according to the formulas y1 5 x1 1 r and y2 5 x2 1 r, where 
r represents the common random error in sales (or the common “luck factor,” 
to use the terminology of Chapter 8, Section 1.C). In this case, it follows that  
y2 2 y1 5 x2 2 x1 with no randomness; that is, the difference in observed sales 
will exactly equal the difference in exerted effort across workers 1 and 2. 

The firm employing these workers can then reward them according to 
their relative outcomes. This payment scheme entails no risk for the workers. 
The tradeoff we considered in Section 5, between providing optimal effort and 
sharing in the profits of the firm, vanishes. Now, if the first worker has a poor 
sales record and tries to blame it on bad luck, the firm can respond, “Then how 
come this other worker achieved so much more? Luck was common to the two 
of you, so you must have made less effort.” Of course, if the two workers can  
collude, they can defeat the firm’s purpose, but otherwise the firm can imple
ment a powerful incentive scheme by setting workers in competition with each 
other. An extreme example of such a scheme is a tournament in which the best 
performer gets a prize.

Tournaments also help mitigate another potential moralhazard problem. 
In reality, the criteria of success are themselves not easily or publicly observable. 
Then the owner of the firm may be tempted to claim that no one has performed 
well enough and that no one should be paid a bonus. A tournament with a prize 
that must be awarded to someone or a given aggregate bonus pool that must be 
distributed among the workers eliminates this moral hazard on the part of the 
principal.

C. Multiple Tasks and Outcomes

Employees usually perform several tasks for their employers. These various 
tasks lead to several measurable outcomes of employee effort. Incentives for 
providing effort to the different tasks then interact. And this interaction makes 
mechanism design more complex for the firm.

The outcome of each of an agent’s tasks depends partly on the agent’s effort 
and partly on chance. That is why an outcomebased incentive scheme gener
ally inflicts some risk on the agent’s payoff. If the chance element is small, then 
the risk to the agent is small and the incentive to exert effort can be made more 
powerful. Of course, the outcomes of different tasks are likely to be affected 
by chance to different extents. So if the principal considers the tasks one at a 
time, he will use powerful incentives for effort on the tasks that have smaller ele
ments of chance and weaker incentives for effort on the tasks where outcomes 
are more uncertain indicators of the agent’s effort. But the powerful incentive on 
one task will divert the agent’s effort away from the other task, further weaken
ing the performance on that task. To avoid this substitution of effort toward the 
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task with the powerful incentive, the principal has to weaken the incentive on 
that task, too.

An example of this can be found in our own lives. Professors are supposed 
to do research as well as teaching. There are many accurate indicators of good 
research: publications in and appointments to editorial positions for prestigious 
journals, elections to scientific academies, and so on. By contrast, good teach
ing can only be observed less accurately and with long lags. Students often need 
years of experience to recognize the value of what they learned in college; in the 
short term, they may be more impressed by showmanship than by scholarship. 
If these two tasks required of faculty members were considered in isolation, uni
versity administrators would attach powerful incentives to research and weaker 
incentives to teaching. But if they did so, professors would divert their efforts 
away from teaching and toward research (even more than they already do in 
some institutions). Therefore, the imprecise observation of teaching outcomes 
forces deans and presidents to offer only weak incentives for research as well.

The most cited example of a situation with multiple tasks and outcomes oc
curs in school teaching. Some outcomes of teaching, such as test scores, are pre
cisely observable, whereas other valuable aspects of education, such as ability to 
work in teams or speak in public, are less accurately measurable. If teachers are 
rewarded on the basis of their students’ test scores, they will “teach to the test,” 
and the other dimensions of their students’ education will get ignored. Such 
“gaming” of an incentive scheme also extends to sports. If a baseball hitter is 
rewarded for hitting home runs, he will neglect other aspects of batting (taking 
pitches, sacrifice bunts, etc.) that can sometimes be better for his team’s chances 
of winning a game. Similarly, salesmen may sacrifice longterm customer rela
tionships in favor of driving home a sale to meet a shortterm sales goal.

If this problem of dysfunctional effects of some incentives on other tasks is 
too severe, other systems of rewarding tasks may be needed. A more holistic but 
subjective measure of performance, for example the boss’s overall evaluation, 
may be used. This alternative is not without its own problems; workers may then 
divert their effort into activities that find favor with the boss!

D. Incentives over Time

Many employment relationships last for a long time, and that opens up opportu
nities for the firm to devise incentive schemes where performance at one time is 
rewarded at a later time. Firms regularly use promotions, senioritybased salaries, 
and other forms of deferred compensation. In effect, workers are underpaid rela
tive to their performance in the earlier stages of their careers with the firm and 
overpaid in later years. The prospect of future rewards motivates younger work
ers to exert good effort and also induces them to stay with the firm, thus reducing 
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job turnover. Of course, the firm may be tempted to renege on its implicit prom
ise of overpayment in later years; therefore such schemes must be credible if they 
are to be effective. They are more likely to be used effectively in firms that have a 
long record of stability and a reputation for treating their senior workers well.

A different way that the prospect of future compensation can keep workers 
motivated is through the use of an “efficiency wage.” The firm pays a worker more 
than the going wage, and the excess is a surplus, or economic rent, for the worker. 
So long as the worker makes good effort, he will go on earning this surplus. But if 
he shirks, he may be detected, at which point he will be fired and will have to go 
back to the general labor market, where he can earn only the going wage.

The firm faces a problem in mechanism design when it tries to determine 
the appropriate efficiency wage level. Suppose the going wage is w0, and the 
firm’s efficiency wage is w . w0. Let the monetary equivalent of the worker’s 
subjective cost of making good effort be e. Each pay period the worker has the 
choice of whether to make this effort. If the worker shirks, he saves e. But with 
probability p, the shirking will be detected. If it is discovered that he has been 
shirking, the worker will lose the surplus (w 2 w0), starting in the next pay pe
riod and continuing indefinitely. Let r be the rate of interest from one period to 
the next. Then if the worker shirks today, the expected discounted present value 
of the worker’s loss in the next pay period is p (w 2 w0)(1 1 r). And the worker 
loses w 2 w0 with probability p in all future pay periods. A calculation similar 
to the ones we performed for repeated games in Chapter 10 and its appendix 
shows that the total expected discounted present value of the future loss to the 
worker is 

To deter shirking, the firm needs to make sure that this expected loss is at 
least as high as the worker’s immediate gain from shirking, e. Therefore, the firm 
must pay an efficiency wage that satisfies: 

The smallest efficiency wage is the one that makes this expression hold with 
equality. And the more accurately the firm can detect shirking (that is, the higher 
is p), the smaller its excess over the going wage needs to be. 

A repeated relationship may also enable the firm to design a sharper  
incentive scheme in another way. In any one period, as we explained above, 
the worker’s observed outcome is a combination of the worker’s effort and an  
element of chance. But if the outcome is poor year after year, the worker cannot  
credibly blame bad luck year after year. Therefore, the average outcome over 
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a long period can, by the law of large numbers, be used as a more accurate  
measure of the worker’s average effort, and the worker can be rewarded or  
punished accordingly.

SUMMARY

The study of mechanism design can be summed up as learning “how to deal 
with someone who knows more than you do.” Such situations occur in numer
ous contexts, usually in interactions involving a moreinformed player, called 
the agent, and a lessinformed player, called the principal, who wants to design 
a mechanism to give the agent the correct incentives to help the principal attain 
his goal.

Mechanismdesign problems are of two types. The first type involves in
formation revelation, in which the principal creates a scheme to screen infor
mation from the agent. The second type involves moral hazard, in which the 
principal creates a scheme to elicit the optimal level of an observable action 
by the agent. In all cases, the principal attempts to maximize its own objective 
function subject to the incentive compatibility and participation constraints of 
the agent.

Firms use informationrevelation schemes in creating pricing structures 
that separate customers by their willingness to pay for the firm’s product. Pro
curement contracts are also often designed to separate projects, or contractors, 
according to various levels of cost. Evidence of both price discrimination and 
screening with procurement contracts can be seen in actual markets.

When facing moral hazard, employers must devise contracts that encour
age their employees to provide optimal effort. Similarly, insurance companies 
must write policies that give their clients the right incentives to protect against 
the insured bad outcome’s occurring. In some simple situations, optimal con
tracts will be linear schemes, but in the presence of more complex relationships,  
nonlinear schemes may be more beneficial. Incentive systems designed for 
workers in teams, or when relationships continue over time, are correspond
ingly more complex than those written for simpler situations.

KEY TERMS

agent (521) principal (521)
mechanism design (515) principal-agent (agency) problem (521)
price discrimination (516)
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SOLVED EXERCISES

 S1. Firms that provide insurance to clients to protect them from the costs 
associated with theft or accident must necessarily be interested in the 
behavior of their policyholders. Sketch some ideas for the creation of an 
incentive scheme that such a firm might use to deter and detect fraud or 
lack of care on the part of its policyholders.

 S2. Some firms sell goods and services either singly or in bundles in order to in
crease their own profit by separating consumers with different preferences. 

 (a) List three examples of quantity discounts offered by firms.
 (b) How do quantity discounts allow firms to screen consumers by their 

preferences?

 S3.  Omniscient Wireless Limited (OWL) is planning to roll out a new nation
wide, broadband, wireless telephone service next month. The firm has 
conducted market research indicating that its 10 million potential con
sumers are in two segments, which they call the Light segment and the 
Regular segment. Light users have less demand for wirelessphone ser
vice and in particular they seem unlikely to have any value for more than 
300 minutes of calls per month. Regular users have more demand for 
mobilephone service generally and have high value for more than 300 
minutes per month. OWL analysts have determined that the best plans 
to offer to consumers entail 300 minutes per month and 600 minutes per 
month, respectively. They estimate that 50% of users are Light and 50% 
are Regular, and that each type has the following willingness to pay for 
each type of service:

300 minutes 600 minutes

Light user 
(50%) 

Regular user 
(50%) 

$20 

$25 

$30 

$70 

OWL’s cost per additional minute of wireless service is negligible, so the 
subscription cost to the company is $10 per user, no matter which plan 
the user chooses.

Each potential customer calculates the net payoff (benefit minus 
price) that she would get from each of the usage plans and buys the plan 
that would give the higher net payoff, so long as this payoff is not neg
ative. If both plans give equal, nonnegative net payoffs for a buyer, she 
goes for 600 minutes; if both plans have negative net payoffs for a buyer, 
she does not purchase. OWL wants to maximize its expected profit per 
potential customer.
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 (a)  Suppose the firm were to offer only the 300minute plan, but not the 
600minute plan. What would be the optimal price to charge, and 
what would be the average profit per potential customer?

 (b)  Suppose instead that the firm were to offer only the 600minute 
plan. What would be the optimal price, and what would be the aver
age profit per potential customer?

 (c)  Suppose the firm wanted to offer both plans. Suppose further that 
it wanted the Light users to purchase the 300minute plan and the 
Regular users to purchase the 600minute plan. Write down the  
incentivecompatibility constraint for the Light user.

 (d)  Similarly, write down the incentivecompatibility constraint for the 
Regular user.

 (e)  Use the results from parts (c) and (d) to calculate the optimal pair of 
prices to charge for the 300minute and 600minute services, so that 
each user type will purchase its intended service plan. What would 
be the average profit per potential customer?

 (f)  Consider the outcomes described in parts (a), (b), and (e). For each 
of the three situations, describe whether it is a separating outcome, 
a pooling outcome, or a semiseparating outcome.

 S4. Mictel Corporation has a world monopoly on the production of personal 
computers. It can make two kinds of computers: low end and high end. 
Onefifth of the potential buyers are casual users, and the rest are inten
sive users.

The costs of production of the two kinds of machines as well as the 
benefits gained from the two, by the two types of prospective buyers, are 
given in the following table (all figures are in thousands of dollars):

Each type of buyer calculates the net payoff (benefit minus price) 
that he would get from each type of machine and buys the type that 
would give the higher net payoff, provided that this payoff is nonnega
tive. If both types give equal, nonnegative net payoffs for a buyer, he goes 
for the high end; if both types have negative net payoff for a buyer, he 
does not purchase. 

Mictel wants to maximize its expected profit.
 (a) If Mictel were omniscient, then, when a prospective customer came 

along, knowing his type, the company could offer to sell him just 

COST
Casual

BENEFIT FOR 
USER TYPE

Low-end 

High-end 

1 4 5 

3 5 8 

Intensive

PC TYPE 
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one type of machine at a stated price, on a takeitorleaveit basis. 
What machine would Mictel offer, and at what price, to what buyer?

In fact, Mictel does not know the type of any particular buyer. It just 
makes its catalog available for all buyers to choose from.

 (b) First, suppose the company produces just the lowend machines 
and sells them for price x. What value of x will maximize its profit? 
Why?

 (c) Next, suppose Mictel produces just the highend machines and sells 
them for price y. What value of y will maximize its profit? Why?

 (d) Finally, suppose the company produces both types of machines, 
selling the lowend ones for price x and the highend ones for price 
y. What incentivecompatibility constraints on x and y must the 
company satisfy if it wants the casual users to buy the lowend ma
chines and the intensive users to buy the highend machines? 

 (e) What participation constraints must x and y satisfy for the casual 
users to be willing to buy the lowend machines and for the inten
sive users to be willing to buy the highend machines?

 (f) Given the constraints in parts (d) and (e), what values of x and y will 
maximize the expected profit when the company sells both types of 
machines? What is the company’s expected profit from this policy?

 (g) Putting it all together, decide what production and pricing policy 
the company should pursue.

 S5. Redo Exercise S4, assuming that onehalf of Mictel’s customers are ca
sual users. 

 S6. Using the insights gained in Exercises S4 and S5, solve Exercise S4 for the 
general case in which the proportion of casual users is c and the propor
tion of intensive users is (1 2 c). The answers to some parts will depend 
on the value of c. In these instances, list all relevant cases and how they  
depend on c.

 S7. Sticky Shoe, the discount movie theater, sells popcorn and soda at its con
cession counter. Cameron, Jessie, and Sean are regular patrons of Sticky 
Shoe, and the valuations of each for popcorn and soda are as follows:

Popcorn Soda

Cameron 

Jessica 

$3.50 

$4.00 

$3.00 

$2.50 

Sean $1.50 $3.50 
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There are 2,997 other residents of Harkinsville who see movies at 
Sticky Shoe. Onethird of them have valuations identical to Cameron,  
onethird to Jessica, and onethird to Sean. If a customer is indifferent 
between buying and not, she buys. It costs Sticky Shoe essentially noth
ing to produce each additional order of popcorn or soda.

 (a) If Sticky Shoe sets separate prices for popcorn and soda, what price 
should it set for each concession to maximize its profit? How much 
profit does Sticky Shoe make selling concessions separately?

 (b) What does each type of customer (Cameron, Jessica, Sean) buy 
when Sticky Shoe sets separate profitmaximizing prices for pop
corn and soda?

 (c) Instead of selling the concessions separately, Sticky Shoe decides 
always to sell the popcorn and soda together in a combo, charg
ing a single price for both. What single combo price would maxi
mize its profit? How much profit does Sticky Shoe make selling only  
combos?

 (d) What does each type of customer buy when Sticky Shoe sets a single 
profitmaximizing price for a popcorn and soda combo? How does 
this compare with the answer in part (b)?

 (e) Which pricing scheme does each customer type prefer? Why?
 (f) If Sticky Shoe sold the concessions both as a combo and separately, 

which products (popcorn, soda, or the combo) does it want to sell to 
each customer type? How can Sticky Shoe make sure that each cus
tomer type purchases exactly the product that it intends for him or 
her to purchase? 

 (g) What prices—for the popcorn, soda, and combo—would Sticky 
Shoe set to maximize its profit? How much profit does Sticky Shoe 
make selling the concessions at these three prices?

 (h) How do the answers to parts (a), (c), and (g) differ? Explain why. 

 S8. Section 5.A of this chapter discusses the principal–agent problem in the 
context of a company deciding whether and how to induce a manager to 
put in high effort to increase the chances that the project succeeds. The 
value of a successful project is $1 million; the probability of success given 
high effort is 0.5; the probability of success given low effort is 0.25. The 
manager’s utility is the square root of compensation (measured in mil
lions of dollars), and his disutility from exerting high effort is 0.1. How
ever, the reservation wage of the manager is now $160,000.

 (a) What contract does the company offer if it wants only low effort 
from the manager? 

 (b) What is the expected profit to the company when it induces low 
managerial effort? 
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 (c) What contract pair (y, x)—where y is the salary given for a success
ful project and x is the salary given for a failed project—should the 
company offer the manager to induce high effort?

 (d) What is the company’s expected profit when it induces high effort? 
 (e) Which level of effort does the company want to induce from its  

manager? Why?

 S9. A company has purchased fire insurance for its main factory. The prob
ability of a fire in the factory without a fireprevention program is 0.01. 
The probability of a fire in a factory with a fireprotection program is 
0.001. If a fire occurred, the value of the loss would be $300,000. A fire
prevention program would cost $80 to run, but the insurance company 
cannot costlessly observe whether or not the prevention program has 
been implemented. 

 (a) Why does moral hazard arise in this situation? What is its source?
 (b) Can the insurance company eliminate the moral hazard problem?  

If so, how? If not, explain why not.

 S10. Mozart moved from Salzburg to Vienna in 1781, hoping for a position 
at the Habsburg court. Instead of applying for a position, he waited for 
the emperor to call him, because “if one makes any move oneself, one 
receives less pay.” Discuss this situation using the theory of games with 
asymmetric information, including theories of signaling and screening.

 S11. (Optional, requires calculus) You are Oceania’s Minister for Peace, and 
it is your job to purchase war materials for your country. The net benefit,  
measured in Oceanic dollars, from quantity Q of these materials is  
2Q12 2 M, where M is the amount of money paid for the materials.

There is just one supplier—Baron Myerson’s Armaments (BMA). You 
do not know BMA’s cost of production. Everyone knows that BMA’s cost 
per unit of output is constant, and that it is equal to 0.10 with probability  
p 5 0.4 and equal to 0.16 with probability 1 2 p. Call BMA “low cost” if its 
unit cost is 0.10 and “high cost” if it is 0.16. Only BMA knows its true cost 
type with certainty.

In the past, your ministry has used two kinds of purchase contracts: 
cost plus and fixed price. But costplus contracts create an incentive for 
BMA to overstate its costs, and fixedprice contracts may compensate the 
firm more than is necessary. You decide to offer a menu of two possibilities: 

 Contract 1: Supply us quantity Q1, and we will pay you money M1.
 Contract 2: Supply us quantity Q2, and we will pay you money M2.

The idea is to set Q1, M1, Q2, and M2 such that a lowcost BMA will find 
contract 1 more profitable, and a highcost BMA will find contract 2 more 
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profitable. If another contract is exactly as profitable, a lowcost BMA will 
choose contract 1, and a highcost BMA will choose contract 2. Further,  
regardless of its cost, BMA will need to receive at least zero economic 
profit in any contract it accepts.

 (a)  Write expressions for the profit of a lowcost BMA and a highcost 
BMA when it supplies quantity Q and is paid M.

 (b)  Write the incentivecompatibility constraints to induce a lowcost 
BMA to select contract 1 and a highcost BMA to select contract 2.

 (c) Give the participation constraints for each type of BMA.
 (d)  Assuming that each of the BMA types chooses the contract designed 

for it, write the expression for Oceania’s expected net benefit. 

Now your problem is to choose Q1, M1, Q2, and M2 to maximize the ex
pected net benefit found in part (d) subject to the incentivecompatibility  
(IC) and participation constraints (PC).

 (e)  Assume that Q1 . Q2, and further assume that constraints IC1 and 
PC2 bind—that is, they will hold with equalities instead of weak in
equalities. Use these constraints to derive lower bounds on your 
feasible choices of M1 and M2 in terms of Q1 and Q2.

 (f)  Show that when IC1 and PC2 bind, IC2 and PC1 are automatically  
satisfied.

 (g)  Substitute out for M1 and M2, using the expressions found in part (e) 
to express your objective function in terms of Q1 and Q2. 

 (h)  Write the firstorder conditions for the maximization, and solve 
them for Q1 and Q2.

 (i) Solve for M1 and M2. 
 (j) What is Oceania’s expected net benefit from offering this menu of  

contracts?
 (k)  What general principles of screening are illustrated in the menu of 

contracts you found? 

 S12. (Optional) Revisit Oceania’s problem in Exercise S11 to see how the 
optimal menu found in that problem compares with some alternative  
contracts.

 (a) If you decided to offer a single fixedprice contract that was in
tended to attract only the lowcost BMA, what would it be? That is, 
what single (Q, M) pair would be optimal if you knew BMA was low 
cost? 

 (b) Would a highcost BMA want to accept the contract offered in  
part (a)? Why or why not?

 (c) Given the probability that BMA is low cost, what would the expected 
net benefit to Oceania be from offering the contract in part (a)? How 
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does this compare with the expected net benefit from offering a 
menu of contracts, as found in part (j) of Exercise S11?

 (d) What single fixedprice contract would you offer to a highcost 
BMA? 

 (e) Would a lowcost BMA want to accept the contract found in part (d)? 
What would its profit be if it did?

 (f) Given your answer in part (e), what would be the expected net ben
efit to Oceania from offering the contract in part (d)? How does this  
compare with the expected net benefit from offering a menu of con
tracts, found in part (j ) of Exercise S11?

 (g) Consider the case in which an industrial spy within BMA has prom
ised to divulge the true perunit cost, so that Oceania could offer the 
optimal single, fixedprice contract geared toward BMA’s true type. 
What would Oceania’s expected net benefit be if it knew that it was 
going to learn BMA’s true type? How does this compare with parts (c)  
and (f) of this exercise and with part (j ) of Exercise S11?

UNSOLVED EXERCISES

 U1. What problems of moral hazard and/or adverse selection arise in your 
dealings with each of the following? In each case, outline some appropriate 
incentive schemes and/or signaling and screening strategies to cope with 
these problems. No mathematical analysis is expected, but you should 
state clearly the economic reasoning of why and how your suggested  
methods work.

 (a)  Your financial adviser tells you what stocks to buy or sell.
 (b)  You consult a realtor when you are selling your house.
 (c)  You visit your doctor, whether for routine checkups or treatments.

 U2. MicroStuff is a software company that sells two popular applications,  
WordStuff and ExcelStuff. It doesn’t cost anything for MicroStuff to make 
each additional copy of its applications. MicroStuff has three types of 
potential customers, represented by Ingrid, Javiera, and Kathy. There are 
100 million potential customers of each type, whose valuations for each 
application are as follows:

WordStuff ExcelStuff

Ingrid 

Javiera 

100 

30 

20 

100 

Kathy 80 0 
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 (a) If MicroStuff sets separate prices for WordStuff and ExcelStuff, what 
price should it set for each application to maximize its profit? How 
much profit does MicroStuff earn with these prices? 

 (b) What does each type of customer (Ingrid, Javiera, Kathy) buy when 
MicroStuff sets profitmaximizing, separate prices for WordStuff and 
ExcelStuff?

 (c) Instead of selling the applications separately, MicroStuff decides al
ways to sell WordStuff and ExcelStuff together in a bundle, charging 
a single price for both. What single price for the bundle would maxi
mize its profit? How much profit does MicroStuff make selling its soft
ware only in bundles?

 (d) What does each type of customer buy when MicroStuff sets a single, 
profitmaximizing price for a bundle of WordStuff and ExcelStuff? 
How does this compare with the answer in part (b)?

 (e) Which pricing scheme does each customer type prefer? Why?
 (f) If MicroStuff sold the applications both as a bundle and separately, 

which products (WordStuff, ExcelStuff, or the bundle) would it want 
to sell to each customer type? How can MicroStuff make sure that 
each customer type purchases exactly the product that it intends for 
them to purchase? 

 (g) What prices—for WordStuff, ExcelStuff, and the bundle—would  
MicroStuff set to maximize its profit? How much profit does Micro
Stuff make selling the products with these three prices?

 (h) How do the answers to parts (a), (c), and (g) differ? Explain why. 

 U3.  Consider a managerial effort example similar to the one in Section 5. The 
value of a successful project is $420,000; the probabilities of success are 
12 with good supervision and 14 without. The manager is risk neu
tral, not risk averse as in the text, so his expected utility equals his ex
pected income minus his disutility of effort. He can get other jobs paying 
$90,000, and his disutility for exerting the extra effort for good supervi
sion on your project is $100,000.

 (a) Show that inducing high effort would require the firm to offer a 
compensation scheme with a negative base salary; that is, if the 
project fails, the manager pays the firm an amount stipulated in the 
scheme.

 (b) How might a negative base salary be implemented in reality?
 (c) Show that if a negative base salary is not feasible, then the firm does 

better to settle for the lowpay, loweffort situation.

 U4. Cheapskates is a very minorleague professional hockey team. Its facilities 
are large enough to accommodate all of the 1,000 fans who might want to 
watch its home games. It can provide two types of seats—ordinary and  
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Each fan will buy at most one seat, depending on the consumer sur
plus he would get (maximum willingness to pay minus the actual price 
paid) from the two kinds. If the surplus for both is negative, then he won’t 
buy any. If at least one kind gives him nonnegative surplus, then he will 
buy the kind that gives him the larger surplus. If the two kinds give him 
equal, nonnegative surplus, then the bluecollar fan will buy the ordinary 
kind of seat, and the whitecollar fan will buy the luxury kind. 

The team owners provide and price their seating to maximize profit, 
measured in thousands of dollars per game. They set prices for each kind 
of seat, sell as many tickets as are demanded at these prices, and then 
provide the numbers and types of seats of each kind for which the tickets 
have sold.

 (a)  First, suppose the team owners can identify the type of each indi
vidual fan who arrives at the ticket window (presumably by the color 
of his collar) and can offer him just one type of seat at a stated price, 
on a takeitorleaveit basis. What is the owners’ maximum profit, 
p*, under this system?

 (b)  Now, suppose that the owners cannot identify any individual fan, 
but they still know the proportion of bluecollar fans. Let the price 
of an ordinary seat be X and the price of a luxury seat be Y. What 
are the incentivecompatibility constraints that will ensure that the 
bluecollar fans buy the ordinary seats and the whitecollar fans 
buy the luxury seats? Graph these constraints on an XY coordinate 
plane.

 (c) What are the participation constraints for the fans’ decisions on 
whether to buy tickets at all? Add these constraints to the graph in 
part (b). 

 (d)  Given the constraints in parts (b) and (c), what prices X and Y maxi
mize the owners’ profit, p2, under this price system? What is p2?
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COST
Blue-Collar

Willingness to Pay

Ordinary 

Luxury 

4 12 14 

8 15 22 

White-Collar

SEAT TYPE 
 

luxury. There are also two sorts of fans: 60% of the fans are bluecollar 
fans, and the rest are whitecollar fans. The costs of providing each type 
of seat and the fans’ willingness to pay for each type of seat are given in 
the following table (measured in dollars):
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 (e)  The owners are considering whether to set prices so that only the 
whitecollar fans will buy tickets. What is their profit, pw, if they de
cide to cater to only the whitecollar fans? 

 (f)  Comparing p2 and pw, determine the pricing policy that the own
ers will set. How does their profit achieved from this policy compare 
with the case of full information, where they earn p*? 

 (g)  What is the “cost of coping with the information asymmetry” in 
part (f )? Who bears this cost? Why?

 U5. Redo Exercise U4 above, assuming that 10% of the fans are blue collar.

 U6. Using the insights you gained in Exercises U4 and U5, solve Exercise U4 
for the general case where a fraction B of the fans is blue collar and frac
tion (1 2 B) is white collar. The answers to some parts will depend on the 
value of B. In these instances, list all relevant cases and how they depend 
on B.

 U7. In many situations, agents exert effort in order to get promoted to a  
betterpaid position, where the reward for that position is fixed and 
where agents compete among themselves for those positions. Tourna
ment theory considers a group of agents competing for a fixed set of 
prizes. In this case, all that matters for winning is one’s positions relative 
to others, rather than one’s absolute level of performance. 

 (a)  Discuss the reasons that a firm might wish to employ the tourna
ment scheme described above. Consider the effects on the incen
tives of both the firm and the workers.

 (b)  Discuss the reasons that a firm might not wish to employ the tour
nament scheme described above.

 (c)  State one specific prediction of tournament theory and provide an 
example of empirical evidence in support of that prediction.

 U8. Repeat Exercise S8 with the following adjustments: Due to the departure 
of some of their brightest engineers, the probability of success given a 
high managerial effort is only 0.4, and the probability of success given a 
low managerial effort is reduced to 0.24. 

 U9.  (Optional) A teacher wants to find out how confident the students are 
about their own abilities. He proposes the following scheme: “After you 
answer this question, state your estimate of the probability that you are 
right. I will then check your answer to the question. Suppose you have 
given the probability estimate x. If your answer is actually correct, your 
grade will be log(x). If incorrect, it will be log(1 2 x).” Show that this 
scheme will elicit the students’ own truthful estimates—that is, if the 
truth is p, show that a student’s stated estimate x 5 p.
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 U10. (Optional) Redo Exercise S11, but assume that the probability that BMA 
is low cost is 0.6.

 U11. (Optional) Repeat Exercise S11, but assume that a lowcost BMA has a  
perunit cost of 0.2, and a highcost BMA has a perunit cost of 0.38. Let 
the probability that BMA is low cost be 0.4.

 U12. (Optional) Revisit the situation in which Oceania is procuring arms from 
BMA. (See Exercise S11.) Now consider the case in which BMA has three 
possible cost types: c1, c2, and c3, where c3 . c2 . c1. BMA has cost c1 with 
probability p1, cost c2 with probability p2, and cost c3 with probability p3, 
where p1 1 p2 1 p3 5 1. In what follows, we will say that BMA is of type i if 
its cost is ci, for i 5 1, 2, 3.

You offer a menu of three possibilities: “Supply us quantity Qi, and 
we will pay you Mi,” for i 5 1, 2, and 3. Assume that more than one con
tract is equally profitable, so that a BMA of type i will choose contract i. 
To meet the participation constraint, contract i should give BMA of type 
i nonnegative profit.

 (a)  Write an expression for the profit of typei BMA when it supplies 
quantity Q and is paid M.

 (b)  Give the participation constraints for each BMA type. 
 (c) Write the six incentivecompatibility constraints. That is, for each 

type i give separate expressions that state that the profit that BMA 
receives under contract i is greater than or equal to the profit it 
would receive under the other two contracts.

 (d)  Write down the expression for Oceania’s expected net benefit, B. 
This is the objective function (what you want to maximize). 

Now your problem is to choose the three Qi and the three Mi to max
imize expected net benefit, subject to the incentivecompatibility (IC) 
and participation constraints (PC).

 (e)  Begin with just three constraints: the IC constraint for type 2 to pre
fer contract 2 over contract 3, the IC constraint for type 1 to prefer 
contract 1 over contract 2, and the participation constraint for type 3.  
Assume that Q1 . Q2 . Q3. Use these constraints to derive lower 
bounds on your feasible choices of M1, M2, M3 in terms of c1, c2, and 
c3 and Q1, Q2, and Q3. (Note that two or more of the cs and Qs may 
appear in the expression for the lower bound for each of the Ms.) 

 (f) Prove that these three constraints—the two ICs and one PC in  
part (e)—will be binding at the optimum.

 (g)  Now prove that when the three constraints in part (e) are binding, 
the other six constraints (the remaining four ICs and two PCs) are 
automatically satisfied.
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 (h)  Substitute out for the Mi to express your objective function in terms 
of the three Qi only.

 (i)  Write the firstorder conditions for the maximization, and solve for 
each of the Qi. That is, take the three partial derivatives QiB, set 
them equal to zero, and solve for Qi.

 (j)  Show that the assumption made above, Q1 . Q2 . Q3, will be true at 
the optimum if:
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                .
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PART FOUR
■

Applications to Specific 

Strategic Situations
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1414
■

Brinkmanship
The Cuban Missile Crisis

In Chapter 1, we explained that our basic approach was neither pure theory 
nor pure case study, but a combination in which theoretical ideas were devel-
oped by using features of particular cases or examples. Thus, we ignored those 
aspects of each case that were incidental to the concept being developed. 

However, after you have learned the theoretical ideas, a richer mode of analysis 
becomes available to you in which factual details of a particular case are more 
closely integrated with game-theoretic analysis to achieve a fuller understanding 
of what has happened and why. Such theory-based case studies have begun to ap-
pear in diverse fields—business, political science, and economic history.1

Here we offer an example from political and military history—namely, 
nuclear brinkmanship in the Cuban missile crisis of 1962. Our choice is mo-
tivated by the sheer drama of the episode, the wealth of factual information 
that has become available, and the applicability of an important concept 
from game theory.

The crisis, when the world came as close to an unaccidental nuclear war 
as it ever has, is indeed often offered as the classic example of brinkmanship. 
You may think that the risk of nuclear war died with the dissolution of the  

1 Two excellent examples of theory-based studies are Pankaj Ghemawat, Games Businesses  
Play: Cases and Models (Cambridge, Mass.: MIT Press, 1997), and Robert H. Bates, Avner Greif,  
Margaret Levi, Jean-Laurent Rosenthal, and Barry Weingast, Analytic Narratives (Princeton: Princ-
eton University Press, 1998). A broader analysis of the approach can be found in Alexander L. George 
and Andrew Bennett, Case Studies and Theory Development in the Social Sciences (Cambridge, 
Mass.: MIT Press, 2005).
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Soviet Union and that therefore our case is a historical curiosity. But nuclear 
arms races continue in many parts of the world, and such rivals as India and 
Pakistan or Iran and Israel may find use for the lessons taken from the Cuban 
crisis. More important for many of you, brinkmanship must be practiced in 
many more common situations, from political negotiations to business-labor 
relations to marital disputes. Although the stakes in such games are lower than 
those in a nuclear confrontation between superpowers, the same principles of 
strategy apply.

In Chapter 9, we introduced the concept of brinkmanship as a strategic 
move; here is a quick reminder of that analysis. A threat is a response rule, 
and the threatened action inflicts a cost on both the player making the threat 
and the player whose action the threat is intended to influence. However, 
if the threat succeeds in its purpose, this action is not actually carried out. 
Therefore, there is no apparent upper limit to the cost of the threatened ac-
tion. But the risk of errors—that is, the risk that the threat may fail to achieve 
its purpose or that the threatened action may occur by accident—forces the 
strategist to use the minimal threat that achieves its purpose. If a smaller 
threat is not naturally available, a large threat can be scaled down by making 
its fulfillment probabilistic. You do something in advance that creates a prob-
ability, but not certainty, that the mutually harmful outcome will happen if 
the opponent defies you. If the need actually arose, you would not take that 
bad action if you had the full freedom to choose. Therefore, you must arrange 
in advance to let things get out of your control to some extent. Brinkmanship 
is the creation and deployment of such a probabilistic threat; it consists of a 
deliberate loss of control.

In our extended case study of the Cuban missile crisis, we will explain the 
concept of brinkmanship in detail. In the process, we will find that many popular 
interpretations and analyses of the crisis are simplistic. A deeper analysis reveals 
brinkmanship to be a subtle and dangerous strategy. It also shows that many det-
rimental outcomes in business and personal interactions—such as strikes and 
breakups of relationships—are examples of brinkmanship gone wrong. There-
fore, a clear understanding of the strategy, as well as its limitations and risks, is 
very important to all game players, which includes just about everyone.

1 A Brief NArrAtive of eveNts

We begin with a brief story of the unfolding of the crisis. Our account draws on 
several books, including some that were written with the benefit of documents  
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and statements released since the collapse of the Soviet Union.2 We cannot 
hope to do justice to the detail, let alone the drama, of the events. President 
Kennedy said at the time of the crisis: “This is the week when I earn my salary.” 
Much more than a president’s salary stood in the balance. We urge you to read 
the books that tell the story in vivid detail and to talk to any relatives who lived 
through it to get their firsthand memories.3

In late summer and early fall of 1962, the Soviet Union (USSR) started to 
place medium- and intermediate-range ballistic missiles (MRBMs and IRBMs) 
in Cuba. The MRBMs had a range of 1,100 miles and could hit Washington, 
D.C.; the IRBMs, with a range of 2,200 miles, could hit most of the major U.S. 
cities and military installations. The missile sites were guarded by the latest 
Soviet SA-2–type surface-to-air missiles (SAMs), which could shoot down U.S.  
high-altitude U-2 reconnaissance planes. There were also IL-28 bombers and 
tactical nuclear weapons called Luna by the Soviets and FROG (free rocket over 
ground) by the United States, which could be used against invading troops.

This was the first time that the Soviets had ever attempted to place their 
missiles and nuclear weapons outside Soviet territory. Had they been success-
ful, it would have increased their offensive capability against the United States 
manyfold. It is now believed that the Soviets had fewer than 20, and perhaps as 
few as “two or three,” operational intercontinental ballistic missiles (ICBMs) in 
their own country capable of reaching the United States (War, 464, 509–510). 
Their initial placement in Cuba had about 40 MRBMs and IRBMs, which was 
a substantial increase. But the United States would still have retained vast  
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2 Our sources include Robert Smith Thompson, The Missiles of October (New York: Simon & Schus-
ter, 1992); James G. Blight and David A. Welch, On the Brink: Americans and Soviets Reexamine the 
Cuban Missile Crisis (New York: Hill and Wang, 1989); Richard Reeves, President Kennedy: Profile of 
Power (New York: Simon & Schuster, 1993); Donald Kagan, On the Origins of War and the Preserva-
tion of Peace (New York: Doubleday, 1995); Aleksandr Fursenko and Timothy Naftali, One Hell of a 
Gamble: The Secret History of the Cuban Missile Crisis (New York: W. W. Norton & Company, 1997); 
and last, latest, and most direct, The Kennedy Tapes: Inside the White House During the Cuban Mis-
sile Crisis, ed. Ernest R. May and Philip D. Zelikow (Cambridge, Mass.: Harvard University Press, 
1997). Graham T. Allison’s Essence of Decision: Explaining the Cuban Missile Crisis (Boston: Little 
Brown, 1971) remains important not only for its narrative, but also for its analysis and interpreta-
tion. Our view differs from his in some important respects, but we remain in debt to his insights. We 
follow and extend the ideas in Avinash Dixit and Barry Nalebuff, Thinking Strategically (New York:  
W.  W. Norton & Company, 1991), ch. 8.

When we cite these sources to document particular points, we do so in parentheses in the text, 
in each case using a key word from the title of the book followed by the appropriate page number or 
page range. The key words have been underlined in the sources given here.
3 For those of you with no access to firsthand information or those who seek a beginner’s introduc-
tion to both the details and the drama of the missile crisis, we recommend the film Thirteen Days 
(2000, New Line Cinema). A new, relatively short book by Sheldon Stern uses the evidence from the 
Kennedy administration tapes to present as accurate a view of the crisis and its later analysis as pos-
sible. His book is perhaps the best short read for interested parties. See Sheldon Stern, The Cuban 
Missile Crisis in American Memory: Myths versus Reality (Stanford, Calif.: Stanford University Press, 
2012).

6841D CH14 UG.indd   561 12/18/14   3:15 PM



5 6 2   [ C h . 1 4 ]  B r i n k m a n s h i p

superiority in the nuclear balance between the superpowers. Also, as the Sovi-
ets built up their submarine fleet, the relative importance of land-based missiles 
near the United States would have decreased. But the missiles had more than 
mere direct military value to the Soviets. Successful placement of missiles so 
close to the United States would have been an immense boost to Soviet prestige 
throughout the world, especially in Asia and Africa, where the superpowers were 
competing for political and military influence. Finally, the Soviets had come to 
think of Cuba as a “poster child” for socialism. The opportunity to deter a feared 
U.S. invasion of Cuba and to counter Chinese influence in Cuba weighed impor-
tantly in the calculations of the Soviet leader and Premier, Nikita Khrushchev.  
(See Gamble, 182–183, for an analysis of Soviet motives.)

U.S. surveillance of Cuba and of shipping lanes during the late summer and 
early fall of 1962 had indicated some suspicious activity. When questioned about 
it by U.S. diplomats, the Soviets denied any intentions to place missiles in Cuba. 
Later, faced with irrefutable evidence, they said that their intention was defensive, 
to deter the United States from invading Cuba. It is hard to believe this, although 
we know that an offensive weapon can serve as a defensive deterrent threat.

An American U-2 “spy plane” took photographs over western Cuba on Sun-
day and Monday, October 14 and 15. When developed and interpreted, they 
showed unmistakable signs of construction on MRBM launching sites. (Evi-
dence of IRBMs was found later, on October 17.) These photographs were shown 
to President Kennedy the following day (October 16). He immediately convened 
an ad hoc group of advisers, which later came to be called the Executive Com-
mittee of the National Security Council (ExComm), to discuss the alternatives.  
At the first meeting (on the morning of October 16), he decided to keep the mat-
ter totally secret until he was ready to act, mainly because if the Soviets knew 
that the Americans knew, they might speed up the installation and deployment 
of the missiles before the Americans were ready to act, but also because spread-
ing the news without announcing a clear response would create panic in the 
United States.

Members of ExComm who figured most prominently in the discussions 
were the Secretary of Defense, Robert McNamara; the National Security Adviser,  
McGeorge Bundy; the Chairman of the Joint Chiefs of Staff, General Maxwell 
Taylor; the Secretary of State, Dean Rusk, and Undersecretary George Ball; 
the Attorney General, Robert Kennedy (who was also the President’s brother);  
the Secretary of the Treasury, Douglas Dillon (also the only Republican in the 
Cabinet); and Llewellyn Thompson, who had recently returned from being 
U.S. Ambassador in Moscow. During the two weeks that followed, they would 
be joined by or would consult with several others, including the U.S. Ambassa-
dor to the United Nations, Adlai Stevenson; the former Secretary of State and a  
senior statesman of U.S. foreign policy, Dean Acheson; and the Chief of the U.S. 
Air Force, General Curtis LeMay.
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In the rest of that week (October 16 through 21), the ExComm met numer-
ous times. To preserve secrecy, the President continued his normal schedule, 
including travel to speak for Democratic candidates in the midterm congressio-
nal elections that were to be held in November 1962. He kept in constant touch 
with ExComm. He dodged press questions abut Cuba and persuaded one or 
two trusted media owners or editors to preserve the facade of business as usual.  
ExComm’s own attempts to preserve secrecy in Washington sometimes verged 
on the comic, as when almost a dozen of them had to pile into one limo,  
because the sight of several government cars going from the White House to the 
State Department in a convoy could cause speculation in the media.

Different members of ExComm had widely differing assessments of the 
situation and supported different actions. The military Chiefs of Staff thought 
that the missile placement changed the balance of military power substantially; 
Defense Secretary McNamara thought it changed “not at all” but regarded the 
problem as politically important nonetheless (Tapes, 89). President Kennedy 
pointed out that the first placement, if ignored by the United States, could grow 
into something much bigger and that the Soviets could use the threat of missiles 
so close to the United States to try to force the withdrawal of the U.S., British,  
and French presence in West Berlin. Kennedy was also aware that it was a part 
of the geopolitical struggle between the United States and the Soviet Union  
(Tapes, 92).

It now appears that he was very much on the mark in this assessment. 
The Soviets planned to expand their presence in Cuba into a major mili-
tary base (Tapes, 677). They expected to complete the missile placement by  
mid-November. Khrushchev had planned to sign a treaty with Castro in late 
November, then travel to New York to address the United Nations and issue an 
ultimatum for a settlement of the Berlin issue (Tapes, 679; Gamble, 182), using 
the missiles in Cuba as a threat for this purpose. Khrushchev thought Kennedy 
would accept the missile placement as a fait accompli. Khrushchev appears to 
have made these plans on his own. Some of his top advisers privately thought 
them too adventurous, but the top governmental decision-making body of the 
Soviet Union, the Presidium, supported him, although its response was largely 
a rubber stamp (Gamble, 180). Castro was at first reluctant to accept the mis-
siles, fearing that they would trigger a U.S. invasion (Tapes, 676–678), but in 
the end he, too, accepted them. The prospect gave him great confidence and 
lent some swagger to his statements about the United States (Gamble, 186–187, 
229–230).

In all ExComm meetings up to and including the one on the morning of 
Thursday, October 18, everyone appears to have assumed that the U.S. response 
would be purely military. The only options that they discussed seriously during 
this time were (1) an air strike directed exclusively at the missile sites and (prob-
ably) the SAM sites nearby, (2) a wider air strike including Soviet and Cuban 
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aircraft parked at airfields, and (3) a full-scale invasion of Cuba. If anything,  
attitudes hardened when the evidence of the presence of the longer-range 
IRBMs arrived. In fact, at the Thursday meeting, Kennedy discussed a timetable 
for air strikes to commence that weekend (Tapes, 148).

McNamara had first mentioned a blockade toward the end of the meeting 
on Tuesday, October 16, and developed the idea (in a form uncannily close to 
the course of action actually taken) in a small group after the formal meeting 
had ended (Tapes, 86, 113). Ball argued that an air strike without warning would 
be a “Pearl Harbor” and that the United States should not do it (Tapes, 115); he 
was most importantly supported by Robert Kennedy (Tapes, 149). The civilian 
members of ExComm further shifted toward the blockade option when they 
found that what the military Joint Chiefs of Staff wanted was a massive air strike; 
the military regarded a limited strike aimed at only the missile sites so danger-
ous and ineffective that “they would prefer taking no military action than to take 
that limited strike” (Tapes, 97).

Between October 18 and Saturday, October 20, the majority opinion within 
ExComm gradually coalesced around the idea of starting with a blockade, si-
multaneously issuing an ultimatum with a short deadline (from 48 to 72 hours 
was mentioned), and proceeding to military action if necessary after this dead-
line expired. International law required a declaration of war to set up a block-
ade, but this problem was ingeniously resolved by proposing to call it a “naval  
quarantine” of Cuba (Tapes, 190–196).

Some people held the same positions throughout these discussions (from 
October 16 through 21)—for example, the military Chiefs of Staff constantly fa-
vored a major air strike—but others shifted their views, at times dramatically. 
Bundy initially favored doing nothing (Tapes, 172) and then switched toward a 
preemptive surprise air attack (Tapes, 189). President Kennedy’s own positions 
also shifted away from an air strike toward a blockade. He wanted the U.S. re-
sponse to be firm. Although his reasons undoubtedly were mainly military and 
geopolitical, as a good domestic politician he was also fully aware that a weak 
response would hurt the Democratic party in the imminent congressional elec-
tions. In contrast, the responsibility of starting an action that might lead to 
nuclear war weighed very heavily on him. He was impressed by the CIA’s assess-
ment that some of the missiles were already operational, which increased the 
risk that any air strike or invasion could lead to the Soviets’ firing these missiles 
and to large U.S. civilian casualties (Gamble, 235). In the second week of the cri-
sis (October 22 through 28), his decisions seemed constantly to favor the lowest-
key options discussed by ExComm.

By the end of the first week’s discussions, the choice lay between a blockade  
and an air strike, two position papers were prepared, and in a straw vote on Oc-
tober 20 the blockade won 11 to 6 (War, 516). Kennedy made the decision to 
start by imposing a blockade and announced it in a television address to the na-
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tion on Monday, October 22. He demanded a halt to the shipment of Soviet mis-
siles to Cuba and a prompt withdrawal of those already there.

Kennedy’s speech brought the whole drama and tension into the public 
arena. The United Nations held several dramatic but unproductive debates. 
Other world leaders and the usual busybodies of international affairs offered  
advice and mediation.

Between October 23 and October 25, the Soviets at first tried bluster and de-
nial; Khrushchev called the blockade “banditry, a folly of international imperial-
ism” and said that his ships would ignore it. The Soviets, in the United Nations 
and elsewhere, claimed that their intentions were purely defensive and issued 
statements of defiance. In secret, they explored ways to end the crisis. This ex-
ploration included some direct messages from Khrushchev to Kennedy. It also 
included some very indirect and lower-level approaches by the Soviets. In fact, 
as early as Monday, October 22—before Kennedy’s TV address—the Soviet Pre-
sidium had decided not to let this crisis lead to war. By Thursday, October 25, 
they had decided that they were willing to withdraw from Cuba in exchange for 
a promise by the United States not to invade Cuba, but they had also agreed 
to “look around” for better deals (Gamble, 241, 259). The United States did not 
know any of the Soviet thinking about this.

In public as well as in private communications, the USSR broached the pos-
sibility of a deal concerning the withdrawal of U.S. missiles from Turkey and 
of Soviet ones from Cuba. This possibility had already been discussed by Ex-
Comm. The missiles in Turkey were obsolete; so the United States wanted to re-
move them anyway and replace them with a Polaris submarine stationed in the  
Mediterranean Sea. But it was thought that the Turks would regard the presence 
of U.S. missiles as a matter of prestige and so it might be difficult to persuade 
them to accept the change. (The Turks might also correctly regard missiles,  
fixed on Turkish soil, as a firmer signal of the U.S. commitment to Turkey’s  
defense than an offshore submarine, which could move away on short notice; 
see Tapes, 568.)

The blockade went into effect on Wednesday, October 24. Despite their 
public bluster, the Soviets were cautious in testing it. Apparently, they were sur-
prised that the United States had discovered the missiles in Cuba before the 
whole installation program was completed; Soviet personnel in Cuba had ob-
served the U-2 overflights but had not reported them to Moscow (Tapes, 681). 
The Soviet Presidium ordered the ships carrying the most sensitive materials 
(actually the IRBM missiles) to stop or turn around. But it also ordered Gen-
eral Issa Pliyev, the commander of the Soviet troops in Cuba, to get his troops  
combat-ready and to use all means except nuclear weapons to meet any attack 
(Tapes, 682). In fact, the Presidium twice prepared (then canceled without send-
ing) orders authorizing him to use tactical nuclear weapons in the event of a 
U.S. invasion (Gamble, 242–243, 272, 276). The U.S. side saw only that several 
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Soviet ships (which were actually carrying oil and other nonmilitary cargo) con-
tinued to sail toward the blockade zone. The U.S. Navy showed some modera-
tion in its enforcement of the blockade. A tanker was allowed to pass without 
being boarded; another tramp steamer carrying industrial cargo was boarded 
but allowed to proceed after only a cursory inspection. But tension was mount-
ing, and neither side’s actions were as cautious as the top-level politicians on 
both sides would have liked.

On the morning of Friday, October 26, Khrushchev sent Kennedy a con-
ciliatory private letter offering to withdraw the missiles in exchange for a U.S. 
promise not to invade Cuba. But later that day he toughened his stance. It  
seems that he was emboldened by two items of evidence. First, the U.S. Navy 
was not being excessively aggressive in enforcing the blockade. It had let  
through some obviously civilian freighters; they boarded only one ship, the 
Marucla, and let it pass after a cursory inspection. Second, some dovish state-
ments had appeared in U.S. newspapers. Most notable among them was an arti-
cle by the influential and well-connected syndicated columnist Walter Lippman, 
who suggested the swap whereby the United States would withdraw its missiles 
in Turkey in exchange for the USSR’s withdrawing its missiles in Cuba (Gamble, 
275). Khrushchev sent another letter to Kennedy on Saturday, October 26, of-
fering this swap, and this time he made the letter public. The new letter was 
presumably a part of the Presidium’s strategy of “looking around” for the best 
deal. Members of ExComm concluded that the first letter was Khrushchev’s own 
thoughts but that the second was written under pressure from hard-liners in 
the Presidium—or was even evidence that Khrushchev was no longer in control 
(Tapes, 498, 512–513). In fact, both of Khrushchev’s letters were discussed and 
approved by the Presidium (Gamble, 263, 275).

ExComm continued to meet, and opinions within it hardened. One reason 
was the growing feeling that the blockade by itself would not work. Kennedy’s 
television speech had imposed no firm deadline, and as we know, in the ab-
sence of a deadline a compellent threat is vulnerable to the opponent’s procras-
tination. Kennedy had seen this quite clearly and as early as Monday, October 
22, in the morning ExComm meeting preceding his speech, he commented, “I 
don’t think we’re gonna be better off if they’re just sitting there” (Tapes, 216). 
But a hard, short deadline was presumably thought to be too rigid. By Thurs-
day, others in ExComm were realizing the problem; for example, Bundy said, 
“A plateau here is the most dangerous thing” (Tapes, 423). The hardening of the 
Soviet position, as shown by the public “Saturday letter” that followed the con-
ciliatory private “Friday letter,” was another concern. More ominously, that Fri-
day, U.S. surveillance had discovered that there were tactical nuclear weapons 
(FROGs) in Cuba (Tapes, 475). This discovery showed the Soviet presence there 
to be vastly greater than thought before, but it also made invasion more danger-
ous to U.S. troops. Also on Saturday, a U.S. U-2 plane was shot down over Cuba. 
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(It now appears that this was done by the local commander, who interpreted 
his orders more broadly than Moscow had intended [War, 537; Tapes, 682].)  
In addition, Cuban antiaircraft defenses fired at low-level U.S. reconnaissance 
planes. The grim mood in ExComm throughout that Saturday was well encapsu-
lated by Dillon: “We haven’t got but one more day” (Tapes, 534).

On Saturday, plans leading to escalation were being put in place. An air 
strike was planned for the following Monday, or Tuesday at the latest, and Air 
Force reserves were called up (Tapes, 612–613). Invasion was seen as the inevita-
ble culmination of events (Tapes, 537–538). A tough private letter to Khrushchev 
from President Kennedy was drafted and was handed over by Robert Kennedy 
to the Soviet Ambassador in Washington, Anatoly Dobrynin. In it, Kennedy 
made the following offer: (1) The Soviet Union withdraws its missiles and IL-28 
bombers from Cuba with adequate verification (and ships no new ones). (2) The 
United States promises not to invade Cuba. (3) The U.S. missiles in Turkey will 
be removed after a few months, but this offer is void if the Soviets mention it 
in public or link it to the Cuban deal. An answer was required within 12 to 24 
hours; otherwise “there would be drastic consequences” (Tapes, 605–607).

On the morning of Sunday, October 28, just as prayers and sermons for peace 
were being offered in many churches in the United States, Soviet radio broad-
cast the text of a letter that Khrushchev was sending to Kennedy, in which he an-
nounced that construction of the missile sites was being halted immediately and 
that the missiles already installed would be dismantled and shipped back to the 
Soviet Union. Kennedy immediately sent a reply welcoming this decision, which 
was broadcast to Moscow by the Voice of America radio. It now appears that 
Khrushchev’s decision to back down was made before he received Kennedy’s let-
ter through Dobrynin but that the letter only reinforced it (Tapes, 689).

That did not quite end the crisis. The U.S. Joint Chiefs of Staff remained 
skeptical of the Soviets and wanted to go ahead with their air strike (Tapes, 635). 
In fact, the construction activity at the Cuban missile sites continued for a few 
days. Verification by the United Nations proved problematic. The Soviets tried 
to make the Turkey part of the deal semipublic. They also tried to keep the IL-28 
bombers in Cuba out of the withdrawal. Not until November 20 was the deal fi-
nally clinched and the withdrawal begun (Tapes, 663–665; Gamble, 298–310).

2 A simple GAme-theoretic explANAtioN

At first sight, the game-theoretic aspect of the crisis looks very simple. The 
United States wanted the Soviet Union to withdraw its missiles from Cuba; thus 
the U.S. objective was to achieve compellence. For this purpose, the United 
States deployed a threat: Soviet failure to comply would eventually lead to a  
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nuclear war between the superpowers. The blockade was a starting point of 
this inevitable process and an action that demonstrated the credibility of U.S. 
resolve. In other words, Kennedy took Khrushchev to the brink of disaster. This 
was sufficiently frightening to Khrushchev that he complied. The prospect of nu-
clear annihilation was equally frightening to Kennedy, but that is in the nature of 
a threat. All that is needed is that the threat be sufficiently costly to the other side 
to induce it to act in accordance with our wishes; then we don’t have to carry out 
the bad action anyway.

