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LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and its companion files (the “Work”), you 
agree that this license grants permission to use the contents contained herein, 
including the companion files, but does not give you the right of ownership to any 
of the textual content in the book / files or ownership to any of the information 
or products contained in it. This license does not permit uploading of the Work 
onto the Internet or on a network (of any kind) without the written consent of the 
Publisher. Duplication or dissemination of any text, code, simulations, images, 
etc. contained herein is limited to and subject to licensing terms for the respective 
products, and permission must be obtained from the Publisher or the owner of the 
content, etc., in order to reproduce or network any portion of the textual material 
(in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone 
involved in the creation, writing, or production of the companion files, 
accompanying algorithms, code, or computer programs (“the software”), and any 
accompanying Web site or software of the Work, cannot and do not warrant the 
performance or results that might be obtained by using the contents of the Work. 
The author, developers, and the Publisher have used their best efforts to insure 
the accuracy and functionality of the textual material and/or programs contained 
in this package; we, however, make no warranty of any kind, express or implied, 
regarding the performance of these contents or programs. The Work is sold “as is” 
without warranty (except for defective materials used in manufacturing the book 
or due to faulty workmanship).

The sole remedy in the event of a claim of any kind is expressly limited to 
replacement of the book and/or companion files, and only at the discretion of the 
Publisher. The use of “implied warranty” and certain “exclusions” vary from state 
to state and might not apply to the purchaser of this product.

The companion files are available for downloading by writing to the publisher at 
info@merclearning.com.
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Preface
This book is designed primarily as a textbook for a typical computer science undergradu-
ate course in OpenGL 3D graphics programming. However, we have also endeavored to 
create a text that could be used to teach oneself, without an accompanying course. With 
both of those aims in mind, we have tried to explain things as clearly and as simply as we 
can. All of the programming examples are stripped down and simplified as much as pos-
sible, but they are still complete so that the reader may run them all as presented.

One of the things that we hope is unique about this book is that we have strived to 
make it accessible to someone new to 3D graphics programming. While there is by no 
means a lack of information available on the topic—quite the contrary—many students 
are initially overwhelmed. This text is our attempt to write the book we wish we had had 
when we were starting out, with step-by-step explanations of the basics, progressing in 
an organized manner up through advanced topics. We considered titling the book “shader 
programming made easy”; however, we don’t think that there really is any way of making 
shader programming “easy.” We hope that we have come close.

This book teaches OpenGL programming in C++. There are several advantages to 
learning graphics programming in C++:

•	 OpenGL’s native language is C, so a C++ program can make direct OpenGL 
function calls.

•	 OpenGL applications written in C++ typically exhibit very high performance.
•	 C++ offers modern programming constructs (classes, polymorphism, etc.) not 

available in C.
•	 C++ is a popular language choice for using OpenGL, and a large number of 

instructional resources for OpenGL are available in C++.
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It is worth mentioning that there do exist other language bindings for OpenGL. 
Popular alternatives exist for Java, C#, Python, and many others. This textbook focuses 
only on C++.

Another thing that makes this book unique is that it has a “sister” textbook: Computer 
Graphics Programming in OpenGL with Java 2/E. The two books are organized in lock-
step, with the same chapter and section numbers and topics, figures, exercises, and theo-
retical descriptions. Wherever possible, the code is organized similarly. Of course, the 
use of C++ versus Java leads to considerable programming differences (although all of 
the shader code is identical). Still, we believe that we have provided virtually identical 
learning paths, even allowing a student to choose either option within a single classroom.

An important point of clarification is that there exist both different versions of 
OpenGL (briefly discussed later) and different variants of OpenGL. For example, in 
addition to “standard OpenGL” (sometimes called “desktop OpenGL”), there exists a 
variant called “OpenGL ES,” which is tailored for development of embedded systems 
(hence the “ES”). “Embedded systems” include devices such as mobile phones, game 
consoles, automobiles, and industrial control systems. OpenGL ES is mostly a subset of 
standard OpenGL, eliminating a large number of operations that are typically not needed 
for embedded systems.  OpenGL ES also adds some additional functionality, typically 
application-specific operations for particular target environments. This book focuses on 
standard OpenGL.

Yet another variant of OpenGL is called “WebGL.” Based on OpenGL ES, WebGL is 
designed to support the use of OpenGL in web browsers. WebGL allows an application to 
use JavaScript1 to invoke OpenGL ES operations, which makes it easy to embed OpenGL 
graphics into standard HTML (web) documents. Most modern web browsers support 
WebGL, including Apple Safari, Google Chrome, Microsoft Edge, Microsoft Internet 
Explorer, Mozilla Firefox, and Opera. Since web programming is outside the scope of this 
book, we will not cover any WebGL specifics. Note however that because WebGL is based 
on OpenGL ES, which in turn is based on standard OpenGL, much of what is covered in 
this book can be transferred directly to learning about these OpenGL variants.

The very topic of 3D graphics lends itself to impressive, even beautiful images. 
Indeed, many popular textbooks on the topic are filled with breathtaking scenes, and it 
is enticing to leaf through their galleries. While we acknowledge the motivational utility 
of such examples, our aim is to teach, not to impress. The images in this book are simply 

1	� JavaScript is a scripting language that can be used to embed code in webpages. It has strong 
similarities to Java, but also many important differences.
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the outputs of the example programs, and since this is an introductory text, the resulting 
scenes are unlikely to impress an expert. However, the techniques presented do constitute 
the foundational elements for producing today’s stunning 3D effects.

We also haven’t tried to create an OpenGL “reference.” Our coverage of OpenGL 
represents only a tiny fraction of its capabilities. Rather, our aim is to use OpenGL as a 
vehicle for teaching the fundamentals of modern shader-based 3D graphics programming 
and provide the reader with a sufficiently deep understanding for further study.

What’s New in this Edition
We have added three new chapters in this 2nd edition of Computer Graphics Programming 
in OpenGL using C++:

•	 Chapter 15 – Simulating Water
•	 Chapter 16 – Ray Tracing
•	 Chapter 17 – Stereoscopy

Ray tracing in particular has become “hot” recently, so we are especially excited that 
it is now included in our book. It is also a huge topic, so even though our coverage is just 
a basic introduction, Chapter 16 is now the longest chapter in the book. Chapter 16 also 
includes an introduction to compute shaders, which were introduced in OpenGL 4.3, and 
an introduction to additive and subtractive color blending, which expands on a topic that 
was introduced in Section 14.2.

For years, our own