A somewhat more formal statement of this argument proceeds by drawing 
a game tree like that shown in Figure 14.1. The Soviets have installed the mis-
siles, and now the United States has the first move. It chooses between doing 
nothing and issuing a threat. If the United States does nothing, this is a major 
military and political achievement for the Soviets; so we score the payoffs as 2 
for the United States and 2 for the Soviets. If the United States issues its threat, 
the Soviets get to move, and they can either withdraw or defy. Withdrawal is a hu-
miliation (a substantial minus) for the Soviets and a reaffirmation of U.S. mili-
tary superiority (a small plus); so we score it 1 for the United States and 4 for 
the Soviets. If the Soviets defy the U.S. threat, there will be a nuclear war. This 
outcome is terrible for both, but particularly bad for the United States, which 
as a democracy cares more for its citizens; so we score this 10 for the United 
States and 8 for the Soviets. This quantification is very rough guesswork, but 
the conclusions do not depend on the precise numbers that we have chosen. If 
you disagree with our choice, you can substitute other numbers you think to be 
a more accurate representation; as long as the relative ranking of the outcomes 
is the same, you will get the same subgame-perfect equilibrium.

Now we can easily find the subgame-perfect equilibrium. If faced with the 
U.S. threat, the Soviets get 4 from withdrawal and 8 by defiance; so they pre-
fer to withdraw. Looking ahead to this outcome, the United States reckons on 
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FIGURE 14.1  the simple-threat model of the Crisis
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getting 1 if it issues the threat and 2 if it does not; therefore it is optimal for the 
United States to make the threat. The outcome gives payoffs of 1 to the United 
States and 4 to the Soviets.

But a moment’s further thought shows this interpretation to be unsatis-
factory. One might start by asking why the Soviets would deploy the missiles 
in Cuba at all, when they could look ahead to this unfolding of the subsequent 
game in which they would come out the losers. But more important, several 
facts about the situation and several events in the course of its unfolding do not 
fit into this picture of a simple threat.

Before explaining the shortcomings of this analysis and developing a better  
explanation, however, we digress to an interesting episode in the crisis that 
sheds light on the requirements of successful compellence. As pointed out in 
Chapter 9, a compellent threat must have a deadline; otherwise the opponent 
can nullify it by procrastination. The discussion of the crisis at the U.N. Security 
Council on Tuesday, October 23, featured a confrontation between U.S. Ambas-
sador Adlai Stevenson and Soviet Ambassador Valerian Zorin. Stevenson asked 
Zorin point-blank whether the USSR had placed and was placing nuclear mis-
siles in Cuba. “Yes or no—don’t wait for the translation—yes or no?” he insisted. 
Zorin replied: “I am not in an American courtroom. . . . You will have your an-
swer in due course,” to which Stevenson retorted, “I am prepared to wait for my 
answer until hell freezes over.” This was dramatic debating; Kennedy, watching 
the session on live television, remarked, “Terrific. I never knew Adlai had it in 
him” (Profile, 406). But it was terrible strategy. Nothing would have suited the 
Soviets better than to keep the Americans “waiting for their answer” while they 
went on completing the missile sites. “Until hell freezes over” is an unsuitable 
deadline for compellence.

3 AccouNtiNG for AdditioNAl complexities

Let us return to developing a more satisfactory game-theoretic argument. As we  
pointed out before, the idea that a threat has only a lower limit on its size—
namely, that it be large enough to frighten the opponent—is correct only if the 
threatener can be absolutely sure that everything will go as planned. But almost 
all games have some element of uncertainty. You cannot know your opponent’s 
value system for sure, and you cannot be completely sure that the players’ in-
tended actions will be accurately implemented. Therefore, a threat carries a 
twofold risk. Your opponent may defy it, requiring you to carry out the costly 
threatened action; or your opponent may comply, but the threatened action 
may occur by mistake anyway. When such risks exist, the cost of threatened ac-
tion to oneself becomes an important consideration.
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The Cuban missile crisis was replete with such uncertainties. Neither side 
could be sure of the other’s payoffs—that is, of how seriously the other regarded 
the relative costs of war and of losing prestige in the world. Also, the choices of 
“blockade” and “air strike” were much more complex than the simple phrases 
suggest, and there were many weak links and random effects between an order 
in Washington or Moscow and its implementation in the Atlantic Ocean or in 
Cuba.

Graham Allison’s excellent book Essence of Decision brings out all of these 
complexities and uncertainties. They led him to conclude that the Cuban mis-
sile crisis cannot be explained in game-theoretic terms. He considers two al-
ternatives: one explanation based on the fact that bureaucracies have their set 
rules and procedures; another based on the internal politics of U.S. and Soviet 
governance and military apparatuses. He concludes that the political explana-
tion is best.

We broadly agree but interpret the Cuban missile crisis differently. It is not 
the case that game theory is inadequate for understanding and explaining the 
crisis; rather, the crisis was not a two-person game—United States versus USSR, 
or Kennedy versus Khrushchev. Each of these two “sides” was itself a complex 
coalition of players with differing objectives, information, actions, and means 
of communication. The players within each side were engaged in other games, 
and some members were also directly interacting with their counterparts on 
the other side. In other words, the crisis can be seen as a complex many-person 
game with alignments into two broad coalitions. Kennedy and Khrushchev can 
be regarded as the top-level players in this game, but each was subject to con-
straints of having to deal with others in his own coalition with divergent views 
and information, and neither had full control over the actions of these others. 
We argue that this more subtle game-theoretic perspective is not only a good 
way to look at the crisis, but also essential in understanding how to practice 
brinkmanship. We begin with some items of evidence that Allison emphasizes, 
as well as others that emerge from other writings.

First, there are several indications of divisions of opinion on each side. On 
the U.S. side, as already noted, there were wide differences within ExComm. In 
addition, Kennedy found it necessary to consult others such as former President 
Eisenhower and leading members of Congress. Some of them had very differ-
ent views; for example, Senator William Fulbright said in a private meeting that 
the blockade “seems to me the worst alternative” (Tapes, 271). The media and 
the political opposition would not give the President unquestioning support for 
too long either. Kennedy could not have continued on a moderate course if the 
opinion among his advisers and the public became decisively hawkish.

Individual people also shifted positions in the course of the two weeks. For ex-
ample, McNamara was at first quite dovish, arguing that the missiles in Cuba were 
not a significant increase in the Soviet threat (Tapes, 89) and favoring blockade  
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and negotiations (Tapes, 191), but ended up more hawkish, claiming that 
Khrushchev’s conciliatory letter of Friday, October 26, was “full of holes” (Tapes, 
495, 585) and urging an invasion (Tapes, 537). Most important, the U.S. military 
chiefs always advocated a far more aggressive response. Even after the crisis was 
over and everyone thought the United States had won a major round in the cold 
war, Air Force General Curtis LeMay remained dissatisfied and wanted action: 
“We lost! We ought to just go in there today and knock ’em off,” he said (Essence, 
206; Profile, 425).

Even though Khrushchev was the dictator of the Soviet Union, he was not 
in full control of the situation. Differences of opinion on the Soviet side are less 
well documented, but, for what it is worth, later memoirists have claimed that 
Khrushchev made the decision to install the missiles in Cuba almost unilater-
ally, and, when he informed the members of the Presidium, they thought it a 
reckless gamble (Tapes, 674; Gamble, 180). There were limits to how far he could 
count on the Presidium to rubber-stamp his decisions. Indeed, two years later, 
the disastrous Cuban adventure was one of the main charges leveled against 
Khrushchev when the Presidium dismissed him (Gamble, 353–355). It has also 
been claimed that Khrushchev wanted to defy the U.S. blockade, and only the 
insistence of First Deputy Premier Anastas Mikoyan led to the cautious response 
(War, 521). Finally, on Saturday, October 27, Castro ordered his antiaircraft 
forces to fire on all U.S. planes overflying Cuba and refused the Soviet ambas-
sador’s request to rescind the order (War, 544).

Various parties on the U.S. side had very different information and a very 
different understanding of the situation, and at times this led to actions that 
were inconsistent with the intentions of the leadership or even against their 
explicit orders. The concept of an “air strike” to destroy the missiles is a good 
example. The nonmilitary people in ExComm thought this would be very nar-
rowly targeted and would not cause significant Cuban or Soviet casualties, but 
the Air Force intended a much broader attack. Luckily, this difference came 
out in the open early, leading ExComm to decide against an air strike and the 
President to turn down an appeal by the Air Force (Essence, 123, 209). As for the 
blockade, the U.S. Navy had set procedures for this action. The political lead-
ership wanted a different and softer process: form the ring closer to Cuba to 
give the Soviets more time to reconsider, allow the obviously nonmilitary cargo 
ships to pass unchallenged, and cripple but not sink the ships that defy chal-
lenge. Despite McNamara’s explicit instructions, however, the Navy mostly fol-
lowed its standard procedures (Essence, 130–132). The U.S. Air Force created 
even greater dangers. A U-2 plane drifted “accidentally” into Soviet air space 
and almost caused a serious setback. General Curtis LeMay, acting without the 
President’s knowledge or authorization, ordered the Strategic Air Command’s 
nuclear bombers to fly past their “turnaround” points and some distance to-
ward Soviet air space to positions where they would be detected by Soviet 
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radar. Fortunately, the Soviets responded calmly; Khrushchev merely protested 
to Kennedy.4

There was similar lack of information and communication, as well as weak-
ness of the chain of command and control, on the Soviet side. For example, the 
construction of the missiles was left to the standard bureaucratic procedures. The 
Soviets, used to construction of ICBM sites in their own country where they did 
not face significant risk of air attack, laid out the sites in Cuba in a similar way, 
where they would have been much more vulnerable. At the height of the crisis, 
when the Soviet SA-2 troops saw an overflying U.S. U-2 plane on Friday, Octo-
ber 26, Pliyev was temporarily away from his desk and his deputy gave the order 
to shoot it down; this incident created far more risk than Moscow would have 
wished (Gamble, 277–288). And at numerous other points—for example, when 
the U.S. Navy was trying to get the freighter Marucla to stop and be boarded—the 
people involved might have set off an incident with alarming consequences by 
taking some action in fear of the immediate situation. Even more dramatically, it 
was revealed that a Soviet submarine crew, warned to surface when approaching 
the quarantine line on October 27, did consider firing a nuclear-tipped torpedo 
that it carried onboard (unknown to the U.S. Navy). The firing-authorization rule 
required the approval of three officers, only two of whom agreed; the third officer 
himself may have prevented all-out nuclear war.5

All these factors made the outcome of any decision by the top-level com-
mander on each side somewhat unpredictable. This gave rise to a substantial 
risk of the “threat going wrong.” In fact, Kennedy thought that the chances of the 
blockade leading to war were “between one out of three and even” (Essence, 1).

As we pointed out, such uncertainty can make a simple threat too large 
to be acceptable to the threatener. We will take one particular form of the  
uncertainty—namely, U.S. lack of knowledge of the Soviets’ true motives—and 
analyze its effect formally, but similar conclusions hold for all other forms of  
uncertainty.

Reconsider the game shown in Figure 14.1. Suppose the Soviet payoffs from 
withdrawal and defiance are the opposite of what they were before: 8 for with-
drawal and 4 for defiance. In this alternative scenario, the Soviets are hard-liners.  
They prefer nuclear annihilation to the prospect of a humiliating withdrawal and 

4 Richard Rhodes, Dark Sun: The Making of the Hydrogen Bomb (New York: Simon & Schuster, 
1995), pp. 573–75. LeMay, renowned for his extreme views and his constant chewing of large unlit 
cigars, is supposed to be the original inspiration, in the 1963 movie Dr. Strangelove, for General  
Jack D. Ripper, who orders his bomber wing to launch an unprovoked attack on the Soviet Union.
5 This story became public in a conference held in Havana, Cuba, in October 2002, to mark the 40th 
anniversary of the missile crisis. See Kevin Sullivan, “40 Years After Missile Crisis, Players Swap Sto-
ries in Cuba,” Washington Post, October 13, 2002, p. A28. Vadim Orlov, who was a member of the 
Soviet submarine crew, identified the officer who refused to fire the torpedo as Vasili Arkhipov, who 
died in 1999.
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the prospect of living in a world dominated by the capitalist United States; their 
slogan is “Better dead than red-white-and-blue.” We show the game tree for this 
case in Figure 14.2. Now, if the United States makes the threat, the Soviets defy it. 
So the United States stands to get 10 from the threat but only 2 if it makes no 
threat and accepts the presence of the missiles in Cuba. It takes the lesser of the 
two evils. In the subgame-perfect equilibrium of this version of the game, the So-
viets “win” and the U.S. threat does not work.

In reality, when the United States makes its move, it does not know whether 
the Soviets are hard-liners, as in Figure 14.2, or softer, as in Figure 14.1. The 
United States can try to estimate the probabilities of the two scenarios, for ex-
ample, by studying past Soviet actions and reactions in different situations. We 
can regard Kennedy’s statement that the probability of the blockade leading 
to war was between one-third and one-half as his estimate of the probability 
that the Soviets are hard-line. Because the estimate is imprecise over a range, 
we work with a general symbol, p, for the probability, and examine the conse-
quences of different values of p.

The tree for this more complex game is shown in Figure 14.3. The game 
starts with an outside force (here labeled “Nature”) determining the Soviets’ 
type. Along the upper branch of Nature’s choice, the Soviets are hard-line. This 
leads to the upper node, where the United States makes its decision whether to 
issue its threat, and the rest of the tree is exactly like the game in Figure 14.2. 
Along the lower branch of Nature’s choice, the Soviets are soft. This leads to 
the lower node, where the United States makes its decision whether to issue its 
threat, and the rest of the tree is exactly like the game in Figure 14.1. But the 
United States does not know from which node it is making its choice. Therefore, 
the two U.S. nodes are enclosed in an “information set.” Its significance is that 
the United States cannot take different actions at the nodes within the set, such 
as issuing the threat only if the Soviets are soft. It must take the same action at 
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FIGURE 14.2  the game with hard-line soviets
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both nodes, either threatening at both nodes or not threatening at both. It must 
make this decision in the light of the probabilities that the game might in truth 
be “located” at the one node or the other—that is, by calculating the expected 
payoffs of the two actions.

The Soviets themselves know what type they are. So we can do some  
rollback near the end of the game. Along the upper path, the hard-line Soviets 
will defy a U.S. threat, and along the lower path, the soft Soviets will withdraw in 
the face of the threat. Therefore, the United States can look ahead and calculate 
that a threat will yield a 10 if the game is actually moving along the upper path 
(a probability of p) and a 1 if it is moving along the lower path (a probability of  
1  p). The expected U.S. payoff from making the threat is therefore 10p   
(1  p)  1  11p.

If the United States does not make the threat, it gets a 2 along either path; 
so its expected payoff is also2. Comparing the expected payoffs of the two ac-
tions, we see that the United States should make the threat if 1  11p . 2, or 
11p , 3, or p , 311  0.27.
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FIGURE 14.3  the threat with unknown soviet payoffs
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If the threat were sure to work, the United States would not care how bad its 
payoff could be if the Soviets defied it, whether 10 or even far more negative. 
But the risk that the Soviets might be hard-liners and thus defy a threat makes 
the 10 relevant in the U.S. calculations. Only if the probability, p, of the Soviets’ 
being hard-line is small enough will the United States find it acceptable to make 
the threat. Thus, the upper limit of 311 on p is also the upper limit of this U.S. 
tolerance, given the specific numbers that we have chosen. If we choose differ-
ent numbers, we will get a different upper limit; for example, if we rate a nuclear 
war as 100 for the United States, then the upper limit on p will be only 3101. 
But the idea of a large threat being “too large to make” if the probability of its 
going wrong is above a critical limit holds in general.

In this instance, Kennedy’s estimate was that p lay somewhere in the range 
from 13 to 12. The lower end of this range, 0.33, is unfortunately just above our 
upper limit 0.27 for the risk that the United States is willing to tolerate. Therefore,  
the simple bald threat “if you defy us, there will be nuclear war” is too large, too 
risky, and too costly for the United States to make.

4 A proBABilistic threAt

If an outright threat of war is too large to be tolerable and if you cannot find 
another, naturally smaller threat, then you can reduce the threat by creating 
merely a probability rather than a certainty that the dire consequences for the 
other side will occur if it does not comply. However, this does not mean that you 
decide after the fact whether to take the drastic action. If you had that freedom, 
you would choose to avoid the terrible consequences, and your opponents 
would know or assume this, so the threat would not be credible in the first place. 
You must relinquish some freedom of action and make a credible commitment. 
In this case, you must commit to a probabilistic device.

When making a simple threat, one player says to the other player: “If you 
don’t comply, something will surely happen that will be very bad for you. By the 
way, it will also be bad for me, but my threat is credible because of my reputa-
tion [or through delegation or other reasons].” With a probabilistic threat, one 
player says to the other, “If you don’t comply, there is a risk that something very 
bad for you will happen. By the way, it will also be very bad for me, but later I 
will be powerless to reduce that risk.”

Metaphorically, a probabilistic threat of war is a kind of Russian roulette (an 
appropriate name in this context). You load a bullet into one chamber of a re-
volver and spin the barrel. The bullet acts as a “detonator” of the mutually costly 
war. When you pull the trigger, you do not know whether the chamber in the 
firing path is loaded. If it is, you may wish you had not pulled the trigger, but by 

a  p r o B a B i l i s t i C  t h r e at   5 7 5

6841D CH14 UG.indd   575 12/18/14   3:15 PM



5 7 6   [ C h . 1 4 ]  B r i n k m a n s h i p

then it will be too late. Before the fact, you would not pull the trigger if you knew 
that the bullet was in that chamber (that is, if the certainty of the dire action was 
too costly), but you are willing to pull the trigger knowing that there is only a 1 
in 6 chance—in which the threat has been reduced by a factor of 6, to a point 
where it is now tolerable.

Brinkmanship is the creation and control of a suitable risk of this kind. It re-
quires two apparently inconsistent things. On the one hand, you must let mat-
ters get enough out of your control that you will not have full freedom after the 
fact to refrain from taking the dire action, and so your threat will remain credible. 
On the other hand, you must retain sufficient control to keep the risk of the ac-
tion from becoming too large and your threat too costly. Such “controlled lack of 
control” looks difficult to achieve, and it is. We will consider in Section 5 how the 
trick can be performed. Just one hint: all the complex differences of judgment, 
the dispersal of information, and the difficulties of enforcing orders, which made 
a simple threat too risky, are exactly the forces that make it possible to create a 
risk of war and therefore make brinkmanship credible. The real difficulty is not 
how to lose control, but how to do so in a controlled way.

We first focus on the mechanics of brinkmanship. For this purpose, we 
slightly alter the game of Figure 14.3 to get Figure 14.4. Here, we introduce a dif-
ferent kind of U.S. threat. It consists of choosing and fixing a probability, q, such 
that if the Soviets defy the United States, war will occur with that probability. 
With the remaining probability, (1  q), the United States will give up and agree 
to accept the Soviet missiles in Cuba. Remember that if the game gets to the 
point where the Soviets defy the United States, the latter does not have a choice 
in the matter. The Russian-roulette revolver has been set for the probability, q, 
and chance determines whether the firing pin hits a loaded chamber (that is, 
whether nuclear war actually happens).

Thus, nobody knows the precise outcome and payoffs that will result if the 
Soviets defy this brinkmanship threat, but they know the probability, q, and can 
calculate expected values. For the United States, the outcome is 10 with the 
probability q and 2 with the probability (1  q), so the expected value is

 10q  2(1  q)  2  8q.

For the Soviets, the expected payoff depends on whether they are hard-line or 
soft (and only they know their own type). If hard-line, they get a 4 from war, 
which happens with probability q, and a 2 if the United States gives up, which 
happens with the probability (1  q). The Soviets’ expected payoff is 4q  2 
(1  q)  2  6q. If they were to withdraw, they would get a 8, which is clearly 
worse no matter what value q takes between 0 and 1. Thus, the hard-line Soviets 
will defy the brinkmanship threat.

The calculation is different if the Soviets are soft. Reasoning as before, we 
see that they get the expected payoff 8q  2(1  q)  2  10q from defiance 
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and the sure payoff 4 if they withdraw. For them, withdrawal is better if 4 .  
2  10q, or 10q . 6, or q . 0.6. Thus, U.S. brinkmanship must contain at least a 
60% probability of war; otherwise it will not deter the Soviets, even if they are the 
soft type. We call this lower bound on the probability q the effectiveness condition.

Observe how the expected payoffs for U.S. brinkmanship and Soviet defi-
ance shown in Figure 14.4 relate to the simple-threat model of Figure 14.3; the 
latter can now be thought of as a special case of the general brinkmanship-threat  
model of Figure 14.4, corresponding to the extreme value q  1.

We can solve the game shown in Figure 14.4 in the usual way. We have al-
ready seen that along the upper path the Soviets, being hard-line, will defy the 
United States and that along the lower path the soft Soviets will comply with U.S. 
demands if the effectiveness condition is satisfied. If this condition is not satis-
fied, then both types of Soviets will defy the United States; so the latter would 
do better never to make this threat at all. So let us proceed by assuming that the 
soft Soviets will comply; we look at the U.S. choices. Basically, how risky can the 
U.S. threat be and still remain tolerable to the United States?
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If the United States makes the threat, it runs the risk, p, that it will encoun-
ter the hard-line Soviets, who will defy the threat. Then the expected U.S. payoff 
will be (2  8q), as calculated before. The probability is (1  p) that the United 
States will encounter the soft-type Soviets. We are assuming that they comply; 
then the United States gets a 1. Therefore, the expected payoff to the United 
States from the probabilistic threat, assuming that it is effective against the soft-
type Soviets, is

 (2  8q)  p  1  (1  p)  8pq  3p  1.

If the United States refrains from making a threat, it gets a 2. Therefore, the 
condition for the United States to make the threat is

 8pq  3p  1 . 2 or

 

That is, the probability of war must be small enough to satisfy this expression 
or the United States will not make the threat at all. We call this upper bound on 
q the acceptability condition. Note that p enters the formula for the maximum 
value of q that will be acceptable to the United States; the larger the chance that 
the Soviets will not give in, the smaller the risk of mutual disaster that the United 
States finds acceptable.

If the probabilistic threat is to work, it should satisfy both the effectiveness 
condition and the acceptability condition. We can determine the appropri-
ate level of the probability of war by using Figure 14.5. The horizontal axis is the 
probability, p, that the Soviets are hard-line, and the vertical axis is the probabil-
ity, q, that war will occur if they defy the U.S. threat. The horizontal line q  0.6 
gives the lower limit of the effectiveness condition; the threat should be such that 
its associated (p, q) combination is above this line if it is to work even against the 
soft-type Soviets. The curve q  0.375(1  p)p gives the upper limit of the ac-
ceptability condition; the threat should be such that (p, q) is below this curve if 
it is to be tolerable to the United States even with the assumption that it works 
against the soft-type Soviets. Therefore, an effective and acceptable threat should 
fall somewhere between these two lines, above and to the left of their point of in-
tersection, at p  0.38 and q  0.6 (shown as a gray “wedge” in Figure 14.5).

The curve reaches q  1 when p  0.27. For values of p less than this value, 
the dire threat (certainty of war) is acceptable to the United States and is effec-
tive against the soft-type Soviets. This just confirms our analysis in Section 3.

For values of p in the range from 0.27 to 0.38, the dire threat with q  1 puts 
(p, q) to the right of the acceptability condition and is too large to be tolerable to 
the United States. But a scaled-down threat can be found. For this range of val-
ues of p, some values of q are low enough to be acceptable to the United States 
and yet high enough to compel the soft-type Soviets. Brinkmanship (using a 

3
8

1 � p
p pq � �                         .

0.375(1 � p)
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probabilistic threat) can do the job in this situation, whereas a simple dire threat 
would be too risky.

If p exceeds 0.38, then no value of q satisfies both conditions. If the prob-
ability that the Soviets will never give in is greater than 0.38, then any threat 
large enough to work against the soft-type Soviets (q  0.6) creates a risk of war 
too large to be acceptable to the United States. If p  0.38, therefore, the United 
States cannot help itself by using the brinkmanship strategy.

5 prActiciNG BriNkmANship

If Kennedy has a very good estimate of the probability, p, of the Soviets being 
hard-liners, and is very confident about his ability to control the risk, q, that 
the blockade will lead to nuclear war, then he can calculate and implement his 
best strategy. As we saw in Section 3, if p , 0.27, the dire threat of a certainty of 
war is acceptable to Kennedy. (Even then he will prefer to use the smallest ef-
fective threat—namely, q  0.6.) If p is between 0.27 and 0.38, then he has to 
use brinkmanship. Such a threat has to have the risk of disaster 0.6 , q , 0.375 
(1  p)p, and again Kennedy prefers the smallest of this range—namely, q  0.6. 
If p . 0.38, then he should give in.

In practice, Kennedy does not know p precisely; he only estimates that it 
lies within the range from 13 to 12. Similarly, he cannot be confident about 
the exact location of the critical value of q in the acceptability condition. That  
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depends on the numbers used for the Soviet payoffs in various outcomes—for 
example, 8 (for war) versus 4 (for compliance)—and Kennedy can only esti-
mate these values. Finally, he may not even be able to control the risk created by 
his brinkmanship action very precisely. All these ambiguities make it necessary 
to proceed cautiously.

Suppose Kennedy thinks that p  0.35 and issues a threat backed by an ac-
tion that carries the risk q  0.65. The risk is greater than what is needed to be 
effective—namely, 0.6. The limit of acceptability is 0.375  (1  0.35)0.35  0.7, 
and the risk q  0.65 is less than this limit. Thus, according to Kennedy’s calcula-
tions, the risk satisfies both of the conditions—effectiveness and acceptability.  
However, suppose Kennedy is mistaken. For example, if he has not realized that 
LeMay might actually defy orders and take an excessively aggressive action, 
then q may in reality be higher than Kennedy thinks it is; for example, q may 
equal 0.8, which Kennedy would regard as too risky. Or suppose p is actually 
0.4; then Kennedy would regard even q  0.65 as too risky. Or Kennedy’s experts  
may have misestimated the values of the Soviet payoffs. If they rate the humili-
ation of withdrawal as 5 instead of 4, then the threshold of the effectiveness 
condition will actually be q  0.7, and Kennedy’s threat with q  0.65 will go 
wrong.

All that Kennedy knows is that the general shape of the effectiveness and 
acceptability conditions is like that shown in Figure 14.5. He does not know p 
for sure. Therefore, he does not know exactly what value of q to choose to ful-
fill both the effectiveness and the acceptability conditions; indeed, he does not 
even know if such a range exists for the unknown true value of p: it might be 
greater than or less than the borderline value of 0.38 that divides the two cases. 
And he is not able to fix q very precisely; therefore, even if he knew p, he would 
not be able to act confident of his willingness to tolerate the resulting risk.

With such hazy information, imprecise control, and large risks, what is  
Kennedy to do? He has to explore the boundaries of the Soviets’ risk tolerance 
as well as his own. It would not do to start the exploration with a value of q that 
might turn out to be too high. Instead, Kennedy must explore the boundaries 
“from below”; he must start with something quite safe and gradually increase 
the level of risk to see “who blinks first.” That is exactly how brinkmanship is 
practiced in reality.

We explain this with the aid of Figure 14.5. Observe the color-shaded area. Its 
left and right boundaries, p  13 and p  12, correspond to the limits of Ken-
nedy’s estimated range of p. The lower boundary is the horizontal axis (q  0). 
The upper boundary is composed of two segments. For p , 0.38, this segment 
corresponds to the effectiveness condition; for p . 0.38, it corresponds to the 
acceptability condition. Remember that Kennedy does not know the precise po-
sitions of these boundaries but must grope toward them from below. Therefore, 
the color-shaded region is where he must start the process.
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Suppose Kennedy starts with a very safe action—say, q equaling approxi-
mately 0.01 (1%). In our context of the Cuban missile crisis, we can think of this 
as his television speech, which announced that a quarantine would soon go into 
effect. At this juncture, the point with coordinates (p, q) lies somewhere near 
the bottom edge of the shaded region. Kennedy does not know exactly where, 
because he does not know p for sure. But the overwhelming likelihood is that 
at this point the threat is quite safe but also ineffective. Therefore, Kennedy  
escalates it a little bit. That is, he moves the point (p, q) in a vertically upward di-
rection from wherever it was initially. This could be the actual start of the quar-
antine. If that proves to be still safe but ineffective, he jacks up the risk one more 
notch. This could be the leaking of information about bombing plans.

As he proceeds in this way, eventually his exploration will encounter one of 
the boundaries of the color-shaded area in Figure 14.5, and which boundary this 
is depends on the value of p. One of two things comes to pass. Either the threat 
becomes serious enough to deter the Soviets; this happens if the true value of 
p is less than its true critical value, here 0.38. On the diagram, we see this as a 
movement out of the color-shaded area and into the area in which the threat is 
both acceptable and effective. Then the Soviets concede and Kennedy has won. 
Or the threat becomes too risky for the United States; this happens if p . 0.38. 
Kennedy’s exploration in this case pushes him above the acceptability condition. 
Then Kennedy decides to concede, and Khrushchev has won. Again we point 
out that because Kennedy is not sure of the true value of p, he does not know in 
advance which of these two outcomes will prevail. As he gradually escalates the 
risk, he may get some clues from Soviet behavior that enable him to make his es-
timate of p somewhat more precise. Eventually he will reach sufficient precision 
to know which part of the boundary he is headed toward and therefore whether 
the Soviets will concede or the United States must be the player to do so.

Actually, there are two possible outcomes only so long as the ever-present  
and steadily increasing mutual risk of disaster does not come to pass while  
Kennedy is groping through the range of ever more risky military options. There-
fore, there is a third possibility—namely, that the explosion occurs before either 
side recognizes that it has reached its limit of tolerance of risk and climbs down. 
This continuing and rising risk of a very bad outcome is what makes brinkman-
ship such a delicate and dangerous strategy.

Thus, brinkmanship in practice is the gradual escalation of the risk of mu-
tual harm. It can be visualized vividly as chicken in real time. In our analysis 
of chicken in Chapter 4, we gave each player a simple binary choice: either go 
straight or swerve. In reality, the choice is usually one of timing. The two cars are 
rushing toward each other, and either player can choose to swerve at any time. 
When the cars are very far apart, swerving ensures safety. As they get closer to-
gether, they face an ever-increasing risk that they will collide anyway, and even 
swerving will not avoid a collision. As the two players continue to drive toward 
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one another, each is exploring the limit of the other’s willingness to take this risk 
and is perhaps at the same time exploring his own limit. The one who hits that 
limit first swerves. But there is always the risk that they have left it long enough 
and are close enough that, even after choosing Swerve, they can no longer avoid 
the collision.

Now we see why, in the Cuban missile crisis, the very features that make 
it inaccurate to regard it as a two-person game make it easier to practice such 
brinkmanship. The blockade was a relatively small action, unlikely to start 
a nuclear war at once. But once Kennedy set the blockade in motion, its op-
eration, escalation, and other features were not totally under his control. So  
Kennedy was not saying to Khrushchev, “If you defy me (cross a sharp brink), I 
will coolly and deliberately launch a nuclear war that will destroy both our peo-
ples.” Rather, he was saying, “The wheels of the blockade have started to turn 
and are gathering their own momentum. The more or longer you defy me, the 
more likely it is that some operating procedure will slip up, the political pressure 
on me will rise to a point where I must give in, or some hawk will run amok. If 
this risk comes to pass, I will be unable to prevent nuclear war, no matter how 
much I may regret it at that point. Only you can now defuse the tension by com-
plying with my demand to withdraw the missiles.”

We believe that this perspective gives a much better and deeper understand-
ing of the crisis than can most analyses based on simple threats. It tells us why 
the risk of war played such an important role in all discussions. It even makes 
Allison’s compelling arguments about bureaucratic procedures and internal 
divisions on both sides an integral part of the picture: these features allow the 
top-level players on both sides credibly to lose some control—that is, to practice 
brinkmanship.

One important condition remains to be discussed. In Chapter 9, we saw 
that every threat has an associated implicit promise—namely, that the bad con-
sequence will not take place if your opponent complies with your wishes. The 
same is required for brinkmanship. If, as you are increasing the level of risk, your 
opponent does comply, you must be able to “go into reverse”—begin reducing 
the risk immediately and quite quickly remove it from the picture. Otherwise, 
the opponent would not gain anything by compliance. This may have been a 
problem in the Cuban missile crisis. If the Soviets feared that Kennedy could not 
control hawks such as LeMay (“We ought to just go in there today and knock 
’em off”), they would gain nothing by giving in.

To reemphasize and sum up, brinkmanship is the strategy of exposing your 
rival and yourself to a gradually increasing risk of mutual harm. The actual oc-
currence of the harmful outcome is not totally within the threatener’s control.

Viewed in this way, brinkmanship is everywhere. In most confrontations—for 
example, between a company and a labor union, a husband and a wife, a parent 
and a child, and the President and Congress—one player cannot be sure of the 
other party’s objectives and capabilities. Therefore, most threats carry a risk of 
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error, and every threat must contain an element of brinkmanship. We hope that we 
have given you some understanding of this strategy and that we have impressed on 
you the risks that it carries. Unsuccessful brinkmanship can lead to a labor strike, 
the dissolution of a marriage, or the down-grading of U.S. bonds as was discovered 
by President Obama and members of Congress following their 2011 dispute over 
raising the nation’s debt ceiling. You will have to face up to brinkmanship or to con-
duct it yourself on many occasions in your personal and professional lives. Please 
do so carefully, with a clear understanding of its potentialities and risks.

To help you do so, we now recapitulate the important lessons learned from 
the handling of the Cuban missile crisis, reinterpreted as a labor union leader-
ship contemplating a strike in pursuit of its wage demand, unsure whether this 
action will result in the whole firm’s shutting down:

 1. Start small and safe. Your first step should not be an immediate walkout; 
it should be to schedule a membership meeting at a date a few days or 
weeks hence, while negotiations continue.

 2. Raise the risks gradually. Your public and private statements, as well 
as the stirring up of the sentiments of the membership, should induce 
management to believe that acceptance of its current low-wage offer is 
becoming less and less likely. If possible, stage small incidents—for ex-
ample, a few one-day strikes or local walkouts.

 3. As this process continues, read and interpret signals in management’s ac-
tions to figure out whether the firm has enough profit potential to afford 
the union’s high-wage demand.

 4. Retain enough control over the situation; that is, retain the power to in-
duce your membership to ratify the agreement that you will reach with 
management; otherwise management will think that the risk will not de-
escalate even if it concedes to your demands.

summAry

In some game situations, the risk of error in the presence of a threat may call for 
the use of as small a threat as possible. When a large threat cannot be reduced in 
other ways, it can be scaled down by making its fulfillment probabilistic. Strate-
gic use of probabilistic threat, in which you expose your rival and yourself to an 
increasing risk of harm, is called brinkmanship.

Brinkmanship requires a player to relinquish control over the outcome of 
the game without completely losing control. You must create a threat with a risk 
level that is both large enough to be effective in compelling or deterring your 
rival and small enough to be acceptable to you. To do so, you must determine 
the levels of risk tolerance of both players through a gradual escalation of the 
risk of mutual harm.
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The Cuban missile crisis of 1962 serves as a case study in the use of brink-
manship on the part of President Kennedy. Analyzing the crisis as an example of 
a simple threat, with the U.S. blockade of Cuba establishing credibility, is inad-
equate. A better analysis accounts for the many complexities and uncertainties 
inherent in the situation and the likelihood that a simple threat was too risky. 
Because the actual crisis included numerous political and military players, Ken-
nedy was able to achieve “controlled loss of control” by ordering the blockade 
and gradually letting incidents and tension escalate, until Khrushchev yielded 
in the face of the rising risk of nuclear war.

key terms

acceptability condition (578) gradual escalation of the risk of  
chicken in real time (581)   mutual harm (581)
effectiveness condition (577) probabilistic threat (575)

solved exercises

 S1. Consider a game between a union and the company that employs the 
union membership. The union can threaten to strike (or not) to get the 
company to meet its wage and benefits demands. When faced with a 
threatened strike, the company can choose to concede to the demands 
of the union or to defy its threat of a strike. The union, however, does not 
know the company’s profit position when it decides whether to make its 
threat; it does not know whether the company is sufficiently profitable to 
meet its demands—and the company’s assertions in this matter cannot 
be believed. Nature determines whether the company is profitable; the 
probability that the firm is unprofitable is p.

The payoff structure is as follows: (i) When the union makes no 
threat, the union gets a payoff of 0 (regardless of the profitability of the 
company). The company gets a payoff of 100 if it is profitable but a pay-
off of 10 if it is unprofitable. A passive union leaves more profit for the 
company if there is any profit to be made. (ii) When the union threatens 
to strike and the company concedes, the union gets 50 (regardless of the 
profitability of the company) and the company gets 50 if it is profitable 
but 40 if it is not. (iii) When the union threatens to strike and the com-
pany defies the union’s threat, the union must strike and gets 100 (re-
gardless of the profitability of the company). The company gets 100 if 
it is profitable and 10 if it is not. Defiance is very costly for a profitable 
company but not so costly for an unprofitable one.
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 (a) What happens when the union uses the pure threat to strike unless 
the company concedes to the union’s demands?

 (b) Suppose that the union sets up a situation in which there is some 
risk, with probability q , 1, that it will strike after the company de-
fies its threat. This risk may arise from the union leadership’s imper-
fect ability to keep the membership in line. Draw a game tree similar 
to Figure 14.4. for this game.

 (c) What happens when the union uses brinkmanship, threatening to 
strike with some probability q unless the company accedes to its  
demands?

 (d) Derive the effectiveness and acceptability conditions for this game, 
and determine the values for p and q for which the union can use a 
pure threat, brinkmanship, or no threat at all.

 S2. Scenes from many movies illustrate the concept of brinkmanship. Ana-
lyze the following descriptions from this perspective. What are the risks 
the two sides face? How do those risks increase during the course of the 
execution of the brinkmanship threat?

 (a) In the 1980 film The Gods Must Be Crazy, the only survivor of a rebel 
team that tried to assassinate the president of an African country 
has been captured and is being interrogated. He stands blindfolded 
with his back to the open door of a helicopter. Above the noise of 
the helicopter rotors, an officer asks him, “Who is your leader? 
Where is your hideout?” The man does not answer, and the officer 
pushes him out of the door. In the next scene, we see that although 
its engine is running, the helicopter is actually on the ground, and 
the man has fallen 6 feet on his back. The officer appears at the door 
and says, laughing, “Next time it will be a little higher.”

 (b) In the 1998 film A Simple Plan, two brothers remove some of a 
$4.4 million ransom payment that they find in a crashed airplane. 
After many intriguing twists of fate, the remaining looter, Hank, 
finds himself in conference with an FBI agent. The agent, who sus-
pects but cannot prove that Hank has some of the missing money, 
fills Hank in on the story of the money’s origins and tells him that 
the FBI possesses the serial numbers of about 1 of every 10 of the 
bills in that original ransom payment. The agent’s final words 
to Hank are, “Now it’s simply a matter of waiting for the num-
bers to turn up. You can’t go around passing $100 bills without  
eventually sticking in someone’s memory.”

 S3. In this exercise, we provide a couple examples of the successful use of  
brinkmanship, where “success” is indicative of the two sides’ reaching a  
mutually acceptable deal. For each example, (i) identify the interests of 
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the parties; (ii) describe the nature of the uncertainty inherent in the 
situation; (iii) give the strategies the parties used to escalate the risk of 
disaster; (iv) discuss whether the strategies were good ones; and (v) (Op-
tional) if you can, set up a small mathematical model of the kind pre-
sented in this chapter. In each case, we provide a few readings to get you 
started; you should locate more by using the resources of your library 
and resources on the World Wide Web such as Lexis-Nexis.

 (a) The Uruguay Round of international trade negotiations that 
started in 1986 and led to the formation of the World Trade Orga-
nization in 1994. Reading: John H. Jackson, The World Trading Sys-
tem, 2nd ed. (Cambridge, Mass.: MIT Press, 1997), pp. 44–49 and 
ch. 12 and 13.

 (b) The Camp David Accords between Israel and Egypt in 1978. Read-
ing : William B. Quandt, Camp David: Peacemaking and Politics 
(Washington, D.C.: Brookings Institution, 1986).

 S4. The following examples illustrate the unsuccessful use of brinkmanship, 
where brinkmanship is considered “unsuccessful” when the mutually 
bad outcome (disaster) occurs. Answer the questions outlined in Exer-
cise S3 for the following situations:

 (a) The confrontation between the regime and the student prodemoc-
racy demonstrators in Beijing in June 1989. Readings: Donald  
Morrison, ed., Massacre in Beijing: China’s Struggle for Democracy 
(New York: Time Magazine Publications, 1989); Suzanne Ogden, 
Kathleen Hartford, L. Sullivan, and D. Zweig, eds., China’s Search for 
Democracy: The Student and Mass Movement of 1989 (Armonk, N.Y.:  
M.E. Sharpe, 1992).

 (b) The Caterpillar strike, from 1991 to 1998. Readings: “The Caterpillar 
Strike: Not Over Till It’s Over,” Economist, February 28, 1998; “Cat-
erpillar’s Comeback,” Economist, June 20, 1998; Aaron Bernstein, 
“Why Workers Still Hold a Weak Hand,” BusinessWeek, March 2, 
1998.

 S5. Answer the questions listed in Exercise S3 for these potential cases for 
brinkmanship in the future:

 (a) A Taiwanese declaration of independence from the People’s Repub-
lic of China. Reading : Ian Williams, “Taiwan’s Independence,” For-
eign Policy in Focus, December 20, 2006. Available at www.fpif.org/
fpiftxt/3815. 

 (b) The militarization of space, for example, the positioning of weapons 
in space or the shooting down of satellites. Reading : “Disharmony 
in the Spheres,” Economist, January 17, 2008. Available at www 
.economist.com/node/10533205.
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uNsolved exercises

 U1. In the chapter, we argue that the payoff to the United States is 10 when 
(either type) Soviets defy the U.S. threat; these payoffs are illustrated in 
Figure 14.3. Suppose now that this payoff is in fact 12 rather than 10.

 (a) Incorporate this change in payoff into a game tree similar to the one 
in Figure 14.4.

 (b) Using the payoffs from your game tree in part (a), find the effective-
ness condition for this version of the U.S.–USSR brinkmanship game.

 (c) Using the payoffs from part (a), find the acceptability condition for 
this game.

 (d) Draw a diagram similar to that in Figure 14.5, illustrating the effec-
tiveness and acceptability conditions found in parts (b) and (c).

 (e) For what values of p, the probability that the Soviets are hard-line, is 
the pure threat (q  1) acceptable? For what values of p is the pure 
threat unacceptable but brinkmanship still possible?

 (f) If Kennedy was correct in believing that p lay between 13 and 12, 
does your analysis of this version of the game suggest that an effec-
tive and acceptable probabilistic threat existed? Use this example to 
explain how a game theorist’s assumptions about player payoffs can 
have a major effect on the predictions that arise from the theoretical 
model.

 U2. Answer the questions from Exercise S2 for the following movies:
 (a) In the 1941 movie classic The Maltese Falcon, the hero, Sam Spade 

(Humphrey Bogart), is the only person who knows the location of the 
immensely valuable gem-studded falcon figure, and the villain, Cas-
par Gutman (Sydney Greenstreet), is threatening to torture him for 
that information. Spade points out that torture is useless unless the 
threat of death lies behind it, and Gutman cannot afford to kill Spade, 
because then the information dies with him. Therefore, he may as 
well not bother with the threat of torture. Gutman replies, “That is an 
attitude, sir, that calls for the most delicate judgment on both sides, 
because, as you know, sir, men are likely to forget in the heat of action 
where their best interests lie and let their emotions carry them away.”

 (b) The 1925 Soviet classic The Battleship Potemkin (set in the summer 
of 1905) closes with a squadron of ships from the tsar’s Black Sea 
fleet chasing the mutinous and rebellious crew of the Potemkin. The 
tension mounts as the ships draw ever closer. Men on each side race 
to their battle stations, load and aim the huge guns, and wait ner-
vously for the order to fire on their countrymen. Neither side wants 
to attack the other, but neither wants to back down or to die without 
defending itself. The tsar’s ships have orders to take the Potemkin by 
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any means necessary, and the crew knows it will be tried for treason 
if it surrenders.

 U3. Answer the questions in Exercise S3 for these examples of successful  
brinkmanship:

 (a) The negotiations between the South African apartheid regime and 
the African National Congress to establish a new constitution with 
majority rule, 1989 to 1994. Reading: Allister Sparks, Tomorrow Is 
Another Country (New York: Hill and Wang, 1995).

 (b) Peace in Northern Ireland: disarmament of the IRA in July 2005, 
the St. Andrews Agreement of October 2006, the elections of March 
2007, and the power-sharing government of Ian Paisley and Martin 
McGuinness. Reading: “The Thorny Path to Peace and Power Shar-
ing,” CBC News, March 26, 2007. Available at www.cbc.ca/news2 
/background/northern-ireland/timeline.html. 

 U4. Answer the questions in Exercise S3 for these examples of unsuccessful 
brinkmanship:

 (a) The U.S. budget confrontation between President Clinton and the 
Republican-controlled Congress in 1995. Readings: Sheldon Wolin, 
“Democracy and Counterrevolution,” Nation, April 22, 1996; David 
Bowermaster, “Meet the Mavericks,” U.S. News and World Report, 
December 25, 1995–January 1, 1996; “A Flight that Never Seems to 
End,” Economist, December 16, 1995.

 (b) The television writers’ strike of 2007–2008. Readings: “Writers Guild 
of America,” online archive of the New York Times on the Writers 
Guild and the strike. Available at http://topics.nytimes.com/top 
/reference/timestopics/organizations/w/writers_guild_of_america 
/index.html; “Writers Strike: A Punch from the Picket Line.” Avail-
able at http://writers-strike.blogspot.com.

 U5. Answer the questions in Exercise S3 for these potential cases of future  
brinkmanship:

 (a) The stationing of an American antiballistic missile launch site in Po-
land with an accompanying radar site in the Czech Republic, osten-
sibly intended to intercept missiles from Iran but angering Russia. 
Reading: “Q&A: US Missile Defence,” BBC News, August 20, 2008. 
Available at http://news.bbc.co.uk/2/hi/europe/6720153.stm.

 (b) Deterring Iran from obtaining nuclear weapons. Readings: James 
Fallows, “The Nuclear Power Beside Iraq,” Atlantic, May 2006. Avail-
able at www.theatlantic.com/doc/200605/fallows-iran; James Fal-
lows, “Will Iran Be Next?” Atlantic, December 2004. Available at 
www.theatlantic.com/magazine/archive/2006/05/the-nuclear 
-power-beside-iraq/304819.
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■

Strategy and Voting

W hen many of you think about voting, you probably imagine first a na-
tional presidential election, then perhaps a local mayoral election, and 
maybe even an election for class president at your school. But some of 
you may also be reminded of last year’s Heisman Trophy–winning col-

lege football player, the latest Academy Award–winning film, or the most recent 
Supreme Court decision. All of these situations involve voting, although they 
differ based on the number of voters involved, the ballot length or number of 
choices available to voters, and the procedures used to tally the votes and de-
termine the final winner. In each case, strategic thinking may play a role in how 
ballots are marked. And strategic considerations can be critical in choosing the 
method by which votes are taken and then counted.

Voting procedures vary widely not because some votes elect Oscar winners 
and others elect presidents, but because certain procedures have attributes that 
make them better (or worse) for specific voting situations. In the past decade, 
for example, concerns about how elections based on plurality rule (the candi-
date with the most votes wins) encourage the existence of a two-party politi-
cal system have led to changes in voting rules in more than a dozen U.S. cities.1 
These changes have led in some cases to election outcomes that differed from 
those that would have arisen under the old plurality rule system. Jean Quan, 
the mayor of Oakland, California, for example, won her post in November 2010 
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1 This result is known in political science as “Duverger’s law.” We discuss it in greater detail in  
Section 3.A.
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despite being the first-place choice of only 24% of the voters, while her even-
tual runner-up had 35% of the first-place votes. In the last round of that city’s 
ranked-choice vote, Quan won 51% of the votes with 49% going to the runner-
up. We investigate such paradoxical outcomes in Section 2 of this chapter. 

Given the fact that different voting procedures can produce different out-
comes, you should immediately see the scope for strategic behavior in choosing 
a procedure that can generate an outcome you prefer. Perhaps then you can also 
imagine a situation in which voters might find it beneficial to vote for someone, 
or something, that is not their top choice in order to avoid having their abso-
lute last choice option be the winner? This type of strategic behavior is common 
when the voting procedure allows it. As a voter, you should be aware of the ben-
efits associated with such strategic misrepresentation of preferences and of the 
possibility that others may use such tactics against you.

Below, we first introduce you to the range of voting procedures available and 
to some of the paradoxical outcomes that can arise when specific procedures 
are used. We then consider how one might judge the performance of those pro-
cedures before addressing the strategic behavior of voters and the scope for out-
come manipulation. Finally, we present two different versions of a well-known 
result known as the median voter theorem—as a two-person zero-sum game 
with discrete strategies and with continuous ones.

1 VOTING RULES AND PROCEDURES

Numerous voting procedures are available to help choose from a slate of alter-
natives (that is, candidates or issues). With as few as three available alternatives, 
election design becomes interestingly complex. We describe in this section a 
variety of procedures from three broad classes of voting, or vote-aggregation,  
methods. The number of possible voting procedures is enormous, and the 
simple taxonomy that we provide here can be broadened extensively by allow-
ing elections based on a combination of procedures; a considerable literature 
in both economics and political science deals with just this topic. We have not  
attempted to provide an exhaustive survey but rather to give a flavor of that  
literature. If you are interested, we suggest you consult the broader literature for 
more details on the subject.2

2 The classic textbook on this subject, which was instrumental in making game theory popular in 
political science, is William Riker, Liberalism Against Populism (San Francisco: W. H. Freeman, 1982). 
A general survey is the symposium on “Economics of Voting,” Journal of Economic Perspectives, vol. 
9, no. 1 (Winter 1995). An important early research contribution is Michael Dummett, Voting Proce-
dures (Oxford: Clarendon Press, 1984). Donald Saari, Chaotic Elections (Providence, R.I.: American 
Mathematical Society, 2000), develops some new ideas that we use later in this chapter.
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A.  Binary Methods

Vote aggregation methods can be classified according to the number of options 
or candidates considered by the voters at any given time. Binary methods re-
quire voters to choose between only two alternatives at a time. In elections in 
which there are exactly two candidates, votes can be aggregated by using the 
well-known principle of majority rule, which simply requires that the alternative 
with a majority of votes wins. When dealing with a slate of more than two alter-
natives, pairwise voting—a method consisting of a repetition of binary votes—
can be used. Pairwise procedures are multistage; they entail voting on pairs of 
alternatives in a series of majority votes to determine which is most preferred.

One pairwise procedure, in which each alternative is put up against each of 
the others in a round-robin of majority votes, is called the Condorcet method, 
after the eighteenth-century French theorist Jean Antoine Nicholas Caritat, 
marquis de Condorcet. He suggested that the candidate who defeats each of the 
others in such a series of one-on-one contests should win the entire election; 
such a candidate, or alternative, is now termed a Condorcet winner. Other pair-
wise procedures produce “scores” such as the Copeland index, which measures 
an alternative’s win-loss record in a round-robin of contests. The first round of 
the World Cup soccer tournament uses a type of Copeland index to determine 
which teams from each group move on to the second round of play.3

Another well-known pairwise procedure, used when there are three possible 
alternatives, is the amendment procedure, required by the parliamentary rules 
of the U.S. Congress when legislation is brought to a vote. When a bill is brought 
before Congress, any amended version of the bill must first win a vote against 
the original version of the bill. The winner of that vote is then paired against the 
status quo and members vote on whether to adopt the version of the bill that 
won the first round; majority rule can then be used to determine the winner. 
The amendment procedure can be used to consider any three alternatives by 
pairing two in a first-round election and then putting the third up against the 
winner in a second-round vote.

B.  Plurative Methods

Plurative methods allow voters to consider three or more alternatives simul-
taneously. One group of plurative voting methods applies information on the 
positions of alternatives on a voter’s ballot to assign points used when tallying 
ballots; these voting methods are known as positional methods. The familiar  

3 Note that such indices, or scores, must have precise mechanisms in place to deal with ties; World 
Cup soccer uses a system that undervalues a tie to encourage more aggressive play. See Barry Nale-
buff and Jonathan Levin, “An Introduction to Vote Counting Schemes,” Journal of Economic Perspec-
tives, vol. 9, no. 1 (Winter 1995), pp. 3–26.

v o t i n g  r u l e s  a n d  p r o C e d u r e s   5 9 1

6841D CH15 UG.indd   591 12/18/14   3:17 PM



plurality rule is a special-case positional method in which each voter casts a 
single vote for her most-preferred alternative. That alternative is assigned 
a single point when votes are tallied; the alternative with the most votes (or 
points) wins. Note that a plurality winner need not gain a majority, or 51%, 
of the vote. Thus, for instance, in the 2012 presidential election in Mexico,  
Enrique Peña Nieto captured the presidency with only 38.2% of the vote; his 
opponents gained 31.6%, 25.4%, and 2.3% of the vote. Such narrow margins of 
victory have led to concerns about the legitimacy of past Mexican presidential 
elections, especially in 2006 when the margin of victory was a mere 0.58 per-
centage points. Another special-case positional method, the antiplurality  
method, asks voters to vote against one of the available alternatives or, equiv-
alently, to vote for all but one. For counting purposes, the alternative voted 
against is allocated 1 point, or else all alternatives except that one receive 1 
point while the alternative voted against receives 0.

One of the best-known positional methods is the Borda count, named after 
Jean-Charles de Borda, a fellow countryman and contemporary of Condorcet. 
Borda described the new procedure as an improvement on plurality rule. The 
Borda count requires voters to rank-order all of the possible alternatives in 
an election and to indicate their rankings on their ballot cards. Points are as-
signed to each alternative on the basis of its position on each voter’s ballot. In a 
three-person election, the candidate at the top of a ballot gets 3 points, the next 
candidate 2 points, and the bottom candidate 1 point. After the ballots are col-
lected, each candidate’s points are summed, and the one with the most points 
wins the election. A Borda count procedure is used in a number of sports-related  
elections, including professional baseball’s Cy Young Award and college foot-
ball’s championship elections.

Many other positional methods can be devised simply by altering the rule used 
for the allocation of points to alternatives based on their positions on a voter’s bal-
lot. One system might allocate points in such a way as to give the top-ranked alter-
native relatively more than the others—for example, 5 points for the most-preferred  
alternative in a three-way election but only 2 and 1 for the second- and third-ranked  
options. In elections with larger numbers of candidates—say, eight—the top two 
choices on a voter’s ballot might receive preferred treatment, gaining 10 and 9 
points, respectively, while the others receive 6 or fewer.

An alternative to the positional plurative methods is the relatively recently 
invented approval voting method, which allows voters to cast a single vote for 
each alternative of which they “approve.”4 Unlike positional methods, approval 
voting does not distinguish between alternatives on the basis of their positions 

4 Unlike many of the other methods that have histories going back several centuries, the approval 
voting method was designed and named by then–graduate student Robert Weber in 1971; Weber is 
now a professor of managerial economics and decision sciences at Northwestern University, spe-
cializing in game theory.
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on the ballot. Rather, all approval votes are treated equally, and the alternative 
that receives the most approvals wins. In elections in which more than one win-
ner can be selected (in electing a school board, for instance), a threshold level 
of approvals is set in advance, and alternatives with more than the required 
minimum approvals are elected. Proponents of this method argue that it favors 
relatively moderate alternatives over those at either end of the spectrum; oppo-
nents claim that unwary voters could elect an unwanted novice candidate by 
indicating too many “encouragement” approvals on their ballots. Despite these 
disagreements, several professional societies and the United Nations have ad-
opted approval voting to elect their officers, and some states have used or are 
considering using this method for public elections.

C.  Mixed Methods

Some multistage voting procedures combine plurative and binary voting in 
mixed methods. The majority runoff procedure, for instance, is a two-stage 
method used to decrease a large group of possibilities to a binary decision. In a  
first-stage election, voters indicate their most-preferred alternative, and these 
votes are tallied. If one candidate receives a majority of votes in the first stage, 
she wins. However, if there is no majority choice, a second-stage election pits 
the two most-preferred alternatives against each other. Majority rule chooses 
the winner in the second stage. French presidential elections use the major-
ity runoff procedure, which can yield unexpected results if three or four strong 
candidates split the vote in the first round. In the spring of 2002, for example, 
the far-right candidate Le Pen came in second ahead of France’s socialist Prime 
Minister Jospin in the first round of the presidential election. This result aroused 
surprise and consternation among French citizens, 30% of whom hadn’t even 
bothered to vote in the election and some of whom had taken the first round as 
an opportunity to express their preference for various candidates of the far and 
fringe left. Le Pen’s advance to the runoff election led to considerable political 
upheaval, although he lost in the end to the incumbent president, Chirac.

Another mixed procedure consists of voting in successive rounds. Vot-
ers consider a number of alternatives in each round of voting, with the 
worst-performing alternative eliminated after each stage. Voters then consider 
the remaining alternatives in a next round. The elimination continues until only 
two alternatives remain; at that stage, the method becomes binary, and a final 
majority runoff determines a winner. A procedure with rounds is used to choose 
sites for the Olympic Games.

One could eliminate the need for successive rounds of voting by having vot-
ers indicate their preference orderings on the first ballot. Then a single trans-
ferable vote method can be used to tally votes in later rounds. With a single 
transferable vote, each voter indicates her preference by ordering all candidates 
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on a single initial ballot. If no alternative receives a majority of all first-place 
votes, the bottom-ranked alternative is eliminated and all first-place votes for 
that candidate are “transferred” to the candidate listed second on those ballots; 
similar reallocation occurs in later rounds as additional alternatives are elimi-
nated until a majority winner emerges. This voting method, more commonly 
called instant runoff, is now used in over a dozen U.S. cities, including Oakland 
and San Francisco. Some cities have begun calling it rank-choice voting due to 
voter expectations of “instant” results from a procedure that actually requires as 
many as two to three days for full ballot-counting to be completed.

The single transferable vote is sometimes combined with proportional 
representation in an election. Proportional representation implies that a state 
electorate consisting of 55% Republicans, 25% Democrats, and 20% Indepen-
dents, for example, would yield a body of representatives mirroring the party af-
filiations of that electorate. In other words, 55% of the U.S. Representatives from 
such a state would be Republican, and so on; this result contrasts starkly with 
the plurality rule method, which would elect all Republicans (assuming that 
the voter mix in each district exactly mirrors the overall voter mix in the state). 
Candidates who attain a certain quota of votes are elected, and others who fall 
below a certain quota are eliminated, depending on the exact specifications of 
the voting procedure. Votes for those candidates who are eliminated are again 
transferred by using the voters’ preference orderings. This procedure continues 
until an appropriate number of candidates from each party is elected. Versions 
of this type of procedure are used in parliamentary elections in both Australia 
and New Zealand.

Clearly, there is room for considerable strategic thinking in the choice of a 
vote aggregation method, and strategy is also important even after the rule has 
been chosen. We examine some of the issues related to rule making and agenda 
setting in Section 2. Furthermore, strategic behavior on the part of voters, often 
called strategic voting or strategic misrepresentation of preferences, can also 
alter election outcomes under any set of rules, as we will see later in this chapter.

2 VOTING PARADOXES

Even when people vote according to their true preferences, specific conditions 
on voter preferences and voting procedures can give rise to curious outcomes. 
In addition, election outcomes can depend critically on the type of procedure 
used to aggregate votes. This section describes some of the most famous of the 
curious outcomes—the so-called voting paradoxes—as well as some examples 
of how election results can change under different vote-aggregation methods 
with no change in voter preferences and no strategic voting.
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A.  The Condorcet Paradox

The Condorcet paradox is one of the most famous and important of the voting 
paradoxes.5 As mentioned earlier, the Condorcet method calls for the winner to 
be the candidate who gains a majority of votes in each round of a round-robin of 
pairwise comparisons. The paradox arises when no Condorcet winner emerges 
from this process.

To illustrate the paradox, we construct an example in which three people 
vote on three alternative outcomes by using the Condorcet method. Consider 
three city councillors (Left, Center, and Right) who are asked to rank their pref-
erences for three alternative welfare policies, one that extends the welfare ben-
efits currently available (call this one Generous, or G), another that decreases 
available benefits (Decreased, or D), and yet another that maintains the status 
quo (Average, or A). They are then asked to vote on each pair of policies to es-
tablish a council ranking, or a social ranking. This ranking is meant to describe 
how the council as a whole judges the merits of the possible welfare systems.

Suppose Councillor Left prefers to keep benefits as high as possible, whereas 
Councillor Center is most willing to maintain the status quo but concerned 
about the state of the city budget and so least willing to extend welfare benefits. 
Finally, Councillor Right most prefers reducing benefits but prefers an increase 
in benefits to the status quo; she expects that extending benefits will soon cause 
a serious budget crisis and turn public opinion so much against benefits that a 
more permanent state of low benefits will result, whereas the status quo could 
go on indefinitely. We illustrate these preference orderings in Figure 15.1 where 
the “curly” greater-than symbol, , is used to indicate that one alternative is pre-
ferred to another. (Technically,  is referred to as a binary ordering relation.)

With these preferences, if Generous is paired against Average, Generous 
wins. In the next pairing, of Average against Decreased, Average wins. And in the 
final pairing of Generous against Decreased, the vote is again 2 to 1, this time in 
favor of Decreased. Therefore, if the council votes on alternative pairs of poli-
cies, a majority prefer Generous over Average, Average over Decreased, and De-
creased over Generous. No one policy has a majority over both of the others. The 
group’s preferences are cyclical: G  A  D  G.

5 It is so famous that economists have been known to refer to it as the voting paradox. Political sci-
entists appear to know better, in that they are far more likely to use its formal name. As we will see, 
there are any number of possible voting paradoxes, not just the one named for Condorcet.
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This cycle of preferences is an example of an intransitive ordering of prefer-
ences. The concept of rationality is usually taken to mean that individual prefer-
ence orderings are transitive (the opposite of intransitive). If someone is given 
choices A, B, and C and you know that she prefers A to B and B to C, then tran-
sitivity implies that she also prefers A to C. (The terminology comes from the 
transitivity of numbers in mathematics; for instance, if 3 . 2 and 2 . 1, then 
we know that 3 . 1.) A transitive preference ordering will not cycle as does the 
social ordering derived in our city council example; hence, we say that such an 
ordering is intransitive.

Notice that all of the councillors have transitive preferences over the three 
welfare policy alternatives but the council does not. This is the Condorcet para-
dox: even if all individual preference orderings are transitive, there is no guarantee 
that the social-preference ordering induced by Condorcet’s voting procedure also 
will be transitive. The result has far-reaching implications for public servants, as 
well as for the general public. It calls into question the basic notion of the “public 
interest,” because such interests may not be easily defined or may not even exist. 
Our city council does not have any well-defined set of group preferences over the 
welfare policies. The lesson is that societies, institutions, or other large groups of 
people should not always be analyzed as if they acted like individuals.

The Condorcet paradox can even arise more generally. There is no guaran-
tee that the social ordering induced by any formal group-voting process will 
be transitive just because individual preferences are. However, some estimates 
have shown that the paradox is most likely to arise when large groups of peo-
ple are considering large numbers of alternatives. Smaller groups considering 
smaller numbers of alternatives are more likely to have similar preferences over 
those alternatives; in such situations, the paradox is much less likely to appear.6 
In fact, the paradox arose in our example because the council completely dis-
agreed not only about which alternative was best but also about which was 
worst. The smaller the group, the less likely such outcomes are to occur.

B.  The Agenda Paradox

The second paradox that we consider also entails a binary voting procedure, 
but this example considers the ordering of alternatives in that procedure. In a 
parliamentary setting with a committee chair who determines the specific order 
of voting for a three-alternative election, substantial power over the final out-
come lies with the chair. In fact, the chair can take advantage of the intransitive 
social-preference ordering that arises from some sets of individual preferences 
and, by selecting an appropriate agenda, manipulate the outcome of the elec-
tion in any manner she desires.

6 See Peter Ordeshook, Game Theory and Political Theory (Cambridge: Cambridge University Press, 
1986), p. 58.
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Consider again the city councillors Left, Center, and Right, who must de-
cide among Generous, Average, and Decreased welfare policies. The councillors’ 
preferences over the alternatives were shown in Figure 15.1. Let us now sup-
pose that one of the councillors has been appointed chair of the council by the 
mayor, and the chair is given the right to decide which two welfare policies get 
voted on first and which goes up against the winner of that initial vote. With the 
given set of councillor preferences and common knowledge of the preference 
orderings, the chair can get any outcome that she wants. If Left were chosen 
chair, for example, she could orchestrate a win for Generous by setting Average 
against Decreased in the first round, with the winner to go up against Generous 
in round two. The result that any final ordering can be obtained by choosing an 
appropriate procedure is known as the agenda paradox.

The only determinant of the outcome in our city council example is the or-
dering of the agenda. Setting the agenda is the real game here, and because the 
chair sets the agenda, the appointment or election of the chair is the true outlet 
for strategic behavior. Here, as in many other strategic situations, what appears 
to be the game (in this case, choice of a welfare policy) is not the true game at 
all; rather, those participating in the game engage in strategic play at an earlier 
point (deciding the identity of the chair) and vote according to set preferences 
in the eventual election.

However, the preceding demonstration of the agenda setter’s power assumes  
that in the first round, voters choose between the two alternatives (Average and 
Decreased) on the basis only of their preferences between these two alterna-
tives, with no regard for the eventual outcome of the procedure. Such behavior is 
called sincere voting; actually, myopic or nonstrategic voting would be a better  
name. If Center is a strategic game player, she should realize that if she votes for 
Decreased in the first round (even though she prefers Average between the pair 
presented at that stage), then Decreased will win the first round and will also 
win against Generous in the second round with support from Right. Center pre-
fers Decreased over Generous as the eventual outcome. Therefore, she should 
do this rollback analysis and vote strategically in the first round. But should she, 
if everyone else is also voting strategically? We examine the game of strategic 
voting and find its equilibrium in Section 4.

C.  The Reversal Paradox

Positional voting methods also can lead to paradoxical results. The Borda count, 
for example, can yield the reversal paradox when the slate of candidates open 
to voters changes. This paradox arises in an election with at least four alterna-
tives when one of them is removed from consideration after votes have been 
submitted, making recalculation necessary.

Suppose there are four candidates for a (hypothetical) special commemo-
rative Cy Young Award to be given to a retired major-league baseball pitcher. 
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The candidates are Steve Carlton (SC), Sandy Koufax (SK), Robin Roberts (RR), 
and Tom Seaver (TS). Seven prominent sportswriters are asked to rank these 
pitchers on their ballot cards. The top-ranked candidate on each card will get 4 
points; decreasing numbers of points will be allotted to candidates ranked sec-
ond, third, and fourth.

Across the seven voting sportswriters, there are three different preference 
orderings over the candidate pitchers; these preference orderings, with the 
number of writers having each ordering, are shown in Figure 15.2. When the 
votes are tallied, Seaver gets (2  3)  (3  2)  (2  4)  20 points; Koufax gets  
(2  4)  (3  3)  (2  1)  19 points; Carlton gets (2  1)  (3  4)  (2  2)  
18 points; and Roberts gets (2  2)  (3  1)  (2  3)  13 points. Seaver wins 
the election, followed by Koufax, Carlton, and Roberts in last place.

Now suppose it is discovered that Roberts is not really eligible for the com-
memorative award, because he never actually won a Cy Young Award, having 
reached the pinnacle of his career in the years just before the institution of the 
award in 1956. This discovery requires points to be recalculated, ignoring Roberts  
on the ballots. The top spot on each card now gets 3 points, while the second 
and third spots receive 2 and 1, respectively. Ballots from sportswriters with 
preference ordering 1, for example, now give Koufax and Seaver 3 and 2 points, 
respectively, rather than 4 and 3 from the first calculation; those ballots also give 
Carlton a single point for last place.

Adding votes with the revised point system shows that Carlton receives 15 
points, Koufax receives 14 points, and Seaver receives 13 points. Winner has 
turned loser as the new results reverse the standings found in the first election. 
No change in preference orderings accompanies this result. The only difference 
in the two elections is the number of candidates being considered. In Section 3, 
we identify the key vote-aggregation principle violated by the Borda count that 
leads to the reversal paradox.

D.  Change the Voting Method, Change the Outcome

As should be clear from the preceding discussion, election outcomes are likely 
to differ under different sets of voting rules. As an example, consider 100 voters 
who can be broken down into three groups on the basis of their preferences over 

Carlton  Koufax 
Seaver  Roberts

ORDERING 2
(3 voters)

Seaver  Roberts 
Carlton  Koufax

ORDERING 3
(2 voters)

Koufax  Seaver 
Roberts  Carlton

ORDERING 1
(2 voters)

Figure 15.2  sportswriter preferences over pitchers
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three candidates (A, B, and C). Preferences of the three groups are shown in Fig-
ure 15.3. With the preferences as shown, and depending on the vote-aggregation 
method used, any of these three candidates could win the election.

With simple plurality rule, candidate A wins with 40% of the vote, even 
though 60% of the voters rank her lowest of the three. Supporters of candidate A 
would obviously prefer this type of election. If they had the power to choose the 
voting method, then plurality rule, a seemingly “fair” procedure, would win the 
election for A in spite of the majority’s strong dislike for that candidate.

The Borda count, however, would produce a different outcome. In a Borda 
system with 3 points going to the most-preferred candidate, 2 points to the  
middle candidate, and 1 to the least-preferred candidate, A gets 40 first-place 
votes and 60 third-place votes, for a total of 40(3)  60(1)  180 points. Can-
didate B gets 25 first-place votes and 75 second-place votes, for a total of  
25(3)  75(2)  225 points; and C gets 35 first-place votes, 25 second-place votes, 
and 40 third-place votes, for a total of 35(3)  25(2)  40(1)  195 points. In this 
procedure, B wins, with C in second place and A last. Candidate B would also 
win with the antiplurality vote, in which electors cast votes for all but their least- 
preferred candidate.

And what about candidate C? She can win the election if a majority or an 
instant-runoff system is used. In either method, A and C, with 40 and 35 votes 
in the first round, survive to face each other in the runoff. The majority-runoff 
system would call voters back to the polls to consider A and C; the instant runoff 
system would eliminate B and reallocate B’s votes (from group 2 voters) to the 
next preferred alternative, candidate C. Then, because A is the least-preferred 
alternative for 60 of the 100 voters, candidate C would win the runoff election 60 
to 40.

Another example of how different procedures can lead to different outcomes 
can be seen in the case of the 2010 Oakland mayoral election described in the 
introduction to this chapter. Olympics site-selection voting is now done using 
instant runoff instead of several rounds of plurality rule with elimination after 
similar unusual results in voting for the 1996 and 2000 host cities. In both cases, 
the plurality winner in all but the penultimate round lost to the one remaining 
rival city in the last round. Athens lost out to Atlanta for the 1996 Games and 
Beijing lost out to Sydney for the 2000 Games.

B  C  A

GROUP 2
(25 voters)

C  B  A

GROUP 3
(35 voters)

A  B  C

GROUP 1
(40 voters)

Figure 15.3  group preferences over Candidates
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3 EVALUATING VOTING SySTEMS

The discussion of the various voting paradoxes in Section 2 suggests that voting 
methods can suffer from a number of faults that lead to unusual, unexpected, or 
even unfair outcomes. In addition, this suggestion leads us to ask: Is there one 
voting system that satisfies certain regularity conditions, including transitivity, 
and that is the most “fair”—that is, most accurately captures the preferences of 
the electorate? Kenneth Arrow’s impossibility theorem tells us that the answer 
to this question is no.7

The technical content of Arrow’s theorem makes it beyond our scope to 
prove completely. But the sense of the theorem is straightforward. Arrow argued 
that no preference-aggregation method could satisfy all six of the critical prin-
ciples that he identified:

 1. The social or group ranking must rank all alternatives (be complete).
 2. It must be transitive.
 3. It should satisfy a condition known as positive responsiveness, or the Pareto 

property. Given two alternatives, A and B, if the electorate unanimously 
prefers A to B, then the aggregate ranking should place A above B.

 4. The ranking must not be imposed by external considerations (such as cus-
toms) independent of the preferences of individual members of the society.

 5. It must not be dictatorial—no single voter should determine the group 
ranking.

 6. And it should be independent of irrelevant alternatives; that is, no change 
in the set of candidates (addition to or subtraction from) should change 
the rankings of the unaffected candidates.

Often, the theorem is abbreviated by imposing the first four conditions and 
focusing on the difficulty of simultaneously obtaining the last two; the simpli-
fied form states that we cannot have independence of irrelevant alternatives 
(IIA) without dictatorship.8

You should be able to see immediately that some of the voting methods con-
sidered earlier do not satisfy all of Arrow’s principles. The requirement of IIA, for 
example, is violated by the single transferable-vote procedure as well as by the 
Borda count, as we saw in Section 2.C. Borda’s procedure is, however, nondicta-
torial and consistent, and it satisfies the Pareto property. All of the other systems 
that we have considered satisfy IIA but break down on one of the other principles.

7 A full description of this theorem, often called “Arrow’s General Possibility Theorem,” can be found 
in Kenneth Arrow, Social Choice and Individual Values, 2nd ed. (New York: Wiley, 1963).
8 See Nicholson and Snyder’s treatment of Arrow’s impossibility theorem in their Microeconomic The-
ory, 11th ed. (New York: Cengage Learning, 2012), ch. 19, for more detail at a level appropriate for 
intermediate-level economics students.
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Arrow’s theorem has provoked extensive research into the robustness of 
his conclusion to changes in the underlying assumptions. Economists, politi-
cal scientists, and mathematicians have searched for a way to reduce the num-
ber of criteria or relax Arrow’s principles minimally to find a procedure that 
satisfies the criteria without sacrificing the core principles; their efforts have 
been largely unsuccessful. Most economic and political theorists now accept 
the idea that some form of compromise is necessary when choosing a vote- or  
preference-aggregation method. Here are a few prominent examples, each 
representing the approach of a particular field—political science, economics, 
and mathematics.

A.  Black’s Condition

As the discussion in Section 2.A showed, the pairwise voting procedure does not 
satisfy Arrow’s condition on transitivity of the social ranking, even when all in-
dividual rankings are transitive. One way to surmount this obstacle to meeting  
Arrow’s conditions, as well as a way to prevent the Condorcet paradox, is to place 
restrictions on the preference orderings held by individual voters. Such a restric-
tion, known as the requirement of single-peaked preferences, was put forth by 
the political scientist Duncan Black in the late 1940s.9 Black’s seminal paper on 
group decision making actually predates Arrow’s impossibility theorem and was 
formulated with the Condorcet paradox in mind, but voting theorists have since 
shown its relevance to Arrow’s work; in fact, the requirement of single-peaked 
preferences is sometimes referred to as Black’s condition.

For a preference ordering to be single peaked, it must be the case that the al-
ternatives being considered can be ordered along some specific dimension (for 
example, the expenditure level associated with each policy). To illustrate this re-
quirement, we draw a graph in Figure 15.4 with the specified dimension on the 
horizontal axis and a voter’s preference ranking (or payoff) on the vertical axis. 
For the single-peaked requirement to hold, each voter must have a single ideal or  

9 Duncan Black, “On the Rationale of Group Decision-Making,” Journal of Political Economy, vol. 56, 
no. 1 (February 1948), pp. 23–34.

Payoff 

Policy 

Mr. Left Ms. Right 

Figure 15.4  single-peaked preferences
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most-preferred alternative, and alternatives “farther away” from the most-preferred  
point must provide steadily lower payoffs. The two voters in Figure 15.4, Mr. Left 
and Ms. Right, have different ideal points along the policy dimension, but for each, 
the payoff falls steadily as the policy moves away from his or her ideal point.

Black shows that if preferences of each voter are single peaked, then the 
pairwise (majority) voting procedure must produce a transitive social ordering. 
The Condorcet paradox is prevented, and pairwise voting satisfies Arrow’s tran-
sitivity condition.

B.  Robustness

An alternative, more recent method of compromise with Arrow comes from the 
economic theorists Partha Dasgupta and Eric Maskin.10 They suggest a new cri-
terion called robustness by which to judge voting methods. Robustness is mea-
sured by considering how often a voting procedure that is nondictatorial and 
that satisfies IIA as well as the Pareto property also satisfies the requirement of 
transitivity of its social ranking: For how many sets of voter-preference order-
ings does such a procedure satisfy transitivity?

With the use of the robustness criterion, simple majority rule can be shown 
to be maximally robust—that is, it is nondictatorial, satisfies IIA and Pareto, and 
provides transitive social rankings for the largest possible set of voter-preference 
orderings. Behind majority rule on the robustness scale lie other voting proce-
dures, including the Borda count and plurality rule. The robustness criterion  
is appealing in its ability to establish one of the most commonly used voting  
procedures—the one most often associated with the democratic process—as a 
candidate for the best aggregation procedure.

C.  Intensity Ranking

Another class of attempts to escape from Arrow’s negative result focuses on the 
difficulty of satisfying Arrow’s IIA requirement. A recent theory of this kind comes 
from the mathematician Donald Saari.11 He suggests that a vote-aggregation 
method might use more information about voters’ preferences than is contained 
in their mere ordering of any pair of alternatives, X and Y; rather, it could take 
into account each individual voter’s intensity of preferences between that pair 
of alternatives. This intensity can be measured by counting the number of other  

10 See Partha Dasgupta and Eric Maskin, “On the Robustness of Majority Rule,” Journal of the Euro-
pean Economic Association, vol. 6 (2008), pp. 949–73.
11 For more precise information about Saari’s work on Arrow’s theorem, see D. Saari, “Mathematical 
Structure of Voting Paradoxes I: Pairwise Vote,” Economic Theory, vol. 15 (2000), pp. 1–53. Additional 
information on this result and on the robustness of the Borda count can be found in D. Saari, Cha-
otic Elections (Providence, R.I.: American Mathematical Society, 2000).
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alternatives, Z, W, V, . . . that a voter places between X and Y. Saari therefore re-
places the IIA condition, number 6 of Arrow’s principles, with a different one, 
which he labels IBI (intensity of binary independence) and which we will num-
ber 69:

 69. Society’s relative ranking of any two alternatives should be determined 
only by (1) each voter’s relative ranking of the pair and (2) the intensity 
of this ranking.

This condition is weaker than IIA because it effectively applies IIA only to such 
additions or deletions of “irrelevant” alternatives that do not change the intensity 
of people’s preferences between the “relevant” ones. With this revision, the Borda 
count satisfies the modified Arrow theorem. It is the only one of the positional 
voting methods that does so.

Saari also hails the Borda count as the only procedure that appropriately 
observes ties within collections of ballots, a criterion that he argues is essential 
for a good aggregation system to satisfy. Ties can occur two ways: through Con-
dorcet terms or through reversal terms within voter-preference orderings. In a 
three-candidate election among alternatives A, B, and C, the Condorcet terms are 
the preference orderings A  B  C, B  C  A, and C  A  B. A set of three bal-
lots with these preferences appearing on one ballot apiece should logically offset 
each other, or constitute a tie. Reversal terms are preference orderings that con-
tain a reversal in the location of a pair of alternatives. In the same election, two 
ballots with preference orderings of A  B  C and B  A  C should logically lead 
to a tie in a pairwise contest between A and B. Only the Borda procedure treats 
collections of ballots with Condorcet terms or reversal terms as tied. Although the 
Borda count can lead to the reversal paradox, as shown in the preceding section, 
it retains many proponents. The only time that the Borda procedure produces 
paradoxical results is when alternatives are dropped from consideration after 
ballots have been collected. Because such results can be prevented by using only 
ballots for the complete set of final candidates, the Borda procedure has gained 
favor in some circles as one of the best vote-aggregation methods.

Other researchers have made different suggestions regarding criteria that 
a good aggregation system should satisfy. Some of them include the Condorcet 
criterion (that a Condorcet winner should be selected by a voting system, if such 
a winner exists), the consistency criterion (that an election including all voters 
should elect the same alternative as would two elections held for an arbitrary 
division of the entire set of voters), and lack of manipulability (a voting system 
should not encourage manipulability—strategic voting—on the part of voters). 
We cannot consider each of these suggestions at length, but we do address stra-
tegic manipulation by voters in the following section.
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4 STRATEGIC MANIPULATION OF VOTES

Several of the voting systems that we have considered yield considerable scope 
for strategic misrepresentation of preferences by voters. In Section 2.B, we 
showed how the power of an agenda-setting Left chair can be countered by a 
Center councillor voting in the first round against her true preference, so as to 
knock out her least-preferred alternative and send a more preferred one into the 
second round. More generally, voters can choose to vote for candidates, issues, 
or policies that are not actually their most-preferred outcomes among the al-
ternatives presented in an early round if such behavior can alter the final elec-
tion results in their favor. In this section, we consider a number of ways in which 
strategic voting behavior can affect elections.

A.  Plurality Rule

Plurality-rule elections, often perceived as the fairest by many voters, still pro-
vide opportunities for strategic behavior. In presidential elections, for instance, 
there are generally two major candidates in contention. When such a race is 
relatively close, there is potential for a third candidate to enter the race and di-
vert votes away from the leading candidate; if the entry of this third player truly 
threatens the chances of the leader winning the election, the late entrant is 
called a spoiler.

Spoilers are generally believed to have little chance to win the whole elec-
tion, but their role in changing the election outcome is undisputed. In elections  
with a spoiler candidate, those who prefer the spoiler to the leading major  
candidate but least prefer the trailing major candidate may do best to strategi-
cally misrepresent their preferences to prevent the election of their least-favorite  
candidate. That is, you should vote for the leader in such a case even though 
you would prefer the spoiler because the spoiler is unlikely to garner a plural-
ity; voting for the leader then prevents the trailing candidate, your least favor-
ite, from winning.12 Ross Perot played such a role in the 1992 U.S. presidential 
election, apparently succumbing to defeat due to misrepresented preferences. 
A Newsweek survey claimed that if more voters had believed Perot was capable 
of winning the election, he might have done so; a plurality of 40% of voters sur-
veyed said they would have voted for Perot (instead of Bush or Clinton) if they 
had thought he could have won.13

12 Note that an approval-voting method would not suffer from this same problem.
13 “Ross Reruns,” Newsweek, Special Election Recap Issue, November 18, 1996, p. 104.
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Ralph Nader played a similar role in the 2000 presidential election, al-
though he was more concerned about garnering 5% of the popular vote so 
that his Green Party could qualify for federal matching election funds than he 
was about actually winning the presidency. Because Nader was pulling needed 
votes from Democrat Al Gore’s supporters, several groups (as well as a number 
of Web sites) advocated “vote swapping” schemes designed to gain Nader his 
needed votes without costing Gore the electoral votes of any of his key states. 
Nader voters in key Gore states (such as Pennsylvania, Michigan, and Maine) 
were asked to “swap” their votes with Gore supporters in a state destined to go 
to George W. Bush (such as Texas or Wyoming); a Michigan Nader supporter 
could vote for Gore while her Nader vote was cast in Texas. Evidence on the ef-
ficacy of these strategies is mixed. We do know that Nader failed to win his 5% 
of the popular vote but that Gore carried all of Pennsylvania, Michigan, and 
Maine.

In elections for legislatures, where many candidates are chosen, the perfor-
mance of third parties is very different under a system of proportional represen-
tation of the whole population in the whole legislature from that under a system 
of plurality in separate constituencies. Britain has the constituency and plural-
ity system. In the past 50 years, the Labor and Conservative parties have shared 
power. The Liberal Party, despite sizable third-place support in the electorate, 
has suffered from strategic voting and therefore has had disproportionately few 
seats in Parliament. Italy has had the nationwide list and proportional represen-
tation system; there is no need to vote strategically in such a system, and even 
small parties can have significant presence in the legislature. Often, no party has 
a clear majority of seats, and small parties can affect policy through bargaining 
for alliances.

A party cannot flourish if it is largely ineffective in influencing a country’s 
political choices. Therefore, we tend to see just two major parties in countries 
with the plurality system and several parties in those with the proportional rep-
resentation system. Political scientists call this observation Duverger’s law.

In the legislature, the constituency system tends to produce only two 
major parties—often one of them with a clear majority of seats and therefore 
more decisive government. But it runs the risk that the minority’s interests 
will be overlooked—that is, of producing a “tyranny of the majority.” A pro-
portional representation system gives more of a voice to minority views. But 
it can produce inconclusive bargaining for power and legislative gridlock.  
Interestingly, each country seems to believe that its system performs worse 
and considers switching to the other; in Britain, there are strong voices calling  
for proportional representation, and Italy has been seriously considering a 
constituency system.

s t r at e g i C  m a n i p u l at i o n  o f  v o t e s   6 0 5

6841D CH15 UG.indd   605 12/18/14   3:17 PM



B.  Pairwise Voting

When you know that you are bound by a pairwise method such as the amend-
ment procedure, you can use your prediction of the second-round outcome 
to determine your optimal voting strategy in the first round. It may be in your  
interest to appear committed to a particular candidate or policy in the first 
round, even if it is not your most-preferred alternative, so that your least-favorite  
alternative cannot win the entire election in the second round.

We return here to our example of the city council with an agenda-setting chair; 
again, all three preference rankings are assumed to be known to the entire coun-
cil. Suppose Councillor Left, who most prefers the Generous welfare package,  
is appointed chair and sets the Average and Decreased policies against each 
other in a first vote, with the winner facing off against the Generous policy in the 
second round. If the three councillors vote strictly according to their preferences, 
shown in Figure 15.1, Average will beat Decreased in the first vote and Gener-
ous will then beat Average in the second vote; the chair’s preferred outcome  
will be chosen. The city councillors are likely to be well-trained strategists,  
however, who can look ahead to the final round of voting and use rollback to de-
termine which way to vote in the opening round.

In the scenario just described, Councillor Center’s least-preferred policy will 
be chosen in the election. Therefore, rollback analysis says that she should vote 
strategically in the first round to alter the election’s outcome. If Center votes for 
her most-preferred policy in the first round, she will vote for the Average policy, 
which will then beat Decreased in that round and lose to Generous in round two. 
However, she could instead vote strategically for the Decreased policy in the first 
round, which would lift Decreased over Average on the first vote. Then, when 
Decreased is set up against Generous in the second round, Generous will lose to  
Decreased. Councillor Center’s misrepresentation of her preference ordering with 
respect to Average and Decreased helps her to change the winner of the election 
from Generous to Decreased. Although Decreased is not her most-preferred  
outcome, it is better than Generous from her perspective.

This strategy works well for Center if she can be sure that no other strate-
gic votes will be cast in the election. Thus, we need to analyze both rounds of 
voting fully to verify the Nash equilibrium strategies for the three councillors. 
We do so by using rollback on the two simultaneous-vote rounds of the elec-
tion, starting with the two possible second-round contests, A versus G or D 
versus G. In the following analysis, we use the abbreviated names of the poli-
cies, G, A, and D.

Figure 15.5 illustrates the outcomes that arise in each of the possible  
second-round elections. The two tables in Figure 15.5a show the winning policy 
(not payoffs to the players) when A has won the first round and is pitted against 
G; the tables in Figure 15.5b show the winning policy when L has won the first 
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round. In both cases, Councillor Left chooses the row of the final outcome,  
Center chooses the column, and Right chooses the actual table (left or right).

You should be able to establish that each councillor has a dominant strat-
egy in each second-round election. In the A-versus-G election, Left’s dominant 
strategy is to vote for G, Center’s dominant strategy is to vote for A, and Right’s 
dominant strategy is to vote for G; G will win this election. If the councillors 
consider D versus G, Left’s dominant strategy is still to vote for G, and Right and 
Center both have a dominant strategy to vote for D; in this vote, D wins. A quick 
check shows that all of the councillors vote according to their true preferences in 
this round. Thus, these dominant strategies are all the same: “Vote for the alter-
native that I prefer.” Because there is no future to consider in the second-round  
vote, the councillors simply vote for whichever policy ranks higher in their pref-
erence ordering.14

We can now use the results from our analysis of Figure 15.5 to consider op-
timal voting strategies in the first round of the election, in which voters choose 
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Figure 15.5  election outcomes in two possible second-round votes
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between policies A and D. Because we know how the councillors will vote in the 
next round given the winner here, we can show the outcome of the entire elec-
tion in the tables in Figure 15.6.

As an example of how we arrived at these outcomes, consider the G in the 
upper-left-hand cell of the right-hand table in Figure 15.6. The outcome in that 
cell is obtained when Left and Center both vote for A in the first round while 
Right votes for D. Thus, A and G are paired in the second round, and as we saw 
in Figure 15.5, G wins. The other outcomes are derived in similar fashion.

Given the outcomes in Figure 15.6, Councillor Left (who is the chair and has 
set the agenda) has a dominant strategy to vote for A in this round. Similarly, 
Councillor Right has a dominant strategy to vote for D. Neither of these councillors 
misrepresent their preferences or vote strategically in either round. Councillor  
Center, however, has a dominant strategy to vote for D here even though she 
strictly prefers A to D. As the preceding discussion suggested, she has a strong 
incentive to misrepresent her preferences in the first round of voting; and she 
is the only one who votes strategically. Center’s behavior changes the winner of 
the election from G (the winner without strategic voting) to D.

Remember that the chair, Councillor Left, set the agenda in the hope of hav-
ing her most-preferred alternative chosen. Instead, her least-preferred alternative 
has prevailed. It appears that the power to set the agenda may not be so beneficial 
after all. But Councillor Left should anticipate the strategic behavior. Then she can 
choose the agenda so as to take advantage of her understanding of games of strat-
egy. In fact, if she sets D against G in the first round and then the winner against A, 
the Nash equilibrium outcome is G, the chair’s most-preferred outcome. With that 
agenda, Right misrepresents her preferences in the first round to vote for G over 
D to prevent A, her least-preferred outcome, from winning. You should verify that 
this is Councillor Left’s best agenda-setting strategy. In the full voting game where 
setting the agenda is considered an initial, prevoting round, we should expect to 
see the Generous welfare policy adopted when Councillor Left is chair.

We can also see an interesting pattern emerge when we look more closely 
at voting behavior in the strategic version of the election. There are pairs of  
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councillors who vote “together” (the same as one another) in both rounds. 
Under the original agenda, Right and Center vote together in both rounds, and 
in the suggested alternative (D versus G in the first round), Right and Left vote 
together in both rounds. In other words, a sort of long-lasting coalition has 
formed between two councillors in each case.

Strategic voting of this type appears to have taken place in Congress on more 
than one occasion. One example was a federal school-construction-funding  
bill considered in 1956.15 Before being brought to a vote against the status quo 
of no funding, the bill was amended in the House of Representatives to require 
that aid be offered only to states with no racially segregated schools. Under the 
parliamentary voting rules of Congress, a vote on whether to accept the so-
called Powell Amendment was taken first, with the winning version of the bill 
considered afterward. Political scientists who have studied the history of this 
bill argue that opponents of school funding strategically misrepresented their 
preferences regarding the amendment to defeat the original bill. A key group of 
Representatives voted for the amendment but then joined opponents of racial 
integration in voting against the full bill in the final vote; the bill was defeated. 
Voting records of this group indicate that many of them had voted against racial 
integration matters in other circumstances, implying that their vote for integra-
tion in this case was merely an instance of strategic voting and not an indication 
of their true feelings regarding school integration.

C.  Strategic Voting with Incomplete Information

The preceding analysis showed that sometimes committee members have in-
centives to vote strategically to prevent their least-preferred alternative from 
winning an election. Our example assumed that the council members knew the 
possible preference orderings and how many other councillors had those pref-
erences. Now suppose information is incomplete; each council member knows 
the possible preference orderings, her own actual ordering, and the probabilities 
that each of the others have a particular ordering, but not the actual distribution 
of the different preference orderings among the other councillors. In this situa-
tion, each councillor’s strategy needs to be conditioned on her beliefs about that 
distribution and on her beliefs about how truthful other voters will be.16

For an example, suppose that we still have a three-member council consid-
ering the three alternative welfare policies described earlier according to the 

15 A more complete analysis of the case can be found in Riker, Liberalism Against Populism,  
pp. 152–57.
16 This result can be found in P. Ordeshook and T. Palfrey, “Agendas, Strategic Voting, and Signaling 
with Incomplete Information,” American Journal of Political Science, vol. 32, no. 2 (May 1988), pp. 
441–66. The structure of the example to follow is based on Ordeshook and Palfrey’s analysis.
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(original) agenda set by Councillor Left; that is, the council considers policies 
A and D in the first round with the winner facing G in the second round. We 
assume that there are still three different possible preference orderings, as il-
lustrated in Figure 15.1, and that the councillors know that these orderings are 
the only possibilities. The difference is that no one knows for sure exactly how 
many councillors have each set of preferences. Rather, each councillor knows 
her own type, and she knows that there is some positive probability of observ-
ing each type of voter (Left, Center, or Right), with the probabilities pL, pC, and 
pR summing to 1.

We saw earlier that all three councillors vote truthfully in the last round of 
balloting. We also saw that Left- and Right-type councillors vote truthfully in the 
first round as well. This result remains true in the incomplete information case. 
Right-type voters prefer to see D win the first-round election; given this pref-
erence, Right always does at least as well by voting for D over A (if both other 
councillors have voted the same way) and sometimes does better by voting this 
way (if the other two votes split between D and A). Similarly, Left-type voters 
prefer to see A survive to vie against G in round two; these voters always do at 
least as well as otherwise—and sometimes do better—by voting for A over D.

At issue then is only the behavior of the Center-type voters. Because they 
do not know the types of the other councillors and because they have an in-
centive to vote strategically for some preference distributions—specifically the 
case in which it is known for certain that there is one voter of each type—their  
behavior will depend on the probabilities that the various voter types may 
occur within the council. We consider here one of two polar cases in which a  
Center-type voter believes that other Center types will vote truthfully, and we 
look for a symmetric, pure-strategy Nash equilibrium. The case in which she be-
lieves that other Center types will vote strategically is taken up in the exercises.

To make outcome comparisons possible, we specify payoffs for the  
Center-type voter associated with the possible winning policies. Center-type 
preferences are A  D  G. Suppose that, if A wins, Center types receive a payoff 
of 1 and, if G wins, Center types receive a payoff of 0. If D wins, Center types re-
ceive some intermediate-level payoff, call it u, where 0 , u , 1.

Now suppose our Center-type councillor must decide how to vote in the 
first round (A versus D) in an election in which she believes that both other vot-
ers vote truthfully, regardless of their type. If both voters choose either A or D, 
then Center’s vote is immaterial to the final outcome; she is indifferent between 
A and D. If the other two voters split their votes, however, then Center can influ-
ence the election outcome. Her problem is that she needs to decide whether to 
vote truthfully herself.

If the other two voters split between A and D and if both are voting truth-
fully, then the vote for D must have come from a Right-type voter. But the vote 
for A could have come from either a Left type or a (truthful) Center type. If the A 
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vote came from a Left-type voter, then Center knows that there is one voter of 
each type. If she votes truthfully for A in this situation, A will win the first round 
but lose to G in the end; Center’s payoff will be 0. If Center votes strategically for 
D, D beats A and G, and Center’s payoff is u. In contrast, if the A vote came from 
a Center-type voter, then Center knows there are two Center types and a Right 
type but no Left type on the council. In this case, a truthful vote for A helps A 
win the first round, and then A also beats G by a vote of 2 to 1 in round two; Cen-
ter gets her highest payoff of 1. If Center were to vote strategically for D, D would 
win both rounds again and Center would get u.

To determine Center’s optimal strategy, we need to compare her expected 
payoff from truthful voting with her expected payoff from strategic voting. With a 
truthful vote for A, Center’s payoff depends on how likely it is that the other A vote 
comes from a Left type or a Center type. Those probabilities are straightforward  
to calculate. The probability that the other A vote comes from a Left type 
is just the probability of a Left type being one of the remaining voters, or  
pL(pL  pC); similarly, the probability that the A vote comes from a Center type 
is pC(pL  pC). Then Center’s payoffs from truthful voting are 0 with probabil-
ity pL(pL  pC) and 1 with probability pC(pL  pC), so the expected payoff is  
pC(pL  pC). With a strategic vote for D, D wins regardless of the identity of the 
third voter—D wins with certainty—and so Center’s expected payoff is just u. 
Center’s final decision is to vote truthfully as long as pC(pL  pC) . u.

Note that Center’s decision-making condition is an intuitively reasonable 
one. If the probability of there being more Center-type voters is large or rela-
tively larger than the probability of having a Left-type voter, then the Center 
types vote truthfully. Voting strategically is useful to Center only when she is the 
only voter of her type on the council.

We add two additional comments on the existence of imperfect information 
and its implications for strategic behavior. First, if the number of councillors, n,  
is larger than three but odd, then the expected payoff to a Center type from voting 
strategically remains equal to u, and the expected payoff from voting truthfully 
is [pC(pL  pC)](n  1)2.17 Thus, a Center type should vote truthfully only when  
[pC(pL  pC)](n  1)2 . u. Because pC(pL  pC) , 1 and u . 0, this inequality 
will never hold for large enough values of n. This result tells us that a symmetric 
truthful-voting equilibrium can never persist in a large enough council! Second, 
imperfect information about the preferences of other voters yields additional 
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scope for strategic behavior. With agendas that include more than two rounds, 
voters can use their early-round votes to signal their types. The extra rounds give 
other voters the opportunity to update their prior beliefs about the probabilities 
pC, pL, and pR and a chance to act on that information. With only two rounds of 
pairwise votes, there is no time to use any information gained during round one, 
because truthful voting is a dominant strategy for all voters in the final round.

D. Scope for Manipulability

The extent to which a voting procedure is susceptible to strategic misrepresen-
tation of preferences, or strategic manipulability by voters of the types illus-
trated above, is another topic that has generated considerable interest among 
voting theorists. Arrow does not require nonmanipulability in his theorem, but 
the literature has considered how such a requirement would relate to Arrow’s 
conditions. Similarly, theorists have considered the scope for manipulability in 
various procedures, producing rankings of voting methods.

The economist William Vickrey, perhaps better known for his work on 
auctions (see Chapter 16), did some of the earliest work considering strategic 
behavior of voters. He pointed out that procedures satisfying Arrow’s IIA as-
sumption were most immune to strategic manipulation. He also set out several 
conditions under which strategic behavior is more likely to be attempted and be 
successful. In particular, he noted that situations with smaller numbers of in-
formed voters and smaller sets of available alternatives may be most susceptible 
to manipulation, given a voting method that is itself manipulable. This result 
means, however, that weakening the IIA assumption to help voting procedures 
satisfy Arrow’s conditions makes way for more manipulable procedures. In par-
ticular, Saari’s intensity ranking version of IIA (called IBI), mentioned in Section 
3.C, may allow more procedures to satisfy a modified version of Arrow’s theorem 
but may simultaneously allow more manipulable procedures to do so.

Like Arrow’s general result on the impossibility of preference aggrega-
tion, the general result on manipulability is a negative one. Specifically, the  
Gibbard–Satterthwaite theorem shows that if there are three or more alter-
natives to consider, the only voting procedure that prevents strategic voting is 
dictatorship: one voter is assigned the role of dictator, and her preferences de-
termine the election outcome.18 Combining the Gibbard–Satterthwaite outcome 
with Vickrey’s discussion of IIA may help the reader understand why Arrow’s 
theorem is often reduced to a consideration of which procedures can simulta-
neously satisfy nondictatorship and IIA.
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A General Result,” Econometrica, vol. 41, no. 4 (July 1973), pp. 587–601, and M. A. Satterthwaite,  
“Strategy-Proofness and Arrow’s Conditions,” Journal of Economic Theory, vol. 10 (1975), pp. 187–217. 
The theorem carries both their names because each proved the result independent of the other.
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Finally, some theorists have argued that voting systems should be evalu-
ated not on their ability to satisfy Arrow’s conditions but on their tendency to 
encourage manipulation. The relative manipulability of a voting system can 
be determined by the amount of information about the preferences of other 
voters that is required by voters to manipulate an election successfully. Some  
research based on this criterion suggests that of the procedures so far discussed, 
plurality rule is the most manipulable (that is, requires the least information). 
In decreasing order of manipulability are approval voting, the Borda count, the 
amendment procedure, majority rule, and the Hare procedure (single transfer-
able vote).19

It is important to note that the classification of procedures by level of ma-
nipulability depends only on the amount of information necessary to manipu-
late a voting system and is not based on the ease of putting such information to 
good use or whether manipulation is most easily achieved by individual voters 
or groups. In practice, the manipulation of plurality rule by individual voters is 
quite difficult.

5 THE MEDIAN VOTER THEOREM

All of the preceding sections have focused on the behavior, strategic and oth-
erwise, of voters in multiple alternative elections. However, strategic analysis 
can also be applied to candidate behavior in such elections. Given a particular 
distribution of voters and voter preferences, candidates will, for instance, need 
to determine optimal strategies in building their political platforms. When there 
are just two candidates in an election, when voters are distributed in a “reason-
able” way along the political spectrum, and when each voter has “reasonably” 
consistent (meaning singled-peaked) preferences, the median voter theorem 
tells us that both candidates will position themselves on the political spectrum 
at the same place as the median voter. The median voter is the “middle” voter in 
that distribution—more precisely, the one at the 50th percentile.

The full game here has two stages. In the first stage, candidates choose 
their locations on the political spectrum. In the second stage, voters elect one 
of the candidates. The general second-stage game is open to all of the varieties 
of strategic misrepresentation of preferences discussed earlier. Hence we have  
reduced the choice of candidates to two for our analysis to prevent such be-
havior from arising in equilibrium. With only two candidates, second-stage 
votes will directly correspond to voter preferences, and the first-stage location 

19 H. Nurmi’s classification can be found in his Comparing Voting Systems (Norwell, Mass.:  
D. Reidel, 1987).
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decision of the candidates remains the only truly interesting part of the larger 
game. It is in that stage that the median voter theorem defines Nash equilib-
rium behavior.

A.  Discrete Political Spectrum

Let us first consider a population of 90 million voters, each of whom has a 
preferred position on a five-point political spectrum: Far Left (FL), Left (L), 
Center (C), Right (R), and Far Right (FR). We suppose that these voters are 
spread symmetrically around the center of the political spectrum. The dis-
crete distribution of their locations is shown by a histogram, or bar chart, in 
Figure 15.7. The height of each bar indicates the number of voters located at 
that position. In this example, we have supposed that, of the 90 million vot-
ers, 40 million are Left, 20 million are Far Right, and 10 million each are Far 
Left, Center, and Right.

Voters will vote for the candidate who publicly identifies herself as being 
closer to their own position on the spectrum in an election. If both candidates 
are politically equidistant from a group of like-minded voters, each voter flips 
a coin to decide which candidate to choose; this process gives each candidate 
one-half of the voters in that group.

Now suppose there is an upcoming presidential election between a for-
mer First Lady (Claudia) and a former First Lady hopeful (Dolores), each now 
running for office on her own.20 Under the configuration of voters illustrated 

Number 
of voters 
(millions) 

Political 
position 

FL 

30 

40 

20 

10 

L C R FR 

Figure 15.7  discrete distribution of voters
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20 Any resemblance between our hypothetical candidates and actual past or possible future candi-
dates in the United States is not meant to imply an analysis or prediction of their performances rela-
tive to the Nash equilibrium. Nor is our distribution of voters meant to typify U.S. voter preferences. 
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in Figure 15.7, we can construct a payoff table for the two candidates showing 
the number of votes that each can expect to receive under all of the different  
combinations of political platform choices. This five-by-five table is shown in 
Figure 15.8, with totals denoted in millions of votes. The candidates will choose 
their optimal location strategies to maximize the number of votes that they re-
ceive (and thus increase the chances of winning).21

Here is how the votes are allocated. When both candidates choose the same 
position (the five cells along the top-left to bottom-right diagonal of the table), 
each candidate gets exactly one-half of the votes; because all voters are equi-
distant from each candidate, all of them flip coins to decide their choices, and 
each candidate garners 45 million votes. When the two candidates choose dif-
ferent positions, the more-left candidate gets all the votes at or to the left of her 
position while the more-right candidate gets all the votes at or to the right of her 
position. In addition, each candidate gets the votes in central positions closer 
to her than to her rival, and the two of them split the votes from any voters in 
a central position equidistant between them. Thus, if Claudia locates herself 
at L while Dolores locates herself at FR, Claudia gets the 40 million votes at L, 
the 10 million at FL, and the 10 million at C (because C is closer to L than to 
FR). Dolores gets the 20 million votes at FR and the 10 million at R (because R is 
closer to FR than to L). The payoff is (60, 30). Similar calculations determine the  
outcomes in the rest of the table.

The table in Figure 15.8 is large, but the game can be solved very quickly. We 
begin with the now familiar search for dominant, or dominated, strategies for 
the two players. Immediately we see that for Claudia, FL is dominated by L and 
FR is dominated by R. For Dolores, too, her FL is dominated by L and FR by R. 
With these extreme strategies eliminated, for each candidate her R is dominated 

21 To keep the analysis simple, we ignore the complications created by the electoral college and sup-
pose that only the popular vote matters.
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FL L

DOLORES

FL 

L 

45, 45

80, 10

60, 30

40, 50

35, 55

10, 80

45, 45

40, 50

35, 55

30, 60

30, 60

50, 40

45, 45

30, 60

25, 65

50, 40

55, 35

60, 30

45, 45

20, 70

55, 35

60, 30

65, 25

70, 20

45, 45

C R FR

C 

FR 

R 

CLAUDIA 

Figure 15.8  payoff table for Candidates’ positioning game
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by C. With the two R strategies gone, C is dominated by L for each candidate. 
The only remaining cell in the table is (L, L); this is the Nash equilibrium.

We now note three important characteristics of the equilibrium in the  
candidate-location game. First, both candidates locate at the same position in 
equilibrium. This illustrates the principle of minimum differentiation, a gen-
eral result in all two-player games of locational competition, whether it be po-
litical platform choice by presidential candidates, hotdog-cart location choices 
by street vendors, or product feature choices by electronics manufacturing 
firms.22 When the persons who vote for or buy from you can be arranged on a  
well-defined spectrum of preferences, you do best by looking as much like your 
rival as possible. This explains a diverse collection of behaviors on the part of politi-
cal candidates and businesses. It may help you understand, for example, why there 
is never just one gas station at a heavily traveled intersection or why all brands of 
four-door sedans (or minivans or sport utility vehicles) seem to look the same even 
though every brand claims to be coming out continually with a “new” look.

Second and perhaps most crucial, both candidates locate at the position 
of the median voter in the population. In our example, with a total of 90 mil-
lion voters, the median voter is number 45 million from each end. The numbers 
within one location can be assigned arbitrarily, but the location of the median 
voter is clear; here, the median voter is located at the L position on the political 
spectrum. So that is where both candidates locate themselves, which is the re-
sult predicted by the median voter theorem.

Third, observe that the location of the median voter need not coincide with 
the geometric center of the spectrum. The two will coincide if the distribution 
of voters is symmetric, but the median voter can be to the left of the geometric 
center if the distribution is skewed to the left (as is true in Figure 15.7) and to the 
right if the distribution is skewed to the right. This helps explain why state po-
litical candidates in Massachusetts, for example, all tend to be more liberal than 
candidates for similar positions in Texas or South Carolina.

The median voter theorem can be expressed in different ways. One version 
states simply that the position of the median voter is the equilibrium-location  
position of the candidates in a two-candidate election. Another version says 
that the position that the median voter most prefers will be the Condorcet 
winner; this position will defeat every other position in a pairwise contest. For 
example, if M is this median position and L is any position to the left of M, 
then M will get all the votes of people who most prefer a position at or to the 
right of M, plus some to the left of M but closer to M than to L. Thus, M will 
get more than 50% of the votes. The two versions amount to the same thing 
because, in a two-candidate election, both seeking to win a majority will adopt 

22 Economists learn this result within the context of Hotelling’s model of spatial location. See Harold 
Hotelling, “Stability in Competition,” Economic Journal, vol. 39, no. 1 (March 1929), pp. 41–57.
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the Condorcet-winner position. These interpretations are identical. In addi-
tion, to guarantee that the result holds for a particular population of voters, 
the theorem (in either form) requires that each voter’s preferences be “rea-
sonable,” as suggested earlier. Reasonable here means “single peaked,” as in 
Black’s condition described in Section 3.A and Figure 15.4. Each voter has a 
unique, most-preferred position on the political spectrum, and her utility (or 
payoff ) decreases away from that position in either direction.23 In actual U.S. 
presidential elections, the theorem is borne out by the tendency for the main 
candidates to make very similar promises to the electorate.

B.  Continuous Political Spectrum

The median voter theorem can also be proved for a continuous distribution of po-
litical positions. Rather than having five, three, or any finite number of positions 
from which to choose, a continuous distribution assumes there are effectively an 
infinite number of political positions. These political positions are then associ-
ated with locations along the real number line between 0 and 1.24 Voters are still 
distributed along the political spectrum as before, but because the distribution is 
now continuous rather than discrete, we use a voter distribution function rather 
than a histogram to illustrate voter locations. Two common functions—the  
uniform distribution and the (symmetric) normal distribution—are illustrated 
in Figure 15.9.25 The area under each curve represents the total number of votes 

23 However, the distribution of voters’ ideal points along the political spectrum does not have to be 
single peaked, as indeed the histogram in Figure 15.7 is not—there are two peaks at L and FR.
24 This construction is the same one used in Chapters 11 and 12 for analyzing large populations of 
individual members.
25 We do not delve deeply into the mechanics underlying distribution theory or the integral calculus 
required to calculate the exact proportion of the voting population lying to the left or right of any 
particular position on the continuous political spectrum. Here we present only enough information 
to convince you that the median voter theorem continues to hold in the continuous case.
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0 0.5 1 x 

Voter 
mass 

Political 
position 

0 0.5 1 

(a) Uniform distribution
Voter 
mass 

Political 
position 

(b) Normal distribution

Figure 15.9  Continuous voter distributions
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available; at any given point along the interval from 0 to 1, such as x in Figure 
15.9a, the number of votes up to that point is determined by finding the area 
under the distribution function from 0 to x. It should be clear that the median 
voter in each of these distributions is located at the center of the spectrum, at po-
sition 0.5.

It is not feasible to construct a payoff table for our two candidates in the 
continuous-spectrum case; such tables must necessarily be finitely dimen-
sioned and thus cannot accommodate an infinite number of possible strategies 
for players. We can, however, solve the game by applying the same strategic logic 
that we used for the discrete (finite) case discussed in Section 5.A.

Consider the options of Claudia and Dolores as they contemplate the pos-
sible political positions open to them. Each knows that she must find her Nash 
equilibrium strategy—her best response to the equilibrium strategy of her 
rival. We can define a set of strategies that are best responses quite easily in 
this game, even though the complete set of possible strategies is impossible to 
delineate.

Suppose Dolores locates at a random position on the political spectrum, 
such as x in Figure 15.9a. Claudia can then calculate how the votes will be split 
for all possible positions that she might choose. If she chooses a position to the 
left of x, she gets all the votes to her left and half of the votes lying between her 
position and Dolores’s. If she locates to the right of x, she gets all the votes to 
her right and half of the votes lying between her position and x. Finally, if she, 
too, locates at x, she and Dolores split the votes 50–50. These three possibilities 
effectively summarize all of Claudia’s location choices, given that Dolores has 
chosen to locate at x.

But which of the response strategies just outlined is Claudia’s “best” re-
sponse? The answer depends on the location of x relative to the median voter. 
If x is to the right of the median, then Claudia knows that her best response 
will be to maximize the number of votes that she gains, which she can do by 
locating an infinitely small bit to the left of x.26 In that case, she effectively gets 
all the votes from 0 to x, and Dolores gets those from x to 1. When x is to the 
right of the median, as in Figure 15.9a, then the number of voters represented 
by the area under the distribution curve from 0 to x is by definition larger than 
the number of voters from x to 1, so Claudia would win the election. Similarly, 
if x is to the left of the median, Claudia’s best response will be to locate an  
infinitely small bit to the right of x and thus gain all the votes from x to 1. When 
x is exactly at the median, Claudia does best by also choosing to locate at x. 

26 Such a location, infinitesimally removed from x to the left, is feasible in the continuous case. In 
our discrete example, candidates had to locate at exactly the same position.
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The best-response strategies for Dolores are constructed exactly the same way 
and, given the location of her rival, are exactly the same as those described for 
Claudia. Graphically, these best-response curves lie just above and below the 
45 line up to the position of the median voter, at which point they lie exactly 
on the 45 line. (Claudia’s best response to Dolores’s location at that of the me-
dian voter is to locate in the same place; the same is true in reverse for Dolores.)  
Beyond the position of the median voter, the best-response curves switch sides 
of the 45 line.

We now have complete descriptions of the best-response strategies for 
both candidates. The Nash equilibrium occurs at the intersection of the  
best-response curves; this intersection lies at the position of the median voter. 
You can think this through intuitively by picking any starting location for one 
of the candidates and applying the best-response strategies over and over until 
each candidate is located at a position that represents her best response to the 
position chosen by her rival. If Dolores were contemplating locating at x in Fig-
ure 15.9a, Claudia would want to locate just to the left of x, but then Dolores 
would want to locate just to the left of that, and so on. Only when the two candi-
dates locate exactly at the median of the distribution (whether the distribution 
is uniform or normal or some other kind) do they find that their decisions are 
best responses to each other. Again, we see that the Nash equilibrium is for both 
candidates to locate at the position of the median voter.

More complex mathematics is needed to prove the continuous version of 
the median voter theorem to the satisfaction of a true mathematician. For our 
purposes, however, the discussion given here should convince you of the va-
lidity of the theorem in both its discrete and continuous forms. The most im-
portant limitation of the median voter theorem is that it applies when there 
is just one issue, or on a one-dimensional spectrum of political differences. If 
there are two or more dimensions—for example, if being conservative versus 
liberal on social issues does not coincide with being conservative versus liberal 
on economic issues—then the population is spread out in a two-dimensional 
“issue space” and the median voter theorem no longer holds. The preferences 
of every individual voter can be single peaked, in the sense that the individual 
voter has a most-preferred point and her payoff value drops away from this 
point in all directions, like the height going away from the peak of a hill. But we 
cannot identify a median voter in two dimensions, such that exactly the same 
number of voters have their most-preferred point to the one side of the median 
voter position as to the other side. In two dimensions, there is no unique sense 
of side, and the numbers of voters to the two sides can vary, depending on just 
how we define “side.”
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SUMMARy

Elections can be held with the use of a variety of different voting procedures that 
alter the order in which issues are considered or the manner in which votes are 
tallied. Voting procedures are classified as binary, plurative, or mixed methods. 
Binary methods include majority rule, as well as pairwise procedures such as 
the Condorcet method and the amendment procedure. Positional methods such 
as plurality rule and the Borda count, as well as approval voting, are plurative 
methods. And majority runoffs, instant runoffs, and proportional representation 
are mixed methods.

Voting paradoxes (such as the Condorcet, the agenda, and the reversal par-
adox) show how counterintuitive results can arise owing to difficulties associ-
ated with aggregating preferences or to small changes in the list of issues being 
considered. Another paradoxical result is that outcomes in any given election 
under a given set of voter preferences can change, depending on the voting pro-
cedure used. Certain principles for evaluating voting methods can be described, 
although Arrow’s impossibility theorem shows that no one system satisfies all of 
the criteria at the same time. Researchers in a broad range of fields have consid-
ered alternatives to the principles that Arrow identified.

Voters have scope for strategic behavior in the game that chooses the vot-
ing procedure or in an election itself through the misrepresentation of their own 
preferences. Voters may strategically misrepresent preferences to achieve their 
most-preferred or to avoid their least-preferred outcome. In the presence of im-
perfect information, voters may decide whether to vote strategically on the basis 
of their beliefs about others’ behavior and their knowledge of the distribution of 
preferences.

Candidates also may behave strategically in building a political platform. A 
general result known as the median voter theorem shows that in elections with 
only two candidates, both locate at the preference position of the median voter. 
This result holds when voters are distributed along the preference spectrum ei-
ther discretely or continuously.

KEy TERMS
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SOLVED EXERCISES

 S1. Consider a vote being taken by three roommates, A, B, and C, who share 
a triple dorm room. They are trying to decide which of three elective 
courses to take together this term. (Each roommate has a different major 
and is taking required courses in her major for the rest of her courses.) 
Their choices are Philosophy, Geology, and Sociology, and their prefer-
ences for the three courses are as shown here:

A CB

Philosophy

Philosophy

Philosophy

Geology

Geology

Geology

Sociology

Sociology

Sociology

The roommates have decided to have a two-round vote and will draw 
straws to determine who sets the agenda. Suppose A sets the agenda 
and wants the Philosophy course to be chosen. How should she set the 
agenda to achieve this outcome if she knows that everyone will vote 
truthfully in all rounds? What agenda should she use if she knows that 
they will all vote strategically?
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 S2. Suppose that voters 1 through 4 are being asked to consider three differ-
ent candidates—A, B, and C—in a Borda-count election. Their prefer-
ences are:

1 32 4

A BA C

B CB B

C AC A

Assume that voters will cast their votes truthfully (no strategic voting). 
Find a Borda weighting system—a number of points to be allotted to the 
first, second, and third preferences—in which candidate A wins.

 S3. Consider a group of 50 residents attending a town meeting in Massachu-
setts. They must choose one of three proposals for dealing with town gar-
bage. Proposal 1 asks the town to provide garbage collection as one of its 
services; Proposal 2 calls for the town to hire a private garbage collector 
to provide collection services; and Proposal 3 calls for residents to be re-
sponsible for their own garbage. There are three types of voters. The first 
type prefers Proposal 1 to Proposal 2 and Proposal 2 to Proposal 3; there 
are 20 of these voters. The second type prefers Proposal 2 to Proposal 3 
and Proposal 3 to Proposal 1; there are 15 of these voters. The third type 
prefers Proposal 3 to Proposal 1 and Proposal 1 to Proposal 2; there are 
15 of them.

 (a) Under a plurality voting system, which proposal wins?
 (b) Suppose voting proceeds with the use of a Borda count in which 

voters list the proposals, in order of preference, on their ballots. The 
proposal listed first (or at the top) on a ballot gets three points; the 
proposal listed second gets two points; and the proposal listed last 
gets one point. In this situation, with no strategic voting, how many 
points does each proposal gain? Which proposal wins?

 (c) What strategy can the second and third types of voters use to alter 
the outcome of the Borda-count vote in part (b) to one that both 
types prefer? If they use this strategy, how many points does each 
proposal get, and which wins?

 S4. During the Cuban missile crisis, serious differences of opinion arose 
within the ExComm group advising President John F. Kennedy, which we 
summarize here. There were three options: Soft (a blockade), Medium (a 
limited air strike), and Hard (a massive air strike or invasion). There were 
also three groups in ExComm. The civilian doves ranked the alternatives 
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Soft best, Medium next, and Hard last. The civilian hawks preferred Me-
dium best, Hard next, and Soft last. The military preferred Hard best, but 
they felt “so strongly about the dangers inherent in the limited strike that 
they would prefer taking no military action rather than to take that lim-
ited strike.” [Ernest R. May and Philip D. Zelikow, eds., The Kennedy Tapes: 
Inside the White House During the Cuban Missile Crisis (Cambridge, 
Mass.: Harvard University Press, 1997), p. 97.] In other words, they ranked 
Soft second and Medium last. Each group constituted about one-third of 
ExComm, and so any two of the groups would form a majority.

 (a) If the matter were to be decided by a majority vote in ExComm and 
the members voted sincerely, which alternative, if any, would win?

 (b) What outcome would arise if members voted strategically? What 
outcome would arise if one group had agenda-setting power? 
(Model your discussion in these two cases after the analysis found 
in Sections 2.B and 4.B.)

 S5. In his book A Mathematician Reads the Newspaper, John Allen Paulos gives 
the following caricature based on the 1992 Democratic presidential pri-
mary caucuses. There are five candidates: Jerry Brown, Bill Clinton, Tom 
Harkin, Bob Kerrey, and Paul Tsongas. There are 55 voters, with different 
preference orderings concerning the candidates. There are six different or-
derings, which we label I through VI. The preference orderings (1 for best 
to 5 for worst), along with the numbers of voters with each ordering, are 
shown in the following table (the candidates are identified by the first let-
ters of their last names)27:

27 John Allen Paulos, A Mathematician Reads the Newspaper (New York: Basic Books, 1995), pp. 104–106.

e x e r C i s e s   6 2 3

I 18 II 12

GROUPS AND THEIR SIZES

1 

2 

T 

K 

H 

B 

C 

C 

H 

K 

B 

T 

B 

C 

H 

K 

T 

K 

B 

H 

C 

T 

H 

C 

K 

B 

T 

H 

B 

K 

C 

T 

III 10 IV 9 V 4 VI 2

3 

5 

4 

RANKING 

 (a) First, suppose that all voters vote sincerely. Consider the outcomes 
of each of several different election rules. Show each of the follow-
ing outcomes: (i) Under the plurality method (the one with the most 
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first preferences), Tsongas wins. (ii) Under the runoff method (the 
top two first preferences go into a second round), Clinton wins. (iii) 
Under the elimination method (at each round, the one with the few-
est first preferences in that round is eliminated, and the rest go into 
the next round), Brown wins. (iv) Under the Borda-count method 
(5 points for first preference, 4 for second, and so on; the candidate 
with the most points wins), Kerrey wins. (v) Under the Condorcet 
method (pairwise comparisons), Harkin wins.

 (b) Suppose that you are a Brown, Kerrey, or Harkin supporter. Under 
the plurality method, you would get your worst outcome. Can you 
benefit by voting strategically? If so, how?

 (c) Are there opportunities for strategic voting under each of the other 
methods as well? If so, explain who benefits from voting strategi-
cally and how they can do so.

 S6. As mentioned in the chapter, some localities (such as San Francisco) 
have replaced runoff elections and even primaries with instant runoff 
voting to save time and money. Most jurisdictions have implemented 
a two-stage system in which if a candidate fails to receive a majority of 
votes in the first round, a second runoff election is held weeks later be-
tween the two candidates who earned the most votes. 

For instance, France employs a two-stage system for its presidential 
elections. No primaries are held. Instead, all candidates from all parties 
are on the ballot in the first round, which usually guarantees a second 
round, since it is very difficult for a single candidate to earn a majority 
of votes among such a large field. Although a runoff in the French presi-
dential election is always expected, it doesn’t mean that French elec-
tions are not without the occasional surprise. In 2002, the country was 
shocked when the right-wing candidate Jean-Marie Le Pen beat the so-
cialist Lionel Jospin to take second place and thus advance to the runoff 
election against the first-round winner (and incumbent) Jacques Chirac. 
It had been widely assumed that Jospin would take second, setting up a 
runoff between himself and Chirac.

Instant runoff voting can be explained in five steps:

 1. Voters rank all candidates according to their preferences.
 2. The votes are counted.
 3. If a candidate has earned a majority of the votes, that candidate is the 

winner. If not, go to step 4.
 4. Eliminate candidate(s) with the fewest votes. (Eliminate more than 

one candidate at the same time only if they tie for the fewest votes.) 
 5. Redistribute votes from eliminated candidates to the next-ranked 

choices on those ballots. Once this is done, return to step 2.

6 2 4    [ C h . 1 5 ]  s t r at e g y  a n d  v o t i n g
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 (a) Instant runoff voting is slowly gaining traction. It is used in a dozen 
cities in the United States and for state-wide judicial elections in 
North Carolina (as of 2013). Given the potential savings in money 
and time, it might be surprising that the institution isn’t more widely 
adopted. Why might some oppose instant runoff voting? (Hint: 
Which candidates, parties, and interests benefit from the two-stage 
system that is currently in place?) 

 (b) What other concerns or criticisms might be raised about instant 
runoff voting?

 S7. An election has three candidates and takes place under the plurality rule. 
There are numerous voters, spread along an ideological spectrum from 
left to right. Represent this spread by a horizontal straight line whose ex-
treme points are 0 (left) and 1 (right). Voters are uniformly distributed 
along this spectrum; so the number of voters in any segment of the line is 
proportional to the length of that segment. Thus, a third of the voters are 
in the segment from 0 to 13, a quarter in the segment from 12 to 34, 
and so on. Each voter votes for the candidate whose declared position is 
closest to the voter’s own position. The candidates have no ideological 
attachment and take up any position along the line, each seeking only to 
maximize her share of votes.

 (a) Suppose you are one of the three candidates. The leftmost of the 
other two is at point x, and the rightmost is at the point (1  y), where 
x  y , 1 (so the rightmost candidate is a distance y from 1). Show 
that your best response is to take up the following positions under the 
given conditions:

 (i) just slightly to the left of x if x . y and 3x  y . 1;
 (ii) just slightly to the right of (1  y) if y . x and x  3y . 1; and
 (iii) exactly halfway between the other candidates if 3x  y  , 1  

and x  3y , 1.
 (b) In a graph with x and y along the axes, show the areas (the combina-

tion of x and y values) where each of the response rules [(i) to (iii) in 
part (a)] is best for you.

 (c) From your analysis, what can you conclude about the Nash equilib-
rium of the game where the three candidates each choose positions?

UNSOLVED EXERCISES

 U1. Repeat Exercise S1 for the situation in which B sets the agenda and wants 
to ensure that Sociology wins.

 U2. Repeat Exercise S2 to find a Borda weighting system in which candidate 
B wins.

e x e r C i s e s   6 2 5
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 (a) Compare the Borda point scores of Leinhart and Peterson. By what 
margin of Borda points did Leinhart win?

 (b) It seems only fair that a point scheme should give a first-place vote 
at least as much weight as a second-place vote and a second-place 
vote at least as much weight as a third-place vote. That is, for a point 
scheme (x-y-z), we should have x $ y $ z. Given this “fairness” re-
striction, is there any point scheme under which Leinhart would 
have lost? If so, provide such a scheme. If not, explain why not.

 (c) Even though White had more first-place votes than Peterson, Peter-
son had a higher Borda-count total. If first-place votes were weighted 
enough, White’s edge in first-place votes could give him a higher 
Borda count. Assume that second-place votes are worth 2 points and  
third-place votes are worth 1 point, so that the point scheme is (x-2-
1). What is the lowest integer value of x such that White gets a higher 
Borda count than Peterson?

 (d) Suppose that the above vote data represent truthful voting. For sim-
plicity, let’s suppose that the election were a simple plurality vote in-
stead of a Borda count. Note that Leinhart and Bush are both from 
USC, whereas Peterson and White are both from Oklahoma. Sup-
pose that, due to Oklahoma loyalty, those voters who prefer White 
all have Peterson as their second choice. If these voters were to vote 
strategically in a plurality election, could they change the outcome 
of the election? Explain.

Player 2nd Place1st Place 3rd Place

Leinhart (USC) 211267 102

Peterson (Oklahoma) 180154 175

White (Oklahoma) 149171 146

Smith (Utah) 11298 117

Bush (USC) 80118 83
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 U3. Every year, college football’s Heisman Trophy is awarded by means of 
a Borda-count voting system. Each voter submits first-, second-, and  
third-place votes, worth 3 points, 2 points, and 1 point, respectively. 
Thus, the Borda-count point scheme used may be called (3-2-1), where 
the first digit is the point value of a first-place vote, the second digit de-
notes the value of a second-place vote, and the third digit gives the point 
value of a third-place vote. In 2004, the vote totals for the top five under 
the Borda system were as follows: 
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 (e) Similarly, suppose that due to USC loyalty, those voters who pre-
fer Bush all have Leinhart as their second choice. If all four voting 
groups (Leinhart, Peterson, White, Bush) were to vote strategically 
in a plurality election, who would be the winner of the Heisman 
Trophy? 

 (f) In 2004, there were 923 Heisman voters. Under the actual (3-2-1) 
system, what is the minimum integer number of first-place votes 
that it would have taken to guarantee victory (that is, without the 
help of any second- or third-place votes)? Note that a player’s name 
may appear on a ballot only once.

 U4. Olympic skaters complete two programs in their competition, one short 
and one long. In each program, the skaters are scored and then ranked 
by a panel of nine judges. The skaters’ positions in the rankings are used 
to determine their final scores. A skater’s ranking depends on the num-
ber of judges placing her first (or second or third); the skater judged to 
be best by the most judges is ranked number one, and so on. In the cal-
culation of a skater’s final score, the short program gets half the weight 
of the long program. That is, Final score  0.5 (Rank in short program) 
 Rank in long program. The skater with the lowest final score wins the 
gold medal. In the event of a tie, the skater judged best in the long pro-
gram by the most judges takes the gold. In the 2002 women’s individual 
figure-skating competition in Salt Lake City, Michelle Kwan was in first 
place after the short program. She was followed by Irina Slutskaya, Sasha 
Cohen, and Sarah Hughes, who were in second, third, and fourth places, 
respectively. In the long program, the judges’ cards for these four skaters 
were as follows:

1 2 3 4 5 6 7 8 9

11.3 11.5 11.7 11.5 11.4 11.5 11.4 11.5 11.4 

2 3 2 2 2 3 3 2 3 

11.3 11.7 11.8 11.6 11.4 11.7 11.5 11.4 11.5 

3 1 1 1 4 1 2 3 2 

11.0 11.6 11.5 11.4 11.4 11.4 11.3 11.3 11.3 

4 2 4 3 3 4 4 4 4 

11.4 11.5 11.6 11.4 11.6 11.6 11.3 11.6 11.6 

1 4 3 4 1 2 1 1 1 

JUDGE NUMBER

Points 

Rank 

Points 

Rank 

Points 

Rank 

Points 

Rank 

SLUTSKAYA 

COHEN 

HUGHES 

KWAN 
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 (a) At the Olympics, Slutskaya skated last of the top skaters. Use 
the information from the judges’ cards to determine the judges’  
long-program ranks for Kwan, Cohen, and Hughes before Sluts-
kaya skated. Then, using the standings already given for the short 
program in conjunction with your calculated ranks for the long  
program, determine the final scores and standings among these 
three skaters before Slutskaya skated. (Note that Kwan’s rank in the 
short program was 1, and so her partial score after the short pro-
gram is 0.5.)

 (b) Given your answer to part (a), what would have been the final out-
come of the competition if the judges had ranked Slutskaya’s long 
program above all three of the others?

 (c) Use the judges’ cards to determine the actual final scores for all four 
skaters after Slutskaya skated. Who won each medal?

 (d) What important principle, of those identified by Arrow, does the 
Olympic figure-skating scoring system violate? Explain.

 U5. The 2008 presidential nomination season saw 21 Republican primaries 
and caucuses on Super Tuesday—February 5, 2008. By that day—only a 
month after the Iowa caucus that began the process—more than half of 
the Republican contenders had dropped out of the race, leaving only four: 
John McCain, Mitt Romney, Mike Huckabee, and Ron Paul. McCain, Rom-
ney, and Huckabee had each previously won at least one state. McCain 
had beaten Romney in Florida the week before the big day, and at that 
point it looked like only the two of them stood a realistic chance of wining 
the nomination. In this primary season, as is typical for the Republican 
party, nearly every GOP contest (whether primary or caucus) was winner-
take-all, so winning a given state would earn a candidate all of the del-
egates allotted to that state by the Republican National Committee. 

The West Virginia caucus was the first contest to reach a conclusion 
on Super Tuesday, as the caucus took place in the afternoon, it was brief, 
and the state is in the eastern time zone. News of the result was available 
hours before the close of polls in many of the states voting that day. 

The following problem is based on the results of that West Virginia 
caucus. As we might expect, the caucusers did not all share the same 
preferences over the candidates. Some favored McCain, whereas others 
liked Romney or Huckabee. The voters also certainly had varied prefer-
ences about whom they wanted to win if their favorite candidate did not. 
Simplifying substantially from reality (but based on the actual voting), 
assume that there were seven types of West Virginia caucus goers that 

day, whose prevalence and preferences were as follows: 
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At first, no one knew the distribution of preferences of those in atten-
dance at the caucus, so everyone voted truthfully. Thus, Romney won a 
plurality of the votes in the first round with 41%. 

After each round of this caucus, if no candidate wins a majority, the 
candidate with the least number of votes is dropped from consideration, 
and his or her supporters vote for one of the remaining candidates in the 
following rounds. 

 (a) What would the results of the second round have been under truth-
ful (nonstrategic) voting for the remaining three candidates?

 (b) If West Virginia had held pairwise votes among the four candidates, 
which one would have been the Condorcet winner with truthful 
voting?

 (c) In reality, the results of the second round of the caucus were:

 Huckabee: 52%
 Romney: 47%
 McCain: 1%

Given the preferences of the McCain voters, why might this have 
happened? (Hint: How would the outcome have been different if 
West Virginia had voted last on Super Tuesday?) 

 (d) After the fact, Romney’s campaign cried foul and accused the McCain 
and Huckabee supporters of making a backroom deal (see Susan 
Davis, “Romney Cries Foul in W. Va. Loss,” Wall Street Journal, Feb-
ruary 5, 2008. Available at http://blogs.wsj.com/washwire/2008/02/ 
05/huckabee-wins-first-super-tuesday-contest/?mod=WSJBlog). 
Should Romney’s campaign have suspected collusion between the 
McCain and Huckabee camps in this case? Explain why or why not. 

II (28%)I (16%) III (13%)

1st RomneyMcCain Romney

2nd McCainRomney Huckabee

3rd HuckabeeHuckabee McCain

4th PaulPaul Paul

IV (21%)

Huckabee

Romney

McCain

Paul

V (12%)

Huckabee

McCain

Romney

Paul

VI (6%)

Paul

Romney

Huckabee

McCain

VII (4%)

Paul

Huckabee

Romney

McCain
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BrownAnderson Clark

1st VV W

2nd XW V

3rd WX Y

4th Y X

Davis

W

X

V

Y

Evans

X

Y

Z

V

Foster

Y

X

Z

W

García

Z

Y

X

WY

5th ZZ Z Z W V V

Which—if any—of the five voters have an incentive to vote strategi-
cally? If so, who and why? If not, explain why not.

 (b) Consider the following table, which gives the IRV ballots of a small 
town of seven citizens voting on five policy proposals put forward 
by the mayor: 

6 3 0    [ C h . 1 5 ]  s t r at e g y  a n d  v o t i n g

BernardAna Cindy

1st JackJack Kate

2nd KateKate Locke

3rd LockeLocke Jack

Desmond

Locke

Kate

Jack

Elizabeth

Locke

Jack

Kate

 U6. Return to the discussion of instant runoff voting (IRV) in Exercise S6.
 (a) Consider the following IRV ballots of five voters:

Assuming that all candidates (or policies) that tie for the fewest 
votes are eliminated at the same time, under what conditions is an 
eventual majority winner guaranteed? Put another way, under what 
conditions might there not be an unambiguous majority winner? 
(Hint: How important is it for Evans, Foster, and García to fill out 
their ballots completely?) How will these conditions change if Harris 
moves into town and votes?

 U7. Recall the three-member council considering three alternative welfare 
policies in Section 4.C. There, three councillors (Left, Center, and Right) 
considered policies A and D in a first-round vote, with the winner fac-
ing policy G in a second-round election. But no one knows for sure ex-
actly how many councillors have each set of possible preferences. The 
possible preference orderings are shown in Figure 15.1. Each councillor 
knows her own type, and she knows the probabilities of observing each 
type of voter, pL, pC, and pR (with pL  pC  pR  1). The behavior of the 
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Center-type voters in the first-round election is the only unknown in this 
situation and will depend on the probabilities that the various prefer-
ence types occur. Suppose here that a Center-type voter believes (in con-
trast with the case considered in the chapter) that other Center types will 
vote strategically; suppose further that the Center-type’s payoffs are as in 
Section 4.C: 1 if A wins, 0 if G wins, and 0 , u , 1 if D wins.

 (a) Under what configuration of the other two votes does the Center-
type voter’s first-round vote matter to the outcome of the election? 
Given her assumption about the behavior of other Center-type vot-
ers, how would she identify the source of the first-round votes?

 (b) Following the analysis in Section 4.C, determine the expected payoff 
to the Center type when she votes truthfully. Compare this with her 
expected payoff when she votes strategically. What is the condition 
under which the Center type votes strategically?
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■

Bidding Strategy  

and Auction Design

A uctions as mechanisms for selling goods and services date back to ancient 
Greece and Rome, where slaves and wives were commonly bought and 
sold at well-known public auction sites. Although the auction waned as 
a sales mechanism for several centuries after the fall of the Roman Em-

pire, it regained popularity in eighteenth-century Britain and has been a com-
mon, if not ubiquitous, method of commerce since that time. Many thousands 
of people now make purchases at online auctions every day, and some may buy 
other items by way of mechanisms that are not even recognized as auctions.

Despite this long history, the first formal analysis of auctions dates only to 
1961 and the path-breaking work of Nobel Prize winner William Vickrey. In the 
decades that followed, economists have devoted considerable energy to devel-
oping a better understanding of sales by auction, from the standpoint of both 
buyers (bidding strategy) and sellers (auction design). We cover both topics and 
provide a primer on auction rules and environments in this chapter. 

Technically, the term “auction” refers to any transaction where the final 
price of the object for sale is arrived at by way of competitive bidding. Many dif-
ferent types of transactions fit this description. For example, the historic Filene’s 
Basement department store in Boston used a clever pricing strategy to keep cus-
tomers coming back for more: it reduced the prices on items remaining on the 
racks successively each week until either the goods were purchased or the price 
got so low that it donated the items to charity. Shoppers loved it. Little did they 
realize that they were participating in what is known as a descending, or Dutch, 
auction—one of the types of auctions described in detail in this chapter.

1616
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Even if you do not personally participate in many auctions, your life is 
greatly influenced by them. Since 1994, the Federal Communications Commis-
sion (FCC) has auctioned off large parts of the electromagnetic broadcasting 
spectrum in more than 75 different auctions. These auctions have raised ap-
proximately $80 billion in government revenues. Because these revenues have 
made significant contributions to the federal budget, they have affected impor-
tant macroeconomic magnitudes, such as interest rates. International variables 
also have been affected not only by the U.S. spectrum auctions, but also by simi-
lar auctions in at least six European countries and in Australia and New Zealand. 
Understanding how auctions work will help you understand these important 
events and their implications.

From a strategic perspective, auctions have several characteristics of inter-
est. Most crucial is the existence of asymmetric information between seller and 
bidders, as well as among bidders. Thus, signaling and screening can be impor-
tant components of strategy for both bidders and sellers. In addition, optimal 
strategies for both bidders and sellers will depend on their levels of aversion to 
risk. We will also see that under some specific circumstances, expected payoffs 
to the seller as well as to the winning bidder are the same across auction types.
The formal theory of auctions relies on advanced calculus to derive its results, 
but we eschew most of this difficult mathematics in favor of more intuitive de-
scriptions of optimal behavior and strategy choice.1

1 T YPES OF AUCTIONS

Auctions differ in the methods used for the submission of bids and for the determi-
nation of the final price paid by the winner. These aspects of an auction, which are 
set in advance by the seller, are known as auction rules. In addition, auctions can be 
classified according to the type of object being auctioned and how it is valued; this 
determines the auction environment. Here we categorize the various auction rules 
and environments, describing their characteristics and mechanics. 

A.  Auction Rules

The seller generally determines the rules that will govern the auction. She has to 
do this with only limited knowledge of the bidders’ willingness to pay. Therefore, 
the seller is in much the same position as the firm that tried to practice price 
discrimination or the government procurement officer that tried to find out the 
contractors’ cost in Chapter 13. In other words, in choosing the rules, the seller 

1 A reference list of sources for additional information on the theory and practice of auctions can be 
found in the final section of the chapter.
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is designing the mechanism of the auction. This mechanism-design approach 
can be developed into a theory of optimal auctions and also tell us when two 
or more such mechanisms will be equivalent. We must leave the general theory 
for more advanced texts; here we will study and compare a few specific mecha-
nisms that are most frequently and prominently used in reality.2 

The four major categories of auction rules can be divided into two groups. 
The first group is known as open outcry. Under this type of auction rule,  
bidders call out or otherwise make their bids in public. All bidders are able to 
observe bids as they are made. This type perhaps best fits the popular vision of 
the way in which auctions work—an image that includes feverish bidders and 
an auctioneer. But open outcry auctions can be organized in two ways. Only one 
of them would ever demonstrate “feverish” bidding.

The ascending, or English, version of an open-outcry auction conforms 
best to this popular impression of auctions. Ascending auctions are the norm 
at English auction houses such as Christie’s and Sotheby’s, from which they take 
their alternate name. The auction houses have a conventional auctioneer who 
starts at a low price and calls out successively higher prices for an item, wait-
ing to receive a bid at each price before going on. When no further bids can be 
obtained, the item goes to the highest bidder. Thus, any number of bidders can 
take part in English auctions, although only the top bidder gains the item up for 
sale. And the bidding process may not literally entail the actual outcry of bids, 
because the mere nod of a head or the flick of a wrist is common bidding behav-
ior in such auctions. Most Internet auction sites now run what are essentially 
ascending auctions in virtual, rather than real, time.

The other type of open outcry auction is the Dutch, or descending, auction. 
Dutch auctions, which get their name from the way in which tulips and other 
flowers are auctioned in the Netherlands, work in the opposite direction from 
that of English auctions. The auctioneer starts at an extremely high price and 
calls out successively lower prices until one of the assembled potential bidders  
accepts the price, makes a bid, and takes the item. Because of the desire or need 
for speed, Dutch flower auctions, as well as auctions for other agricultural or 
perishable goods (such as the daily auction at the Sydney Fish Market), use a 
“clock” that ticks down (counterclockwise) to ever lower prices until one bidder 
“stops the clock” and collects her merchandise. In many cases, the auction clock 
displays considerable information about the lot of goods currently for sale in 
addition to the falling price of those goods. And unlike in the English auction, 

2 Roger Myerson’s paper “Optimal Auction Design,” Mathematics of Operations Research, vol. 6, no. 1  
(February 1981), pp. 58–73, was a pioneering contribution to the general theory of auctions and an 
important part of the work that won him the Nobel Prize in economics in 2007. Paul Klemperer, 
Auctions: Theory and Practice (Princeton: Princeton University Press, 2004), is an excellent modern 
treatment of the theory.
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there is no feverish bidding in a Dutch auction, because only the one person 
who “stops the clock” takes any action.

The second group of auction rules requires sales to occur by sealed bid. In 
these auctions, bidding is done privately and bidders cannot observe any of the 
bids made by others; in many cases, only the winning bid is announced. Bidders 
in such auctions, as in Dutch auctions, have only one opportunity to bid. (Techni-
cally, you could submit multiple bids, but only the highest one would be relevant 
to the auction outcome.) Sealed-bid auctions have no need for an auctioneer. 
They require only an overseer who opens the bids and determines the winner.

Within sealed-bid auctions, there are two rules for determining the price 
paid by the high bidder. In a first-price, sealed-bid auction, the highest bidder 
wins the item and pays a price equal to her bid. In a second-price, sealed-bid 
auction, the highest bidder wins the item but pays a price equal to the bid of 
the second-highest bidder. A second-price rule can be extremely useful for elic-
iting truthful bids, as we will see in Section 4. Such an auction is often termed a  
Vickrey auction after the Nobel-prize-winning economist who first noted 
this particular characteristic. We will also see that the sealed-bid auctions are 
each similar, in regard to bidding strategy and expected payoffs, to one of the 
open-outcry auctions; first-price, sealed-bid auctions are similar to Dutch auc-
tions, and second-price, sealed-bid auctions are similar to English auctions.

Other, less common, configurations also can be used to sell goods at auc-
tion. For example, you could set up an auction in which the highest bidder wins 
but the top two bidders pay their bids or one in which the high bidder wins 
but all bidders pay their bids, a procedure discussed in Section 5. We do not at-
tempt to consider all possible combinations here. Rather, we analyze several of 
the most common auction schemes by using examples that bring out important 
strategic concepts.

B.  Auction Environments

Finally, there are a number of ways in which bidders may value an item up for 
auction. The main distinction in such auction environments is based on the 
difference between common- and private-value objects. In a common-value, 
or objective-value, auction, the value of the object is the same for all the bid-
ders, but each bidder generally knows only an imprecise estimate of it. Bidders 
may have some sense of the distribution of possible values, but each must form 
her own estimate before bidding. For example, an oil-drilling tract has a given 
amount of oil that should produce the same revenue for all companies, but 
each company has only its own expert’s estimate of the amount of oil contained 
under the tract. Similarly, each bond trader has only an estimate of the future 
course of interest rates. In such auctions, signaling and screening can play an 
important role. 
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In a common-value auction, each bidder should be aware of the fact that 
other bidders possess some (however sketchy) information about an object’s 
value, and she should attempt to infer the contents of that information from the 
actions of rival bidders. In addition, she should be aware of how her own ac-
tions might signal her private information to those rival bidders. When bidders’ 
estimates of an object’s value are influenced by their beliefs about other bidders’ 
estimates, we have an environment in which bids are said to be correlated with 
each other. This situation has implications for both buyers and sellers as we will 
see later in this chapter.

In a private-value, or subjective-value, auction, bidders each determine 
their own individual value for an object. In this case, bidders place different 
values on an object. For example, a gown worn by Princess Diana or a necklace 
worn by Jacqueline Bouvier Kennedy Onassis may have sentimental value to 
some bidders. Bidders know their own private valuations in such auction envi-
ronments but do not know each other’s valuations of an object. Similarly, the 
seller does not know any of the bidders’ valuations. Bidders and sellers may 
each be able to formulate rough estimates of others’ valuations and, as above, 
can use signals and screens to attempt to improve their final outcomes. The in-
formation problem is relevant, then, not only to bidding strategies, but also to 
the seller’s strategy in designing the form of auction to identify the highest valu-
ation and to extract the best price.

2 THE WINNER’S CURSE

A standard but often ignored outcome arises in common-value auctions. Recall 
that such auctions entail the sale of an object whose value is fixed and identical 
for all bidders, although each bidder can only estimate it. The winner’s curse is 
a warning to bidders that if they win the object in the auction, they are likely to 
have paid more than it is worth.

Suppose you are a corporate raider bidding for Targetco. Your experts have 
studied this company and produced estimates that, in the hands of the current 
management, it is worth somewhere between 0 and $10 billion, all values in this 
range being equally likely. The current management knows the precise figure, 
but of course it is not telling you. You believe that whatever Targetco is worth 
under existing management, it will be worth 50% more under your control. What 
should you bid?

You might be inclined to think that, on average, Targetco is worth $5 billion 
under existing management and thus $7.5 billion, on average, under yours. If 
so, then a bid somewhere between $5 billion and $7.5 billion should be profit-
able. But such a bidding strategy reckons without the response of the existing 
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management to your bid. If Targetco is actually worth more than your bid, the 
current owners are not going to accept the bid. You are going to get the company 
only if its true worth is toward the lower end of the range.

Suppose you bid amount b. Your bid will be accepted and you will take over 
the management of Targetco if it is worth somewhere between 0 and b under 
the current management; on average, you can expect the company to be cur-
rently worth b2 if your bid is accepted. In your hands, the average worth will be 
50% more than the current worth, or (1.5)(b2)  0.75b. Because this value is al-
ways less than b, you would win the takeover battle only when it was not worth  
winning! Many raiders seem to have discovered this fact too late.

This result is not unlike that faced by the purchaser of a used car, which we 
discussed in Chapter 8. The theory of adverse selection in markets with asym-
metric information is directly applicable to the common-value auction de-
scribed here. Just as the average value of a used car will always fall below the 
price attached to the “good” cars, so will the average worth of Targetco in your 
hands always fall below your bid. 

But corporate raiders, often engaged with target firms in one-on-one nego-
tiations resembling auctions with only one bidder, are not the only ones affected 
by the winner’s curse. Similar problems arise when you are competing with 
other bidders in a common-value auction and all of you have separate estimates 
for the object’s value.

Consider a lease for the oil- or gas-drilling rights on a tract of land (or sea).3 
At the auction for this lease, you win only if your rivals make estimates of the 
value of the lease that are lower than your estimate. You should recognize this 
fact and try to learn from it.

Suppose the true value of the lease, unknown to any of the bidders, is $1 bil-
lion. (In this case, the seller probably does not know the true value of the tract ei-
ther.) Suppose there are 10 oil companies in the bidding. Each company’s experts  
estimate the value of the tract with an error of $100 million, all numbers in this 
range being equally likely. If all 10 of the estimates could be pooled, their arith-
metic average would be an unbiased and much more accurate indicator of the 
true value than any single estimate. But when each bidder sees only one esti-
mate, the largest of these estimates is biased: on average, it will be $1.08 billion, 
right near the upper end of the range.4 Thus, the winning company is likely to 
pay too much, unless it recognizes the problem and adjusts its bid downward 
to compensate for this bias. The exact calculation required to determine how 

3 For example, the United States auctions leases for offshore oil-drilling rights, including rights in 
the Gulf of Mexico and off the coast of Alaska. The state of Pennsylvania auctioned leases for natural 
gas–drilling rights on almost a quarter of a million acres of state forest land in 2002; this was also the 
first online, real-time, anonymous auction.
4 The 10 estimates will, on average, range from $0.9 billion to $1.1 billion ($100 million on either side 
of $1 billion). The low and high estimates will, on average, be at the extremes of the distribution.
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far to shade down your bid without losing the auction is difficult, however, 
because you must also recognize that all the other bidders will be making the 
same adjustment.

We do not pursue the advanced mathematics required to create an optimal 
bidding strategy in the common-value auction. However, we can provide you 
with some general advice. If you are bidding on an item, the question “Would I 
be willing to purchase the lease for $1.08 billion, given what I know before sub-
mitting my bid?” is very different from the question “Would I still be willing to 
purchase the lease for $1.08 billion, given what I know before submitting my bid 
and given the knowledge that I will be able to purchase the lease only if no one 
else is willing to bid $1.08 billion for it?”5 Even in a sealed-bid auction, it is the 
second question that reveals correct strategic thinking, because you win with 
any given bid only when all others bid less—only when all other bidders have a 
lower estimate of the value of the object than you do.

If you do not take the winner’s curse into account in your bidding behav-
ior, you should expect to lose substantial amounts, as indicated by the numeri-
cal calculations performed above for bidding on the hypothetical Targetco. How 
real is this danger in practice? Richard Thaler has marshaled a great deal of evi-
dence to show that the danger is very real indeed.6

The simplest experiment to test the winner’s curse is to auction a jar of pen-
nies. The prize is objective, but each bidder forms a subjective estimate of how 
many pennies there are in the jar and therefore of the size of the prize; this ex-
periment is a pure example of a common-value auction. Most teachers have con-
ducted such experiments with students and found significant overbidding. In a 
similar but related experiment, M.B.A. students were asked to bid for a hypothet-
ical company instead of a penny jar. The game was repeated, with feedback after 
each round on the true value of the company. Only 5 of 69 students learned to 
bid less over time; the average bid actually went up in the later rounds.

Observations of reality confirm these findings. There is evidence that win-
ners of oil- and gas-drilling leases at auctions take substantial losses on their 
leases. Baseball players who as free agents went to new teams were found to be 
overpaid in comparison with those who re-signed with their old teams.

We repeat: The precise calculations that show how much you should shade 
down your bidding to take into account the winner’s curse are beyond the 
scope of this text; the articles cited in Section 7 contain the necessary mathe-
matical analysis. Here we merely wish to point out the problem and emphasize 
the need for caution. When your willingness to pay depends on your expected 
ability to make a profit from your purchase or on the expected resale value of 
the item, be wary.

5 See Steven Landsburg, The Armchair Economist (New York: Free Press, 1993), p. 175.
6 Richard Thaler, “Anomalies: The Winner’s Curse,” Journal of Economic Perspectives, vol. 2, no. 1 
(Winter 1988), pp. 191–201.
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This analysis shows the importance of the prescriptive role of game theory. 
From observational and experimental evidence, we know that many people fall 
prey to the winner’s curse. By doing so, they lose a lot of money. Learning the ba-
sics of game theory would help them anticipate the winner’s curse and prevent 
attendant losses.

3 BIDDING STRATEGIES

We turn now to private-value auctions and a discussion of optimal bidding 
strategies. Suppose you are interested in purchasing a particular lot of Chateau 
Margaux 1952 Bordeaux wine. Consider some of the different possible auction 
procedures that could be used to sell the wine.

A.  The English Auction

Suppose first that you are participating in a standard English auction. Your 
optimal bidding strategy is straightforward, given that you know your valua-
tion V. Start at any step of the bidding process. If the last bid made by a rival  
bidder—call it r—is at or above V, you are certainly not willing to bid higher; 
so you need not concern yourself with any further bids. Only if the last bid is 
still below V do you bid at all. In that case, you can add a penny (or the small-
est increment allowed by the auction house) and bid r plus one cent. If the bid-
ding ends there, you get the wine for r (or virtually r), and you make an effective 
profit of V  r. If the bidding continues, you repeat the process, substituting the 
value of the new last bid for r. In this type of auction, the high bidder gets the 
wine for (virtually) the valuation of the second-highest bidder. How close the 
final price is to the second-highest valuation will be determined by the mini-
mum bid increment defined in the auction rules.

B.  First-Price, Sealed-Bid, and Dutch Auctions: The Incentive to Shade

Now suppose the wine auction is first price, sealed bid, and you suspect that you 
are a very high value bidder. You need to decide whether to bid V or something 
other than V. Should you put in a bid equal to the full value V that you place on 
the object?

Remember that the high bidder in this auction will be required to pay her 
bid. In that case, you should not in fact bid V. Such a bid would be sure to give 
you zero profit, and you could do better by reducing your bid somewhat. If you 
bid a little less than V, you run the risk of losing the object should a rival bidder 
make a bid above yours but below V. But as long as you do not bid so low that 
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this outcome is guaranteed, you have a positive probability of making a positive 
profit. Your optimal bidding strategy entails shading your bid. Calculus would 
be required to describe the actual strategy required here, but an intuitive under-
standing of the result is simple. An increase in shading (a lowering of your bid 
from V) provides both an advantage and a disadvantage to you; it increases your 
profit margin if you obtain the wine, but it also lowers your chances of being 
the high bidder and therefore of actually obtaining the wine. Your bid is optimal 
when the last bit of shading just balances these two effects.

What about a Dutch auction? Your bidding strategy in this case is similar to 
that for the first-price, sealed-bid auction. Consider your bidding possibilities. 
When the price called out by the auctioneer is above V, you choose not to bid. 
If no one has bid by the time the price gets down to V, you may choose to do 
so. But again, as in the sealed-bid case, you have two options. You can bid now 
and get zero profit or wait for the price to drop lower. Waiting a bit longer will 
increase the profit that you take from the sale, but it also increases your risk of 
losing the wine to a rival bidder. Thus, shading is in your interest here as well, 
and the precise amount of shading depends on the same cost-benefit analysis 
described in the preceding paragraph.

C.  Second-Price, Sealed-Bid Auctions: Vickrey’s Truth Serum

Finally, there is the second-price, sealed-bid auction. In that auction, the cost-
benefit analysis regarding shading is different from that in the preceding three 
types of auctions. This result is due to the fact that the advantage gained from 
shading, the increase in your profit margin, is zero in this auction. You do not 
improve your profit by shading your bid, because your profit is determined by 
the second-highest bid, not your own.

From the seller’s perspective, this result is encouraging. All else being equal, 
sellers would prefer bids that were not shaded downward. They are thus faced 
with a problem in mechanism design in which they want to induce information 
revelation —induce bidders to reveal their true valuations with their bids.

William Vickrey showed that truthful revelation of valuations from bidders 
would arise if the seller of a private-value object used a modified version of 
the standard, first-price, sealed-bid scheme; his suggestion was to modify the 
sealed-bid auction so that it more closely resembles its open-outcry counter-
part.7 That is, the highest bidder should get the object for a price equal to the 
second-highest bid—a second-price, sealed-bid auction. Vickrey showed that, 
with these rules, every bidder has a dominant bidding strategy to bid her true 
valuation. Thus, we facetiously dub it Vickrey’s truth serum.

7 Vickrey was one of the most original minds in economics in the past four decades. In 1996, he 
won the Nobel Prize for his work on mechanism design in auctions and truth-revealing procedures. 
Sadly, he died just 3 days after the prize was announced.
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However, we saw in Chapter 13 that there is usually a cost to using a mecha-
nism that extracts information. Auctions are no exception. Buyers reveal the truth 
about their valuations in an auction using Vickrey’s scheme only because it gives 
them some profit from doing so. The second-price, sealed-bid auction mecha-
nism reduces the profit for the seller, just as the shading of bids does in a first-price  
auction, and just as the information-revelation mechanisms we studied in Chap-
ter 13 did for the principals in those cases. The relative merit of the two procedures 
from the seller’s point of view therefore depends on which one entails a greater re-
duction in her profit. We consider this matter later in Section 5; but first we explain 
how Vickrey’s scheme works.

Suppose you are an antique-china collector, and you have discovered that 
a local estate auction will be selling off a nineteenth-century Meissen “Blue 
Onion” tea set in a sealed-bid, second-price auction. As someone experienced 
with vintage china but lacking this set for your collection, you value it at $3,000, 
but you do not know the valuations of the other bidders. If they are inexperi-
enced, they may not realize the considerable value of the set. If they have sen-
timental attachments to Meissen or the “Blue Onion” pattern, they may value it 
more highly than the value that you have calculated.

The rules of the auction allow you to bid any real-dollar value for the tea set. 
We will call your bid b and consider all of its possible values. Because you are not 
constrained to a small, specific set of bids, we cannot draw a finite payoff matrix 
for this bidding game, but we can logically deduce the optimal bid.

The success of your bid will obviously depend on the bids submitted by oth-

ers interested in the tea set, because you need to consider whether your bid can 
win. The outcome thus depends on all rival bids, but only the largest bid among 
them will affect your outcome. We call this largest rival bid r and disregard all 
bids below r.

What is your optimal value of b? We will look at bids both above and below 
$3,000 to determine whether any option other than exactly $3,000 can yield you 
a better outcome than bidding your true valuation.

We start with b . 3,000. There are three cases to consider. First, if your 
rival bids less than $3,000 (so r , 3,000), then you get the tea set at the price r. 
Your profit, which depends only on what you pay relative to your true valua-
tion, is (3,000  r), which is what it would have been had you simply bid $3,000.  
Second, if your rival’s bid falls between your actual bid and your true valuation 
(so 3,000 , r , b), then you are forced to take the tea set for more than it is 
worth to you. Here you would have done better to bid $3,000; you would not 
have gotten the tea set, but you would not have given up the (r  3,000) in lost 
profit either. Third, your rival bids even more than you do (so b , r). You still 
do not get the tea set, but you would not have gotten it even had you bid your 
true valuation. Putting together the reasoning of the three cases, we see that 
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bidding your true valuation is never worse, and sometimes better, than bidding  
something higher.

What about the possibility of shading your bid slightly and bidding b , 
3,000? Again, there are three situations. First, if your rival’s bid is lower than 
yours (so r , b), then you are the high bidder, and you get the tea set for r. Here 
you could have gotten the same result by bidding $3,000. Second, if your rival’s 
bid falls between 3,000 and your actual bid (so b , r , 3,000), your rival gets 
the tea set. If you had bid $3,000 in this case, you would have gotten the tea set, 
paid r, and still made a profit of (3,000  r). Third, your rival’s bid could have 
been higher than $3,000 (so 3,000 , r). Again, you do not get the tea set but, if 
you had bid $3,000, you still would not have gotten it, so there would have been 
no harm in doing so. Again, we see that bidding your true valuation, then, is no 
worse, and sometimes better, than bidding something lower.

If truthful bidding is never worse and sometimes better than bidding either 
above or below your true valuation, then you do best to bid truthfully. That is, no 
matter what your rival bids, it is always in your best interest to be truthful. Put 
another way, bidding your true valuation is your dominant strategy whether you 
are allowed discrete or continuous bids.

Vickrey’s remarkable result that truthful bidding is a dominant strategy in  
second-price, sealed-bid auctions has many other applications. For example, if 
each member of a group is asked what she would be willing to pay for a public proj-
ect that will benefit the whole group, each has an incentive to understate her own 
contribution—to become a “free rider” on the contributions of the rest. We have 
already seen examples of such effects in the collective-action games of Chapter 11.  
A variant of the Vickrey scheme can elicit the truth in such games as well.

4 ALL-PAY AUCTIONS

We have considered most of the standard auction types discussed in Section 1 
but none of the more creative configurations that might arise. Here we consider a 
common-value, sealed-bid, first-price auction in which every bidder, win or lose, 
pays to the auctioneer the amount of her bid. An auction where the losers also 
pay may seem strange. But in fact, many contests result in this type of outcome.  
In political contests, all candidates spend a lot of their own money and a lot of 
time and effort for fund raising and campaigning. The losers do not get any re-
funds on all their expenditures. Similarly, hundreds of competitors spend four 
years of their lives preparing for an event at the next Olympic games. Only one 
wins the gold medal and the attendant fame and endorsements; two others win 
the far less valuable silver and bronze medals; the efforts of the rest are wasted. 
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The tournaments we discussed in Chapter 13, Section 6.B, are similar. Once you 
start thinking along these lines, you will realize that such all-pay auctions are, 
if anything, more frequent in real life than situations resembling the standard  
formal auctions where only the winner pays.

How should you bid (that is, what should your strategy be for expenditure of 
time, effort, and money) in an all-pay auction? Once you decide to participate, 
your bid is wasted unless you win, so you have a strong incentive to bid very ag-
gressively. In experiments, the sum of all the bids often exceeds the value of the 
prize by a large amount, and the auctioneer makes a handsome profit.8 In that 
case, everyone’s submitting extremely aggressive bids cannot be the equilibrium  
outcome; it seems wiser to stay out of such destructive competition altogether. 
But if everyone else did that, then one bidder could walk away with the prize for 
next to nothing; thus, not bidding cannot be an equilibrium strategy either. This 
analysis suggests that the equilibrium lies in mixed strategies.

Consider a specific auction with n bidders. To keep the notation simple, we 
choose units of measurement so that the common-value object (prize) is worth 
1. Bidding more than 1 is sure to bring a loss, and so we restrict bids to those 
between 0 and 1. It is easier to let the bid be a continuous variable x, where x 
can take on any (real) value in the interval [0, 1]. Because the equilibrium will be 
in mixed strategies, each person’s bid, x, will be a continuous random variable. 
Because you win the object only if all other bidders submit bids below yours, we 
can express your equilibrium mixed strategy as P(x), the probability that your 
bid takes on a value less than x; for example, P(12)  0.25 would mean that 
your equilibrium strategy entailed bids below 12 one-quarter of the time (and 
bids above 12 three-quarters of the time).9

As usual, we can find the mixed-strategy equilibrium by using an indiffer-
ence condition. Each bidder must be indifferent about the choice of any par-
ticular value of x, given that the others are playing their equilibrium mixes. 
Suppose you, as one of the n bidders, bid x. You win if all of the remaining (n  
1) are bidding less than x. The probability of anyone else bidding less than x is 
P(x); the probability of two others bidding less than x is P(x)  P(x), or [P(x)]2; 
the probability of all (n  1) of them bidding less than x is P(x)  P(x)  P(x) . . . 
mul tiplied (n  1) times, or [P(x)]n1. Thus with a probability of [P(x)]n 1, you 
win 1. Remember that you pay x no matter what happens. Therefore, your net  

8 One of us (Dixit) has auctioned $10 bills to his Games of Strategy class and made a profit of as much 
as $60 from a 20-student section. At Princeton there is a tradition of giving the professor a polite round 
of applause at the end of a semester. Once Dixit offered $20 to the student who kept applauding con-
tinuously the longest. This is an open-outcry, all-pay auction with payments in kind (applause). Al-
though most students dropped out between 5 and 20 minutes, three went on for 4½ hours!
9 P(x) is called the cumulative probability distribution function for the random variable x. The more 
familiar probability density function for x is its derivative, P9(x)  p(x). Then p(x) dx denotes the 
probability that the variable takes on a value in a small interval from x to x  dx.
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expected payoff for any bid of x is [P(x)]n1  x. But you could get 0 for sure by 
bidding 0. Thus, because you must be indifferent about the choice of any partic-
ular x, including 0, the condition that defines the equilibrium is [P(x)]n1  x  0.  
In a full mixed-strategy equilibrium, this condition must be true for all x. There-
fore, the equilibrium mixed-strategy bid is P(x)  x1(n1).

A couple of sample calculations will illustrate what is implied here. First, 
consider the case in which n  2; then P(x)  x for all x. Therefore, the probability 
of bidding a number between two given levels x1 and x2 is P(x2)  P(x1)  x2  x1.  
Because the probability that the bid lies in any range is simply the length of that 
range, any one bid must be just as likely as any other bid. That is, your equilib-
rium mixed-strategy bid should be random and uniformly distributed over the 
whole range from 0 to 1.

Next let n  3. Then P(x)  x. For x  14, P(x)  12; so the probability of 
bidding 14 or less is 12. The bids are no longer uniformly distributed over the 
range from 0 to 1; they are more likely to be in the lower end of the range.

Further increases in n reinforce this tendency. For example, if n  10, then 
P(x)  x19, and P(x) equals 12 when x  (12)9  1512  0.00195. In this situa-
tion, your bid is as likely to be smaller than 0.00195 as it is to be anywhere within 
the whole range from 0.00195 to 1. Thus, your bids are likely to be very close to 0.

Your average bid should correspondingly be smaller the larger the num-
ber n. In fact, a more precise mathematical calculation shows that if everyone  
bids according to this strategy, the average or expected bid of any one player 
will be just (1n).10 With n players bidding, on average, 1n each, the total 
expected bid is 1, and the auctioneer makes zero expected profit. This cal-
culation provides more precise confirmation that the equilibrium strategy 
eliminates overbidding.

The idea that your bid should be much more likely to be close to 0 when the 
total number of bidders is large makes excellent intuitive sense, and the finding 
that equilibrium bidding eliminates overbidding lends further confidence to the 
theoretical analysis. Unfortunately, many people in actual all-pay auctions ei-
ther do not know or forget this theory and bid to excess.

Interestingly, philanthropists have figured out how to take this tendency 
to overbid and harness it for social benefit. Building on the historical lessons 
learned from prizes offered in 1919 by a New York hotelier for the first nonstop 
transatlantic flight (won by Charles Lindbergh in 1927) and even earlier, in 1714, 
by the British government for a method to precisely measure longitude for sea 
navigation (eventually awarded to John Harrison in the 1770s), several U.S. 
and international foundations have begun offering incentive prizes for various  

10 The expected bid of any one player is calculated as the expected value of x, by using the probabil-
ity density function, p(x). In this case, p(x)  P9(x)  [1(n  1)]x (2n)(n1), and the expected value of 
x is the sum, or integral, of this from 0 to 1, namely  x p(x)dx  1n.
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socially worthwhile innovations. One foundation in particular, the X Prize Foun-
dation, has as its sole purpose the provision of incentive prizes; its first prize was 
awarded in 2004 for the first private space flight. Twenty-two teams are now in 
competition for a $30 million prize for the first landing of a robot on the moon. 
These teams have until the end of 2015 to claim the prize. Some foundation ex-
perts estimate that as much as 40 times the amount of money that would other-
wise be devoted to a particular innovation gets spent when incentive prizes are 
available. Thus, the tendency to overbid in all-pay auctions can actually have a 
beneficial impact on society (if not on the individual pursuing the prize).11

5 HOW TO SELL AT AUCTION

Bidders are not the only auction participants who need to consider their opti-
mal strategies carefully. An auction is really a sequential-play game in which the 
first move is the setting of the rules; bidding starts only in the second round of 
moves. It falls to the sellers, then, to determine the path that later bidding will 
follow by choosing a particular auction rule or mechanism.

As a seller interested in auctioning off your prized art collection or even 
your home, you must decide on the best auction mechanism or rule to use. To 
guarantee yourself the greatest profit from your sale, you must look ahead to the 
predicted outcome of the different auction mechanisms before making a choice. 
One concern of many sellers is that an item will go to a bidder for a price lower 
than the value that the seller places on the object. To counter this concern, most 
sellers insist on setting a reserve price for auctioned objects; they reserve the 
right to withdraw the object from the sale if no bid higher than the reserve price 
is obtained.

Beyond setting a reserve price, however, what can sellers do to determine 
the type of auction mechanism that might net them the most profit possible? 
One possibility is to use Vickrey’s suggested scheme, a second-price, sealed-bid 
auction. According to him, this kind of auction elicits truthful bidding from 
potential buyers. Does this effect make it a good auction type from the seller’s 
perspective?

In a sense, the seller in such a second-price auction is giving the bidder a 
profit margin to counter the temptation to shade down the bid in the hope of a 
larger profit. But this outcome then reduces the seller’s revenue, just as shading 

11 For more on incentive prizes, see Matthew Leerberg, “Incentivizing Prizes: How Foundations Can 
Utilize Prizes to Generate Solutions to the Most Intractable Social Problems,” Duke University Cen-
ter for the Study of Philanthropy and Voluntarism Working Paper, Spring 2006. Information on the X 
Prize Foundation is available at www.xprize.org.
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down in a first-price, sealed-bid auction would. Which type of auction mecha-
nism is ultimately better for the seller actually turns out to depend on the bid-
ders’ attitudes toward risk and their beliefs about the value of the object for sale. 
The relative merits of different mechanisms in reality can also depend on other 
issues such as the possibility of collusion among bidders, and the choice can 
also involve political considerations when selling public property such as the 
airwave spectrum or drilling rights. Thus, the auction environment is critical to 
seller revenue.12

A.  Risk-Neutral Bidders and Independent Estimates

The least complex configuration of bidder risk attitudes and beliefs occurs when 
there is risk neutrality (no risk aversion) and when bidder estimates about the 
value of the object for sale remain independent of each other. As we said in the 
appendix to Chapter 8, risk-neutral people care only about the expected mon-
etary value of their outcomes, regardless of the level of uncertainty associated 
with those outcomes. Independence in estimates means that a bidder is not  
influenced by the estimates of other bidders when determining how much an 
object is worth to her; the bidder has decided independently exactly how much 
the object is worth to her. In this case, there can be no winner’s curse. If these 
conditions for bidders hold, sellers can expect the same average revenue (over 
a large number of trials) from any of the four primary types of auction: English, 
Dutch, and first- and second-price sealed-bid.

This revenue equivalence result implies not that all of the auctions will yield 
the same revenue for every item sold, but that the auctions will yield the same 
selling price on average in the course of numerous auctions. We have already 
seen that, in the second-price auction, each bidder’s dominant strategy is to bid 
her true valuation. The highest bidder gets the object for the second-highest  
bid, and the seller gets a price equal to the valuation of the second-highest bid-
der. Similarly, in an English auction, bidders drop out as the price increases be-
yond their valuations, until only the first- and second-highest-valuation bidders 
remain. When the price reaches the valuation of the second-highest bidder, that 
bidder also will drop out, and the remaining (highest-valuation) bidder will 
take the object for just a cent more than the second-highest bid. Again, the 
seller gets a price (essentially) equivalent to the valuation of the second-highest 
bidder.

More advanced mathematical techniques are needed to prove that revenue 
equivalence can be extended to Dutch and first-price, sealed-bid auctions as 

12 Klemperer’s book, especially chapters 3 and 4, has detailed discussions and warnings on all these 
issues.
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well, but the intuition should be clear. In all four types of auctions, in the ab-
sence of any risk aversion on the part of bidders, the highest-valuation bidder 
should win the auction and pay on average a price equal to the second-highest 
valuation. If the seller is likely to use a particular auction mechanism repeatedly, 
she need not be overly concerned about her choice of auction structure; all four 
would yield her the same expected price.

Experimental and field evidence has been collected to test the validity of the  
revenue-equivalent theorem in actual auctions. The results of laboratory ex-
periments tend to show Dutch auction prices lower, on average, than first-price, 
sealed-bid auction prices for the same items being bid on by the same group of 
bidders, possibly owing to some positive utility associated with the suspense factor 
in Dutch auctions. These experiments also find evidence of overbidding (bidding 
above your known valuation) in second-price, sealed-bid auctions but not in English 
auctions. Such behavior suggests that bidders go higher when they have to specify a 
price, as they do in sealed-bid auctions; these auctions seem to draw more attention 
to the relationship between the bid price and the probability of ultimately winning  
the item. Field evidence from Internet auctions finds literally opposite results, 
with Dutch auction revenue as much as 30% higher, on average, than first-price, 
sealed-bid revenue. Additional bidder interest in the Dutch auctions or impatience 
in the course of a 5-day auction could explain the anomaly. The Internet-based field 
evidence did find near revenue equivalence for the other two auction types.

B.  Risk-Averse Bidders

Here we continue to assume that bids and beliefs are uncorrelated but incor-
porate the possibility that auction outcomes could be affected by bidders’ at-
titudes toward risk. In particular, suppose bidders are risk averse. They may be 
much more concerned, for example, about the losses caused by underbidding—
losing the object—than by the costs associated with bidding at or close to their 
true valuations. Thus, risk-averse bidders generally want to win if possible with-
out ever overbidding.

What does this preference structure do to the types of bids that they sub-
mit in first-price versus second-price (sealed-bid) auctions? Again, think of the 
first-price auction as being equivalent to the Dutch auction. Here, risk aversion 
leads bidders to bid earlier rather than later. As the price drops to the bidder’s 
valuation and beyond, there is greater and greater risk in waiting to bid. We ex-
pect risk-averse bidders to bid quickly, not to wait just a little bit longer in the 
hope of gaining those extra few pennies of profit. Applying this reasoning to 
the first-price, sealed-bid auction, we expect bidders to shade down their bids 
by less than they would if they were not risk averse: too much shading actually  
increases the risk of not gaining the object, which risk-averse bidders would 
want to avoid.
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Compare this outcome with that of the second-price auction, where bidders 
pay a price equal to the second-highest bid. Bidders bid their true valuations in 
such an auction but pay a price less than that. If they shade their bids only slightly 
in the first-price auction, then those bids will tend to be close to the bidders’  
true valuations—and bidders pay their bids in such auctions. Thus, bids will be 
shaded somewhat, but the price ultimately paid in the first-price auction will 
probably exceed what would be paid in the second-price auction. When bidders 
are risk averse, the seller then does better to choose a first-price auction rather 
than a second-price auction.

The seller does better with the first-price auction in the presence of risk 
aversion only in the sealed-bid case. If the auction is English, the bidders’  
attitudes toward risk are irrelevant to the outcome. Thus, risk aversion does not 
alter the outcome for the seller in these auctions.

C.  Correlated Estimates

Now suppose that in determining their own valuations of an object, bidders are 
influenced by the estimates (or by their beliefs about the estimates) of other bid-
ders. Such a situation is relevant for common-value auctions, such as those for 
oil or gas exploration considered in Section 2. Suppose your experts have not 
presented a glowing picture of the future profits to be gleaned from the lease 
on a specific tract of land. You are therefore pessimistic about its potential ben-
efits, and you have constructed an estimate V of its value that you believe cor-
responds to your pessimism.

Under the circumstances, you may be concerned that your rival bidders also 
have received negative reports from their experts. When bidders believe their 
valuations are all likely to be similar, either all relatively low or all relatively high, 
for example, we say that those beliefs or estimates of value are positively cor-
related. Thus, the likelihood that your rivals’ estimates also are unfavorable may 
magnify the effect of your pessimism on your own valuation. If you are partici-
pating in a first-price, sealed-bid auction, you may be tempted to shade down 
your bid even more than you would in the absence of correlated beliefs. If bid-
ders are optimistic and valuations generally high, correlated estimates may lead 
to less shading than when estimates are independent.

However, the increase in the shading of bids that accompanies correlated 
low (or pessimistic) bids in a first-price auction should be a warning to sellers.  
With positively correlated bidder beliefs, the seller may want to avoid the 
first-price auction and take advantage of Vickrey’s recommendation to use a  
second-price structure. We know that this auction mechanism encourages 
truthful revelation, and when correlated estimates are possible, the seller does 
even better to avoid auctions in which there might be any additional shading  
of bids.
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An English auction will have the same ultimate outcome as the second-price,  
sealed-bid auction, and a Dutch auction will have the same outcome as a 
first-price, sealed-bid auction. Thus, a seller facing bidders with correlated es-
timates of an object’s value also should prefer the English to the Dutch version 
of the open-outcry auction. If you are bidding on the oil-land lease in an English 
auction and the price is nearing your estimate of the lease’s value but your rivals 
are still bidding feverishly, you can infer that their estimates are at least as high 
as yours—perhaps significantly higher. The information that you obtain from 
observing the bidding behavior of your rivals may convince you that your esti-
mate is too low. You might even increase your own estimate of the land’s value as 
a result of the bidding process. Your continuing to bid may provide an impetus 
for further bidding by other bidders, and the process may continue for a while. 
If so, the seller reaps the benefits. More generally, the seller can expect a higher 
selling price in an English auction than in a first-price, sealed-bid auction when 
bidder estimates are correlated. For the bidders, however, the effect of the open 
bidding is to disperse additional information and to reduce the effect of the  
winner’s curse.

The discussion of correlated estimates assumes that a fairly large number 
of bidders take part in the auction. But an English auction can be beneficial to 
the seller if there are only two bidders, both of whom are particularly enthusi-
astic about the object for sale. They will bid against each other as long as pos-
sible, pushing the price up to the lower of the valuations, both of which were 
high from the start. The same auction can be disastrous for the seller, however, if 
one of the bidders has a very low valuation; the other is then quite likely to have 
a valuation considerably higher than the first. In this case, we say that bidder  
valuations are negatively correlated. We encourage any seller facing a small 
number of bidders with potentially very different valuations to choose a Dutch 
or first-price, sealed-bid structure. Either of them would reduce the possibility 
of the high-valuation bidder gaining the object for well under her true valuation; 
that is, either type would transfer the available profit from the buyer to the seller.

6 SOME ADDED T WISTS TO CONSIDER

A.  Multiple Objects

When you think about an auction of a group of items, such as a bank’s auctioning 
repossessed vehicles or estate sales auctioning the contents of a home, you prob-
ably envision the auctioneer bringing each item to the podium individually and 
selling it to the highest bidder. This process is appropriate when each bidder has 
independent valuations for each item. However, independent valuations may not 
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always be an appropriate way to model bidder estimates. Then, if bidders value 
specific groups or whole packages of items higher than the sum of their values 
for the component items, the choice of auctioning the lots separately or together 
makes a big difference to bidding strategies as well as to outcomes.

Consider a real-estate developer named Red who is interested in buying a 
very large parcel of land on which to build a townhouse community for profes-
sionals. Two townships, Cottage and Mansion, are each auctioning a land parcel 
big enough to suit her needs. Both parcels are essentially square in shape and 
encompass 4 square acres. The mayor of Cottage has directed that the auction-
eer sell the land as quarter-acre blocks, one at a time, starting at the perimeter of 
the land and working inward, selling the corner lots first and then the lots on the 
north, south, east, and west borders in that order. At the same time, the mayor 
of Mansion has directed that the auctioneer attempt to sell the land in her town 
first as a full 4-acre block, then as two individual 2-acre lots, and then as four  
1-acre lots after that, if no bids exceed the set reserve prices.

Through extensive market analyses, Red has determined that the blocks of 
land in Cottage and Mansion would provide the same value to her. However, she 
has to obtain the full 4 acres of land in either town to have enough room for her 
planned development. The auctions are being held on the same day at the same 
time. Which should she attend?

It should be clear that her chances of acquiring a 4-acre block of land for 
a reasonable price—less than or equal to her valuation—are much better in  
Mansion than in Cottage. In the Mansion auction, she would simply wait to see 
how bidding proceeded, submitting a final high bid if the second-highest offer 
fell below her valuation of the property. In the Cottage auction, she would need 
to win each and every one of the 16 parcels up for sale. Under the circumstances, 
she should expect rival bidders interested in owning land in Cottage to become 
more intent on their goals—perhaps even joining forces—as the number of 
available parcels decreases in the course of the auction. Red would have to bid 
aggressively enough to win parcels in the early rounds while being conservative 
enough to ensure that she did not exceed her total valuation by the end of the 
auction. The difficulties in crafting a bidding strategy for such an auction are 
numerous, and the probability of being unable to obtain every parcel profitably 
is quite large—hence Red’s preference for the Mansion auction.

Note that, from the seller’s point of view, the Cottage auction is likely to bring 
in greater revenue than the Mansion auction if an adequate number of bidders 
are interested in small pieces of land. If the only bidders are all developers like 
Red, however, they might be hesitant even to participate in the Cottage auction 
for fear of being beaten in just one round. In that case, the Mansion-type auction  
mechanism is better for the seller.

The township of Cottage could allay the fears of developers by revising the 
rules for its auction. In particular, it would not need to auction each parcel  
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individually. Instead it could hold a single auction in which all parcels would 
be available simultaneously. Such an auction could be run so that each bid-
der could specify the number of parcels that she wanted and the price that 
she was willing to pay per parcel. The bidder with the highest total-value  
bid—determined by multiplying the number of parcels desired by the price for 
each—would win the desired number of parcels. If parcels remained after the 
high bidder took her land, additional parcels would be won in a similar way 
until all the land was sold. This mechanism gives bidders interested in larger 
parcels an opportunity to bid, potentially against each other, for blocks of the 
land. Thus, Cottage might find this type of auction more lucrative in the end.

B.  Defeating the System

We saw earlier which auction mechanism is best for the seller, given different  
assumptions about how bidders felt toward risk and whether their estimates 
were correlated. There is always an incentive for bidders, though, to come up 
with a bidding strategy that defeats the seller’s efforts. The best-laid plans for a 
profitable auction can almost always be defeated by an appropriately clever bid-
der or, more often, group of bidders.

Even the Vickrey second-price, sealed-bid auction can be defeated if there 
are only a few bidders in the auction, all of whom can collude among themselves.  
By submitting one high bid and a lowball second-highest bid, collusive bid-
ders can obtain an object for the second-bid price. This outcome results only 
if no other bidders submit intermediate bids or if the collusive bidders are able  
to prevent such an occurrence. The possibility of collusion highlights the need 
for the seller’s reserve prices, although they only partly offset the problem in 
this case.

First-price, sealed-bid auctions are less vulnerable to bidder collusion for 
two reasons. The potential collusive group engages in a multiperson prisoners’ 
dilemma game in which each bidder has a temptation to cheat. In such cheat-
ing, an individual bidder might submit her own high bid so as to win the object 
for herself, reneging on any obligation to share profits with group members. 
Collusion among bidders in this type of auction is also difficult to sustain be-
cause cheating (that is, making a different bid from that agreed to within the 
collusive group) is easy to do but difficult for other buyers to detect. Thus, the 
sealed-bid nature of the auction prevents detection of a cheater’s behavior, 
and hence punishment, until the bids are opened and the auction results an-
nounced; at that point, it is simply too late. However, there may be more scope 
for sustaining collusion if a particular group of bidders participates in a number 
of similar auctions over time, so that they engage in the equivalent of a repeated 
game.
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Other tricky bidding schemes can be created to meet the needs of specific 
individual bidders or groups of bidders in any particular type of auction. One 
very clever example of bid rigging arose in an early U.S. Federal Communica-
tions Commission auction of the U.S. airwave spectrum, specifically for per-
sonal cellular service (Auction 11, August 1996–January 1997). After watching 
prices soar in some of the earlier auctions, bidders were apparently eager to re-
duce the price of the winning bids. The solution, used by three firms (later sued 
by the Department of Justice), was to signal their intentions to go after licenses 
for certain geographic locations by using the FCC codes or telephone area codes 
for those areas as the last three digits of their bids. The FCC has claimed that 
this practice significantly reduced the final prices on these particular licenses. 
In addition, other signaling devices were apparently used in earlier broadband 
auctions. While some firms literally announced their intentions to win a partic-
ular license, others used a variety of strategic bidding techniques to signal their 
interest in specific licenses or to dissuade rivals from horning in on their terri-
tories. In the first broadband auction, for example, GTE and other firms appar-
ently used the code-bidding technique of ending their bids with the numbers 
that spelled out their names on a telephone keypad!

We note briefly here that fraudulent behavior is not merely the territory of 
bidders at auction. Sellers also can use underhanded practices to inflate the final 
bid price of pieces that they are attempting to auction. Shilling, for example,  
occurs when a seller is able to plant false bids at her own auction. Possible only 
in English auctions, shilling can be done with the use of an agent who works 
for the seller and who pretends to be a regular bidder. On Internet auction sites, 
shilling is actually easier, because a seller can register a second identity and log 
in and bid in her own auction; all Internet auctions have rules and oversight  
mechanisms designed to prevent such behavior. Sellers in second-price, 
sealed-bid auctions can also benefit if they inflate the level of the (not publicly 
known) second-highest bid.

C.  Information Disclosure

Finally, we consider the possibility that the seller has some private information 
about an object that might affect the bidders’ valuations of that object. Such a 
situation arises when the quality or durability of a particular object, such as an 
automobile, a house, or a piece of electronic equipment, is of great importance 
to the buyers. Then the seller’s past experience with the object may be a good 
predictor of the future benefits that will accrue to the winning bidder.

As we saw in Chapter 8, the more informed player in an asymmetric infor-
mation game must decide whether to reveal or conceal her private informa-
tion. In the auction context, a seller must carefully consider any temptation to 
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conceal information. If the bidders know that the seller has some private infor-
mation, they are likely to interpret any failure to disclose that information as 
a signal that the information is unfavorable. Even if the seller’s information is  
unfavorable, she may be better off revealing it; bidders’ beliefs might be worse 
than the actual information. Thus, honesty is often the best policy.

Honesty can also be in the seller’s interest for another reason. When she 
has private information about a common-value object, she should disclose that  
information to sharpen the bidders’ estimates of the value of the object. The 
more confident the bidders are that their valuations are correct, the more likely 
they are to bid up to those valuations. Thus, disclosure of private seller infor-
mation in a common-value auction can help not only the seller by reducing the 
amount of shading done by bidders but also the bidders by reducing the effects 
of the winner’s curse.

D.  Online Auctions

Internet auction sites have been in existence for almost two decades. The eBay 
site began operation in September 1995, shortly after the advent of Onsale.com 
in May of that year.13 A large number of auction sites, approximately 100, now 
exist; precise numbers change frequently as new sites are created, as mergers 
are consummated between existing sites, and as smaller, unprofitable sites shut 
down. These sites, both small and large, sell an enormous variety of items in 
many different ways.

The majority of auction items on the larger sites, such as eBay and uBid, are 
goods that are classified as “collectibles.” There are also specialty auction sites 
that deal with items ranging from postage stamps, wine, and cigars to seized 
property from police raids, medical equipment, and large construction equip-
ment (scissorlift, anyone?). Most of these items, regardless of the type of site, 
would be considered “used.” Thus, consumers have access to what might be 
called the world’s largest garage sale, all at their fingertips. This information is 
consistent with one hypothesis in the literature that suggests that Internet auc-
tions are most useful for selling goods available in limited quantity, for which 
there is unknown demand, and for which the seller cannot easily determine an 
appropriate price. The auction process can effectively find a “market price” for 
these goods. Sellers of such goods then have their best profit opportunity on-
line, where a broad audience can supply formerly unknown demand param-
eters. And consumers can obtain desired but obscure items, presumably with 
profit margins of their own.

13 Onsale merged with Egghead.com in 1999. Amazon bought the assets of the merged company late 
in 2001. The three auction sites originally available as Onsale, Egghead, and Amazon became Ama-
zon Auctions. These have been replaced by Amazon’s fixed-price selling outlet, Marketplace.
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In addition to selling many different categories of goods, Internet auc-
tions employ a variety of auction rules. Many sites actually offer several auction 
types and allow a seller to choose her auction’s rules when she lists an item for 
sale. The most commonly used rules are those for English and second-price, 
sealed-bid auctions; one or both of them are offered by the majority of auction 
sites.

Sites that offer true English auctions post the high bid as soon as it is re-
ceived; at the end of the auction, the winner pays her bid. Others that appear 
to use the English auction format allow what is known as proxy bidding. The 
proxy-bidding process actually makes the auction second-price, sealed-bid 
rather than English. With proxy bidding, a bidder enters the maximum price 
that she is willing to pay (her reservation price) for an item. Rather than dis-
playing this maximum price, the auction site displays only one bid increment 
above the most recent high bid. The proxy-bidding system then bids for the 
buyer, outbidding others by a single bid increment, until the buyer’s maximum 
price is reached. This system allows the auction winner to pay just one bid in-
crement over the second-highest bid rather than paying her own bid. 

Dutch auction formats at online auction sites are quite rare. Only a very 
few retail sites now offer the equivalent of Dutch auctions. Lands’ End, for ex-
ample, posts some overstocked items each weekend in a special area of its Web 
site; it then reduces the prices on these items three times in the next week, re-
moving unsold items at week’s end. Some sites offer auctions called Dutch auc-
tions that, along with a companion type known as Yankee auctions, actually 
offer multiple (identical) units in a single auction. Similar to the auction de-
scribed above for the available land parcels in the township of Cottage, these 
auctions offer bidders the option to bid on one or more of the units. The ter-
minology “Yankee auction” refers to the system that we described for the Cot-
tage auction; bidders with the highest total-value bid(s) win the items, and each  
bidder pays her bid price per unit. The “Dutch auction” label is reserved for auc-
tions in which bids are ranked by total value, but at the end of the auction, all 
bidders pay the lowest winning bid price for their units.14

The Internet has also made it possible to create and apply auction rules 
that would previously have been impractical. The newest such auction is one in 
which the lowest unmatched bid is the one that wins the item; the object trades 
at the winning bid price. How can a seller afford such an auction? She can do 
so simply by auctioning a fairly valuable item, such as a piece of real estate or a 
sizeable quantity of gold bullion, and charging a small fee for each bid. Bidding 
continues until a specified number of bids is obtained, at which time the lowest 
unmatched bid is awarded the object. The success of this type of online auction  
remains to be seen. One initially successful site, humraz.com, has been shut 

14 This Dutch-type mechanism is also used by the Federal Reserve to auction Treasury bills.
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down. Others, such as winnit.com, continue to be profitable, but these so-called 
“penny auctions” have not caught on with the general public.

Although the Internet does allow for creativity, most Internet auctions 
tend to be quite similar in their rules and outcomes to traditional live auctions. 
Strategic issues such as those considered earlier in this chapter are relevant to 
both. There are some benefits to online auctions as well as costs. Online auc-
tions are good for buyers because they are easy to “attend” and they provide 
search engines that make it simple to identify items of interest. Similarly, sellers 
are able to reach a wide audience and often have the convenience of choosing 
the rules of their own auctions. Many U.S. counties now enlist the services of  
RealAuction.com to provide online access to their formerly live foreclosure and 
tax lien auctions. However, online auction sales can suffer from the fact that 
buyers cannot inspect goods before they must bid and because buyer and seller 
must each trust the other to pay or deliver as promised.

The most interesting difference between live and online auctions, though, 
is the way in which the auctions must end. Live (English and Dutch) auctions 
cease when no additional bids can be obtained. Online auctions need to have 
specific auction-ending rules. The two most commonly used rules specify ei-
ther a fixed moment in time or a certain number of minutes beyond the most 
recent bid (after a predetermined amount of time has passed). Evidence has 
been gathered by Alvin Roth and Axel Ockenfels that shows that hard end times 
make it profitable for bidders to bid late. This behavior, referred to as sniping, 
is found in both private-value and common-value auctions. Strategically, such 
late bidders gain by avoiding bidding wars with others who update their own 
bids throughout the auction. In addition, they gain by protecting any private 
information that they hold regarding the common valuation of a good. These 
advantages are not available in auctions with end-time extensions where bid-
ders can more safely make a single proxy bid at any time during the auction.

As of late 2014, the initial popularity of online auction sites for the sale of 
“used” goods has declined precipitously. Although eBay continues to be a trea-
sure trove for online shoppers, the percentage of items available by auction-
only mechanisms on that site dropped from greater than 95% in the beginning 
of 2003 to just under 15% in early 2012. Auction-style sales have been replaced 
by fixed-price items and “buy it now” options on many auction sites. Recent 
research into this phenomenon suggests it can be attributed to shifts in buyer 
preferences away from the riskier feeling, and more time intensive, auction 
mechanisms in favor of a more traditional consumer experience.15

15 For more on the demise of the auction mechanism in online sales, see Liran Einav, Chiara Far-
ronato, Jonathan D. Levin, and Neel Sundaresan, “Sales Mechanisms in Online Markets: What Hap-
pened to Internet Auctions?” NBER Working Paper No. 19021, May 2013.
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7 ADDITIONAL READING

Much of the literature on the theory of auctions is quite mathematically com-
plex. Some general insights into auction behavior and outcomes can be found in 
Paul Milgrom, “Auctions and Bidding: A Primer”; Orley Ashenfelter, “How Auc-
tions Work for Wine and Art”; and John G. Riley, “Expected Revenues from Open 
and Sealed Bid Auctions,” all in the Journal of Economic Perspectives, vol. 3,  
no. 3 (Summer 1989), pp. 3–50. These papers should be readable by those of you 
with a reasonably strong background in calculus.

More complex information on the subject also is available. R. Preston 
McAfee and John McMillan have an overview paper, “Auctions and Bidding,” in 
the Journal of Economic Literature, vol. 25 (June 1987), pp. 699–738. A more re-
cent review of the literature can be found in Paul Klemperer, “Auction Theory: A 
Guide to the Literature,” in the Journal of Economic Surveys, vol. 13, no. 3 (July 
1999), pp. 227–286. Both of these pieces contain some of the high-level math-
ematics associated with auction theory but also give comprehensive references 
to the rest of the literature. Klemperer’s book Auctions: Theory and Practice 
(Princeton: Princeton University Press, 2004) has a more recent and somewhat 
less mathematically complex survey in chapter 1.

Vickrey’s original article containing the details on truthful bidding in  
second-price auctions is “Counterspeculation, Auctions, and Competitive Sealed 
Tenders,” Journal of Finance, vol. 16, no. 1 (March 1961), pp. 8–37. This paper was 
one of the first to note the existence of revenue equivalence. A more recent study 
gathering a number of the results on revenue outcomes for various auction types 
is J. G. Riley and W. F. Samuelson, “Optimal Auctions,” American Economic Review, 
vol. 71, no. 3 (June 1981), pp. 381–392. A very readable history of the “Vickrey”  
second-price auction is David Lucking-Reiley, “Vickrey Auctions in Practice: From 
Nineteenth-Century Philately to Twenty-First-Century E-Commerce,” Journal of 
Economic Perspectives, vol. 14, no. 3 (Summer 2000), pp. 183–192.

Some of the experimental evidence on auction behavior is reviewed in  
John H. Kagel, “Auctions: A Survey of Experimental Research,” in The Hand-
book of Experimental Economics, ed. John Kagel and Alvin Roth (Princeton: 
Princeton University Press, 1995), pp. 501–535, and in a companion piece with  
Dan Levin, “Auctions: A Survey of Experimental Research, 1995–2007,” forth-
coming in the handbook’s second volume. Other evidence on behavior in online 
auctions is presented in Alvin Roth and Axel Ockenfels, “Late and Multiple Bid-
ding in Second-Price Internet Auctions: Theory and Evidence Concerning Dif-
ferent Rules for Ending an Auction,” Games and Economic Behavior, vol. 55, no. 2  
(May 2006), pp. 297–320.
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For information specific to auction design, see Paul Klemperer, “What Re-
ally Matters in Auction Design,” Journal of Economic Perspectives, vol. 16, no. 1 
(Winter 2002), pp. 169–189. A survey of Internet auctions can be found in David 
Lucking-Reiley, “Auctions on the Internet: What’s Being Auctioned, and How?” 
Journal of Industrial Economics, vol. 48, no. 3 (September 2000), pp. 227–252.

SUMMARY

In addition to the standard first-price, open-outcry, ascending, or English auc-
tion, there are also Dutch, or descending, auctions as well as first-price and  
second-price, sealed-bid auctions. Objects for bid may have a single com-
mon value or many private values specific to each bidder. With common-value  
auctions, bidders often win only when they have overbid, falling prey to the  
winner’s curse. In private-value auctions, optimal bidding strategies, includ-
ing decisions about when to shade down bids from your true valuation, depend 
on the auction type used. In the familiar first-price auction, there is a strategic  
incentive to underbid.

Vickrey showed that sellers can elicit true valuations from bidders by using a 
second-price, sealed-bid auction. Generally, sellers will choose the mechanism 
that guarantees them the most profit; this choice will depend on bidder risk 
attitudes and bidder beliefs about an object’s value. If bidders are risk neutral 
and have independent valuation estimates, all auction types will yield the same  
outcome.

Decisions regarding how to auction a large number of objects, individually 
or as a group, and whether to disclose information are nontrivial. Sellers must 
also be wary of bidder collusion or fraud. Auctions now occur online using a 
variety of mechanisms and for the sale of a wide variety of goods. The primary 
strategic difference for bidders in such auctions arises due to the hard ending 
times imposed on many sites.

KEY TERMS

all-pay auction (643)
ascending auction (634)
common value (635)
descending auction (634)
Dutch auction (634)
English auction (634)
first-price auction (635)
objective value (635)

open outcry (634)
private value (636)
proxy bidding (654)
reservation price (654)
reserve price (645)
sealed bid (635)
second-price auction (635)
shading (640)
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SOLVED ExERCISES

 S1. A house painter has a regular contract to work for a builder. On these 
jobs, her cost estimates are generally right: sometimes a little high, 
sometimes a little low, but correct on average. When her regular work 
is slack, she bids competitively for other jobs. “Those are different,” she 
says. “They almost always end up costing more than I estimate.” If we 
assume that her estimating skills do not differ between the two types of 
jobs, what can explain the difference?

 S2. Consider an auction where n identical objects are offered, and there are 
(n  1) bidders. The actual value of an object is the same for all bidders 
and equal for all objects, but each bidder gets only an independent esti-
mate, subject to error, of this common value. The bidders submit sealed 
bids. The top n bidders get one object each, and each pays what she has 
bid. What considerations will affect your bidding strategy? How?

 S3. You are in the market for a used car and see an ad for the model that you 
like. The owner has not set a price but invites potential buyers to make 
offers. Your prepurchase inspection gives you only a very rough idea of 
the value of the car; you think it is equally likely to be anywhere in the 
range of $1,000 to $5,000 (so your calculation of the average of this value 
is $3,000). The current owner knows the exact value and will accept your 
offer if it exceeds that value. If your offer is accepted and you get the car, 
then you will find out the truth. But you have some special repair skills 
and know that when you own the car, you will be able to work on it and 
increase its value by a third (33.3 . . . %) of whatever it is worth.

 (a) What is your expected profit if you offer $3,000? Should you make 
such an offer?

 (b) What is the highest offer that you can make without losing money 
on the deal?

 S4. In this problem, we consider a special case of the first-price, sealed-bid 
auction and show what the equilibrium amount of bid shading should 
be. Consider a first-price, sealed-bid auction with n risk-neutral bidders. 
Each bidder has a private value independently drawn from a uniform 
distribution on [0,1]. That is, for each bidder, all values between 0 and 1 

shilling (652)
subjective value (636)
Vickrey auction (635)

Vickrey’s truth serum (640)
winner’s curse (636)
Yankee auction (654)
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are equally likely. The complete strategy of each bidder is a “bid function” 
that will tell us, for any value v, what amount b(v) that bidder will choose 
to bid. Deriving the equilibrium bid functions requires solving a differen-
tial equation, but instead of asking you to derive the equilibrium using 
a differential equation, this problem proposes a candidate equilibrium 
and asks you to confirm that it is indeed a Nash equilibrium.

It is proposed that the equilibrium-bid function for n  2 is b(v)   
v2 for each of the two bidders. That is, if we have two bidders, each 
should bid half her value, which represents considerable shading. 

 (a) Suppose you’re bidding against just one opponent whose value is 
uniformly distributed on [0, 1], and who always bids half her value. 
What is the probability that you will win if you bid b  0.1? If you bid 
b  0.4? If you bid b  0.6? 

 (b) Put together the answers to part (a). What is the correct mathemati-
cal expression for Pr(win), the probability that you win, as a func-
tion of your bid b? 

 (c) Find an expression for the expected profit you make when your 
value is v and your bid is b, given that your opponent is bidding half 
her value. Remember that there are two cases: either you win the 
auction, or you lose the auction. You need to average the profit be-
tween these two cases. 

 (d) What is the value of b that maximizes your expected profit? This 
should be a function of your value v. 

 (e) Use your results to argue that it is a Nash equilibrium for both bid-
ders to follow the same bid function b(v)  v2. 

 S5. (Optional) This question looks at the equilibrium bidding strategies of 
all-pay auctions, in which bidders have private values for the good, as 
opposed to the discussion in Section 4, where the all-pay auction is for 
a good with a publicly known value. For the all-pay auction with private 
values distributed uniformly between 0 and 1, the Nash equilibrium bid 
function is b(v)  [(n  1)n]vn. 

 (a) Plot graphs of b(v) for the case n  2 and for the case n  3. 
 (b) Are the bids increasing in the number of bidders or decreasing in the 

number of bidders? Your answer might depend on n and v. That is, 
bids are sometimes increasing in n, and sometimes decreasing in n. 

 (c) Prove that the function given above is really the Nash-equilibrium 
bid function. Use a similar approach to that of Exercise S4. Remem-
ber that in an all-pay auction, you pay your bid even when you lose, 
so your payoff is v  b when you win, and b when you lose.
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UNSOLVED ExERCISES

 U1. “In the presence of very risk-averse bidders, a person selling her house in 
an auction will have a high expected profit by using a first-price, sealed-
bid auction.” True or false? Explain your answer.

 U2. Suppose that three risk-neutral bidders are interested in purchasing a 
Princess Beanie Baby. The bidders (numbered 1 through 3) have valua-
tions of $12, $14, and $16, respectively. The bidders will compete in auc-
tions as described in parts (a) through (d); in each case, bids can be made 
in $1 increments at any value from $5 to $25.

 (a) Which bidder wins an open-outcry English auction? What are the 
final price paid and the profit to the winning bidder?

 (b) Which bidder wins a second-price, sealed-bid auction? What are the 
final price paid and the profit to the winning bidder? Contrast your 
answer here with that for part (a). What is the cause of the difference 
in profits in these two cases?

 (c) In a sealed-bid, first-price auction, all the bidders will bid a positive 
amount (at least $1) less than their true valuations. What is the likely 
outcome in this auction? Contrast your answer with those for parts 
(a) and (b). Does the seller of the Princess Beanie Baby have any clear 
reason to choose one of these auction mechanisms over the other?

 (d) Risk-averse bidders would reduce the shading of their bids in part 
(c); assume, for the purposes of this question, that they do not shade 
at all. If that were true, what would be the winning price (and profit 
for the bidder) in part (c)? Does the seller care about which type of 
auction she chooses? Why?

 U3. You are a turnaround artist, specializing in identifying underperforming 
companies, buying them, improving their performance and stock price, 
and then selling them. You have found such a prospect, Sicco. This com-
pany’s marketing department is mediocre; you believe that if you take 
over the company, you will increase its value by 75% of whatever it was 
before. But its accounting department is very good; it can conceal assets, 
liabilities, and transactions to a point where the company’s true value is 
hard for outsiders to identify. (But insiders know the truth perfectly.) You 
think that the company’s value in the hands of its current management is 
somewhere between $10 million and $110 million, uniformly distributed 
over this range. The current management will sell the company to you if, 
and only if, your bid exceeds the true value known to them.

 (a)  If you bid $110 million for the company, your bid will surely suc-
ceed. Is your expected profit positive?
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 (b)  If you bid $50 million for the company, what is the probability that 
your bid succeeds? What is your expected profit if you do succeed 
in buying the company? Therefore, at the point in time when you 
make your bid of $50 million, what is your expected profit? (Warn-
ing: In calculating this expectation, don’t forget the probability of 
your getting the company.)

 (c)  What should you bid if you want to maximize your expected profit? 
(Hint: Assume it is X million dollars. Carry out the same analysis as 
in part (b) above, and find an algebraic expression for your expected 
profit as seen from the point in time when you are making your bid. 
Then choose X to maximize this expression.)

 U4. The idea of the winner’s curse can be expressed slightly differently from 
its usage in the chapter: “The only time your bid matters is when you 
win, which happens when your estimate is higher than the estimates of 
all the other bidders. Therefore you should focus on this case. That is, 
you should always act as if all the others have received estimates lower 
than yours, and use this ‘information’ to revise your own estimate.” Here 
we ask you to apply this idea to a very different situation.

A jury consists of 12 people who hear and see evidence presented at 
a trial and collectively reach a verdict of guilt or innocence. Simplifying 
the process somewhat, assume that the jurors hold a single simultane-
ous vote to determine the verdict. Each juror is asked to vote Guilty or 
Not guilty. The accused is convicted if all 12 vote Guilty and is acquit-
ted if one or more vote Not guilty; this is known as the unanimity rule. 
Each juror’s objective is to arrive at a verdict that is the most accurate 
verdict in light of the evidence, but each juror interprets the evidence in 
accord with her own thinking and experience. Thus, she arrives at an es-
timate of the guilt or the innocence of the accused that is individual and  
private. 

 (a) If jurors vote truthfully—that is, in accordance with their individual 
private estimates of the guilt of the accused—will the verdict be Not 
guilty more often under a unanimity rule or under a majority rule, 
where the accused is convicted if seven jurors vote Guilty? Explain. 
What might we call the “juror’s curse” in this situation?

 (b) Now consider the case in which each juror votes strategically, taking 
into account the potential problems of the juror’s curse and using 
all the devices of information inference that we have studied. Are 
individual jurors more likely to vote Guilty under a unanimity rule 
when voting truthfully or strategically? Explain.

 (c) Do you think strategic voting to account for the juror’s curse would 
produce too many Guilty verdicts? Why or why not?
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 U5. (Optional) This exercise is a continuation of Exercise S4; it looks at 
the general case where n is any positive integer. It is proposed that the  
equilibrium-bid function with n bidders is b(v)  v(n  1)n. For n  2, 
we have the case explored in Exercise S4: each of the bidders bids half of 
her value. If there are nine bidders (n  9), then each should bid 910 of 
her value, and so on.

 (a) Now there are n  1 other bidders bidding against you, each using 
the bid function b(v)  v(n  1)n. For the moment, let’s focus on 
just one of your rival bidders. What is the probability that she will 
submit a bid less than 0.1? Less than 0.4? Less than 0.6? 

 (b) Using the above results, find an expression for the probability that 
the other bidder has a bid less than your bid amount b. 

 (c) Recall that there are n  1 other bidders, all using the same bid 
function. What is the probability that your bid b is larger than all of 
the other bids? That is, find an expression for Pr(win), the probabil-
ity that you win, as a function of your bid b. 

 (d) Use this result to find an expression for your expected profit when 
your value is v and your bid is b. 

 (e) What is the value of b that maximizes your expected profit? 
Use your results to argue that it is a Nash equilibrium for all n 

bidders to follow the same bid function b(v)  v(n  1)n.
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Bargaining

P eople engage in bargaining throughout their lives. Children start by 
negotiating to share toys and to play games with other children. Couples 
bargain about matters of housing, child rearing, and the adjustments that 
each must make for the other’s career. Buyers and sellers bargain over price, 

workers and bosses over wages. Countries bargain over policies of mutual trade 
liberalization; superpowers negotiate mutual arms reduction. And the two 
original authors of this book had to bargain with one another—generally very  
amicably—about what to include or exclude, how to structure the exposition, 
and so forth. To get a good result from such bargaining, the participants must 
devise good strategies. In this chapter, we raise and explicate some of these basic 
ideas and strategies.

All bargaining situations have two things in common. First, the total payoff 
that the parties to the negotiation are capable of creating and enjoying as a result 
of reaching an agreement should be greater than the sum of the individual pay-
offs that they could achieve separately—the whole must be greater than the sum 
of the parts. Without the possibility of this excess value, or “surplus,” the nego-
tiation would be pointless. If two children considering whether to play together 
cannot see a net gain from having access to a larger total stock of toys or from 
one another’s company in play, then it is better for each to “take his toys and play 
by himself.” The world is full of uncertainty, and the expected benefits may not 
materialize. But when engaged in bargaining, the parties must at least perceive 
some gain therefrom: when he agreed to sell his soul to the Devil, Faust thought 
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the benefits of knowledge and power that he gained were worth the price that he 
would eventually have to pay.

The second important general point about bargaining follows from the first: 
it is not a zero-sum game. When a surplus exists, the negotiation is about how 
to divide it up. Each bargainer tries to get more for himself and leave less for 
the others. This may appear to be zero sum, but behind it lies the danger that 
if the agreement is not reached, no one will get any surplus at all. This mutu-
ally harmful alternative, as well as both parties’ desire to avoid it, is what creates 
the potential for the threats—explicit and implicit—that make bargaining such 
a strategic matter.

Before the advent of game theory, one-on-one bargaining was generally 
thought to be a difficult and even indeterminate problem. Observation of widely 
different outcomes in otherwise similar-looking situations lent support to this 
view. Theorists were not able to achieve any systematic understanding of why 
one party gets more than another and attributed this result to vague and inex-
plicable differences in “bargaining power.”

Even the simple theory of Nash equilibrium does not take us any further. 
Suppose two people are to split $1. Let us construct a game in which each is 
asked to announce what he would want. The moves are simultaneous. If their 
announcements x and y add up to 1 or less, each gets what he announced. If 
they add up to more than 1, neither gets anything. Then any pair (x, y) adding to 
1 constitutes a Nash equilibrium in this game: given the announcement of the 
other, each player cannot do better than to stick to his own announcement.1

Further advances in game theory have brought progress along two quite 
different lines, each using a distinct mode of game-theoretic reasoning. In 
Chapter 2, we distinguished between cooperative-game theory, in which the 
players decide and implement their actions jointly, and noncooperative-game 
theory, in which the players decide and take their actions separately. Each 
of the two lines of advance in bargaining theory uses one of these two ap-
proaches. One approach views bargaining as a cooperative game, in which 
the parties find and implement a solution jointly, perhaps using a neutral 
third party such as an arbitrator for enforcement. The other approach views 
bargaining as a noncooperative game, in which the parties choose strategies 
separately and we look for an equilibrium. However, unlike our earlier simple  
game of simultaneous announcements, whose equilibrium was indetermi-
nate, here we impose more structure and specify a sequential-move game 

1 As we saw in Chapter 5, Section 3.B, this type of game can be used as an example to bolster the 
critique that the Nash-equilibrium concept is too imprecise. In the bargaining context, we might say 
that the multiplicity of equilibria is just a formal way of showing the indeterminacy that previous 
analysts had claimed.
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of offers and counteroffers, which leads to a determinate equilibrium. As in 
Chapter 2, we emphasize that the labels “cooperative” and “noncooperative” 
refer to joint versus separate actions, not to nice versus nasty behavior or to 
compromise versus breakdown. The equilibria of noncooperative bargaining 
games can entail a lot of compromise.

1 Nash’s Cooperative solutioN

In this section, we present Nash’s cooperative-game approach to bargaining. 
First we present the idea in a simple numerical example; then we develop the 
more general algebra.2

a.  Numerical example

Imagine two Silicon Valley entrepreneurs, Andy and Bill. Andy produces a mi-
crochip set that he can sell to any computer manufacturer for $900. Bill has 
a software package that can retail for $100. The two meet and realize that their 
products are ideally suited to each other and that, with a bit of trivial tinkering, 
they can produce a combined system of hardware and software worth $3,000 in 
each computer. Thus, together they can produce an extra value of $2,000 per unit,  
and they expect to sell millions of these units each year. The only obstacle that 
remains on this path to fortune is to agree to a division of the spoils. Of the $3,000 
revenue from each unit, how much should go to Andy and how much to Bill?

Bill’s starting position is that without his software, Andy’s chip set is just so 
much metal and sand, so Andy should get only the $900 and Bill himself should 
get $2,100. Andy counters that without his hardware, Bill’s programs are just 
symbols on paper or magnetic signals on a diskette, so Bill should get only $100, 
and $2,900 should go to him, Andy.

Watching them argue, you might suggest they “split the difference.” But that 
is not an unambiguous recipe for agreement. Bill might offer to split the profit on 
each unit equally with Andy. Under this scheme, each will get a profit of $1,000, 
meaning that $1,100 of the revenue goes to Bill and $1,900 to Andy. Andy’s re-
sponse might be that they should have an equal percentage of profit on their 
contribution to the joint enterprise. Thus, Andy should get $2,700 and Bill $300.

The final agreement depends on their stubbornness or patience if they ne-
gotiate directly with one another. If they try to have the dispute arbitrated by a 
third party, the arbitrator’s decision depends on his sense of the relative value 

2 John F. Nash Jr., “The Bargaining Problem,” Econometrica, vol. 18, no. 2 (1950), pp. 155–62.
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of hardware and software and on the rhetorical skills of the two principals as 
they present their arguments before the arbitrator. For the sake of definiteness,  
suppose the arbitrator decides that the division of the profit should be 41 in 
favor of Andy; that is, Andy should get four-fifths of the surplus while Bill gets 
one-fifth, or Andy should get four times as much as Bill. What is the actual divi-
sion of revenue under this scheme? Suppose Andy gets a total of x and Bill gets a 
total of y ; thus Andy’s profit is (x  900) and Bill’s is (y  100). The arbitrator’s deci-
sion implies that Andy’s profit should be four times as large as Bill’s; so x  900   
4(y  100), or x  4y  500. The total revenue available to both is $3,000; so 
it must also be true that x  y  3,000, or x  3,000  y. Then x  4y  500  
3,000  y, or 5y  2,500, or y  500, and thus x  2,500. This division mechanism 
leaves Andy with a profit of 2,500  900  $1,600 and Bill with 500  100  $400, 
which is the 41 split in favor of Andy that the arbitrator wants.

We now develop this simple data into a general algebraic formula that you 
will find useful in many practical applications. Then we go on to examine more 
specifics of what determines the ratio in which the profits in a bargaining game 
get split.

B.  General theory

Suppose two bargainers, A and B, seek to split a total value v, which they 
can achieve if and only if they agree on a specific division. If no agreement 
is reached, A will get a and B will get b, each by acting alone or in some other 
way acting outside of this relationship. Call these their backstop payoffs or, in 
the jargon of the Harvard Negotiation Project, their BATNAs (best alternative 
to a negotiated agreement).3 Often a and b are both zero, but, more gener-
ally, we only need to assume that a  b , v, so that there is a positive surplus  
(v  a  b) from agreement; if this were not the case, the whole bargaining 
would be moot because each side would just take up its outside opportunity 
and get its BATNA.

Consider the following rule: each player is to be given his BATNA plus a 
share of the surplus, a fraction h of the surplus for A and a fraction k for B, such 
that h  k  1. Writing x for the amount that A finally ends up with, and similarly 
y for B, we translate these statements as

                   x  a  h(v  a  b)  a(1  h)  h(v  b)
                                   x  a  h(v  a  b)

 and

                  y  b  k(v  a  b)  b(1  k)  k(v  a)
                                   y  b  k(v  a  b).

3 See Roger Fisher and William Ury, Getting to Yes, 2nd ed. (New York: Houghton Mifflin, 1991).
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We call these expressions the Nash formulas. Another way of looking at them is 
to say that the surplus (v  a  b) gets divided between the two bargainers in 
the proportions of hk, or

 

or, in slope-intercept form,

 

To use up the whole surplus, x and y must also satisfy x  y  v. The Nash 
formulas for x and y are actually the solutions to these last two simultaneous 
equations.

A geometric representation of the Nash cooperative solution is shown in 
Figure 17.1. The backstop, or BATNA, is the point P, with coordinates (a, b). All 
points (x, y) that divide the gains in proportions hk between the two players 
lie along the straight line passing through P and having slope kh; this slope is 
just the line y  b  (kh)(x  a) that we derived earlier. All points (x, y) that use 
up the whole surplus lie along the straight line joining (v, 0) and (0, v); this line  
is the second equation that we derived—namely, x  y  v. The Nash solution 
is at the intersection of the lines, at the point Q. The coordinates of this point 
are the parties’ payoffs after the agreement.
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The Nash formula says nothing about how or why such a solution might 
come about. And this vagueness is its merit—it can be used to encapsulate the 
results of many different theories taking many different perspectives.

At the simplest, you might think of the Nash formula as a shorthand de-
scription of the outcome of a bargaining process that we have not specified in 
detail. Then h and k can stand for the two parties’ relative bargaining strengths. 
This shorthand description is a cop-out; a more complete theory should explain 
where these bargaining strengths come from and why one party might have 
more than the other. We do so in a particular context later in the chapter. In the 
meantime, by summarizing any and all of the sources of bargaining strength in 
these numbers h and k, the formula has given us a good tool.

Nash’s own approach was quite different—and indeed different from the 
whole approach to game theory that we have taken thus far in this book. Therefore,  
it deserves more careful explanation. In all the games that we have studied so 
far, the players chose and played their strategies separately from each other. We 
have looked for equilibria in which each player’s strategy was in his own best in-
terest, given the strategies of the others. Some such outcomes were very bad for 
some or even all of the players, the prisoners’ dilemma being the most promi-
nent example. In such situations, there was scope for the players to get together 
and agree that all would follow some particular strategy. But in our framework, 
there was no way in which they could be sure that the agreement would hold. 
After reaching an agreement, the players would disperse, and, when it was each 
player’s turn to act, he would actually take the action that served his own best 
interest. The agreement on joint action would unravel in the face of such sepa-
rate temptations. True, in considering repeated games in Chapter 10, we found 
that the implicit threat of the collapse of an ongoing relationship might sus-
tain an agreement, and, in Chapter 8, we did allow for communication by sig-
nals. But individual action was of the essence, and any mutual benefit could be 
achieved only if it did not fall prey to the selfishness of separate individual ac-
tions. In Chapter 2, we called this approach to game theory noncooperative, em-
phasizing that the term signified how actions are taken, not whether outcomes 
are jointly good. The important point, again, is that any joint good has to be an 
equilibrium outcome of separate action in such games.

What if joint action is possible? For example, the players might take all their 
actions immediately after the agreement is reached, in one another’s presence. Or 
they might delegate the implementation of their joint agreement to a neutral third 
party, or to an arbitrator. In other words, the game might be cooperative (again in 
the sense of joint action). Nash modeled bargaining as a cooperative game.

The thinking of a collective group that is going to implement a joint agree-
ment by joint action can be quite different from that of a set of individual people 
who know that they are interacting strategically but are acting noncooperatively. 
Whereas the latter set will think in terms of an equilibrium and then delight or 
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grieve, depending on whether they like the results, the former can think first 
of what is a good outcome and then see how to implement it. In other words, 
the theory defines the outcome of a cooperative game in terms of some general 
principles or properties that seem reasonable to the theorist.

Nash formulated a set of such principles for bargaining and proved that they 
implied a unique outcome. His principles are roughly as follows: (1) the outcome  
should be invariant if the scale in which the payoffs are measured changes  
linearly; (2) the outcome should be efficient; and (3) if the set of possibilities is 
reduced by removing some that are irrelevant in the sense that they would not 
be chosen anyway, then the outcome should not be affected.

The first of these principles conforms to the theory of expected utility, which 
we discussed briefly in the appendix to Chapter 8. We saw there that a nonlinear 
rescaling of payoffs represents a change in a player’s attitude toward risk and a 
real change in behavior; a concave rescaling implies risk aversion, and a con-
vex rescaling implies risk preference. A linear rescaling, being the intermediate 
case between these two, represents no change in the attitude toward risk. There-
fore, it should have no effect on expected payoff calculations and no effect on  
outcomes.

The second principle simply means that no available mutual gain should go  
unexploited. In our simple example of A and B splitting a total value of v, it 
would mean that x and y has to sum to the full amount of v available, and not to 
any smaller amount; in other words, the solution has to lie on the x  y  v line 
in Figure 17.1. More generally, the complete set of logically conceivable agree-
ments to a bargaining game, when plotted on a graph as in Figure 17.1, will be 
bounded above and to the right by the subset of agreements that leave no mutual 
gain unexploited. This subset need not lie along a straight line such as x  y  v  
(or y  v  x); it could lie along any curve of the form y  f(x).

In Figure 17.2, all of the points on and below (that is, “south” and to the 
“west” of) the thick blue curve labeled y  f(x) constitute the complete set of 
conceivable outcomes. The curve itself consists of the efficient outcomes; 
there are no conceivable outcomes that include more of both x and y than the  
outcomes on y  f(x); so there are no unexploited mutual gains left. Therefore, 
we call the curve y  f(x) the efficient frontier of the bargaining problem. 

We can illustrate a curved efficient frontier using the example of efficient 
risk allocation from Chapter 8, Section1.A. Two farmers, each with a square root 
utility function, face the risk that equally likely good or bad weather would make 
their incomes either $160,000 or $40,000, yielding each an expected utility of

 12 3 160,000 + 12 3 40,000  12 3 400 + 12 3 200  300.

But their risks are perfectly negatively correlated. One gets good weather 
only when the other gets bad, so their combined income is $200,000 no matter 
which of them gets the good weather. If they negotiate so that the first of them 
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gets z of the combined income and the other gets the remaining (200,000  z), 
their respective utilities x and y will be

 x  z   and  y  200,000   z .

Therefore, we can describe the set of possible risk-sharing outcomes by the 
equation

 x 2  y 2  z  (200,000  z)  200,000.

This equation defines a quarter-circle in the positive quadrant and repre-
sents the efficient frontier of the farmers’ bargaining problem. The BATNA of 
each farmer is the expected utility 300 he would get if the two are not able to 
come to any risk-sharing agreement. Substituting this value into the equation 
above yields 3002  3002  90,000  90,000  180,000 , 200,000. So the farmers’ 
BATNA point lies inside the quarter-circle efficient frontier. 

The third principle also seems appealing. If an outcome that a bargainer 
wouldn’t have chosen anyway drops out of the picture, what should it matter? 
This assumption is closely connected to the “independence of irrelevant alter-
natives” assumption of Arrow’s impossibility theorem, which we met in Chapter 
15, Section 3, but we must leave the development of this connection to more 
advanced treatments of the subject.

Nash proved that the cooperative outcome that satisfied all three of these 
assumptions could be characterized by the mathematical maximization prob-
lem: choose x and y to

 maximize (x  a)h(y  b)k  subject to y  f(x).

y 

x a 

h log (x – a) + 
k log (y – b) = Q 

b 
P 

c 3 

c 2 
c 1 

y = f (x)

FIGURE 17.2  the General Form of the Nash Bargaining solution
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Here x and y are the outcomes, a and b the backstops, and h and k two posi-
tive numbers summing to 1, which are like the bargaining strengths of the Nash  
formula. The values for h and k cannot be determined by Nash’s three assumptions 
alone; thus they leave a degree of freedom in the theory and in the outcome. Nash 
actually imposed a fourth assumption on the problem—that of symmetry be-
tween the two players; this additional assumption led to the outcome h  k  12  
and fixed a unique solution. We have given the more general formulation that 
subsequently became common in game theory and economics.

Figure 17.2 also gives a geometric representation of the objective of the 
maximization. The black curves labeled c1, c2, and c3 are the level curves, or con-
tours, of the function being maximized; along each such curve, (x  a)h(y  b)k  
is constant and equals c1, c2, or c3 (with c1 , c2 , c3) as indicated. The whole 
space could be filled with such curves, each with its own value of the constant, 
and curves farther to the “northeast” would have higher values of the constant.

It is immediately apparent that the highest possible value of the function is 
at that point of tangency, Q, between the efficient frontier and one of the level 
curves.4 The location of Q is defined by the property that the contour passing 
through Q is tangent to the efficient frontier. This tangency is the usual way to 
illustrate the Nash cooperative solution geometrically.5

In our example of Figure 17.1, we can also derive the Nash solution math-
ematically; to do so requires calculus, but the ends here are more important—at  
least to the study of games of strategy—than the means. For the solution, it helps 
to write X  x  a and Y  y  b. Thus, X is the amount of the surplus that goes to 
A, and Y is the amount of the surplus that goes to B. The efficiency of the outcome  
guarantees that X  Y  x  y  a  b  v  a  b, which is just the total surplus 
and which we will write as S. Then Y  S  X, and

 (x  a)h(y  b)k  XhY k  Xh(S  X)k.

In the Nash solution, X takes on the value that maximizes this function. Elemen-
tary calculus tells us that the way to find X is to take the derivative of this expres-
sion with respect to X and set it equal to zero. Using the rules of calculus for taking 
the derivatives of powers of X and of the product of two functions of X, we get

 hXh1(S  X)k  Xhk(S  X)k1  0.

4 One and only one of the (convex) level curves can be tangential to the (concave) efficient frontier; 
in Figure 17.2, this level curve is labeled c2. All lower-level curves (such as c1) cut the frontier in two 
points; all higher-level curves (such as c3) do not meet the frontier at all.
5 If you have taken an elementary microeconomics course, you will have encountered the concept 
of social optimality, illustrated graphically by the tangent point between the production possibility 
frontier of an economy and a social indifference curve. Our Figure 17.2 is similar in spirit; the ef-
ficient frontier in bargaining is like the production possibility frontier, and the level curves of the 
objective in cooperative bargaining are like social indifference curves.
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When we cancel the common factor Xh1(S  X)k1, this equation becomes

 h(S  X)  kX   0

 hY  kX   0

 kX   hY

 

 
Finally, expressing the equation in terms of the original variables x and y, we 
have (x  a)h  (y  b)k, which is just the Nash formula. The punch line: 
Nash’s three conditions lead to the formula we originally stated as a simple way 
of splitting the bargaining surplus.

The three principles, or desired properties, that determine the Nash  
cooperative-bargaining solution are simple and even appealing. But in the ab-
sence of a good mechanism to make sure that the parties take the actions stipu-
lated by the agreement, these principles may come to nothing. A player who can 
do better by strategizing on his own than by using the Nash solution may simply 
reject the principles. If an arbitrator can enforce a solution, the player may sim-
ply refuse to go to arbitration. Therefore, Nash’s cooperative solution will seem 
more compelling if it can be given an alternative interpretation—namely, as the 
Nash equilibrium of a noncooperative game played by the bargainers. This can 
indeed be done, and we will develop an important special case of it in Section 5.

2 variaBle-threat BarGaiNiNG

In this section, we embed the Nash cooperative solution within a specific game—
namely, as the second stage of a sequential-play game. We assumed in Section 1 
that the players’ backstops (BATNAs) a and b were fixed. But suppose there is a 
first stage to the bargaining game in which the players can make strategic moves 
to manipulate their BATNAs within certain limits. After they have done so, the 
Nash cooperative outcome starting from those BATNAs will emerge in a second 
stage of the game. This type of game is called variable-threat bargaining. What 
kind of manipulation of the BATNAs is in a player’s interest in this type of game?

We show the possible outcomes from a process of manipulating BATNAs 
in Figure 17.3. The originally given backstops (a and b) are the coordinates for 
the game’s backstop point P; the Nash solution to a bargaining game with these 
backstops is at the outcome Q. If player A can increase his BATNA to move the 
game’s backstop point to P1, then the Nash solution starting there leads to the 
outcome Q9, which is better for player A (and worse for B). Thus, a strategic 
move that improves one’s own BATNA is desirable. For example, if you have a 

 .
X
h

Y
k

6841D CH17 UG.indd   672 12/18/14   3:17 PM



vA R I A B l e - t h R e At  B A R G A I N I N G   6 7 3

good job offer in your pocket—a higher BATNA—when you go for an interview 
at another company, you are likely to get a better offer from that employer than 
you would if you did not have the first alternative.

The result that improving your own BATNA can improve your ultimate  
outcome is quite obvious, but the next step in the analysis is less so. It turns out 
that if player A can make a strategic move that reduces player B’s BATNA and 
moves the game’s backstop point to P2, the Nash solution starting there leads 
to the same outcome Q9 that was achieved after A increased his own BATNA to 
get to the backstop point P1. Therefore, this alternative kind of manipulation 
is equally in player A’s interest. As an example of decreasing your opponent’s 
BATNA, think of a situation in which you are already working and want to get 
a raise. Your chances are better if you can make yourself indispensable to your 
employer so that without you his business has much worse prospects; his low 
outcome in the absence of an agreement—not offering you a raise and your 
leaving the firm—may make him more likely to accede to your wishes.

Finally and even more dramatically, if player A can make a strategic move that 
lowers both players’ BATNAs so that the game’s backstop point moves to P3, that 
again has the same result as each of the preceding manipulations. This particular 
move is like using a threat that says, “This will hurt you more than it hurts me.”

In general, the key for player A is to shift the game’s BATNA point to some-
where below the line PQ. The farther southeast the BATNA point is moved, the 

 y 

P 

v 

b 

Q 

Q ' 

P 1 

P 2 

P 3 

a v x 

x + y = v

= 
k 
– 
h 

y – b 
–––– – 
x – a 

FIGURE 17.3  Bargaining Game of Manipulating BAtNAs
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better it is for player A in the eventual outcome. As is usual with threats, the idea 
is not actually to suffer the low payoff but merely to use its prospect as a lever to 
get a better outcome.

The possibility of manipulating BATNAs in this way depends on the context. 
We offer just one illustration. In 1980 there was a baseball players’ strike. It took 
a very complicated form. The players struck in spring training, then resumed 
working (playing, really) when the regular season began in April, and went on 
strike again starting on Memorial Day. A strike is costly to both sides, employers 
and employees, but the costs differ. During spring training the players do not 
have salaries, but the owners make some money from vacationing spectators. At 
the start of the regular season, in April and May, the players get salaries but the 
weather is cold and the season is not yet exciting; therefore the crowds are small, 
and so the cost of a strike to the owners is low. The crowds start to build up from 
Memorial Day onward, which raises the cost of a strike to the owners, but the 
salaries that the players stand to lose stay the same. So we see that the two-piece 
strike was very cleverly designed to lower the BATNA of the owners relative to 
that of the players as much as possible.6

One puzzle remains: Why did the strike occur at all? According to the theory,  
everyone should have seen what was coming; a settlement more favorable 
to the players should have been reached so that the strike would have been  
unnecessary. A strike that actually happens is a threat that has “gone wrong.” 
Some kind of uncertainty—asymmetric information or brinkmanship—must 
be responsible.

3 alterNatiNG-offers Model i: total value deCays

Here we move back to the more realistic noncooperative-game theory and 
think about the process of individual strategizing that may produce an equilib-
rium in a bargaining game. Our standard picture of this process is one of alter-
nating offers. One player—say, A—makes an offer. The other—say, B—either 
accepts it or makes a counteroffer. If he does the latter, then A can either ac-
cept it or come back with another offer of his own. And so on. Thus, we have a 
 sequential-move game and look for its rollback equilibrium.

To find a rollback equilibrium, we must start at the end and work backward. 
But where is the end point? Why should the process of offers and counterof-
fers ever terminate? Perhaps more drastic, why would it ever start? Why would 

6 See Larry DeBrock and Alvin Roth, “Strike Two: Labor-Management Negotiations in Major League 
Baseball,” Bell Journal of Economics, vol. 12, no. 2 (Autumn 1981), pp. 413–25.
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the two bargainers not stick to their original positions and refuse to budge? It is 
costly to both if they fail to agree at all, but the benefit of an agreement is likely 
to be smaller to the one who makes the first or the larger concession. The reason  
that anyone concedes must be that continuing to stand firm would cause an 
even greater loss of benefit. This loss takes one of two broad forms. The available 
pie, or surplus, may decay (shrink) with each offer, a possibility that we consider 
in this section. The alternative possibility is that time has value and impatience 
is important, and so a delayed agreement is worth less; we examine this possi-
bility in Section 5.

Consider the following story of bargaining over a shrinking pie. A fan arrives 
at a professional football (or basketball) game without a ticket. He is willing to 
pay as much as $25 to watch each quarter of the game. He finds a scalper who 
states a price. If the fan is not willing to pay this price, he goes to a nearby bar to 
watch the first quarter on the big-screen TV. At the end of the quarter, he comes 
out, finds the scalper still there, and makes a counteroffer for the ticket. If the 
scalper does not agree, the fan goes back to the bar. He comes out again at the 
end of the second quarter, when the scalper makes him yet another offer. If that 
offer is not acceptable to the fan, he goes back into the bar, emerging at the end 
of the third quarter to make yet another counteroffer. The value of watching the 
rest of the game is declining as the quarters go by.7

Rollback analysis enables us to predict the outcome of this alternating-
offers bargaining process. At the end of the third quarter, the fan knows that, 
if he does not buy the ticket then, the scalper will be left with a small piece 
of paper of no value. So the fan will be able to make a very small offer that, 
for the scalper, will still be better than nothing. Thus, on his last offer, the fan 
can get the ticket almost for free. Backing up one period, we see that, at the 
end of the second quarter, the scalper has the initiative in making the offer. 
But he must look ahead and recognize that he cannot hope to extract the 
whole of the remaining two quarters’ value from the fan. If the scalper asks 
for more than $25—the value of the third quarter to the fan—the fan will turn 
down the offer because he knows that he can get the fourth quarter later for 
almost nothing, so the scalper can ask for $25 at most. Now consider the sit-
uation at the end of the first quarter. The fan knows that if he does not buy 
the ticket now, the scalper can expect to get only $25 later, and so $25 is all 
that the fan needs to offer now to secure the ticket. Finally, before the game 
even begins, the scalper can look ahead and ask for $50; this $50 includes the 
$25 value of the first quarter to the fan plus the $25 for which the fan can get  
the remaining three quarters’ worth. Thus, the two will strike an immediate 

7 Just to keep the argument simple, we imagine this process as one-on-one bargaining. Actually, 
there may be several fans and several scalpers, turning the situation into a market. You can access 
our supplemental chapter on interactions in markets on the textbook Web site.
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agreement, and the ticket will change hands for $50, but the price is deter-
mined by the full forward-looking rollback reasoning.8

This story can be easily turned into a more general argument for two bargain-
ers, A and B. Suppose A makes the first offer to split the total surplus, which we call 
v (in some currency—say, dollars). If B refuses the offer, the total available drops 
by x1 to (v  x1); B offers a split of this amount. If A refuses B’s offer, the total drops 
by a further amount x2 to (v  x1  x2); A offers a split of this amount. This offer  
and counteroffer process continues until finally, say, after 10 rounds, v  x1  x2   
    x10  0, so the game ends. As usual with sequential-play games, we begin 
our analysis at the end.

If the game has gone to the point where only x10 is left, B can make a final 
offer whereby he gets to keep “almost all” of the surplus, leaving a measly cent 
or so to A. Left with the choice of that or absolutely nothing, A should accept the 
offer. To avoid the finicky complexity of keeping track of tiny cents, let us call 
this outcome “x10 to B, 0 to A.” We will do the same in the other (earlier) rounds.

Knowing what is going to happen in round 10, we turn to round 9. Here A is 
to make the offer, and (x9  x10) is left. A knows that he must offer at least x10 to 
B or else B will refuse the offer and take the game to round 10, where he can get 
that much. Bargainer A does not want to offer any more to B. So, on round 9, A 
will offer a split where he keeps x9 and leaves x10 to B.

Then on the round before, when x8  x9  x10 is left, B will offer a split where 
he gives x9 to A and keeps (x8  x10). Working backward, on the very first round, 
A will offer a split where he keeps (x1  x3  x5  x7  x9) and gives (x2  x4  x6 
 x8  x10) to B. This offer will be accepted.

You can remember these formulas by means of a simple trick. Hypothesize 
a sequence in which all offers are refused. (This sequence is not what actually 
happens.) Then add up the amounts that would be destroyed by the refusals of 
one player. This total is what the other player gets in the actual equilibrium. For 
example, when B refused A’s first offer, the total available surplus dropped by x1, 
and x1 became part of what went to A in the equilibrium of the game.

If each player has a positive BATNA, the analysis must be modified somewhat 
to take them into account. At the last round, B must offer A at least the BATNA 
a. If x10 is greater than a, B is left with (x10  a); if not, the game must terminate 
before this round is reached. Now at round 9, A must offer B the larger of the two 
amounts—the (x10  a) that B can get in round 10 or the BATNA b that B can get 
outside this agreement. The analysis can proceed all the way back to round 1 in 
this way; we leave it to you to complete the rollback reasoning for this case.

8 To keep the analysis simple, we omitted the possibility that the game might get exciting, and so the 
value of the ticket might actually increase as the quarters go by. The uncertainty makes the problem 
much more complex but also more interesting. The ability to deal with such possibilities should in-
spire you to go beyond this book or course to study more advanced game theory.
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We have found the rollback equilibrium of the alternating-offers bargaining 
game, and in the process of deriving the outcome, we have also described the 
full strategies (complete contingent plans of action) behind the equilibrium—
namely, what each player would do if the game reached some later stage. In fact, 
actual agreement is immediate on the very first offer. The later stages are not 
reached; they are off-equilibrium nodes and paths. But as usual with rollback 
reasoning, the foresight about what rational players would do at those nodes if 
they were reached is what informs the initial action.

The other important point to note is that gradual decay (several potential 
rounds of offers) leads to a more even or fairer split of the total than does sud-
den decay (only one round of bargaining permitted). In the latter, no agreement 
would result if B turned down A’s very first offer; then, in a rollback equilibrium, 
A would get to keep (almost) the whole surplus, giving B an “ultimatum” to  
accept a measly cent or else get nothing at all. The subsequent rounds give B the 
credible ability to refuse a very uneven first offer.

4 experiMeNtal evideNCe

The theory of this particular type of bargaining process is fairly simple, and 
many people have staged laboratory or classroom experiments that create such 
conditions of decaying totals, to observe what the experimental subjects actu-
ally do. We mentioned some of them briefly in Chapter 3 when considering the 
validity of rollback reasoning; now we examine them in more detail in the con-
text of bargaining.9

The simplest bargaining experiment is the ultimatum game, in which there 
is only one round: player A makes an offer and, if B does not accept it, the bar-
gaining ends and both get nothing. The general structure of these games is as 
follows. A pool of players is brought together, either in the same room or at com-
puter terminals in a network. They are paired; one person in the pair is desig-
nated to be the proposer (the one who makes the offer or is the seller who posts 
a price) and the other to be the chooser (the one who accepts or refuses the offer 
or is the customer who decides whether to buy at that price). The pair is given a 
fixed surplus, usually $1 or some other sum of money, to split.

Rollback reasoning suggests that A should offer B the minimal unit—say, 
1 cent out of a dollar—and that B should accept such an offer. Actual results 
are dramatically different. In the case in which the subjects are together in a 

9 For more details, see Douglas D. Davis and Charles A. Holt, Experimental Economics (Princeton: 
Princeton University Press, 1993), pp. 263–69, and The Handbook of Experimental Economics, ed. 
John H. Kagel and Alvin E. Roth (Princeton: Princeton University Press, 1995), pp. 255–74.

6841D CH17 UG.indd   677 12/18/14   3:18 PM



6 7 8   [ C h . 1 7 ]  B A R G A I N I N G

room and the assignment of the role of proposer is made randomly, the most  
common offer is a 5050 split. Very few offers worse than 7525 are made (with 
the proposer to keep 75% and the chooser to get 25%), and if made, they are 
often rejected.

This finding can be interpreted in one of two ways. Either the players  
cannot or do not perform the calculation required for rollback or the payoffs 
of the players include something other than what they get out of this round of 
bargaining. Surely the calculation in the ultimatum game is simple enough that 
anyone should be able to do it, and the subjects in most of these experiments 
are college students. A more likely explanation is the one that we put forth in 
Chapter 3, Section 6, and Chapter 5, Section 3—that the theory, which assumed 
payoffs to consist only of the sum earned in this one round of bargaining, is too 
simplistic.

Participants can have payoffs that include other things. They may have 
self-esteem or pride that prevents them from accepting a very unequal split. 
Even if the proposer A does not include this consideration in his own payoff,  
if he thinks that B might, then it is a good strategy for A to offer enough to 
make it likely that B will accept. Proposer A balances his higher payoff with a 
smaller offer to B against the risk of getting nothing if B rejects an offer deemed  
too unequal.

A second possibility is that, when the participants in the experiment are 
gathered in a room, the anonymity of pairing cannot be guaranteed. If the par-
ticipants come from a group such as college students or villagers who have  
ongoing relationships outside this game, they may value those relationships. 
Then the proposers fear that, if they offer too unequal a split in this game, those 
relationships may suffer. Therefore, they would be more generous in their of-
fers than the simplistic theory suggests. If this is the explanation, then ensuring 
greater anonymity should enable the proposers to make more unequal offers, 
and experiments do find this to be the case.

Finally, people may have a sense of fairness drilled into them during their 
nurture and education. This sense of fairness may have evolutionary value for 
society as a whole and may therefore have become a social norm. Whatever its 
origin, it may lead the proposers to be relatively generous in their offers, quite 
irrespective of the fear of rejection. One of us (Skeath) has conducted classroom 
experiments of several different ultimatum games. Students who had partners 
previously known to them with whom to bargain were noticeably “fairer” in their 
split of the pie. In addition, several students cited specific cultural backgrounds 
as explanations for behavior that was inconsistent with theoretical predictions.

Experimenters have tried variants of the basic game to differentiate be-
tween these explanations. The point about ongoing relationships can be han-
dled by stricter procedures that visibly guarantee anonymity. Doing so by itself 
has some effect on the outcomes but still does not produce offers as extreme 
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as those predicted by the purely selfish rollback argument of the theory. The re-
maining explanations—namely, “fear of rejection” and the “ingrained sense of 
fairness”—remain to be sorted out.

The fear of rejection can be removed by considering a variant called the dic-
tator game. Again, the participants are matched in pairs. One person (say, A) is 
designated to determine the split, and the other (say, B) is simply a passive re-
cipient of what A decides. Now the split becomes decidedly more uneven, but 
even here a majority of As choose to keep no more than 70%. This result sug-
gests a role for an ingrained sense of fairness.

But such a sense has its limits. In some experiments, a sense of fairness was 
created simply when the experimenter randomly assigned roles of proposer and 
chooser. In one variant, the participants were given a simple quiz, and those 
who performed best were made proposers. This created a sense that the role 
of proposer had been earned, and the outcomes did show more unequal splits. 
When the dictator game was played with earned rights and with stricter ano-
nymity conditions, most As kept everything, but some (about 5%) still offered  
a 5050 split.

One of us (Dixit) carried out a classroom experiment in which students in 
groups of 20 were gathered together in a computer cluster. They were matched 
randomly and anonymously in pairs, and each pair tried to agree on how to split 
100 points. Roles of proposer and chooser were not assigned; either could make 
an offer or accept the other’s offer. Offers could be made and changed at any 
time. The pairs could exchange messages instantly with their matched oppo-
nent on their computer screens. The bargaining round ended at a random time 
between 3 and 5 minutes; if agreement was not reached in time by a pair, both 
got zero. There were 10 such rounds with different random opponents each 
time. Thus, the game itself offered no scope for cooperation through repeti-
tion. In a classroom context, the students had ongoing relationships outside the 
game, but they did not generally know or guess with whom they were playing 
in any round, even though no great attempt was made to enforce anonymity. 
Each student’s score for the whole game was the sum of his point score for the 
10 rounds. The stakes were quite high, because the score accounted for 5% of 
the course grade!

The highest total of points achieved was 515. Those who quickly agreed on 
5050 splits did the best, and those who tried to hold out for very uneven scores 
or who refused to split a difference of 10 points or so between the offers and 
ran the risk of time running out on them did poorly.10 It seems that moderation 
and fairness do get rewarded, even as measured in terms of one’s own payoff.

10 Those who were best at the mathematical aspects of game theory, such as problem sets, did a little 
worse than the average, probably because they tried too hard to eke out an extra advantage and met 
resistance. And women did slightly better than men.
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5 alterNatiNG-offers Model ii: iMpatieNCe

Now we consider a different kind of cost of delay in reaching an agreement. Sup-
pose the actual monetary value of the total available for splitting does not decay, 
but players have a “time value of money” and therefore prefer early agreement 
to later agreement. They make offers alternately as described in Section 3, but 
their time preferences are such that money now is better than money later. For 
concreteness, we will say that both bargainers believe that having only 95 cents 
right now is as good as having $1 one round later.

A player who prefers having something right away to having the same thing 
later is impatient; he attaches less importance to the future relative to the pres-
ent. We came across this idea in Chapter 10, Section 2, and saw two reasons for 
it. First, player A may be able to invest his money—say, $1—now and get his 
principal back along with interest and capital gains at a rate of return r, for a 
total of (1  r) in the next period (tomorrow, next week, next year, or whatever is 
the length of the period). Second, there may be some risk that the game will end 
between now and the next offer (as in the sudden end at a time between 3 and 5 
minutes in the classroom game described earlier). If p is the probability that the 
game continues, then the chance of getting a dollar next period has an expected 
value of only p now.

Suppose we consider a bargaining process between two players with zero 
BATNAs. Let us start the process with one of the two bargainers—say, A— making  
an offer to split $1. If the other player, B, rejects A’s offer, then B will have an 
opportunity to make his own offer one round later. The two bargainers are in 
identical situations when each makes his offer, because the amount to be split 
is always $1. Thus, in equilibrium the amount that goes to the person currently 
in charge of making the offer (call it x) is the same, regardless of whether that 
person is A or B. We can use rollback reasoning to find an equation that can be 
solved for x.

Suppose A starts the alternating offer process. He knows that B can get x in 
the next round when it is B’s turn to make the offer. Therefore, A must give B at 
least an amount that is equivalent, in B’s eyes, to getting x in the next round; A 
must give B at least 0.95x now. (Remember that, for B, 95 cents received now 
is equivalent to $1 received in the next round; so 0.95x now is as good as x in 
the next round.) Player A will not give B any more than is required to induce B’s 
acceptance. Thus, A offers B exactly 0.95x and is left with (1  0.95x). But the 
amount that A gets when making the offer is just what we called x. Therefore,  
x  1  0.95x, or (1  0.95)x  1, or x  11.95  0.512.

Two things about this calculation should be noted. First, even though the 
process allows for an unlimited sequence of alternating offers and counteroffers,  
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in the equilibrium the very first offer A makes gets accepted and the bargain-
ing ends. Because time has value, this outcome is efficient. The cost of delay 
governs how much A must offer B to induce acceptance; it thus affects A’s  
rollback reasoning. Second, the player who makes the first offer gets more than 
half of the pie—namely, 0.512 rather than 0.488. Thus, each player gets more 
when he makes the first offer than when the other player makes the first offer. 
But this advantage is far smaller than that in an ultimatum game with no future 
rounds of counteroffers.

Now suppose the two players are not equally patient (or impatient, as the 
case may be). Player B still regards $1 in the next round as being equivalent to 
95 cents now, but A regards it as being equivalent to only 90 cents now. Thus, A 
is willing to accept a smaller amount to get it sooner; in other words, A is more 
impatient. This inequality in rates of impatience can translate into unequal 
equilibrium payoffs from the bargaining process. To find the equilibrium for this 
example, we write x for the amount that A gets when he starts the process and y 
for what B gets when he starts the process.

Player A knows that he must give B at least 0.95y ; otherwise B will reject the 
offer in favor of the y that he knows he can get when it becomes his turn to make 
the offer. Thus, the amount that A gets, x, must be 1  0.95y ; x  1  0.95y. Simi-
larly, when B starts the process, he knows that he must offer A at least 0.90x, and 
then y  1  0.90x. These two equations can be solved for x and y :

 

Note that x and y do not add up to 1, because each of these amounts is the pay-
off to a given player when he makes the first offer. Thus, when A makes the first 
offer, A gets 0.345 and B gets 0.655; when B makes the first offer, B gets 0.69 and 
A gets 0.31. Once again, each player does better when he makes the first offer 
than when the other player makes the first offer, and once again the difference is 
small.

The outcome of this case with unequal rates of impatience differs from that 
of the preceding case with equal rates of impatience in a major way. With un-
equal rates of impatience, the more impatient player, A, gets a lot less than B 
even when he is able to make the first offer. We expect that the person who is 
willing to accept less to get it sooner ends up getting less, but the difference is 
very dramatic. The proportion of A’s shares and B’s shares is almost 12.

As usual, we can now build on these examples to develop the more general al-
gebra. Suppose A regards $1 immediately as being equivalent to $(1  r) one offer 
later or, equivalently, A regards $1(1  r) immediately as being equivalent to $1 
one offer later. For brevity, we substitute a for 1(1  r) in the calculations that 

x  1  0.95(1  0.9x)
[1  0.95(0.9)]x  1  0.95

0.145x  0.05
x  0.345

y  1  0.9(1  0.95y)
[1  0.9(0.95)]y  1  0.9

0.145y  0.10
y  0.690

 and 
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follow. Likewise, suppose player B regards $1 today as being equivalent to $(1  s) 
one offer later; we use b for 1(1  s). If r is high (or equivalently, if a is low), then 
player A is very impatient. Similarly, B is impatient if s is high (or if b is low).

Here we look at bargaining that takes place in alternating rounds, with a 
total of $1 to be divided between two players, both of whom have zero BATNAs. 
(You can do the even more general case easily once you understand this one.) 
What is the rollback equilibrium?

We can find the payoffs in such an equilibrium by extending the simple ar-
gument used earlier. Suppose A’s payoff in the rollback equilibrium is x when he 
makes the first offer; B’s payoff in the rollback equilibrium is y when he makes 
the first offer. We look for a pair of equations linking the values x and y and then 
solve these equations to determine the equilibrium payoffs.11

When A is making the offer, he knows that he must give B an amount that B 
regards as being equivalent to y one period later. This amount is by  y(1  s). 
Then, after making the offer to B, A can keep only what is left: x  1  by.

Similarly, when B is making the offer, he must give A the equivalent of x one 
period later—namely, ax. Therefore y  1  ax. Solving these two equations is 
now a simple matter. We have x  1  b(1  ax), or (1  ab)x  1  b. Expressed 
in terms of r and s, this equation becomes

 

Similarly, y  1  a(1  by), or (1  ab)y  1  a. This equation becomes

 

Although this quick solution might seem a sleight of hand, it follows the 
same steps used earlier, and we soon give a different reasoning yielding exactly 
the same answer. First, let us examine some features of the answer.

First note that, as in our simple unequal-impatience example, the two mag-
nitudes x and y add up to more than 1:

 

Remember that x is what A gets when he has the right to make the first offer, and 
y is what B gets when he has the right to make the first offer. When A makes the 
first offer, B gets (1  x), which is less than y; this just shows A’s advantage from 

11 We are taking a shortcut; we have simply assumed that such an equilibrium exists and that the 
payoffs are uniquely determined. More rigorous theory proves these conditions. For a step in this di-
rection, see John Sutton, “Non-Cooperative Bargaining: An Introduction,” Review of Economic Stud-
ies, vol. 53, no. 5 (October 1986), pp. 709–24. The fully rigorous (and quite difficult) theory is given in 
Ariel Rubinstein, “Perfect Equilibrium in a Bargaining Model,” Econometrica, vol. 50, no. 1 (January 
1982), pp. 97–109.

x   
1  b

1  ab
s  rs

r   s  rs
.

y   
1  a

1  ab
r  rs

r   s  rs
.

x �y �  � 1. 
r  � s � 2rs 
r  � s � rs 
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being the first proposer. Similarly, when B makes the first offer, B gets y and A 
gets (1  y), which is less than x.

However, usually r and s are small numbers. When offers can be made at 
short intervals such as a week or a day or an hour, the interest that your money 
can earn from one offer to the next or the probability that the game ends pre-
cisely within the next interval is quite small. For example, if r is 1% (0.01) and s 
is 2% (0.02), then the formulas yield x  0.668 and y  0.337; so the advantage 
of making the first offer is only 0.005. (A gets 0.668 when making the first offer, 
but 1  0.337  0.663 when B makes the first offer; the difference is only 0.005.) 
More formally, when r and s are each small compared with 1, then their product 
rs is very small indeed; thus we can ignore rs to write an approximate solution 
for the split that does not depend on which player makes the first offer:

 

Now x  y is approximately equal to 1.
Most important, x and y in the approximate solution are the shares of the 

surplus that go to the two players, and yx  rs ; that is, the shares of the players 
are inversely proportional to their rates of impatience as measured by r and s. If 
B is twice as impatient as A, then A gets twice as much as B; so the shares are 13 
and 23, or 0.333 and 0.667, respectively. Thus, we see that patience is an impor-
tant advantage in bargaining. Our formal analysis supports the intuition that, 
if you are very impatient, the other player can offer you a quick but poor deal, 
knowing that you will accept it.

This effect of impatience hurts the United States in numerous negotiations 
that our government agencies and diplomats conduct with other countries. The 
American political process puts a great premium on speed. The media, interest  
groups, and rival politicians all demand results and are quick to criticize the 
administration or the diplomats for any delay. Under this pressure to deliver, 
the negotiators are always tempted to come back with results of any kind. Such 
results are often poor from the long-run U.S. perspective; the other countries’ 
concessions often have loopholes, and their promises are less than credible. The 
U.S. administration hails the deals as great victories, but they usually unravel 
after a few years. The financial crisis of 2008 offers another and dramatic exam-
ple. When the housing boom collapsed, some major financial institutions that 
held mortgage-backed assets faced bankruptcy. That led them to curtail credit, 
which in turn threatened to throw the U.S. economy into a severe recession. The 
crisis exploded in September, in the midst of a presidential election campaign. 
The Treasury, the Federal Reserve, and political leaders in Congress all wanted 
to act fast. This impatience led them to offer far more generous terms of res-
cue to many financial insitutions, when a slower process would have yielded an  
outcome that cost the taxpayers much less and offered them much better pros-
pects of sharing in future gains on the assets being rescued.

x   and . 
s

r   s
y  

r
r   s
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Individuals who suffer losses are in a much weaker position when they ne-
gotiate with insurance companies on coverage. The companies often make low-
ball offers of settlement to people who have suffered a major loss, knowing that 
their clients urgently want to make a fresh start and are therefore very impatient.

As a conceptual matter, the formula yx  rs ties our noncooperative game 
approach to bargaining to the cooperative approach of the Nash solution dis-
cussed in Section 1. The formula for shares of the available surplus that we de-
rived there becomes, with zero BATNAs, yx  kh. In the cooperative approach, 
the shares of the two players stood in the same proportions as their bargaining 
strengths, but these strengths were assumed to be given somehow from the out-
side. Now we have an explanation for the bargaining strengths in terms of some 
more basic characteristics for the players—h and k are inversely proportional 
to the players’ rates of impatience r and s. In other words, Nash’s cooperative 
solution can also be given an alternative and perhaps more satisfactory inter-
pretation as the rollback equilibrium of a noncooperative game of  offers and 
counteroffers, if we interpret the abstract bargaining-strength parameters in the 
cooperative solution correctly in terms of the players’ characteristics, such as 
impatience.

Finally, note that agreement is once again immediate—the very first offer is 
accepted. As usual, the whole rollback analysis disciplines by making the first 
proposer recognize that the other would credibly reject a less adequate offer.

To conclude this section, we offer an alternative derivation of the same (pre-
cise) formula for the equilibrium offers that we derived earlier. Suppose this 
time that there are 100 rounds; A is the first proposer and B the last. Start the 
backward induction in the 100th round; B will keep the whole dollar. Therefore 
in the 99th round, A will have to offer B the equivalent of $1 in the 100th round—
namely, b, and A will keep (1  b). Then proceed backward:

In round 98, B offers a(1  b) to A and keeps  
1  a(1  b)  1  a  ab.

In round 97, A offers b(1  a  ab) to B and keeps  
1  b(1  a  ab)  1  b  ab  ab2.

In round 96, B offers a(1  b  ab  ab2) to A and keeps  
1  a  ab  a2b  a2b2.

In round 95, A offers b(1  a  ab  a2b  a2b2) to B and keeps  
1  b  ab  ab2  a2b2  a2b3.

Proceeding in this way and following the established pattern, we see that, in 
round 1, A gets to keep

1  b  ab   ab 2  a2b 2  a2b 3      a49b49  a49b 50 
 (1  b)[1  ab  (ab)2      (ab)49]

6841D CH17 UG.indd   684 12/18/14   3:18 PM



M A N I p u l At I N G  I N F o R M At I o N  I N  B A R G A I N I N G   6 8 5

The consequence of allowing more and more rounds is now clear. We just get 
more and more of these terms, growing geometrically by the factor ab for every 
two offers. To find A’s payoff when he is the first proposer in an infinitely long 
sequence of offers and counteroffers, we have to find the limit of the infinite 
geometric sum. In the appendix to Chapter 10 we saw how to sum such series. 
Using the formula obtained there, we get the answer

 

This is exactly the solution for x that we obtained before. By a similar argument, 
you can find B’s payoff when he is the proposer and, in doing so, improve your 
understanding and technical skills at the same time.

6 MaNipulatiNG iNforMatioN iN BarGaiNiNG

We have seen that the outcomes of a bargain depend crucially on various char-
acteristics of the parties to the bargain, most important their BATNAs and their 
impatience. We have proceeded thus far by assuming that the players knew each 
other’s characteristics as well as their own. In fact, we have assumed that each 
player knew that the other knew, and so on; that is, the characteristics were 
common knowledge. In reality, we often engage in bargaining without know-
ing the other side’s BATNA or degree of impatience; sometimes we do not even 
know our own BATNA very precisely.

As we saw in Chapter 8, a game with such uncertainty or informational 
asymmetry has associated with it an important game of signaling and screening 
of strategies for manipulating information. Bargaining is replete with such strat-
egies. A player with a good BATNA or a high degree of patience wants to signal 
this fact to the other. However, because someone without these good attri butes 
will want to imitate them, the other party will be skeptical and will examine the 
signals critically for their credibility. And each side will also try screening, by 
using strategies that induce the other to take actions that will reveal its charac-
teristics truthfully.

In this section, we look at some such strategies used by buyers and sellers 
in the housing market. Most Americans are active in the housing market several 
times in their lives, and many people are professional real-estate agents or bro-
kers who have even more extensive experience in the matter. Moreover, hous-
ing is one of the few markets in the United States where haggling or bargaining 
over price is accepted and even expected. Therefore, considerable experience of  

(1 � b)[1� ab � (ab) � (ab) 2 � . . . � (ab) 49 � . . .]  �                .1  � b  
1  � ab 
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strategies is available. We draw on this experience for many of our examples and 
interpret it in the light of our game-theoretic ideas and insights.12

When you contemplate buying a house in a new neighborhood, you are 
unlikely to know the general range of prices for the particular type of house in 
which you are interested. Your first step should be to find this range so that you 
can then determine your BATNA. And that does not mean looking at newspa-
per ads or realtors’ listings, which indicate only asking prices. Local newspapers 
and some Internet sites list recent actual transactions and the actual prices; you 
should check them against the asking prices of the same houses to get an idea of 
the state of the market and the range of bargaining that might be possible.

Next comes finding out (screening) the other side’s BATNA and level of im-
patience. If you are a buyer, you can find out why the house is being sold and 
how long it has been on the market. If it is empty, why? And how long has it been 
that way? If the owners are getting divorced or have moved elsewhere and are 
financing another house on an expensive bridge loan, it is likely that they have a 
low BATNA or are rather impatient.

You should also find out other relevant things about the other side’s pref-
erences, even though these preferences may seem irrational to you. For ex-
ample, some people consider an offer too far below the asking price an insult 
and will not sell at any price to someone who makes such an offer. Norms of 
this kind vary across regions and times. It pays to find out what the common  
practices are.

Most important, the acceptance of an offer more accurately reveals a player’s 
true willingness to pay than anything else and therefore is open to exploitation 
by the other player. A brilliant game-theorist friend of ours tried just such a ploy. 
He was bargaining for a floor lamp. Starting with the seller’s asking price of $100, 
the negotiation proceeded to a point where our friend made an offer to buy the 
lamp for $60. The seller said yes, at which point our friend thought: “This guy is 
willing to sell it for $60, so his true rock-bottom price must be even lower. Let 
me try to find out whether it is.” So our friend said, “How about $55?” The seller 
got very upset, refused to sell for any price, and asked our friend to leave the 
store and never come back.

The seller’s behavior conformed to the norm that it is utmost bad faith in 
bargaining to renege on an offer once it is accepted. It makes good sense as a 
norm in the whole context of all bargaining games that take place in society. If an 
offer on the table cannot be accepted in good faith by the other player without  
fear of the kind of exploitation attempted by our friend, then each bargainer will 
wait to get the other to accept an offer, thereby revealing the limit of his true 
rock-bottom acceptance level, and the whole process of bargains will grind to a 

12 We have taken the insights of practitioners from Andrée Brooks, “Honing Haggling Skills,” New 
York Times, December 5, 1993.

6841D CH17 UG.indd   686 12/18/14   3:18 PM



M A N I p u l At I N G  I N F o R M At I o N  I N  B A R G A I N I N G   6 8 7

halt. Therefore, such behavior has to be disallowed. Making it a social norm to 
which people adhere instinctively, as the seller in the example did, is a good way 
for society to achieve this aim.

The offer may explicitly say that it is open only for a specified and limited 
time; this stipulation can be part of the offer itself. Job offers usually specify a 
deadline for acceptance; stores have sales for limited periods. But in that case 
the offer is truly a package of price and time, and reneging on either dimension 
provokes a similar instinctive anger. For example, customers get quite angry if 
they arrive at a store in the sale period and find an advertised item unavailable. 
The store must offer a rain check, which allows the customer to buy the item 
at its sale price when next available at the regular price; even this offer causes 
some inconvenience to the customer and risks some loss of goodwill. The store 
can specify “limited quantities, no rain checks” very clearly in its advertising of 
the sale; even then, many customers get upset if they find that the store has run 
out of the item.

Next on our list of strategies to use in one-on-one bargaining, as in the 
housing market, comes signaling your own high BATNA or patience. The best 
way to signal patience is to be patient. Do not come back with counteroffers too 
quickly, “let the sellers think they’ve lost you.” This signal is credible because 
someone not genuinely patient would find it too costly to mimic the leisurely 
approach. Similarly, you can signal a high BATNA by starting to walk away, a tac-
tic that is common in negotiations at bazaars in other countries and some flea 
markets and tag sales in the United States.

Even if your BATNA is low, you may commit yourself to not accepting an 
offer below a certain level. This constraint acts just like a high BATNA, because 
the other side cannot hope to get you to accept anything less. In the housing 
context, you can claim your inability to concede any further by inventing (or 
creating) a tightwad parent who is providing the down payment or a spouse who 
does not really like the house and will not let you offer any more. Sellers can try 
similar tactics. A parallel in wage negotiations is the mandate. A meeting is con-
vened of all the workers who pass a resolution—the mandate—authorizing the 
union leaders to represent them at the negotiation but with the constraint that 
the negotiators must not accept an offer below a certain level specified in the 
resolution. Then, at the meeting with the management, the union leaders can 
say that their hands are tied; there is no time to go back to the membership to 
get their approval for any lower offer.

Most of these strategies entail some risk. While you are signaling patience by 
waiting, the seller of the house may find another willing buyer. As employer and 
union wait for one another to concede, tensions may mount so high that a strike 
that is costly to both sides nevertheless cannot be prevented. In other words, 
many strategies of information manipulation are instances of brinkmanship. We 
saw in Chapter 14 how such games can have an outcome that is bad for both 
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parties. The same is true in bargaining. Threats of breakdown of negotiations or 
of strikes are strategic moves intended to achieve quicker agreement or a better 
deal for the player making the move; however, an actual breakdown or strike is 
an instance of the threat “gone wrong.” The player making the threat—initiating 
the brinkmanship—must assess the risk and the potential rewards when decid-
ing whether and how far to proceed down this path.

7 BarGaiNiNG with MaNy parties aNd issues

Our discussion thus far has been confined to the classic situation where two 
parties are bargaining about the split of a given total surplus. But many real-life 
negotiations include several parties or several issues simultaneously. Although 
the games get more complicated, often the enlargement of the group or the set 
of issues actually makes it easier to arrive at a mutually satisfactory agreement. 
In this section, we take a brief look at such matters.13

a.  Multi-issue Bargaining

In a sense, we have already considered multi-issue bargaining. The negotiation 
over price between a seller and a buyer always comprises two things: (1) the 
object offered for sale or considered for purchase and (2) money. The potential 
for mutual benefit arises when the buyer values the object more than the seller 
does—that is, when the buyer is willing to give up more money in return for get-
ting the object than the seller is willing to accept in return for giving up the ob-
ject. Both players can be better off as a result of their bargaining agreement.

The same principle applies more generally. International trade is the classic 
example. Consider two hypothetical countries, Freedonia and Ilyria. If Freedonia 
can convert 1 loaf of bread into 2 bottles of wine (by using less of its resources 
such as labor and land in the production of bread and using them to produce 
more wine instead) and Ilyria can convert 1 bottle of wine into 1 loaf of bread (by 
switching its resources in the opposite direction), then between them they can 
create more goods “out of nothing.” For example, suppose that Freedonia can 
produce 200 more bottles of wine if it produces 100 fewer loaves of bread and 
that Ilyria can produce 150 more loaves of bread if it produces 150 fewer bottles 
of wine. These switches in resource utilization create an extra 50 loaves of bread 
and 50 bottles of wine relative to what the two countries produced originally. 
This extra bread and wine is the “surplus” that they can create if they can agree 

13 For a more thorough treatment, see Howard Raiffa, The Art and Science of Negotiation (Cam-
bridge, Mass.: Harvard University Press, 1982), parts III and IV.
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on how to divide it between them. For example, suppose Freedonia gives 175 
bottles of wine to Ilyria and gets 125 loaves of bread. Then each country will have 
25 more loaves of bread and 25 more bottles of wine than it did before. But there 
is a whole range of possible exchanges corresponding to different divisions of the 
gain. At one extreme, Freedonia may give up all the 200 extra bottles of wine that 
it has produced in exchange for 101 loaves of bread from Ilyria, in which case 
Ilyria gets almost all the gain from trade. At the other extreme, Freedonia may 
give up only 151 bottles of wine in exchange for 150 loaves of bread from Ilyria, 
and so Freedonia gets almost all the gain from trade.14 Between these limits lies 
the frontier where the two can bargain over the division of the gains from trade.

The general principle should now be clear. When two or more issues are on 
the bargaining table at the same time and the two parties are willing to trade 
more of one against less of the other at different rates, then a mutually beneficial 
deal exists. The mutual benefit can be realized by trading at a rate somewhere 
between the two parties’ different rates of willingness to trade. The division of 
gains depends on the choice of the rate of trade. The closer it is to one side’s  
willingness ratio, the less that side gains from the deal.

Now you can also see how the possibilities for mutually beneficial deals can 
be expanded by bringing more issues to the table at the same time. With more 
issues, you are more likely to find divergences in the ratios of valuation between 
the two parties and are thereby more likely to locate possibilities for mutual 
gain. In regard to a house, for example, many of the fittings or furnishings may 
be of little use to the seller in the new house to which he is moving, but they may 
be of sufficiently good fit and taste that the buyer values having them. Then if 
the seller cannot be induced to lower the price, he may be amenable to includ-
ing these items in the original price to close the deal.

However, the expansion of issues is not an unmixed blessing. If you value 
something greatly, you may fear putting it on the bargaining table; you may 
worry that the other side will extract big concessions from you, knowing that 
you want to protect that one item of great value. At the worst, a new issue on 
the table may make it possible for one side to deploy threats that lower the other 
side’s BATNA. For example, a country engaged in diplomatic negotiations may 
be vulnerable to an economic embargo; then it would much prefer to keep the 
political and economic issues distinct.

14 Economics uses the concept ratio of exchange, or price, which here is expressed as the number 
of bottles of wine that trade for each loaf of bread. The crucial point is that the possibility of gain 
for both countries exists with any ratio that lies between the 21 at which Freedonia can just con-
vert bread into wine and the 11 at which Ilyria can do so. At a ratio close to 21, Freedonia gives 
up almost all of its 200 extra bottles of wine and gets little more than the 100 loaves of bread that it 
sacrificed to produce the extra wine; thus Ilyria has almost all of the gain. Conversely, at a ratio close 
to 11, Freedonia has almost all of the gain. The issue in the bargaining is the division of gain and 
therefore the ratio or the price at which the two should trade.
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B.  Multiparty Bargaining

Having many parties simultaneously engaged in bargaining also may facilitate 
agreement, because instead of having to look for pairwise deals, the parties can 
seek a circle of concessions. International trade is again the prime example. 
Suppose the United States can produce wheat very efficiently but is less produc-
tive in cars, Japan is very good at producing cars but has no oil, and Saudi Arabia 
has a lot of oil but cannot grow wheat. In pairs, they can achieve little, but the 
three together have the potential for a mutually beneficial deal.

As with multiple issues, expanding the bargaining to multiple parties is not 
simple. In our example, the deal would be that the United States would send an 
agreed amount of wheat to Saudi Arabia, which would send its agreed amount 
of oil to Japan, which would in turn ship its agreed number of cars to the United 
States. But suppose that Japan reneges on its part of the deal. Saudi Arabia can-
not retaliate against the United States, because, in this scenario, it is not offer-
ing anything to the United States that it can potentially withhold. Saudi Arabia 
can only break its deal to send oil to Japan, an important party. Thus, enforce-
ment of multilateral agreements may be problematic. The General Agreement 
on Tariffs and Trade (GATT) between 1946 and 1994, as well as the World Trade 
Organization (WTO) since then, have indeed found it difficult to enforce their 
agreements and to levy punishments on countries that violate the rules.

suMMary

Bargaining negotiations attempt to divide the surplus (excess value) that is avail-
able to the parties if an agreement can be reached. Bargaining can be analyzed 
as a cooperative game in which parties find and implement a solution jointly or 
as a (structured) noncooperative game in which parties choose strategies sepa-
rately and attempt to reach an equilibrium.

Nash’s cooperative solution is based on three principles of the outcomes’  
invariance to linear changes in the payoff scale, efficiency, and invariance to  
removal of irrelevant outcomes. The solution is a rule that states the proportions 
of division of surplus, beyond the backstop payoff levels (also called BATNAs or 
best alternatives to a negotiated agreement) available to each party, based on rel-
ative bargaining strengths. Strategic manipulation of the backstops can be used 
to increase a party’s payoff.

In a noncooperative setting of alternating offer and counteroffer, rollback 
reasoning is used to find an equilibrium; this reasoning generally includes a 
first-round offer that is immediately accepted. If the surplus value decays with 
refusals, the sum of the (hypothetical) amounts destroyed owing to the refus-
als of a single player is the payoff to the other player in equilibrium. If delay in 
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alternating offers (674)
best alternative to a negotiated 
     

agreement (BATNA) (666)
decay (675)
efficient frontier (669)
efficient outcome (669)

impatience (675)
Nash cooperative solution (667)
surplus (666)
ultimatum game (677)
variable-threat bargaining (672)

15 Details regarding this bargaining game were reported in “A Web Site by Any Other Name Would 
Probably Be Cheaper,” Boston Globe, July 29, 1998, and in Hiawatha Bray’s “Compaq Acknowledges 
Purchase of Web Site,” Boston Globe, August 12, 1998.

agreement is costly owing to impatience, the equilibrium offer shares the sur-
plus roughly in inverse proportion to the parties’ rates of impatience. Experi-
mental evidence indicates that players often offer more than is necessary to 
reach an agreement in such games; this behavior is thought to be related to 
player anonymity as well as beliefs about fairness.

The presence of information asymmetries in bargaining games makes sig-
naling and screening important. Some parties will wish to signal their high 
BATNA levels or extreme patience; others will want to screen to obtain truthful 
revelation of such characteristics. When more issues are on the table or more 
parties are participating, agreements may be easier to reach, but bargaining 
may be riskier or the agreements more difficult to enforce.

Key terMs

solved exerCises

 S1. Consider the bargaining situation between Compaq Computer Corpo-
ration and the California businessman who owned the Internet address  
www.altavista.com.15 Compaq, which had recently taken over Digital  
Equipment Corporation, wanted to use this man’s Web address for Digital’s 
Internet search engine, which at that time had the address www.altavista 
.digital.com. Compaq and the businessman apparently negotiated long 
and hard during the summer of 1998 over a selling price for the latter’s 
address. 

Although the businessman was the “smaller” player in this game, 
the final agreement appeared to entail a $3.35 million price tag for the 
Web address in question. Compaq confirmed the purchase in August and 
began using the address in September but refused to divulge any of the 
financial details of the settlement. Given this information, comment on 
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the likely values of the BATNAs for these two players, their bargaining 
strengths or levels of impatience, and whether a cooperative outcome 
appears to have been attained in this game.

 S2. Ali and Baba are bargaining to split a total that starts out at $100. Ali 
makes the first offer, stating how the $100 will be divided between them. 
If Baba accepts this offer, the game is over. If Baba rejects it, a dollar is 
withdrawn from the total, so it is now only $99. Then Baba gets the sec-
ond turn to make an offer of a division. The turns alternate in this way, a 
dollar being removed from the total after each rejection. Ali’s BATNA is 
$2.25 and Baba’s BATNA is $3.50. What is the rollback-equilibrium out-
come of the game?

 S3. Two hypothetical countries, Euphoria and Militia, are holding negotia-
tions to settle a dispute. They meet once a month, starting in January, 
and take turns making offers. Suppose the total at stake is 100 points. The 
government of Euphoria is facing reelection in November. Unless the 
government produces an agreement at the October meeting, it will lose 
the election, which it regards as being just as bad as getting zero points 
from an agreement. The government of Militia does not really care about 
reaching an agreement; it is just as happy to prolong the negotiations or 
even to fight, because it would be settling for anything significantly less 
than 100. 

 (a) What will be the outcome of the negotiations? What difference will 
the identity of the first mover make?

 (b) In light of your answer to part (a), discuss why actual negotiations 
often continue right down to the deadline.

uNsolved exerCises

 U1. Recall the variant of the pizza pricing game in Exercise U2, part (b), in 
Chapter 10, in which one store (Donna’s Deep Dish) was much larger 
than the other (Pierce’s Pizza Pies). The payoff table for that version of 
the game is:

DONNA’S 
DEEP DISH 

PIERCE’S PIZZA PIES

High 156, 60

150, 36

132, 70

High Low

130, 50Low 
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The noncooperative dominant-strategy equilibrium is (High, Low), 
yielding profits of 132 to Donna’s and 70 to Pierce’s, for a total of 202. If 
the two could achieve (High, High), their total profit would be 156  60  
216, but Pierce’s would not agree to this pricing. 

Suppose the two stores can reach an enforceable agreement whereby 
both charge High and Donna’s pays Pierce’s a sum of money. The alter-
native to this agreement is simply the noncooperative dominant-strategy  
equilibrium. They bargain over this agreement, and Donna’s has 2.5 
times as much bargaining power as Pierce’s. In the resulting agreement, 
what sum will Donna’s pay to Pierce’s?

 U2. Consider two players who bargain over a surplus initially equal to a 
whole-number amount V, using alternating offers. That is, Player 1 
makes an offer in round 1; if Player 2 rejects this offer, she makes an offer 
in round 2; if Player 1 rejects this offer, she makes an offer in round 3; and 
so on. Suppose that the available surplus decays by a constant value of c 
 1 each period. For example, if the players reach agreement in round 2, 
they divide a surplus of V  1; if they reach agreement in round 5, they 
divide a surplus of V  4. This means that the game will be over after V 
rounds, because at that point there will be nothing left to bargain over. 
(For comparison, remember the football-ticket example, in which the 
value of the ticket to the fan started at $100 and declined by $25 per quar-
ter over the four quarters of the game.) In this problem, we will first solve 
for the rollback equilibrium to this game, and then solve for the equilib-
rium to a generalized version of this game in which the two players can 
have BATNAs.

 (a) Let’s start with a simple version. What is the rollback equilibrium 
when V  4? In which period will they reach agreement? What  
payoff x will Player 1 receive, and what payoff y will Player 2 receive?

 (b) What is the rollback equilibrium when V  5?
 (c) What is the rollback equilibrium when V  10?
 (d) What is the rollback equilibrium when V  11?
 (e) Now we’re ready to generalize. What is the rollback equilibrium for 

any whole-number value of V ? (Hint: You may want to consider 
even values of V separately from odd values.)

Now consider BATNAs. Suppose that if no agreement is reached by 
the end of round V, Player A gets a payoff of a and Player B gets a payoff 
of b. Assume that a and b are whole numbers satisfying the inequality  
a  b , V, so that the players can get higher payoffs from reaching agree-
ment than they can by not reaching agreement.
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 (f) Suppose that V  4. What is the rollback equilibrium for any possible 
values of a and b? (Hint: You may need to write down more than one  
formula, just as you did in part (e). If you get stuck, try assuming 
specific values for a and b, and then change those values to see what 
happens. In order to roll back, you’ll need to figure out the turn at 
which the value of V has declined to the point where a negotiated 
agreement would no longer be profitable for the two bargainers.)

 (g) Suppose that V  5. What is the rollback equilibrium for any pos-
sible values of a and b ?

 (h) For any whole-number values of a, b, and V, what is the rollback  
equilibrium?

 (i) Relax the assumption that a, b, and V are whole numbers: let them 
be any nonnegative numbers such that a  b , V. Also relax the as-
sumption that the value of V decays by exactly 1 each period: let the 
value decay each period by some constant amount c . 0. What is 
the rollback equilibrium to this general problem?

 U3. Let x be the amount that player A asks for, and let y be the amount that 
B asks for, when making the first offer in an alternating-offers bargaining 
game with impatience. Their rates of impatience are r and s, respectively.

 (a) If we use the approximate formulas x  s(r  s) for x and  
y  r(r  s) for y, and if B is twice as impatient as A, then A gets  
two-thirds of the surplus and B gets one-third. Verify that this result 
is correct.

 (b) Let r  0.01 and s  0.02, and compare the x and y values found by  
using the approximation method with the more exact solutions for  
x and y found by using the formulas x  (s  rs)(r  s  rs) and y   
(r  rs)(r  s  rs) derived in the chapter.
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acceptability condition  An upper bound on the probability of fulfillment in 
a brinkmanship threat, expressed as a function of the probability of error, 
showing the upper limit of risk that the player making the threat is willing to 
tolerate.

action node  A node at which one player chooses an action from two or more 
that are available.

addition rule  If the occurrence of X requires the occurrence of any one of sev-
eral disjoint Y, Z, . . . , then the probability of X is the sum of the separate 
probabilities of Y, Z, . . .

adverse selection  A form of information asymmetry where a player’s type 
(available strategies, payoffs . . .) is his private information, not directly 
known to others.

agenda paradox  A voting situation where the order in which alternatives are 
paired when voting in multiple rounds determines the final outcome.

agent  The agent is the more-informed player in a principal–agent game of 
asymmetric information. The principal (less-informed) player in such 
games attempts to design a mechanism that aligns the agent’s incentives 
with his own. 

all-pay auction  An auction in which each person who submits a bid must pay 
her highest bid amount at the end of the auction, even if she does not win 
the auction.

alternating offers  A sequential move procedure of bargaining in which, if the 
offer made by one player is refused by the other, then the refuser gets the 
next turn to make an offer, and so on.

amendment procedure  A procedure in which any amended version of a pro-
posal must win a vote against the original version before the winning ver-
sion is put to a vote against the status quo.

■

Glossary

Here we define the key terms that appear in the text. We aim for verbal defini-
tions that are logically precise but not mathematical or detailed like those found 
in more advanced textbooks.
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antiplurality method  A positional voting method in which the electorate is 
asked to vote against one item on the slate (or to vote for all but one).

approval voting  A voting method in which voters cast votes for all alternatives 
of which they approve.

ascending auction  An open-outcry auction in which the auctioneer accepts 
ascending bids during the course of the auction; the highest bid wins. Also 
called English auction.

assurance game  A game where each player has two strategies, say, Cooperate 
and Not, such that the best response of each is to Cooperate if the other co-
operates, Not if not, and the outcome from (Cooperate, Cooperate) is better 
for both than the outcome of (Not, Not).

asymmetric information  Information is said to be asymmetric in a game if 
some aspects of it—rules about what actions are permitted and the order of 
moves if any, payoffs as functions of the players strategies, outcomes of ran-
dom choices by “nature,” and of previous actions by the actual players in the 
game—are known to some of the players but are not common knowledge 
among all players.

babbling equilibrium  In a game where communication among players (which 
does not affect their payoffs directly) is followed by their choices of actual 
strategies, a babbling equilibrium is one where the strategies are chosen ig-
noring the communication, and the communication at the first stage can be 
arbitrary.

backward induction  Same as rollback.
battle of the sexes  A game where each player has two strategies, say, Hard and 

Soft, such that [1] (Hard, Soft) and (Soft, Hard) are both Nash equilibria,  
[2] of the two Nash equilibria, each player prefers the outcome where he 
is Hard and the other is Soft, and [3] both prefer the Nash equilibria to the 
other two possibilities, (Hard, Hard) and (Soft, Soft).

Bayesian Nash equilibrium  A Nash equilibrium in an asymmetric informa-
tion game where players use Bayes’ theorem and draw correct inferences 
from their observations of other players’ actions. 

Bayes’ theorem  An algebraic formula for estimating the probabilities of some 
underlying event by using knowledge of some consequences of it that are 
observed.

belief  The notion held by one player about the strategy choices of the other 
players and used when choosing his own optimal strategy.

best alternative to a negotiated agreement (BATNA)  In a bargaining game, 
this is the payoff a player would get from his other opportunities if the bar-
gaining in question failed to reach an agreement.

best response  The strategy that is optimal for one player, given the strategies 
actually played by the other players, or the belief of this player about the 
other players’ strategy choices.

best-response analysis  Finding the Nash equilibria of a game by calculating 
the best-response functions or curves of each player and solving them si-
multaneously for the strategies of all the players.

best-response curve  A graph showing the best strategy of one player as a 
function of the strategies of the other player(s) over the entire range of those 
strategies.
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best-response rule  A function expressing the strategy that is optimal for one 
player, for each of the strategy combinations actually played by the other 
players, or the belief of this player about the other players’ strategy choices.

binary method  A class of voting methods in which voters choose between only 
two alternatives at a time.

Black’s condition  Same as the condition of single-peaked preferences.
Borda count  A positional voting method in which the electorate indicates its 

order of preference over a slate of alternatives. The winning alternative is 
determined by allocating points based on an alternative’s position on each 
ballot.

branch  Each branch emerging from a node in a game tree represents one ac-
tion that can be taken at that node.

brinkmanship  A threat that creates a risk but not certainty of a mutually bad 
outcome if the other player defies your specified wish as to how he should 
act, and then gradually increases this risk until one player gives in or the bad 
outcome happens.

cheap talk equilibrium  In a game where communication among players 
(which does not affect their payoffs directly) is followed by their choices of 
actual strategies, a cheap talk equilibrium is one where the strategies are 
chosen optimally given the players’ interpretation of the communication, 
and the communication at the first stage is optimally chosen by calculating 
the actions that will ensue.

chicken  A game where each player has two strategies, say Macho and Wimp, 
such that [1] both (Macho, Wimp) and (Wimp, Macho) are Nash equilibria, 
[2] of the two, each prefers the outcome where he plays Macho and the other 
plays Wimp, and [3] the outcome (Macho, Macho) is the worst for both.

chicken in real time  A game of chicken in which the choice to swerve is not 
once and for all, but where a decision must be made at any time, and as 
time goes on while neither driver has swerved, the risk of a crash increases 
gradually.

coercion  In this context, forcing a player to accept a lower payoff in an asym-
metric equilibrium in a collective action game, while other favored players 
are enjoying higher payoffs. Also called oppression in this context.

collective action problem  A problem of achieving an outcome that is best for 
society as a whole, when the interests of some or all individuals will lead 
them to a different outcome as the equilibrium of a noncooperative game.

commitment  An action taken at a pregame stage, stating what action you 
would take unconditionally in the game to follow.

common value  An auction is called a common-value auction when the object 
up for sale has the same value to all bidders, but each bidder knows only an 
imprecise estimate of that value. Also called objective value.

compellence  An attempt to induce the other player(s) to act to change the sta-
tus quo in a specified manner.

compound interest  When an investment goes on for more than one period, 
compound interest entails calculating interest in any one period on the 
whole accumulation up to that point, including not only the principal ini-
tially invested but also the interest earned in all previous periods, which  
itself involves compounding over the period previous to that.
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Condorcet method  A voting method in which the winning alternative must 
beat each of the other alternatives in a round-robin of pairwise contests.

Condorcet paradox  Even if all individual voter preference orderings are tran-
sitive, there is no guarantee that the social preference ordering generated by 
Condorcet’s voting method will also be transitive.

Condorcet terms  A set of ballots that would generate the Condorcet paradox 
and that should together logically produce a tied vote among three possible 
alternatives. In a three-candidate election among A, B, and C, the Condorcet 
terms are three ballots that show A preferred to B preferred to C; B preferred 
to C preferred to A; C preferred to A preferred to B.

Condorcet winner  The alternative that wins an election run using the Con-
dorcet method.

constant-sum game  A game in which the sum of all players’ payoffs is a con-
stant, the same for all their strategy combinations. Thus, there is a strict  
conflict of interests among the players—a higher payoff to one must 
mean a lower payoff to the collectivity of all the other players. If the payoff 
scales can be adjusted to make this constant equal to zero, then we have a  
zero-sum game.

contingent strategy  In repeated play, a plan of action that depends on other 
players’ actions in previous plays. (This is implicit in the definition of a strat-
egy; the adjective “contingent” merely reminds and emphasizes.)

continuation  The continuation of a strategy from a (noninitial) node is the re-
maining part of the plan of action of that strategy, applicable to the subgame 
that starts at this node.

continuous distribution  A probability distribution in which the random vari-
ables may take on a continuous range of values.

continuous strategy  A choice over a continuous range of real numbers avail-
able to a player.

contract  In this context, a way of achieving credibility for one’s strategic move 
by entering into a legal obligation to perform the committed, threatened, or 
promised action in the specified contingency.

convention  A mode of behavior that finds automatic acceptance as a focal 
point, because it is in each individual’s interest to follow it when others are 
expected to follow it too (so the game is of the assurance type). Also called 
custom.

convergence of expectations  A situation where the players in a noncoopera-
tive game can develop a common understanding of the strategies they ex-
pect will be chosen.

cooperative game  A game in which the players decide and implement their 
strategy choices jointly, or where joint-action agreements are directly and 
collectively enforced.

coordination game  A game with multiple Nash equilibria, where the players are 
unanimous about the relative merits of the equilibria, and prefer any equilib-
rium to any of the nonequilibrium possibilities. Their actions must somehow 
be coordinated to achieve the preferred equilibrium as the outcome.

Copeland index  An index measuring an alternative’s record in a round-robin 
of contests where different numbers of points are allocated for wins, ties, 
and losses.
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credibility  A strategy is credible if its continuation at all nodes, on or off the 
equilibrium path, is optimal for the subgame that starts at that node.

custom  Same as convention.
decay  Shrinkage over time of the total surplus available to be split between the 

bargainers, if they fail to reach an agreement for some length of time during 
the process of their bargaining.

decision  An action situation in a passive environment where a person can 
choose without concern for the reactions or responses of others.

decision node  A decision node in a decision or game tree represents a point in 
a game where an action is taken.

decision tree  Representation of a sequential decision problem facing one per-
son, shown using nodes, branches, terminal nodes, and their associated 
payoffs.

descending auction  An open-outcry auction in which the auctioneer an-
nounces possible prices in descending order. The first person to accept the 
announced price makes her bid and wins the auction. Also called Dutch 
auction.

deterrence  An attempt to induce the other player(s) to act to maintain the  
status quo.

diffusion of responsibility  A situation where action by one or a few members 
of a large group would suffice to bring about an outcome that all regard 
as desirable, but each thinks it is someone else’s responsibility to take this 
 action.

discount factor  In a repeated game, the fraction by which the next period’s  
payoffs are multiplied to make them comparable with this period’s payoffs.

discrete distribution  A probability distribution in which the random variables 
may take on only a discrete set of values such as integers.

disjoint  Events are said to be disjoint if two or more of them cannot occur  
simultaneously.

distribution function  A function that indicates the probability that a variable 
takes on a value less than or equal to some number.

dominance solvable  A game where iterated elimination of dominated strate-
gies leaves a unique outcome, or just one strategy for each player.

dominant strategy  A strategy X is dominant for a player if, for each permis-
sible strategy configuration of the other players, X gives him a higher payoff 
than any of his other strategies. (That is, his best-response function is con-
stant and equal to X.)

dominated strategy  A strategy X is dominated for a player if there is another 
strategy Y such that, for each permissible strategy configuration of the other 
players, Y gives him a higher payoff than X.

doomsday device  An automaton that will under specified circumstances gen-
erate an outcome that is very bad for all players. Used for giving credibility 
to a severe threat.

Dutch auction  Same as a descending auction.
effectiveness condition  A lower bound on the probability of fulfillment in 

a brinkmanship threat, expressed as a function of the probability of error, 
showing the lower limit of risk that will induce the threatened player to com-
ply with the wishes of the threatener.
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effective rate of return  Rate of return corrected for the probability of noncon-
tinuation of an investment to the next period.

efficient frontier  This is the northeast boundary of the set of feasible payoffs 
of the players, such that in a bargaining game it is not possible to increase 
the payoff of one person without lowering that of another.

efficient outcome  An outcome of a bargaining game is called efficient if there 
is no feasible alternative that would leave one bargainer with a higher payoff 
without reducing the payoff of the other.

English auction  Same as an ascending auction.
equilibrium  A configuration of strategies where each player’s strategy is his 

best response to the strategies of all the other players.
equilibrium path of play  The path of play actually followed when players 

choose their rollback equilibrium strategies in a sequential game.
evolutionary game  A situation where the strategy of each player in a popula-

tion is fixed genetically, and strategies that yield higher payoffs in random 
matches with others from the same population reproduce faster than those 
with lower payoffs.

evolutionary stable  A population is evolutionary stable if it cannot be success-
fully invaded by a new mutant phenotype.

evolutionary stable strategy (ESS)  A phenotype or strategy that can persist in a 
population, in the sense that all the members of a population or species are of 
that type; the population is evolutionary stable (static criterion). Or, starting  
from an arbitrary distribution of phenotypes in the population, the process 
of selection will converge to this strategy (dynamic criterion).

expected payoff  The probability-weighted average (statistical mean or ex-
pectation) of the payoffs of one player in a game, corresponding to all pos-
sible realizations of a random choice of nature or mixed strategies of the 
players.

expected utility  The probability-weighted average (statistical mean or expec-
tation) of the utility of a person, corresponding to all possible realizations of a 
random choice of nature or mixed strategies of the players in a game.

expected value  The probability-weighted average of the outcomes of a ran-
dom variable, that is, its statistical mean or expectation.

extensive form  Representation of a game by a game tree.
external effect  When one person’s action alters the payoff of another per-

son or persons. The effect or spillover is positive if one’s action raises oth-
ers’ payoffs (for example, network effects) and negative if it lowers others’  
payoffs (for example, pollution or congestion). Also called externality or 
spillover.

externality  Same as external effect.
external uncertainty  A player’s uncertainty about external circumstances 

such as the weather or product quality. 
first-mover advantage  This exists in a game if, considering a hypothetical 

choice between moving first and moving second, a player would choose the 
former.

first-price auction  An auction in which the highest bidder wins and pays the 
amount of her bid.

fitness  The expected payoff of a phenotype in its games against randomly cho-
sen opponents from the population.
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focal point  A configuration of strategies for the players in a game, which 
emerges as the outcome because of the convergence of the players’ expecta-
tions on it.

free rider  A player in a collective-action game who intends to benefit from the 
positive externality generated by others’ efforts without contributing any  
effort of his own.

game  An action situation where there are two or more mutually aware players, 
and the outcome for each depends on the actions of all.

game matrix  A spreadsheetlike table whose dimension equals the number of 
players in the game; the strategies available to each player are arrayed along 
one of the dimensions (row, column, page, . . . ); and each cell shows the payoffs  
of all the players in a specified order, corresponding to the configuration of 
strategies that yield that cell. Also called game table or payoff table.

game table  Same as game matrix.
game tree  Representation of a game in the form of nodes, branches, and ter-

minal nodes and their associated payoffs.
genotype  A gene or a complex of genes, which give rise to a phenotype and 

which can breed true from one generation to another. (In social or economic 
games, the process of breeding can be interpreted in the more general sense 
of teaching or learning.)

Gibbard–Satterthwaite theorem  With three or more alternatives to con-
sider, the only voting method that prevents strategic voting is dictatorship; 
one person is identified as the dictator and her preferences determine the  
outcome.

gradual escalation of the risk of mutual harm  A situation where the prob-
ability of having to carry out the threatened action in a probabilistic threat  
increases over time, the longer the opponent refuses to comply with what 
the threat is trying to achieve.

grim strategy  A strategy of noncooperation forever in the future, if the oppo-
nent is found to have cheated even once. Used as a threat of punishment in 
an attempt to sustain cooperation.

hawk–dove game  An evolutionary game where members of the same species 
or population can breed to follow one of two strategies, Hawk and Dove, 
and depending on the payoffs, the game between a pair of randomly chosen 
members can be either a prisoners’ dilemma or chicken.

histogram  A bar chart; data are illustrated by way of bars of a given height (or 
length).

impatience  Preference for receiving payoffs earlier rather than later. Quantita-
tively measured by the discount factor.

imperfect information  A game is said to have perfect information if each 
player, at each point where it is his turn to act, knows the full history of the 
game up to that point, including the results of any random actions taken by 
nature or previous actions of other players in the game, including pure ac-
tions as well as the actual outcomes of any mixed strategies they may play. 
Otherwise, the game is said to have imperfect information.

impossibility theorem  A theorem that indicates that no preference aggre-
gation method can satisfy the six critical principles identified by Kenneth 
Arrow.
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incentive-compatibility condition (constraint)  A constraint on an incentive 
scheme or screening device that makes it optimal for the agent (more-informed 
player) of each type to reveal his true type through his actions.

independent events  Events Y and Z are independent if the actual occurrence 
of one does not change the probability of the other occurring. That is, the 
conditional probability of Y occurring given that Z has occurred is the same 
as the ordinary or unconditional probability of Y.

infinite horizon  A repeated decision or game situation that has no definite 
end at a fixed finite time.

information set  A set of nodes among which a player is unable to distinguish 
when taking an action. Thus, his strategies are restricted by the condition 
that he should choose the same action at all points of an information set. 
For this, it is essential that all the nodes in an information set have the 
same player designated to act, with the same number and similarly labeled 
branches emanating from each of these nodes.

initial node  The starting point of a sequential-move game. (Also called the 
root of the tree.)

instant runoff  Same as single transferable vote.
intermediate valuation function  A rule assigning payoffs to nonterminal 

nodes in a game. In many complex games, this must be based on knowledge 
or experience of playing similar games, instead of explicit rollback analysis.

internalize the externality  To offer an individual a reward for the external 
benefits he conveys on the rest of society, or to inflict a penalty for the exter-
nal costs he imposes on the rest, so as to bring his private incentives in line 
with social optimality.

intransitive ordering  A preference ordering that cycles and is not transitive. 
For example, a preference ordering over three alternatives A, B, and C is  
intransitive if A is preferred to B and B is preferred to C but it is not true that 
A is preferred to C.

invasion by a mutant  The appearance of a small proportion of mutants in the 
population.

irreversible action  An action that cannot be undone by a later action. To-
gether with observability, this is an important condition for a game to be 
 sequential-move.

iterated elimination of dominated strategies  Considering the players in turns 
and repeating the process in rotation, eliminating all strategies that are 
dominated for one at a time, and continuing doing so until no such further 
elimination is possible.

leadership  In a prisoners’ dilemma with asymmetric players, this is a situation 
where a large player chooses to cooperate even though he knows that the 
smaller players will cheat.

locked in  A situation where the players persist in a Nash equilibrium that is 
worse for everyone than another Nash equilibrium.

majority rule  A voting method in which the winning alternative is the one that 
garners a majority (more than 50%) of the votes.

majority runoff  A two-stage voting method in which a second round of voting 
ensues if no alternative receives a majority in the first round. The top two 
vote-getters are paired in the second round of voting to determine a winner.
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marginal private gain  The change in an individual’s own payoff as a result of a 
small change in a continuous-strategy variable that is at his disposal.

marginal social gain  The change in the aggregate social payoff as a result of a 
small change in a continuous-strategy variable chosen by one player.

mechanism design  Mechanism design is the process by which a principal in a 
principal–agent problem devises the rules of their game to provide optimal 
(from the principal’s perspective) incentives for the agent. 

median voter  The voter in the middle—at the 50th percentile—of a distribution.
median voter theorem  If the political spectrum is one-dimensional and every 

voter has single-peaked preferences, then [1] the policy most preferred by 
the median voter will be the Condorcet winner, and [2] power-seeking poli-
ticians in a two-candidate election will choose platforms that converge to 
the position most preferred by the median voter. (This is also known as the 
principle of minimum differentiation.)

mixed method  A multistage voting method that uses plurative and binary 
votes in different rounds.

mixed strategy  A mixed strategy for a player consists of a random choice, to  
be made with specified probabilities, from his originally specified pure 
strategies.

monomorphism  All members of a given species or population exhibit the 
same behavior pattern.

moral hazard  A situation of information asymmetry where one player’s ac-
tions are not directly observable to others.

move  An action at one node of a game tree.
multiplication rule  If the occurrence of X requires the simultaneous occur-

rence of all the several independent Y, Z, . . . , then the probability of X is the 
product of the separate probabilities of Y, Z, . . . 

multistage procedure  A voting procedure in which there are multiple rounds 
of voting. Also called rounds.

mutation  Emergence of a new genotype.
Nash cooperative solution  This outcome splits the bargainers’ surpluses in 

proportion to their bargaining powers.
Nash equilibrium  A configuration of strategies (one for each player) such that 

each player’s strategy is best for him, given those of the other players. (Can 
be in pure or mixed strategies.)

negatively correlated  Two random variables are said to be negatively corre-
lated if, as a matter of probabilistic average, when one is above its expected 
value, the other is below its expected value.

neutral ESS  An evolutionary stable strategy (ESS) that persists in a population 
but that can coexist with a small number of mutants having the same fitness 
as the predominant type.

never a best response  A strategy is never a best response for a player if, for 
each list of strategies that the other players choose (or for each list of strate-
gies that this player believes the others are choosing), some other strategy is 
this player’s best response. (The other strategy can be different for different 
lists of strategies of the other players.)

node  This is a point from which branches emerge, or where a branch termi-
nates, in a decision or game tree.
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noncooperative game  A game where each player chooses and implements his 
action individually, without any joint-action agreements directly enforced 
by other players.

nonexcludable benefits  Benefits that are available to each individual, regardless 
of whether he has paid the costs that are necessary to secure the benefits.

nonrival benefits  Benefits whose enjoyment by one person does not detract 
anything from another person’s enjoyment of the same benefits.

norm  A pattern of behavior that is established in society by a process of edu-
cation or culture, to the point that a person who behaves differently experi-
ences a negative psychic payoff.

normal distribution  A commonly used statistical distribution for which the 
distribution function looks like a bell-shaped curve.

normal form  Representation of a game in a game matrix, showing the strat-
egies (which may be numerous and complicated if the game has several 
moves) available to each player along a separate dimension (row, column, 
etc.) of the matrix and the outcomes and payoffs in the multidimensional 
cells. Also called strategic form.

objective value  Same as common value.
observable action  An action that other players know you have taken before 

they make their responding actions. Together with irreversibility, this is an 
important condition for a game to be sequential-move.

off-equilibrium path  A path of play that does not result from the players’ 
choices of strategies in a subgame-perfect equilibrium.

off-equilibrium subgame  A subgame starting at a node that does not lie on 
the equilibrium path of play.

open outcry  An auction mechanism in which bids are made openly for all to 
hear or see.

opponent’s indifference property  An equilibrium mixed strategy of one 
player in a two-person game has to be such that the other player is indiffer-
ent among all the pure strategies that are actually used in his mixture.

oppression  In this context, same as coercion.
pairwise voting  A voting method in which only two alternatives are consid-

ered at the same time.
partially revealing equilibrium  A perfect Bayesian equilibrium in a game of 

incomplete information, where the actions in the equilibrium convey some 
additional information about the players’ types, but some ambiguity about 
these types remains. Also called semiseparating equilibrium.

participation condition (constraint)  A constraint on an incentive scheme 
or a screening device that should give the more-informed player an ex-
pected payoff at least as high as he can get outside this relationship.

path of play  A route through the game tree (linking a succession of nodes and 
branches) that results from a configuration of strategies for the players that 
are within the rules of the game. (See also equilibrium path of play.)

payoff  The objective, usually numerical, that a player in a game aims to 
maximize.

payoff table  Same as game matrix.
penalty  We reserve this term for one-time costs (such as fines) introduced into 

a game to induce the players to take actions that are in their joint  interests.
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perfect Bayesian equilibrium (PBE)  An equilibrium where each player’s strat-
egy is optimal at all nodes given his beliefs, and beliefs at each node are  
updated using Bayes’ rule in the light of the information available at that 
point including other players’ past actions.

perfect information  A game is said to have perfect information if players face 
neither strategic nor external uncertainty.

phenotype  A specific behavior or strategy, determined by one or more genes. 
(In social or economic games, this can be interpreted more generally as a 
customary strategy or a rule of thumb.)

playing the field  A many-player evolutionary game where all animals in the 
group are playing simultaneously, instead of being matched in pairs for  
two-player games.

pluralistic ignorance  A situation of collective action where no individual 
knows for sure what action is needed, so everyone takes the cue from other 
people’s actions or inaction, possibly resulting in persistence of wrong 
choices.

plurality rule  A voting method in which two or more alternatives are consid-
ered simultaneously and the winning alternative is the one that garners the 
largest number of votes; the winner needs only gain more votes than each of 
the other alternatives and does not need 50% of the vote as would be true in 
majority rule.

plurative method  Any voting method that allows voters to consider a slate of 
three or more alternatives simultaneously.

polymorphism  An evolutionary stable equilibrium in which different behavior 
forms or phenotypes are exhibited by subsets of members of an otherwise  
identical population.

pooling equilibrium  A perfect Bayesian equilibrium in a game of asymmetric 
information, where the actions in the equilibrium cannot be used to distin-
guish type.

pooling of types  An outcome of a signaling or screening game in which differ-
ent types follow the same strategy and get the same payoffs, so types cannot 
be distinguished by observing actions.

positional method  A voting method that determines the identity of the win-
ning alternative using information on the position of alternatives on a  
voter’s ballot to assign points used when tallying ballots.

positive feedback  When one person’s action increases the payoff of another 
person or persons taking the same action, thus increasing their incentive to 
take that action too.

positively correlated  Two random variables are said to be positively correlated 
if, as a matter of probabilistic average, when one is above its expected value, 
the other is also above its expected value, and vice versa.

present value (PV)  The total payoff over time, calculated by summing the pay-
offs at different periods each multiplied by the appropriate discount factor 
to make them all comparable with the initial period’s payoffs.

price discrimination  Perfect, or first-degree, price discrimination occurs when 
a firm charges each customer an individualized price based on willingness  
to pay. In general, price discrimination refers to situations in which a firm 
charges different prices to different customers for the same product.
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primary criterion  Comparison of the fitness of a mutant with that of a mem-
ber of the dominant population, when each plays against a member of the 
dominant population.

principal  The principal is the less-informed player in a principal–agent game 
of asymmetric information. The principal in such games wants to design a 
mechanism that creates incentives for the more-informed player (agent) to 
take actions beneficial to the principal.

principal–agent (agency) problem  A situation in which the less-informed 
player (principal) wants to design a mechanism that creates incentives for 
the more-informed player (agent) to take actions beneficial to himself (the 
principal).

principle of minimum differentiation  Same as part [2] of the median voter 
theorem.

prisoners’ dilemma  A game where each player has two strategies, say Coop-
erate and Defect, such that [1] for each player, Defect dominates Cooper-
ate, and [2] the outcome (Defect, Defect) is worse for both than the outcome 
(Cooperate, Cooperate).

private value  A bidder’s individual valuation of an object available at auction. 
Also called subjective value.

probabilistic threat  A strategic move in the nature of a threat, but with the 
added qualification that if the event triggering the threat (the opponent’s ac-
tion in the case of deterrence or inaction in the case of compellence) comes 
about, a chance mechanism is set in motion, and if its outcome so dictates, 
the threatened action is carried out. The nature of this mechanism and the 
probability with which it will call for the threatened action must both con-
stitute prior commitments.

probability  The probability of a random event is a quantitative measure of the 
likelihood of its occurrence. For events that can be observed in repeated tri-
als, it is the long-run frequency with which it occurs. For unique events or 
other situations where uncertainty may be in the mind of a person, other 
measures are constructed, such as subjective probability.

promise  An action by one player, say A, in a pregame stage, establishing a re-
sponse rule that, if the other player B chooses an action specified by A, then 
A will respond with a specified action that is costly to A and rewards B (gives 
him a higher payoff). (For this to be feasible, A must have the ability to move 
second in the actual game.)

proportional representation  This voting system requires that the number of 
seats in a legislature be allocated in proportion to each party’s share of the 
popular vote.

proxy bidding  A process by which a bidder submits her maximum bid (reser-
vation price) for an item up for auction and a third party takes over bidding 
for her; the third party bids only the minimum increment above any existing 
bids and bids no higher than the bidder’s specified maximum.

prune  To use rollback analysis to identify and eliminate from a game tree those 
branches that will not be chosen when the game is rationally played.

punishment  We reserve this term for costs that can be inflicted on a player in 
the context of a repeated relationship (often involving termination of the  
relationship) to induce him to take actions that are in the joint interests of 
all players.
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pure coordination game  A coordination game where the payoffs of each 
player are the same in all the Nash equilibria. Thus, all players are indif-
ferent among all the Nash equilibria, and coordination is needed only to  
ensure avoidance of a nonequilibrium outcome.

pure public good  A good or facility that benefits all members of a group, when 
these benefits cannot be excluded from a member who has not contrib-
uted efforts or money to the provision of the good, and the enjoyment of the  
benefits by one person does not significantly detract from their simultane-
ous enjoyment by others.

pure strategy  A rule or plan of action for a player that specifies without any 
ambiguity or randomness the action to take in each contingency or at each 
node where it is that player’s turn to act.

quantal-response equilibrium (QRE)  Solution concept that allows for the 
possibility that players make errors, with the probability of a given error 
smaller for more costly mistakes.

rank-choice voting  Another name for single transferable vote.
rational behavior  Perfectly calculating pursuit of a complete and internally 

consistent objective (payoff) function.
rational irrationality  Adopting a strategy that is not optimal after the fact, 

but serves a rational strategic purpose of lending credibility to a threat or a 
promise.

rationalizability  A solution concept for a game. A list of strategies, one for 
each player, is a rationalizable outcome of the game if each strategy in the 
list is rationalizable for the player choosing it.

rationalizable  A strategy is called rationalizable for a player if it is his opti-
mal choice given some belief about what (pure or mixed strategy) the other 
player(s) would choose, provided this belief is formed recognizing that the 
other players are making similar calculations and forming beliefs in the 
same way. (This concept is more general than that of the Nash equilibrium 
and yields outcomes that can be justified on the basis only of the players’ 
common knowledge of rationality.)

refinement  A restriction that narrows down possible outcomes when multiple 
Nash equilibria exist.

repeated play  A situation where a one-time game is played repeatedly in 
successive periods. Thus, the complete game is mixed, with a sequence of  
simultaneous-move games.

reputation  Relying on the effect on payoffs in future or related games to make 
threats or promises credible, when they would not have been credible in a 
one-off or isolated game.

reservation price  The maximum amount that a bidder is willing to pay for an 
item.

reserve price  The minimum price set by the seller of an item up for auction; if 
no bids exceed the reserve, the item is not sold.

response rule  A rule that specifies how you will act in response to various ac-
tions of other players.

reversal paradox  This paradox arises in an election with at least four  
alternatives when one of these is removed from consideration after votes 
have been submitted and the removal changes the identity of the winning 
alternative.
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reversal terms  A set of ballots that would generate the reversal paradox 
and that should together logically produce a tied vote between a pair of 
alternatives. In a three-candidate election among A, B, and C, the reversal 
terms are two ballots that show a reversal in the location of a pair of alter-
natives. For example, one ballot with A preferred to B preferred to C and 
another with B preferred to A preferred to C should produce a tie between 
A and B.

risk-averse  A decision maker (or a player in a game) is called risk-averse if he 
prefers to replace a lottery of monetary amounts by the expected monetary 
value of the same lottery, but now received with certainty.

risk-neutral  A decision maker (or a player in a game) is called risk-neutral if he 
is indifferent between a lottery of monetary amounts and the expected mon-
etary value of the same lottery, but now received with certainty.

robustness  A measure of the number of sets of voter preference orderings that 
are nondictatorial, satisfy independence of irrelevant alternatives and the 
Pareto property, and also produce a transitive social ranking.

rollback  Analyzing the choices that rational players will make at all nodes of a 
game, starting at the terminal nodes and working backward to the initial node.

rollback equilibrium  The strategies (complete plans of action) for each player 
that remain after rollback analysis has been used to prune all the branches 
that can be pruned.

root  Same as initial node.
rounds  A voting situation in which votes take place in several stages. Also 

called multistage.
salami tactics  A method of defusing threats by taking a succession of actions, 

each sufficiently small to make it nonoptimal for the other player to carry 
out his threat.

sanction  Punishment approved by society and inflicted by others on a mem-
ber who violates an accepted pattern of behavior.

screening  Strategy of a less-informed player to elicit information credibly from 
a more-informed player.

screening devices  Methods used for screening.
sealed bid  An auction mechanism in which bids are submitted privately in ad-

vance of a specified deadline, often in sealed envelopes.
secondary criterion  Comparison of the fitness of a mutant with that of a 

member of the dominant population, when each plays against a mutant.
second-mover advantage  A game has this if, considering a hypothetical choice 

between moving first and moving second, a player would choose the latter.
second-price auction  An auction in which the highest bidder wins the auction 

but pays a price equal to the value of the second-highest bid; also called a 
Vickrey auction.

selection  The dynamic process by which the proportion of fitter phenotypes 
in a population increases from one generation to the next.

self-selection  Where different types respond differently to a screening device, 
thereby revealing their type through their own action.

semiseparating equilibrium  Same as partially revealing equilibrium.
separating equilibrium  A perfect Bayesian equilibrium in a game of asym-

metric information, where the actions in the equilibrium reveal player type.
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separation of types  An outcome of a signaling or screening game in which dif-
ferent types follow different strategies and get the different payoffs, so types 
can be identified by observing actions.

sequential moves  The moves in a game are sequential if the rules of the game 
specify a strict order such that at each action node only one player takes an 
action, with knowledge of the actions taken (by others or himself) at previ-
ous nodes.

shading  A strategy in which bidders bid slightly below their true valuation of 
an object.

shilling  A practice used by sellers at auction by which they plant false bids for 
an object they are selling.

signaling  Strategy of a more-informed player to convey his “good” informa-
tion credibly to a less-informed player.

signal jamming  A situation in a signaling game where an informed player of 
a “bad” type mimics the strategy of a “good” type, thereby preventing sep-
aration or achieving pooling. This term is used particularly if the action in 
question is a mixed strategy.

signals  Devices used for signaling.
simultaneous moves  The moves in a game are simultaneous if each player 

must take his action without knowledge of the choices of others.
sincere voting  Voting at each point for the alternative that you like best among 

the ones available at that point, regardless of the eventual outcome.
single-peaked preferences  A preference ordering in which alternatives under 

consideration can be ordered along some specific dimension and each voter 
has a single ideal or most-preferred alternative with alternatives farther away 
from the most-preferred point providing steadily lower payoffs.

single transferable vote  A voting method in which each voter indicates her pref-
erence ordering over all candidates on a single initial ballot. If no alternative 
receives a majority of all first-place votes, the bottom-ranked alternative is 
eliminated and all first-place votes for that candidate are “transferred” to the 
candidate listed second on those ballots; this process continues until a major-
ity winner emerges. Also called instant runoff or rank-choice voting.

social optimum  In a collective-action game where payoffs of different players 
can be meaningfully added together, the social optimum is achieved when 
the sum total of the players’ payoffs is maximized.

social ranking  The preference ordering of a group of voters that arises from 
aggregating the preferences of each member of the group.

spillover effect  Same as external effect.
spoiler  Refers to a third candidate who enters a two-candidate race and re-

duces the chances that the leading candidate actually wins the election.
strategic form  Same as normal form.
strategic game  See game.
strategic misrepresentation of preferences  Refers to strategic behavior of voters 

when they use rollback to determine that they can achieve a better outcome 
for themselves by not voting strictly according to their preference orderings.

strategic moves  Actions taken at a pregame stage that change the strategies or 
the payoffs of the subsequent game (thereby changing its outcome in favor 
of the player[s] making these moves).
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strategic uncertainty  A player’s uncertainty about an opponent’s moves made 
in the past or made at the same time as her own. 

strategic voting  Voting in conformity with your optimal rational strategy found 
by doing rollback analysis on the game tree of the voting procedure.

strategy  A complete plan of action for a player in a game, specifying the action 
he would take at all nodes where it is his turn to act according to the rules of 
the game (whether these nodes are on or off the equilibrium path of play). If 
two or more nodes are grouped into one information set, then the specified 
action must be the same at all these nodes.

subgame  A game comprising a portion or remnant of a larger game, starting at 
a noninitial node of the larger game.

subgame-perfect equilibrium (SPE)  A configuration of strategies (complete 
plans of action) such that their continuation in any subgame remains op-
timal (part of a rollback equilibrium), whether that subgame is on- or off-
equilibrium. This ensures credibility of all the strategies.

subjective value  Same as private value.
successive elimination of dominated strategies  Same as iterated elimination 

of dominated strategies.
surplus  A player’s surplus in a bargaining game is the excess of his payoff over 

his BATNA.
terminal node  This represents an end point in a game tree, where the rules 

of the game allow no further moves, and payoffs for each player are realized.
threat  An action by one player, say, A, in a pregame stage, establishing  

a response rule that, if the other player B chooses an action specified by 
A, then A will respond with a specified action that is damaging to B (gives  
him a lower payoff) and also costly to A to carry out after the fact. (For 
this to be possible, A must have the ability to be the second mover in the  
actual game.)

tit-for-tat (TFT)  In a repeated prisoners’ dilemma, this is the strategy of  
[1] cooperating on the first play and [2] thereafter doing each period what 
the other player did the previous period.

transitive ordering  A preference ordering for which it is true that if option A is 
preferred to B and B is preferred to C, then A is also preferred to C.

trigger strategy  In a repeated game, this strategy cooperates until and unless 
a rival chooses to defect, and then switches to noncooperation for a speci-
fied period.

type  Players who possess different private information in a game of asymmet-
ric information are said to be of different types. 

ultimatum game  A form of bargaining where one player makes an offer of 
a particular split of the total available surplus, and the other has only the 
all-or-nothing choice of accepting the offer or letting the game end without 
agreement, when both get zero surplus.

uniform distribution  A common statistical distribution in which the distribu-
tion function is horizontal; data are distributed uniformly at each location 
along the range of possible values.

utility function  In this context, a nonlinear scaling of monetary winnings or 
losses, such that its expected value (the expected utility) accurately captures 
a person’s attitudes toward risk.
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variable-threat bargaining  A two-stage game where at the first stage you can 
take an action that will alter the BATNAs of both bargainers (within certain 
limits), and at the second stage bargaining results in the Nash solution on 
the basis of these BATNAs.

Vickrey auction  Same as sealed bid auction.
Vickrey’s truth serum  Our name for the result that, in a second-price, sealed 

bid auction, it is every bidder’s dominant strategy to bid her true valuation.
winner’s curse  A situation in a common-value auction where, although each 

person may make an unbiased estimate of the value, only the one with the 
highest estimate will bid high and win the object and is therefore likely to 
have made an upward-biased (too high) estimate. A rational calculation of 
your bidding strategy will take this into account and lower your bid appro-
priately to counter this effect.

Yankee auction  An auction in which multiple units of a particular item are 
available for sale; bidders can bid on one or more units at the same time.

zero-sum game  A game where the sum of the payoffs of all players equals zero 
for every configuration of their strategy choices. (This is a special case of a  
constant-sum game, but in practice no different because adding a constant to 
all the payoff numbers of any one player makes no difference to his choices.)
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■

Index

acceptability condition (brinkmanship), 578, 
580

acceptance, in bargaining, 686–87
Acheson, Dean, in Cuban missile crisis, 562
action, in simultaneous-move games, 92
action nodes, 50
addiction, in smoking-decision game, 53
addition rule (probabilities), 264–65
adverse selection, 294–95

and common-value auction, 637
in insurance screening, 298

advertising
for political campaigns, 139–42
signaling with, 301

advice, game theory for, 37
agency problem, 521

principal-agent models, 515
agenda paradox, 596–97
agent, 521
agreements

enforceable vs. nonenforceable, 26;  
see also bargaining

airlines, price discrimination by, 300, 517–21
airwave spectrum auctions, 633

bid rigging in, 652
Akerlof, George, 272n, 295, 297
alignment of interests, 289

partially aligned, 284–90
long-term relationship, full revelation, 

286–87
long-term relationship, partial revelation, 

287–88
with multiple equilibria, 288–90
short-term relationship, 285–86

perfectly aligned, 282–83
totally conflicting, 283–84

Allen, Woody, 374
alliances, 22

Allison, Graham, 570, 582
all-pay auction, 642–45
alternating offers, 674–77
altruism

evolution of, 499–502; see also cooperation
altruistic punishment, 502
Amazon.com Auctions, 653n
amendment procedure (parliamentary rules), 

591
and manipulability, 613

analysis, change in method of, 194–200
antiplurality method, 592, 599
approval voting, 592–93

and manipulability, 613
Arkhipov, Vasili, 572n
arms race (U.S.-Soviet), 18

as prisoners’ dilemma or assurance game, 
116n

Arrow, Kenneth, 600
Arrow’s impossibility theorem, 600–601, 670

and susceptibility to manipulation, 612–13
ascending auction, 634; see also English auction
Ashenfelter, Orley, 656
assurance games, 114, 223–25

arms race as, 116n
café-choice game as, 114; see also café-choice 

game
collective-action games as, 422, 429–31, 445, 

446
as evolutionary game, 482–84
multiplayer, 429–31

asymmetric information, 23–24, 145, 272n, 
279–81

in auctions, 633
revealing of, 652–53

cost of, 307
in investing, 286
manipulation of, 272
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and mechanism design, 515, 516
highway-construction example, 524–27
and managerial supervision, 532
in price discrimination, 517

in The Princess Bride, 7
solving models of, 294

Athens (classical), in Peloponnesian War,  
374–75

AT&T, in lawsuit against eBay, 331–32
auctions, 632–57

all-pay, 642–45
bidding strategies, 639–42

code-bidding technique, 652
collusion among bidders, 651–52
English auction, 639
first-price, sealed-bid and Dutch auctions, 

639–40
and overbidding, 36, 636–39, 644, 647
proxy bidding, 654
risk-averse bidders, 647–48
risk-neutral bidders, 646–47
second-price, sealed-bid auctions, 640–42

as competition, 529
correlated estimates in, 636, 648–49
information disclosure at, 652–53
multiple objects sold together at, 649–51, 654
online, 634, 647, 653–55

with lowest unmatched bid as winner, 
654–55

and shilling, 652
readings on, 656–57
revenue-equivalence result on, 646–47
risk-averse bidders in, 647–48
risk-neutral bidders in, 646–47
rules of, 163
sellers’ choices in, 645–49

with correlated estimates, 648–49
with risk-averse bidders, 647–48
with risk-neutral bidders/independent 

estimates, 646–47
and simultaneous bids, 20
types of (classified by environment)

common-value, 635–36
and correlation of bids, 636
private-value, 636

types of (classified by rules), 633–35
open outcry, 634–35; see also Dutch 

auction; English auction
sealed bid, 635, 642; see also all-pay 

auction; first-price sealed-bid auction; 
second-price sealed-bid auction

sealed-bid, 42
underhanded strategies in, 651–53

bid rigging, 651
sellers’ inflation of bids, 652

valuation of objects in, 635–36
for multiple objects, 649–51, 654
with private information, 653

and Vickrey’s truth serum, 640–42
and winner’s curse, 636–39, 656

Aumann, Robert, 378
Australia, 594
auto market

used cars, 295–98
warranties in, 299

automatic fulfillment, credibility of strategic 
moves through, 362–63

average, probability-weighted, 335
Axelrod, Robert, 397–98, 404

babbling equilibria, 283, 284
in investing decisions, 286–89, 293, 294

backstop payoffs, 666
backward induction (reasoning), 9, 56, 80;  

see also rollback analysis
bacteria (E. coli), strains of, 488
balance of power, 8
Ball, George, 562, 564
bank décor, 301
bargaining, 663–91

acceptance in, 686–87
with alternating offers, 674–77

and decaying surplus, 674–79
and impatience, 675, 680–85

as cooperative game, 664–65, 667–72, 690
manipulation of information in, 685–88
multi-issue, 688–89
multiparty, 690
Nash’s cooperative solution for, 665–72
and Nash solution

cooperative game, 667–72
noncooperative game, 672–74, 684

as noncooperative game, 664–65, 672–74, 690
variable-threat, 672–74

bargaining game, 71–72
in exercise, 85–86

bargaining power, 276
baseball

and Cy Young Award voting, 592
in exercise, 251
free-agent pay in, 638
players’ strike in, 674
sabermetrics in hiring, 164
standardization effect in, 163–65

BATNA (best alternative to a negotiated 
agreement), 666, 685

and housing purchase, 686
manipulation of, 672–74

in multi-issue bargaining, 689
signaling of, 687

Battalio, Raymond, 156–57
Battle of the Bismarck Sea game, 130
battle of the sexes

as evolutionary game, 496–99
as simultaneous-move game, 114–17

Battleship Potemkin, The (movie), 587–88
Bayesian equilibrium, perfect, 148, 319, 320
Bayesian-Nash equilibria, 304, 319, 320
Bayes’ theorem (or rule or formula), 285n, 304, 

339–41
Beane, Billy, 164
Beautiful Mind, A (Nasar), 95n, 126
Beil, Richard, 156–57
beliefs, 221

correctness of, 106
Nash equilibrium as system of, 97–98, 221–22
in non-zero-sum games, 221–22
in simultaneous-move games, 97–98
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Berra, Yogi, quoted, 447
best alternative to a negotiated agreement 

(BATNA), see BATNA
best response, 95, 98
best-response analysis, 106–8

simultaneous move games with mixed 
strategies, 218–21

for soccer penalty kick, 237
for street-garden game, 110–11

best-response curves, 108, 137, 138, 227
in political campaign advertising, 140–41
upward-sloping, 155n

best-response functions, 142–43
best-response rules, 165, 220–21

and price competition, 134
bidding strategies (auctions), 639–42

code-bidding technique, 652
collusion among bidders, 651–52
English auction, 639
first-price, sealed-bid and Dutch auctions, 

639–40
and overbidding, 636–39, 644, 647
proxy bidding, 654
risk-averse bidders, 647–48
risk-neutral bidders, 646–47
second-price, sealed-bid auctions, 640–42;  

see also auctions
bid rigging, 651
binary methods of voting, 591
binary ordering relation, 595
biology

credible signaling in, 303
evolutionary games in, 4, 34, 35, 503;  

see also evolutionary games
birds, signaling by, 303
Black, Duncan, 601
Black’s condition, 601–2
bonds

inflation-protected, 303
as spreading risk, 277

books, discriminatory pricing with, 300–301
Borda, Jean-Charles de, 592
Borda count (voting), 592

example of, 599
and Heisman Trophy award, 626
and manipulability, 613
and reversal paradox, 597

“B or not-B” situations, 287–88, 290, 294
Boston Red Sox, 164
branches (of decision tree), 48
bridge, asymmetric information in, 23–24
brinkmanship, 12–13, 343, 367–68, 559–84

in bargaining, 688
in Cuban missile crisis, 368, 559–84

game-theoretic explanation of 
(complexities), 569–75

game-theoretic explanation of (simple), 
567–69

in practice, 579–83
probabilistic threat in, 575–79
significance of, 559
sources for discussion of, 561n
unfolding of crisis, 560–67

in practice
Cuban missile crisis, 579–83
and U.S.-Japan trade relations, 356, 367–68

Britain, voting system of, 605
budget, federal

in sequential-move game, 191–93
in strategic form, 196–200

in simultaneous-move game, 102–3, 190, 191
Bundy, McGeorge, 562, 566
burning of bridges, and credibility of strategic 

moves, 363–64
Bush, George H. W.

and 1992 election, 604
on taxes, 367

Bush, George W., 605
business courses, and games of strategy, 4

café-choice game, 111–14, 221–25
as battle of the sexes, 114–17
direct communication supposed in, 282–83
as evolutionary game, 482–83, 496–97
and mixed strategies, 223–25, 258–59

Camerer, Colin F., 244
campaign advertising, political, 139–42
Camp David Accords, 365, 392
card deck, in probability illustration, 263–66
cartels, 139

for political advertising, 141
case study approach, 15

theory-based, 16, 559
Castro, Fidel, and Cuban missile crisis, 563, 571
centipede game, 73–74, 75n
“chance,” 263n
change

in method of analysis, 194–200
in mixture probabilities (zero-sum games), 

228–30
in order of moves, 187–93

Charron, William, 374–75
cheap talk, 281, 286n; see also direct 

communication
cheap talk equilibrium, 281–83, 288–90, 292–94
cheap talk game

game tree for, 290–92
payoff matrix for, 292–94

cheating, detection and punishment of, 447–49, 
451

Cheating Monkeys and Citizen Bees (Dugatkin), 
445n

checkers, 69–71
chess, 65–69

calculation of best strategy in, 31
rollback equilibrium in, 75

chicken game, 12, 116–17
collective-action game as, 421–23, 427–29, 449
and commitment, 348–50
as evolutionary game, 479–81

and hawk-dove game, 489
in exercises, 252, 259
and first-mover advantage, 188, 189
with mixed strategies, 454–58
mixed-strategy equilibrium in, 226–27, 481

evolutionary justification for, 481, 491
multiplayer, 427–29
in real time, 581–82
telecom pricing game as, 184

Chinook computer program, 69–70
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Chirac, Jacques, 593, 624
Christie’s, 634
city council welfare-vote example, 595–97, 

606–12
classroom experiments

on auctions, 643n
on bargaining, 677

dictator game, 679, 680
ultimatum games, 677–78

on focal point (flat-tire example), 10
number-choice game in, 160
on rollback reasoning, 71, 73–74

Clinton, Bill, 604
coalitions, 22
code-bidding technique, 652
coercion, 449
coffee shops, 300
cognitive errors, 158–59
collective action, 417

classical examination of, 443–44
and Kitty Genovese case

diffusion of responsibility, 454–58
pluralistic ignorance, 454

modern approaches and solutions to,  
444–50

promoting cooperation, 446–50
and real-life applications, 450–53

collective action dilemmas, 110
collective-action games, 417–58

assurance, 445, 446
multiplayer, 429–31
with two players, 422

chicken, 423, 428–29, 449
with mixed strategies, 454–58
multiplayer, 427–29
with two players, 421–22

history of ideas about, 443–53
applications, 450–53
in the classics, 443–44
modern approaches/solutions,  

444–50
with large groups, 423–31

assurance, 429–31
chicken, 427–29
prisoners’ dilemma, 425–27

prisoners’ dilemma, 423, 424, 426
features in solution of, 450–51
multiplayer, 425–27
with two players, 419–21

and social optimum vs. individual incentive, 
420, 423, 427, 431

spillovers, 431–42
commuting and, 431–33, 435–39
general case, 433–35
negative externalities, 435–39
positive, 439–42

with two players, 418–23
assurance, 422
chicken, 421–22
collective inaction, 422–23
prisoners’ dilemma, 419–21

collective inaction, 422–23
collision insurance, 298–99
collusion

among bidders, 651–52
in raising prices, 139

combined sequential and simultaneous games, 
20, 180–87

and configurations of multistage games, 
185–87

in football, 20, 186–87
two-stage games and subgames, 181–85

Commerce Department, U.S., 356
commitment(s), 19, 342, 344, 347

and chicken game, 348–50
and deadline enforcement policy,  

350–52
desirability of, 360
familiar instances of, 343
in street-garden game, 344

commitment devices, 11
common-resource games and problems, 423, 

444; see also collective-action games
common-value (objective-value) auctions, 

635–36
communication

and assurance games, 114
cutting off, 364, 368–69
direct, 281–94

formal analysis of cheap talk games,  
290–94

with partially aligned interests, 284–90
with perfectly aligned interests, 282–83
with totally conflicting interests, 283–84

partial, 289–90; see also screening; signaling
commuting, spillover from, 431–33

negative externalities, 435–39
Compaq Computer Corporation, web-address 

bargaining by, 691
compellence, 345, 352, 355

and Cuban missile crisis, 566, 567, 569
deterrence vs., 361–62
and salami tactics, 357, 361, 370

competition
auctions as, 529
in business, 36
first-mover advantage in (economic 

competition), 21
among insurance companies, 299
price, 134–37

Nash equilibrium concept in, 161–62
in restaurant pricing game, 134–37,  

357–58
in telecom example, 181–85

complementary slackness, 241
complements, firms as, 139
complete information, 272
compound interest, 384
computers

and best-response functions, 142
in calculating equilibrium, 33–34
as chess players, 66–69

conditional strategic moves, 345–46;  
see also contingent strategies

Condorcet, Marquis de  
(Jean Antoine Nicholas Caritat), 591

Condorcet criterion, 603
Condorcet method, 591
Condorcet paradox, 595–96

and Black’s condition, 601
Condorcet terms, 603
Condorcet winner, 591
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confession game, husband and wife,  
378–79, 389–90

as prisoners’ dilemma game, 99–101, 193
and tie-breaking, 473n

configurations, of multistage games, 185–87
conflict, 21–22
Congress

brinkmanship, 583
in sequential-move game, 191–93

in strategic form, 196–200
in simultaneous-move game, 102–3,  

190, 191
strategic voting in, 609;  

see also legislation and legislatures
consistency criterion, 603
constant-sum game, 21, 94, 119;  

see also zero-sum games
constituency system (voting), 605
consumer surplus, 519, 520; see also surplus
contingent strategies, 381

in evolutionary games, 400
and international environmental policy, 404
tit-for-tat as, 381; see also tit-for-tat strategy

continuation, 198–99
continuous distribution, 617
continuous strategy games, 92, 133–43

and economics of oligopoly, 138–39
and political campaign advertising,  

139–42
in price competition, 134–37

contracts
cost-plus and fixed-price, 522
and credibility of strategic moves, 367
insurance, see insurance and insurance 

companies
“controlled lack of control,” brinkmanship as, 

576, 584
convention(s), 445, 445n

social processes locked in by, 442;  
see also norms

convergence
of expectations, 10, 113
on focal point, 112; see also focal point

cooperation, 21–22
conditions governing, 387–89
contingent strategies in, 381
evolution of, 499–502
in non-zero-sum games, 21

experimental games, 248
in prisoners’ dilemma game, 379, 395–96

as collective-action game, 446
and evolutionary games, 502
experimental evidence on, 395–98
and repetition, 115, 379–81, 385, 386, 

388–89, 405
for reputation, 364–65
and rewards, 392
in rules for game, 397
and tit-for-tat strategy, 381, 397;  

see also tit-for-tat strategy
as rational behavior, 395–96;  

see also collusion
cooperative games, 26–27

bargaining as, 664–65, 690
and Nash solution, 667–72

coordination games, 111, 223–25
assurance games, 114;  

see also assurance games
battle of the sexes, 114–17, 496–99
belief and assumption in, 221–22
café-choice game, 111–14;  

see also café-choice game
chicken game, 116–17; see also chicken game
choosing among equilibrium strategies, 

156–57
and evolutionary process, 484
with multiple equilibria, 147–48
of pure coordination, 112

Copeland index, 591
correlated estimates, in auctions, 636, 648–49
correlation, 273

negative, 273
positive, 274
between risks, 279

cost-plus contract, 522–27
credibility, 148, 199

and refinements of Nash equilibria, 148
screening for, 302
of signals, 301, 303
of strategic moves, 342–43, 346–48, 370

through brinkmanship, 367–68
through commitment, 349, 350
through contracts, 367
degrees of, 368
through irrationality, 366
through reputation, 364–65
through restricting freedom of action, 

348–49, 362–64
through small steps, 365–66
through teamwork, 366
and threats or promises, 199, 352–60

credible deniability, 280
credit cards, lack of foresight about, 75
Cuban missile crisis (brinksmanship), 368, 

559–84
brinkmanship in practice, 579–83
game-theoretic explanation of

accounting for complexities, 569–75
simple, 567–69

probabilistic threat in, 575–79
significance of, 559
sources for discussion of, 561n
unfolding of crisis, 560–67

cultural context
and collective action, 438, 445
and conventions or norms, 449
and fairness (ultimatum game), 678
and focal points, 113, 147–48
and new strategies, 478
and prosocial preferences, 446

currency swaps, 273–74
custom(s), 445

and cooperative behavior, 445
cutting off communication

in countering strategic moves,  
368–69

and credibility of strategic moves,  
364

Cy Young Award, voting methods for,  
592
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Darwin, Charles, interpreters of, 500
Dasgupta, Partha, 602
dating game (example), 13–14

screening in, 24
Davis, Douglas, 156, 244
deadline enforcement policy, and commitment, 

350–52
Dean, James, 116n
debt ceiling crisis (2011), brinkmanship in, 583
decay of bargaining surplus, 674–79

gradual, 677
decision(s), 18, 465–66

games vs., 18–20
decision node, 48, 51
decision trees, 48; see also game tree
Deep Blue, 67–69
delegation, and credibility of strategic movies, 

363
demand functions, 135n
democracy, collective-action problems in, 

452–53
deniability, credible, 280
derivatives, as spreading risk, 277
descending auctions, 634; see also Dutch 

auction
dessert game, 346–47
detection

of cheating, 447–49, 451
of defection, 405

deterrence, 345, 352, 355
compellence vs., 361–62

developing countries, environmental  
policy and, 404

Diaconis, Persi, 263n
dictator game, 73

in bargaining experiments, 679, 680
and prosocial preferences, 446

diffusion of responsibility, 454–58
dilemmas of collective action, 110
Dillon, Douglas, 562, 567
dinner game, threat in, 343, 345–46
diplomacy, international,  

see international diplomacy
direct communication (cheap talk), 281–94

and adverse selection, 294–95
formal analysis of cheap talk games, 290–94
with partially aligned interests, 284–90

long-term relationship, full revelation, 
286–87

long-term relationship, partial revelation, 
287–88

with multiple equilibria, 288–90
short-term relationship, 285–86

with perfectly aligned interests, 282–83
with totally conflicting interests, 283–84

discount factor, 385
Discourse on Inequality (Rousseau), 443
discrete distribution, 614
discrete-strategy games, 91–120, 133

absence of equilibria in, 118–20
and best-response analysis, 106–8
continuous strategies for, 92
depiction of, 92–94
and dominance, 99–106
multiple equilibria in, 111–17

Nash equilibrium in, 94–98
simultaneous-move games with pure 

strategies, 194–96
among three players or more, 108–11

discriminatory pricing, 300
disjoint sets, 265
distribution function, 617
diversification, portfolio, 274–75
Dobrynin, Anatoly, 567
dominance

in sequential-move game (on budget), 190, 
192

in simultaneous-move games, 99–106, 159
weak, 105–6

dominance solvable games, 104, 107–8, 159
dominant strategy, 100
dominated strategy, 100

successive elimination of, 104–6
doomsday device, 362–63
Dr. Strangelove (movie), 363, 572n
Dugatkin, Lee, 445n, 500, 501
DuPont, 162
Dutch (descending) auction, 634–35

bidding strategy in, 640
and correlated estimates, 649
in Filene’s Basement, 632
at online sites, 654
and risk aversion, 647
as seller’s choice, 649

Duverger’s law, 605
dynamic process, 34–35

E. coli bacteria, three strains of, 488
eBay, 653, 655

AT&T lawsuit against, 331–32
economic competition, first-mover advantage 

in, 21
economics

and games of strategy, 4
and number of participants in game, 18–19
of oligopoly, 138–39
and price-determining quantities (fish-catch 

example), 152–55
education

as screening or signaling function, 298, 
307–10

and pass-fail vs. letter-grade, 310
and “teaching to the test,” 541
and teaching vs. research, 541

effectiveness condition (brinkmanship), 577, 
580

effective rate of return, 386
efficiency wage, 542
efficient frontier, 669, 671n
efficient outcome, 669
Egypt

and Camp David accords, 392
in wars against Israel, 32

Eisenhower, Dwight, and Cuban missile crisis, 
570

elections, government spending and, 302–3
emotions

social norms and, 157–58
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employment, see labor market
Employment, Interest, and Money (Keynes), 442
end point, 49
enforced norms, 447–49, 448n
English (ascending) auction, 634

bidding strategy for, 639–40
and correlated estimates, 649
on Internet, 654
shilling in, 652

entrepreneurship, financial markets and, 277
environmental policy, international, 402–4
Epstein, Theo, 164
equilibrium(—a), 32–34

babbling, 283, 284
in investing decisions, 286–89, 293, 294

Bayesian-Nash, 304, 319, 320
best responses and, 218–21

and opponent’s indifference principle, 218
cheap talk, 281–83, 288–90, 292–94
choosing among, 156–57
of evolutionary game, 470
in mixed strategies, 221–22, 227–32, 249

for assurance game, 224–25, 482
in chicken game, 226–27, 481, 491
and evolutionary games, 475, 478, 481, 483, 

486, 489, 494, 498n
and exceptional cases, 236
in Malaysian-convoy example, 245
in non-zero-sum games, 222–23
of RPS game, 488
and safe vs. risky, 231
in tennis-serve study, 245–46

perfect Bayesian, 304, 319, 320
pooling, 281, 315–16
quantal-response, 158–59
rollback, 56–57, 62, 70, 180, 282–83

in chess, 75
in zero-sum sequential-move games, 74–75

in screening games, 310–19
semiseparating (partially revealing), 242n, 

288–90, 310, 316–19
separating, 281, 312–15
in signaling games, 310–19
stability of, 51
subgame perfect, 56
symmetric (collective action), 456;  

see also Nash equilibrium(—a)
equilibrium mixture, 248

in café-meeting game, 224–25
collapse of, 233n
and opponent’s indifference principle, 241, 

248
with some strategies unused, 239–41
in tennis match, 222, 236, 245–46

equilibrium path of play, 60
escalation of the risk of mutual harm, gradual, 

581, 582; see also brinkmanship
escape routes, in countering strategic moves, 

369
escrow account, for reward in prisoners’ 

dilemma game, 392
ESS, see evolutionary stable strategy
Essence of Decision (Allison), 570
European Monetary Union, 363–64
European Union, and international 

environmental negotiations, 404

Evert, Chris, 6, 118–19, 188, 190, 214, 216–22, 
228–29, 233–36, 243, 250–51, 258, 283–84; 
see also tennis matches

evolutionary approach (game theory), 4,  
34–35, 39

and fairness, 73n, 678
and prisoners’ dilemma programs, 398
and signaling (peacock), 272

evolutionary biology, 4
bird plumage, 303
prisoners’ dilemma game in (bowerbirds), 

399–400
evolutionary games, 465–503

assurance games as, 482–84
battle of the sexes as, 496–99
chicken game as, 479–81

and hawk-dove game, 489
cooperation and altruism in, 499–502
equilibrium of, 470
evolutionary stable configuration in, 474, 475
hawk-dove game, 488–93
and interactions across species, 495–99
and playing the field, 496
prisoners’ dilemma as, 470–79

and hawk-dove game, 489
rational-player models vs., 477–79

repeated, 472–77
theoretical and conceptual framework for, 

466–70, 493–95
with three phenotypes in population, 484–88

evolutionary stability, 227n, 467, 503
in hawk-dove game, 489–90

evolutionary stable strategy (ESS), 469, 472, 499, 
503

as Nash equilibrium, 478
neutral, 485
testing for, 484–85

exceptional cases, 236
ExComm (National Security Council, Executive 

Committee of), in Cuban missile crisis, 
562–64, 566–67, 570, 571

expectations
convergence of, 10, 113
and threat, 347

expected payoff, 29, 216, 266
and changed payoffs, 229–30
in Cuban missile crisis, 574
in investing, 285–88, 292–94
and mixed strategies, 216–21

expected utilities, 266, 335–38, 669
expected utility approach, 29
expected values, 266
explanation, game theory for, 36, 37
exploitation, 243
extensive form, 48, 180
externality (external effect), 433

internalizing the, 439
negative, 308n, 435–39; see also spillover effect

external uncertainty, 23, 195, 271

Fail Safe (movie), 363
fairness, 75

and bargaining games, 72–73, 678–79
and shares of total prize game, 147
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family brinkmanship (example), 12–13
farming example

and information set, 195–96
and insurance problem, 533–36
and Nash bargaining solution, 669–70

Faust, in bargain with Devil, 663–64
Federal Communications Commission (FCC), 

spectrum auctions administered by, 633, 
652

Federal Reserve, 654n
and quickness of monetary policy, 192–93
in sequential-move game, 191–93
in simultaneous-move game, 102–3, 190, 191
in strategic form, 196–200

feedback, positive, 440, 441n
Filene’s Basement, 632
financial advisers

formal analysis of cheap talk game, 290–94
partially aligned interests of, 284–90

financial crisis (2008), 683–84
first-mover advantage, 62, 188, 189
first-price sealed-bid auction, 635

and bidder collusion, 651
in bidding strategy in, 639–40
and correlated estimates, 648, 649
and risk aversion, 647–48
as seller’s choice, 649

fiscal policy
applications of game theory to, 163
game of, 190–93
legislative process of, 192; see also budget, 

federal
fishing-village example of collective action, 450, 

451
fitness (evolution), 466

and bird plumage, 303
of particular strategy, 469

fixed-price contract, 522–27
fixed-rule games, 25
flat tire excuse (example), 9–10, 300
focal point, 10, 112n, 188

and cheap talk equilibrium, 283
in choosing among equilibria, 156
convergence on, 112
and social optimum, 446

folkways, 445n
football

and configuration of multistage game,  
186–87

in exercise, 257
game table in, 93–94
and Heisman Trophy voting system, 626–27
long-run motives in, 22
and Nash equilibrium, 96
risky and safe choices in, 230–32
simultaneous and sequential moves in, 20
strategy in, 4, 5

foreign relations, see international diplomacy
foreign trade, see international trade
formal game theory, 15; see also game theory; 

strategic games
freedom of action, restriction of, 362–64

in chicken game, 348–49
free riders, 420

and diffusion of responsibility, 454–55
excessive exploitation vs., 444

in team efforts, 539
and Vickrey scheme, 642

French presidential elections, 593, 624
frequent buyer discount cards, 300
“frequent-drinker cards,” 528
Fritz2 (chess program), 67, 68
Fu Ch’ai, Prince, 363
Fulbright, William, and Cuban missile crisis, 570
function, 135

best-response, 142–43
maximization of, 135–36, 176–79

future moves, reasoning backward from, 9;  
see also rollback analysis

Gambetta, Diego, 301–2
Gambit project, 33–34, 63, 71
game(s), 4, 18

decisions vs., 18–20
repeated, 115; see also repeated play
sequential, 16
simultaneous, 16
three-player, 57–62, 108–11, 200–203;  

see also strategic games
games of strategy, see game theory; strategic 

games
game table (game matrix), 92–93, 180

in three dimensions, 109
game theory, 3, 5, 19

advantage of learning, 75
and bargaining, 664
and evolution, 34–35
formal, 15
prescriptive role of, 37, 75, 639
and “prisoners’ dilemma” games, 101
rationality assumption of, 30–31, 37, 145

evolutionary approach as justification for, 
478, 495

in interactive situations, 5
unanalyzable situations for, 32
uses of, 36–37

game tree, 48–52, 70–71, 180
for cheap talk game, 290–92
construction of, 51–52
for Cuban missile crisis, 568, 573, 574, 577
and decision tree, 48
logical argument aided by, 80
for simultaneous-move game, 194
solving by use of, 52–57
for tennis game, 194
for two-stage game, 185

General Agreement on Tariffs and Trade (GATT), 
690

Genoese traders, legal system of, 452
genotype, 466
Genovese, Kitty, 454–58
Ghemawat, Pankaj, 162
Gibbard-Satterthwaite theorem, 612
“Gift of the Magi, The” (O. Henry), 115
Gods Must Be Crazy, The (film), 585
good choices, through calculation or through 

evolution, 34–35
Gore, Al, 605
Gould, Stephen Jay, 163–64
Governing the Commons (Ostrom), 450–51
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governments, competent and incompetent, 
302–3

GPA rat race (example), 7–9
grading on the curve (example), 7–9
gradual decay of bargaining surplus, 677
gradual escalation of the risk of mutual harm, 

581, 582
Greece, ancient, 632
Greif, Avner, 451–52
grim strategy, 381, 384–85
grim trigger strategy, 384
group altruism, 501
Gulf War (1990), 30

Hamill, Heather, 301–2
Hardin, Garrett, 423, 444
Hare procedure (single transferable vote), and 

manipulability, 613
Harford, Tim, 528
Harrington, Daniel, 242–43
Harrison, John, 644
Harsanyi, John, 95n
Harvard Negotiation Project, 666
hawk-dove game, 488–93, 503
Heisman Trophy, voting system of, 626–27
“help” game, 454–58
Henry, O., 115
heterogeneity, in theory of evolution, 466
highway construction (mechanism-design 

example)
with full information, 522–23
with information asymmetry, 524–27

hiring, sabermetrics in, 164
histogram, 614
historical accident, in determination of 

equilibrium, 441
historical context, and focal points, 148
Hobbes, Thomas, 443, 444
Holt, Charles, 156, 244
honor codes, academic, 366
housing market, as bargaining example,  

685–87
Huckabee, Mike, 628–29
Hume, David, 443
Humraz web site, 654–55
Hurwicz, Leonid, 516
husband-wife confession game, 378–79, 389–90

as prisoners’ dilemma game, 99–101, 193
and tie-breaking, 473n

Hyundai, 299

ignorance, pluralistic, 454
IIA (independence of irrelevant alternatives), 

600, 670
impatience in bargaining, 665, 675, 680–85
imperfect information, 23, 91, 195, 273–79

manipulation of risk in contests, 277–79
risk reduction through payment, 276–77
risk sharing, 273–76

impossibility theorem (Arrow), 600–601,  
612–13, 670

incentive-compatibility conditions, 306

incentive-compatibility constraints, 306–7,  
519, 521

in highway-construction example, 524–25
in insurance case (farmer), 536
in managerial contract, 531, 532

incentive prizes, for socially valuable 
innovations, 644–45

incentives, 529–43
in insurance markets, 533–36
and managerial supervision, 529–33
for multiple tasks and outcomes, 540–41
nonlinear schemes for, 537–39
over time, 541–43
in teams, 539–40

incomplete information, 23–24, 272
strategic voting with, 609–12;  

see also asymmetric information
independence of irrelevant alternatives (IIA), 

600, 670
independent events, 266
Indonesia, bargaining game in, 72
industry, Nash equilibrium concept in,  

161–62
infinite horizon, 384
infinite repetition, 381–85
infinite sums, 414–16
inflation controls, 303
Informant, The (Eichenwald), 139n
information

asymmetric, 23–24, 145, 272n, 279–81
in auctions, 633, 652–53
cost of, 307
in investing, 286
manipulation of, 272
and mechanism design, 515–17, 524–27, 

532
in The Princess Bride, 7
solving models of, 294

complete, 272
imperfect, 23, 91, 195, 273–79

manipulation of risk in contests, 277–79
risk reduction through payment, 276–77
risk sharing, 273–76

incomplete, 23–24, 272, 609–12
manipulation of, 14, 24, 272, 279–81
partial (market-entry example), 318
perfect, 23, 145, 195
private, 19, 652–53
signaling and screening games, 298–304

experimental evidence on, 303–4
in insurance, 298–99
in political business cycles, 302–3
in product design and advertising,  

301
by taxi drivers, 301–2
with warranties, 299–301

information revelation, see revelation 
mechanisms

information set, 195–96
in Cuban missile crisis, 573
and strategy, 195
in tennis example, 195

initial node, 48
instant runoff voting method, 594

in example, 599
instinctive systems, 465–66, 468
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insurance and insurance companies
impatience in settling with, 684
and moral hazard, 533–36
and private information, 19
as risk reduction, 274–75, 277
screening games of, 298–99

intensity ranking (voting), 602–3
interaction

between phenotypes, 467
strategic, see strategic interaction

interactive decision making, game theory as, 5; 
see also game theory

interests
partially aligned, 284–90

long-term relationship, full revelation, 
286–87

long-term relationship, partial revelation, 
287–88

with multiple equilibria, 288–90
short-term relationship, 285–86

perfectly aligned, 282–83
totally conflicting, 283–84

intermediate valuation function, 67, 68
internalized norms, 447, 448n
internalizing the externality, 439
international diplomacy

great-power leadership in, 394
impatience harmful in, 683
multiple issues in, 689

international environmental policy,  
402–4

international relations
Cuban missile crisis, 368, 559–84
Nash equilibrium concept in, 161
U.S.-China political action, 359–60

international trade, 8–9
advantage of, 688–89
multiparty agreements on, 690
and pressure politics, 452–53
U.S.-Japan trade relations, 353–57,  

367–68
Internet auctions, see online auctions
intimidation, in chicken game, 117
intransitive ordering of preferences, 596
intuition (instinct), 465–66

in chess, 68
theory vs., 232

invasion, by mutant genes, 466
investment decisions

formal analysis of, 290–94
partially aligned interests in, 284–90

“irrationality” of players, 73–74, 81
in countering strategic moves, 368
and credibility of strategic moves, 366

irreversibility, of strategic moves, 343–44
credibility through, 363–64

irrigation project example, 417–30
Israeli-Egyptian wars (1967,1973), 32

and Camp David accords, 392
Israeli-Palestinian conflict, mutual credibility  

as issue in, 365, 366
Italy, voting system of, 605
iterated (successive) elimination of  

dominated strategies, 104–6
and best response analysis, 106
and Nash equilibrium, 152

and rationality, 150
in street-garden game, 203

iteratively eliminating strategies that are never 
best responses, and Nash equilibrium, 
153–55

jamming, signal, 280
Jospin, Lionel, 593, 624
jury deliberations (exercise), 661

Kagel, John H., 656
Kahneman, Daniel, 465–66, 468, 469
kamikaze pilots, 363
Kasparov, Gary, 67–69
Keeler, Wee Willie, 163
Kennedy, John F., and Cuban missile crisis, 

561–70, 572, 579–82
Kennedy, Robert, in Cuban missile crisis, 562, 

564, 567
Keynes, John Maynard, 442
Khrushchev, Nikita, and Cuban missile crisis, 

562, 563, 565–68, 570–72, 582
Klemperer, Paul, 656, 657
Kyoto Protocol, 402–4

laboratory experiments
on bargaining, 677
on mixed strategies, 244
on Nash equilibrium, 156–61

choosing among multiple equilibria, 
156–57

cognitive errors, 158–59
common knowledge of rationality,  

159–60
emotions and social norms, 157–58
learning and moving toward equilibrium, 

160–61
on revenue equivalence, 647
of signaling games, 304

labor-management relations
negotiations

brinkmanship in, 13, 583
mandate in, 687
as strategic games, 18

strikes
of baseball players (1980), 674
as brinkmanship gone wrong, 688
brinkmanship in, 583
and communication cutoff, 364

labor market, signaling in, 304–10
Lands’ End (retail site), 654
Law and Order (TV program), “prisoners’ 

dilemma” situation in, 99
law of large numbers, 274
laws, 445n; see also legislation and legislatures
lawsuit, AT&T vs. eBay, 331–32
leadership

in collective-action problems, 450
in prisoners’ dilemma game, 392–94

and international diplomacy, 394
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learning
from experience, Nash equilibrium and, 

163–65
and moving toward equilibrium, 160–61

Lee, Robert E., and decision vs. game, 18
legislation and legislatures

agenda-setting game in, 32
amendment procedure for, 591
in exercise, 87
fixed and manipulable rules in, 25
political science and games of strategy, 4;  

see also Congress
LeMay, Curtis, 562, 571–72, 580, 582
“lemons,” auto market for, 295–98
Le Pen, Jean-Marie, 593, 624
Leviathan (Hobbes), 443
Lewis, Michael, 164
Liebriech, Michael, 403–4
Lindbergh, Charles, 644
Lippman, Walter, and Cuban missile crisis, 566
lizards, side-blotched, 485–88
lock-in to particular equilibrium, 441–42
logic, strategic choice vs., 10
Logic of Collective Action, The (Olson), 443–44, 

452
“losing to win,” 80
Lucking-Reiley, David, 656, 657

macroeconomic policies, 192–93
and achievement of preferable equilibrium, 

442
Maghribis (Jewish traders), 451–52
majority rule principle, 591

and manipulability, 613
robustness of, 602

majority runoff procedure, 593
in example, 599

Maltese Falcon, The (movie), 587
managerial supervision, 529–33

and nonlinear schemes, 537–39
Manhattan Murder Mystery (movie), 374
manipulation

of information, 14, 24, 272, 279–81
of risk in contests, 277–79
of rules, 25, 342
of sellers’ bids, 652
susceptibility to, 612–13
in voting, see strategic voting

marginal private gain, 433, 435
marginal social gain, 433, 435–36
marginal spillover effect, 433
market(s)

auto
market entry game, 311–19
used cars, 295–98
warranties in, 299

financial, entrepreneurship and, 277
housing, 685–87
labor, 304–10
for risk, 277
strategic interactions arising from, 19

market entry game (automobile industry), 
311–19

market failure, in used-car example, 295–98
Mary Poppins (movie), 372
Maskin, Eric, 516, 602
maximizing of function, 176–79
McAfee, R. Preston, 656
McCain, John, 628–29
McKelvey, Richard D., 33
McLennan, Andrew, 33
McMillan, John, 656
McNamara, Robert, 562–64, 570, 571
mechanism design, 515–43

complex incentive schemes, 537
for multiple tasks and outcomes, 540–41
nonlinear schemes, 537–39
for relationships over time, 541–43
for teams, 539–40

for cost-plus vs. fixed-price contracts,  
522–27

for information revelation, 521, 527–29
in auctions, 640–41
and cost-plus vs. fixed-price contracts,  

522
highway-construction examples of, 522–27
in price discrimination, 516–21

against moral hazard, 521, 529–38
for insurance, 533–36
for managerial supervision, 529–33, 537–39

terminology of, 521–22
tradeoffs and balancing in, 515–16, 522, 533, 

537, 540
median voter, 613
median voter theorem, 613–19

with continuous political spectrum, 617–19
with discrete political spectrum, 614–17

method of analysis, change in, 194–200
Mikoyan, Anastas, 571
Milgrom, Paul, 656
minimum differentiation, principle of, 616
Mirrlees, James, 515–16
mixed methods of voting, 593–94
mixed-motive games, 28
mixed strategies, 92, 120

in all-pay auction, 642–45
and chain of guesswork, 456
and evolutionary games

hawk-dove game (mixed strategies for each 
member), 481n, 491–93

polymorphism analogous to, 470
in prisoners’ dilemma, 477–78

justification of, 244
for non-zero-sum games, 222–23

evidence on, 248
and uncertainty, 98, 223–27

systematic choice to be avoided, 119–20, 263n
for zero-sum games

in application, 242–44
counterintuitive changes in probabilities, 

228–30
evidence on, 244–48
tennis game as, 190
with three or more strategies for one player, 

233–36
with three strategies for both players,  

237–41; see also simultaneous-move 
games with mixed strategies
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mixed-strategy equilibrium(—a), 221–22, 
227–32, 249

for assurance game, 224–25
in café-choice game, 224–25, 482

in chicken game, 226–27, 481
evolutionary justification for, 481, 491

and evolutionary games, 475, 494
and hawk-dove game, 489
and rational play, 478, 481, 483, 498n
and rock-paper-scissors game, 486

and exceptional cases, 236
in Malaysian-convoy example, 245
in non-zero-sum games, 222–23
of rock-paper-scissors game, 488
and safe vs. risky, 231
in tennis-serve study, 245–46

mixing one’s plays, 7
monetary policy

applications of game theory to, 163
game of, 190–93, 198–99, 202–3
quickness of, 192–93

Moneyball (Lewis), 164
monomorphism, 469
moral hazard, 272

and insurance schemes, 298n
mechanism design against, 521, 529–39

for insurance, 533–36
for managerial supervision, 529–33,  

537–39
origin of term, 533n

mores, 445n; see also convention(s); norms; 
value systems

Morgan, John, 144
moves, 50

order of, in sequential-move games, 58n, 
62–63

strategic, see strategic moves
multi-issue bargaining, 688–89
multiparty bargaining, 690
multiple-person/multiplayer games, 417

assurance, 429–31
chicken, 427–29
prisoners’ dilemma, 425–27;  

see also collective-action games
multiplication rule (probabilities), 265–66
multistage games, configurations of,  

185–87
multistage voting procedures, 591
mutations (evolution), 466
mutual awareness of cross-effect, as defining 

strategic games, 18
mutual commitments, 19;  

see also commitment
mutual fund managers, 539
mutual harm

gradual escalation of risk of, 581, 582
in threats, 346, 355

Myerson, Roger, 143, 144, 516

Nader, Ralph, 605
Nasar, Sylvia, 95n
Nash, John, 95n, 126
Nash cooperative solution, 665–72, 684

Nash equilibrium(—a), 94–98, 120, 143
absence of (pure strategies), 118–20, 148
applications of, 161–62
and bargaining, 664
in battle of the sexes, 115
and best-response analysis, 107–8
in budget game, 197
in cheap talk game, 293–94
in chicken game, 116
and collective action games, 417–18, 420, 425

Olson on, 443–44
and dominance, 99, 100, 104–6, 159
empirical evidence on, 155–65

laboratory experiments, 156–61
real-world evidence, 161–65

in evolutionary games
chicken game, 481
hawk-dove game, 489

and evolutionary stability, 495
as first approach and under favorable 

conditions, 164–65
of games with continuous strategies, 142–43
locating, 97
in mixed strategies, 190, 216, 221–22, 228
multiple

and biological concept of stability, 478, 495
choosing among, 146, 156–57
in coordination games, 111–17, 147–48, 

156–57
in simultaneous street-garden game, 203

for political campaign advertising, 141
of pricing game, 137
prisoners’ dilemma, 477–78
and rationalizability, 152–55
rollback vs., 197–98
of street-garden game, 110–11, 203
as system of beliefs and responses, 97–98, 

221–22
theoretical criticism of, 143–49

and multiplicity of equilibria, 146–48
and rationality of equilibrium, 148–49
and risk, 144–46

National Security Council, Executive Committee 
of (ExComm), in Cuban missile crisis, 
562–64, 566–67, 570, 571

Nature, as outside player, 48–49, 195–96
Navratilova, Martina, 6, 118–19, 188, 190, 214, 

216–23, 228–30, 233–36, 243, 250–51, 258, 
283–84

negative correlation, 273
negative externalities (external effect), 308n

in commuting, 435–39
negotiation

with insurance companies, 684
in international diplomacy, 683, 689; see also 

international diplomacy
in labor relations, 687–88; see also strikes

brinkmanship in, 13, 583
mandate in, 687
as strategic games, 18; see also bargaining

nepotism, reciprocity vs., 502
neuroeconomics, 72–73
neutral ESS, 485, 494
never a best response strategies, 150–52

and mixed strategy, 276
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New York City taxi drivers, 302
New York Yankees, 164
New Zealand, 594
node, 48

decision node, 48, 51
terminal node, 51

noncooperative games, 26–27, 143, 668
bargaining as, 664–65, 672–74, 690

and Nash solution, 672–74, 684
prisoners’ dilemma as, 379

nonexcludable benefits, 418
nonlinear incentive schemes, 537–39
nonrival benefits, 418
non-zero-sum games, 21

bargaining as, 664
best response curves, 227
mixed strategy in, 222–23

evidence on, 248
with uncertainty, 223–27

normal distribution, 617–18
normal form, 92

for street-garden game, 201–3
norms, 445n, 448–49

and cooperative behavior, 445
enforced, 447–49
internalized, 447, 448n
social

emotions and, 157–58
of fairness and equality, 147

and “urban cranks,” 458
values vs., 445n

Northern Ireland taxi drivers, 302
nuclear weapons, and brinkmanship, 560
number-choice game, 159–60

Oakland A’s, 164
Obama, Barack, brinkmanship by, 583
objective-value auction, 635–36
observability, 529n

of strategic moves, 343–44
Ockenfels, Axel, 655, 656
off-equilibrium paths, 198
off-equilibrium subgames, 198
oil-drilling rights, offshore, 637n
oligopoly, economics of, 138–39
Olson, Mancur, 443–44, 452, 453
Olympics, voting for site of, 599
Olympic skating, scoring of, 627–28
one-shot game, 22
ongoing games, 22–23
online auctions, 634, 647, 653–55

with lowest unmatched bid as winner, 654–55
and shilling, 652

OPEC (Organization of Petroleum Exporting 
Countries), 392

open outcry auctions, 634–35
operating systems, Windows vs. Unix, 440–42
opponent’s indifference property, 218, 222, 224, 

227, 248
and safe vs. risky, 231
in soccer penalty kick, 237–39, 241
among strategies actually used, 241

oppression, 449
optimum, social, see social optimum

options, limitations on, 347
order advantages, in sequential-move games, 

62–63
order of moves, changing of, 187–93
Organization of Petroleum Exporting Countries 

(OPEC), 392
Oslo Accords, 365
Ostrom, Elinor, 450
outcomes, 41, 50

payoffs connected with, 28; see also payoffs

pairwise voting, 591
and strategic manipulation, 606–9

Palacios-Huerta, Ignacio, 246
paperback books, 528
Pareto property, 600
partial communication, 289–90
partially revealing equilibrium, 310

cheap talk, 288–90; see also semiseparating 
equilibria

participation conditions, 306–8
participation constraint, 520–22

in highway-construction example, 524
in insurance case (farmer), 536
in managerial contract, 531, 532

partitioning, 288–90
path of play, 60

equilibrium path of play, 60
off-equilibrium paths, 198

pattern recognition, by computer vs. humans, 
68

Paul, Ron, 628
payoffs, 28–29

changing of, 364–68
to achieve cooperation, 446
and Cuban missile crisis, 572–73

common-knowledge requirement for, 113
in evolutionary games, 467
expected, 29, 216, 266

and changed payoffs, 229–30
in Cuban missile crisis, 574
in investing, 285–88, 292–94
and mixed strategy, 216–21

in financial adviser-investor relationship, 
286–94

good and bad, 100
mistaken assumptions about, 157–58
and mixed strategy, 216–21
probability of, 145–46
relative ranking of, 568
and reputation cost, 286–92
in sequential-move game, 50
in simultaneous-move game, 93

payoff table, 92
Peanuts cartoon, and common knowledge of 

rules, 31
Peloponnesian War (Thucydides), 163, 374–75
penalty, 389

in prisoners’ dilemma games, 389–92
penny auctions, 655
perfect Bayesian equilibrium, 148, 304, 319, 320
perfect information, 23, 195

assumption of, 145
Perot, Ross, 604
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Persian Gulf conflict (1990), 30
phenotype, 466

strategy as (evolutionary games), 468
philosophy, games of strategy and, 4
Pickett, George, on Civil War defeat, 18
Pie-in-The-Sky (PITS) airline, 517–21
playing-card deck, in probability illustration, 

263–66
playing the field (evolution), 467–68, 496
Pliyev, Issa, 565
pluralistic ignorance, 454
plurality rule, 592

and strategic manipulation, 604–5, 613
plurative methods of voting, 591–93
p-mix, 218–21
poker

asymmetric information in, 23–24
randomizing strategy in, 242–43
World Series of Poker, 44, 242–43, 248

political business cycle, signaling in, 302–3
political campaign advertising, 139–42
political competition, second-mover advantage 

in, 21
political contests, as all-pay auctions, 642
political science

and games of strategy, 4; see also legislation 
and legislatures

political systems/institutions, game theory in 
study of, 162

polymorphism, 469–70
and mixed-strategy equilibrium, 470, 478, 

483, 493
and mutant invasion, 478, 495

pooling (of types), 308–9
pooling equilibrium, 281, 315–16
portfolio diversification, 274–75
positional methods of voting, 591
positive correlation, 274
positive feedback, 440, 441n
positive responsiveness, 600
positive spillovers, 439–42
posterior probability, 285n
Powell Amendment, 609
prediction, game theory for, 36–37
pregame, 25
prescriptive role of game theory, 37, 75
present value (PV), 383

and infinite sums, 414–16
presidential nomination (2008), 628–29
pressure politics, 453
pretense of incompetence, 31
price, and market for risk, 277
price competition

Nash equilibrium concept in, 161–62
in restaurant pricing game, 134–37, 357–58
in telecom example, 181–85

price discrimination, 300–301, 516–21
limitations on, 527
second-degree, 517n
third-degree, 517n

Price is Right, The (game show), in exercise, 44
price-matching strategies, 392

by toy stores, 400–402
pricing game, for restaurant, 379–85
primary criterion, for evolutionary stability, 473, 

494–95

Princess Bride, The (movie), 7
principal, 521
principal-agent models, 515
principal-agent (agency) problem, 521
principle of minimum differentiation, 616
prisoners’ dilemma games, 8, 39, 99, 101, 

377–405
basic structure, 379–79
in bidder collusion effort, 651
collective action games as, 419–21, 423–27

features in solution of, 450–51
cooperation (cooperative strategy) in, 379, 

395–96; see also collusion
as collective-action game, 446, 447
and evolutionary games, 502
experimental evidence on, 395–98
and repetition, 115, 379–81, 385, 386, 

388–89, 405
for reputation, 364–65
and rewards, 392
in rules for game, 397
and tit-for-tat strategy, 381, 397;  

see also tit-for-tat strategy
and cutthroat competition in business, 36
defecting or cheating strategy in, 379
emotions and social norms in, 157
equilibrium in, 33
as evolutionary game, 470–79

and hawk-dove game, 489
rational-player models vs., 477–79

four critical properties for (from TFT 
strategy), 397, 404

husband-wife confession game as, 99–101, 
193

multiperson/multiplayer, 114n, 425–27
political campaign advertising as, 141
and pricing game, 138
real-world examples of, 399–404

evolutionary biology (bowerbirds), 399–400
international environmental policy,  

402–4
price matching, 400–402

repeated, 379–89
and collective action, 447, 449, 451
cooperation in, 115, 139, 379, 380–81, 385, 

386, 388–89, 405
as evolutionary game, 472–77
experimental evidence on, 395–98
finite repetition, 380–81
in games of unknown length, 385–86
infinite repetition, 381–85
and reciprocal altruism, 500–501

Rousseau’s treatment of, 443
and simultaneous- or sequential-move 

version, 193
solutions for

leadership, 392–94
penalties and rewards, 389–92
repetition, 379–89, 447

street-garden game as, 110
tacit cooperation in, 161
telecom pricing game as, 183–84

private gain, marginal, 433, 435
private good

pure, 418
of seller at auction, 652–53
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private information, 19, 652–53
private-value (subjective-value), auction, 636
probabilistic threat, 575–79
probability(ies), 264

algebra of, 263–66
and beliefs about mixed actions, 222
inferring of, 338–41
posterior, 285n
updating, 303–4

procurement mechanisms, 528–29
product design, signaling with, 301
professors, refusal of concessions by (example), 

10–11
profit sharing, 532–33
promises, 342, 345, 352

combined with threats, in U.S.-China political 
action, 359–60

compellence through, 361
and contracts, 367
desirability of, 360
familiar instances of, 343
implied in threat, 346–47, 355, 359, 582
and pregame, 25
in restaurant pricing game, 357–58
and threats, 358, 362, 370, 582

proportional representation, 594
and third parties, 605

proportion of population (evolutionary games), 
474n

prosocial thinking, 446–47
proxy bidding, 654
pruning, of branches in game tree, 54;  

see also refinements
psychology, games of strategy and, 4
public good

pure, 418
and Vickrey scheme, 642;  

see also social optimum
public projects, collective provision of, 430
punishment

altruistic, 502
of cheating, 447–49, 451
as relative to status quo, 362
in repeated games, 381, 381n

pure coordination, 112
pure private good, 418
pure public good, 418
pure strategies, 92

expected payoff lines for, 219n
simultaneous-move games with, 194–96

PV (present value), 383
and infinite sums, 414–16

“Pyrrhic victory,” 21

q-mix
and rock-paper-scissors game, 486
in tennis match, 218, 219, 228–29, 233–34

Quan, Jean, 589–90
quantal-response equilibrium (QRE),  

158–59
quota-bonus scheme, 538
QWERTY keyboard, 442

races, long-distance, 22
randomization

difficulty of, 263n
Malaysian-convoy example of, 245
and non-zero-sum games, 223
in poker, 242–43
and probability vs. what is “due,” 242, 246

randomizing of action, 119–20
Rapaport, Anatole, 116n, 397
rate of return, effective, 386
rational irrationality, 366
rationality, 29–31

assumption of, 30–31, 37, 145
evolutionary approach as justification for, 

478, 495
in interactive situations, 5

cognitive errors, 158–59
common knowledge of, 159–60
for Nash equilibrium, 148–49
and rationalizability, 150
as transitive ordering, 596

rationalizability, 149–55, 165
rationalizable strategies, 149–55
ratio of exchange, 689n
reaction function, 345
RealAuction.com, 655
real-estate auction example, 650–51
real-world evidence, on Nash equilibrium, 

161–65
Rebel Without a Cause (movie), 116n
reciprocal altruism, 500–501
reciprocity, strong, 502
refinements (of Nash equilibria), 148

rollbacks as, 180, 198
repeated games, theory of, 378
repeated play of games (repetition), 134n, 

379–89
and agreement, 668
and collective action, 444
with different partners, 160–61
finite repetition, 380–81
in games of unknown length, 385–86
infinite repetition, 381–85
of prisoners’ dilemma, 379–89

and collective action, 447, 449, 451
cooperation in, 115, 379–81, 385, 386,  

388–89, 405; see also collusion
as evolutionary game, 472–78
experimental evidence on, 395–98
and reciprocal altruism, 500–501

and reciprocity, 502
and reputation, 364–65

reputation, 364–65
of financial advisers, 286–92
for irrationality, 366
of opponent, 369
protection of, 244

reputation cost, for financial advisers, 286–92
research and development races, 277
research game (vaccine), 393–94
reservation price, 654
reserve price

in auctions, 645
and bidders’ collusion, 651
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resource problems, resolution of, 450–51
response rule, 345–46

threats and promises as, 352
responsibility, diffusion of, 454–58
restaurant menus, as revelation mechanisms, 

528
restaurant pricing game, 134–37

as evolutionary game, 470–72, 490
as prisoners’ dilemma, 379–85
promise in, 357–58

revelation mechanisms, 521, 527–29
in highway-construction example, 524–27
and price discrimination, 516–21;  

see also mechanism design
revenue equivalence, 646–47
reversal paradox (voting), 597–98
reversal terms, 603
reward, 362

in prisoners’ dilemma games, 392
Riley, John G., 656
risk

in Cuban missile crisis, 579, 580, 582
differing attitudes toward, 29
and expected utility, 335–38
and insurance screening games, 298–99
manipulation of in contests, 277–79
in Nash equilibrium, 144–46
in threats, 560, 569
in zero-sum games, 230–32;  

see also uncertainty
risk aversion, 335, 530

and auction attitudes, 647–48
and insurance, 533–34
and managerial contract, 529, 530, 532, 533

risk neutrality, 335
and auction attitudes, 646–47

risk reduction, 271, 319
through payment, 276–77
through sharing, 273–76

in farming example, 670
Robertie, Bill, 242
robustness, of voting method, 602
Rockefeller, John D., Sr., 25
rock-paper-scissors (RPS) game, 485, 486n

evolutionary, 485–88
in exercises, 42, 243, 254, 260, 294–95

rollback analysis, 56, 70–71, 80
for checkers, 70
for chess, 65–66, 69
and continuations, 198
evidence on performance on, 71–75
Nash equilibrium vs., 197–98
prescriptive role for, 75
for street garden game, 58–61
subgame-perfect equilibrium from, 199–200
for tic-tac-toe, 63–65

rollback equilibrium, 56–57, 62, 70
in chess, 75
as refinement, 180, 198
in zero-sum sequential-move games, 74–75

roll-call-voting (in exercise), 42
Rome, ancient, 632
Romney, Mitt, 628–29
roommates’ sharing of errands (example), 11–12

root (of game tree), 48
Roth, Alvin, 655, 656
rounds of voting, 593
Rousseau, Jean-Jacques, 114n, 443
RPS game, see rock-paper-scissors game
rules of the game, 32

common knowledge of, 31–32
manipulation of, 25, 342

running competition, and strategy, 4–5
Rusk, Dean, 562
Russell, Bertrand, 116n
Russia, collective-action problems in, 451

Saari, Donald, 602–3
sabermetrics, 164
salami tactics, 357, 361, 369–70
sales (by retail stores), limits of, 687
Samuelson, W. F., 656
sanctions, cooperative behavior and, 445
sandwich shops, 300
Saudi Arabia, 392
Schattschneider, E. E., 453
Schelling, Thomas, 112n, 117n, 368–70, 378
Scott, Robert F., sled dogs of, 502
screening, 24, 272, 281

and auctions, 633, 636
and bargaining, 685
in insurance, 298–99
for price discrimination, 300–301, 528
by self-selection, 300
signal jamming vs., 281n
by taxi drivers, 301–2

screening devices, 14, 24, 281, 305
screening games, equilibria of, 303–4, 310–19
sealed-bid auctions, 635

all-pay, 642–45
in exercise, 43
first-price, 635; see also first-price sealed-bid 

auction
second-price, 635; see also second-price 

sealed-bid auction
secondary criterion, for evolutionary stability, 

473, 494
second-mover advantage, 62, 188, 190
second-price sealed-bid auction, 635

bidder collusion in, 652
bidding strategy for, 640–41
and correlated estimates, 648, 649
on Internet, 654
and risk aversion, 648
sellers’ bid manipulation by, 652
and Vickrey’s truth serum, 640–42, 645

second-strike capability, 163
secrecy, in one-shot games, 22
Selden, Reinhard, 95n
selection (evolution), 466

between-group vs. within-group, 501
“selfish gene,” 500
“selfish teamwork” (Dugatkin), 445n, 501
self-selection, 307

screening by, 300
semiseparating equilibria, 242n, 310, 316–19
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separating equilibrium, 281, 312–15
separation of types, 307, 517
sequential-move games, 16, 20, 47–81

additional moves in, 63
and checkers, 69–71
and chess, 65–69
and tic-tac-toe, 63–65

with additional players, 57–62
auctions as, 645; see also auctions
bargaining (alternating offers) as, 674–77
change of, to simultaneous-move games, 

187–88
game trees in, 48–52, 70–71, 78

solving by use of, 52–57
and order of moves, 20, 21, 58n, 62–63
rollback performance in, 71–75
in strategic form, 196–200
in Survivor TV program, 75–80
with three players, 200–203

shading, in auctions, 640
second-price auction as countering, 645–46

shares of total prize game, 147
sharing, of risk, 273–76
shilling, at auctions, 652
short-term relationships, and prisoners’ 

dilemma games, 379, 389, 405
signaling games, equilibria in, 303–4, 310–19
signal jamming, 280

screening vs., 281n
signals and signaling, 14, 24, 272, 280, 310, 320

and auctions, 633, 636
and bargaining, 685

and housing market, 687
in evolutionary biology, 303
in labor market, 304–10
in political business cycle, 302–3
with product design and advertising, 301
in spectrum-auction bid rigging, 652
by taxi customers, 302
in used car market, 295–98
with warranties, 299

Simple Plan, A (film), 585
Simpsons, The (TV show), 243
simultaneous-move games, 16, 20

change of, to sequential-move games, 188–93
with continuous strategies, 133–43

and economics of oligopoly, 138–39
and political campaign advertising,  

139–42
in price competition, 134–37

with discrete strategies, 91–120, 133
absence of equilibria in, 118–20
and best-response analysis, 106–8
continuous strategies for, 92
depiction of, 92–94
and dominance, 99–106, 159
multiple equilibria in, 111–17
Nash equilibrium in, 94–98
among three players or more, 108–11

with mixed strategies, see simultaneous-move 
games with mixed strategies

Nash equilibrium in
with discrete strategies, 94–98
empirical evidence on, 155–65
theoretical criticism of, 143–49

with pure strategies, trees in illustration of, 
194–96

rationalizability in, 149–55
strategic uncertainty in, 271

simultaneous-move games with mixed 
strategies, 214–49

benefit of mixing, 216–18
equilibria, 227–32

best responses and, 218–21
counterintuitive changes in zero-sum 

games, 228–30
risky and safe choices in zero-sum games, 

230–32
weak sense of equilibrium, 227–28

Nash equilibrium
in mixed strategies, 216, 221–22, 228
as system of beliefs/responses, 221–22

in non-zero-sum games, 222–27
assurance version of meeting game,  

223–25
chicken game, 226–27
evidence on mixing, 248
with uncertainty, 223–27

when both players have three pure strategies, 
237–41

equilibrium mixtures with some strategies 
unused, 239–41

full mixture of all strategies, 237–39
when one player has three or more pure 

strategies, 233–36
in zero-sum games, 222–27

in application, 242–44
counterintuitive changes in mixture 

probabilities, 228–30
counterintuitive changes in probabilities, 

228–30
evidence on mixing, 244–48
risky and safe choices in, 230–32
tennis game as, 190
with three or more strategies for one player, 

233–36
with three strategies for both players,  

237–41; see also mixed strategies
sincere voting, 597
single-peaked preferences, 601–2
single transferable vote method,  

593–94
and manipulability, 613

skating, Olympic, 627–28
slippery slope, in example of mean professors, 

10
Slovak Republic, bargaining game in, 72
small steps, and credibility of strategic moves, 

365–66
Smith, Adam, 443
smoking game, game tree for, 52–57
sniping, in Internet, 655
soccer

in exercises, 255
simultaneous decisions in (penalty kick), 91, 

237–41, 246–48
World Cup soccer tournament competition, 

80
and Copeland index, 591

social gain, marginal, 433, 435–36
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social norms
emotions and, 157–58
of fairness and equality, 147

social optimum, 671n
in collective-action game, 420

individual incentives vs., 420, 423, 427, 
431–42

and focal point, 446
social ranking (voting outcomes), 595
Sotheby’s, 634
Soviet Union (USSR), and Cuban missile crisis, 

561, 563; see also Cuban missile crisis
Sparta, in Peloponnesian War, 374–75
SPE (subgame-perfect equilibrium), 56,  

199–200; see also rollback equilibrium
spectrum auctions, 633

bid rigging in, 652
Spence, Michael, 272n, 297
spillover effect, 431–42

in commuting, 431–33
internalizing of, 439
negative externalities, 435–39
positive spillovers, 439–42

“splitting the difference,” 665
spoiler (voting), 604
sports contests

races, long-distance, 22
scoring for Olympic skating,  

627–28
skill and chance in, 278
and ticket-from-scalper example, 675–76
voting for Summer Olympics site, 599;  

see also baseball; football; soccer;  
tennis matches

stability, evolutionary, 227n
stag hunt, as prisoners’ dilemma game 

(Rousseau), 443
standardization (stabilization), 163–65
Stevenson, Adlai, in Cuban missile crisis, 562, 

569
Stiglitz, Joseph, 272n, 297
stocks, as risk-spreading investment, 277
strategic action, theory of, 15
strategic form, 92, 180

in sequential-move games, 196–200
for street-garden game, 201–3

strategic games (games of strategy), 4,  
17–37, 41

concepts and assumptions in
common knowledge of rules, 31–32
equilibrium, 32–34; see also equilibrium
evolutionary approach, 34–35
payoffs, 28–29; see also payoffs
rationality, 29–31; see also rationality
strategies, 4, 27–28, 195; see also strategy

and enforceability (cooperative vs. 
noncooperative), 26–27

equality/completeness of information in, 
23–24

examples of, 6–14
fixed or manipulable rules in, 25
mixed-motive, 28
mutual commitment in, 19
private information in, 19;  

see also information

and real life, 3–4
sequential or simultaneous moves in, 

20–21; see also sequential-move games; 
simultaneous-move games

in short vs. long run, 22–23, 30;  
see also repeated play

zero-sum (constant-sum) vs. non-zero-sum, 
21–22; see also non-zero-sum games; 
zero-sum games

strategic interaction(s), 17, 26, 36, 37
in collective action, 418
containing both sequential and simultaneous 

parts, 181
and diffusion of responsibility, 456
and game theory, 5; see also game theory
manipulation of information in, 40
and markets, 19; see also market
and rationality, 30; see also rationality
and unknowns, 32; see also uncertainty

strategic manipulation in voting,  
see strategic voting

strategic moves, 47, 115, 186, 342–70
in bargaining, 672
classification of, 343–46
in commitments, 348–52
conditional, 345–46
countering of, 368–70
credibility of, 346–48, 362–68, 370

through brinkmanship, 367–68
and changing payoffs, 364–68
through commitment, 349, 350
through contracts, 367
degrees of, 368
through irrationality, 366
through reputation, 364–65
through restricting freedom of action, 348, 

362–64
through small steps, 365–66
through teamwork, 366
and threats or promises, 199, 352–60

desirability of, 360–61
for deterrence vs. compellence, 361–62
as first moves (observable and irreversible), 

343–44
and pregame, 25
receiving end of, 361
with threats and promises, 352–60
unconditional, 344–45, 347

strategic thinking, 5; see also game theory; 
rollback analysis

strategic uncertainty, 23, 98, 222, 271
in café-meeting game, 223

strategic voting (strategic misrepresentation  
of preferences), 163, 590, 594, 604–12,  
620

and agenda setting, 597
with incomplete information, 609–12
and pairwise voting, 606–9
and plurality rule, 604–5
and susceptibility of systems, 612–13

strategy(-ies), 4, 27–28, 195
continuous-variable form, 108
as embedded in player’s mind, 468
in evolutionary games, 467
mixed, 92; see also mixed strategies
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pure, 92
simultaneous-move games with, 194–96

rationalizable, 149–55, 165
in sequential-move games, 50–51;  

see also sequential-move games
in strategic form, 196, 198–99

in simultaneous-move games, 92;  
see also simultaneous-move games

dominant and dominated, 100, 159
in street garden game, 60

Strategy of Conflict (Schelling), 112n
street garden game

and commitment, 344–45
as sequential-move game, 58–61, 200–203

in strategic (normal) form, 201–3
as simultaneous-move game, 108–11, 200–203

strikes
of baseball players (1980), 674
as brinkmanship gone wrong, 688
brinkmanship in, 583
and communication cutoff, 364;  

see also labor-management relations
strong reciprocity, 502
study game, 343, 346, 347
subgame, 185, 198

off-equilibrium, 198
subgame-perfect equilibrium (SPE), 56, 199–

200; see also rollback equilibrium
subjective uncertainty, 223
subjective-value (private-value) auction, 636
substitutes, firms as, 139
successive elimination of dominated strategies, 

see iterated elimination of dominated 
strategies

Sun Tzu, 369
Super Bowl, advertisements during, 114
supply and demand, 19
surplus

from bargaining, 663, 666
decay of, 674–79
in trade example, 688–89

consumer, 519, 520
surprise, in one-shot games, 22
“survival of the fittest,” 466, 500
Survivor (TV show), 75–80
Sydney Fish Market, 634
systematic choice (mixed strategies), avoidance 

of, 119–20, 263n

tacit collusion, 139
tacit cooperation, 161

and repeated prisoners’ dilemma games, 115; 
see also cooperation

tactics, 28
taxi drivers, screening of customers by, 301–2
Taylor, Maxwell, 562
teamwork, credibility of strategic moves and, 

366
telecom two-stage game, 181–85
tennis matches

and absence of Nash equilibrium, 118–19
babbling equilibrium in, 284

and belief vs. certainty, 222
best-response curve for, 252–53
extensive-form illustration of, 194–96
mixed strategies in

application of, 242
changes in mixture probabilities in,  

s228–30
in exercise, 250–51
exploitation, 243
lob added, 233–36
serve-and-return play in, 245–46

second-mover advantage in, 188, 190
strategy in, 4, 6–7
and uncertainty, 194–95, 222;  

see also Evert, Chris; Navratilova, Martina
terminal node, 50, 51
TFT strategy, see tit-for-tat strategy
Thaler, Richard, 638
theory, 35

intuition vs., 232
reality and, 35–36

theory-based case studies, 16, 559
theory of repeated games, 378
theory of strategic action, 15
Thompson, Llewellyn, 562
threats, 342, 345, 352, 560

in bargaining, 688
and brinkmanship, 583;  

see also brinkmanship
in Cuban missile crisis, 568, 569,  

573–75
combined with promises, in U.S.-China 

political action, 359–60
and communication, 364
and contract, 367
desirability of, 360
deterrence through, 361
in dinner game, 343, 345–46
familiar instances of, 343
implicit in promise, 358
labor-relations illustration of, 583
and pregame, 25
and promises, 358, 362, 370, 582
in U.S.-Japan trade relations, 353–57,  

367–68
three-player games, street-garden game as, 

57–62, 108–11, 200–203;  
see also multiple-person/multiplayer 
games

Thucydides, 163, 374–75
ticket-from-scalper example, 675–76
tic-tac-toe, 63–65
Tierney, John, 457–58
Tinsley, Marion, 69
tit-for-tat (TFT) strategy, 381, 389, 397–98,  

472
in evolutionary games, 400
and international environment policy,  

404
and reciprocal altruism, 500–501

tournaments, and moral hazard problem,  
540

trade, international, see international trade
“tragedy of the commons,” 423
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“Tragedy of the Commons, The” (Hardin), 444
transitive ordering of preferences, 596
travelers’ dilemma game, 158–59
Treasury bills, 654n
Treatise on Human Nature (Hume), 443
treaty, threat-cum-promise through, 360
tree construction, 48–49, 51–52

for simultaneous-move games, 194–96;  
see also game tree

tree house, 182–83
trigger strategies, 381, 391;  

see also contingent strategies
two-stage games, 181–85
types, separation of, 281, 307, 517
typewriter/computer keyboard configuration, 

442

ultimatum game, 72–73
as bargaining experiment, 677–78
in exercise, 85–86
and prosocial preferences, 446

uncertainty, 221–22
and Cuban missile crisis, 569–70
decision making under, 335–38
external, 23, 195, 271
incorrect beliefs vs., 222
and information set, 195
and mixed strategies, see mixed strategies
in sequential-move games  

(“Nature’s moves”), 48–49
strategic, 23, 98, 222, 223, 271
subjective, 223; see also risk

unconditional strategic moves,  
344–45, 347

Undercover Economist (Harford), 528
unemployment

as collective-action problem, 442
in Europe, 449

uniform distribution, 617–18
union negotiations, see labor-management 

relations
unpredictability, in Cuban missile crisis,  

572
unsystematic approach, 119–20
“urban cranks,” virtues of, 457–58
U.S.-China political action, threat and promise 

combined in, 359–60
U.S.-Japan trade relations, threat in, 353–57, 

367–68
used car market, 295–98
utility, expected, 29, 335–38, 669
utility function, 337

vaccination, positive spillover from, 440
vaccine-research game, 393–94
value systems

norms vs., 445n
of other players, 30
and rationality, 30

Van Huyck, John, 156–57

variable-threat bargaining, 672–74
verifiability, 529n
Vickrey, William, 516, 612, 632, 640, 656
Vickrey auction, 635
Vickrey’s truth serum, 640–42, 645
voter behavior, 139–40
voting, 589–620

evaluating voting systems
Arrow’s impossibility theorem and 

responses to, 600–601
Black’s condition, 601–2
intensity ranking, 603
robustness, 602

median voter theorem, 613–19
with continuous political spectrum,  

617–19
with discrete political spectrum,  

614–17
paradoxes of, 594–99

agenda paradox, 596–97
Condorcet paradox, 595–96
illustrative examples, 598–99
reversal paradox, 597–98

roll-call, 42
rules and procedures, 590–94

binary methods, 591
changes in, 598–99
mixed methods, 593–94
plurative methods, 591–93

strategic manipulation (misrepresentation) 
in, 163, 604–12, 620

with incomplete information, 609–12
and pairwise voting, 606–9
and plurality rule, 604–5
scope for, 612–13

wage negotiations, see labor-management 
relations

Walker, Mark, 245
warning, 355
war of attrition, 12
warranties, as signals, 299
Wealth of Nations (Smith), 443
Weber, Robert, 592n
welfare-vote example (city council), 595–97, 

606–12
willingness to pay, 300–301, 516
winner’s curse, 636, 661

and disclosure of private seller information, 
653

winnit.com, 655
Wooders, John, 245
work ethic, 449
World Cup soccer tournament, 80

competition arrangements of (Copeland 
index), 591

World Series of Poker
in exercise, 44
mixed strategies in, 248
randomizing strategy in, 242–43

World Trade Organization, 690
reciprocity provisions in, 356
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X Prize Foundation, 645

Yankee auctions, 654

zero-sum (constant-sum) games, 21, 94
with mixed strategies

in application, 242–44
counterintuitive changes in probabilities, 

228–30
evidence on, 244–48
with three or more strategies for one player, 

233–36
with three strategies for both players, 

237–41
risky and safe choice in, 230–32
sequential-move games, rollback behavior in, 

74–75
single-meet (one-shot), 242
tennis match as, 119; see also tennis matches

Zorin, Valerian, 569
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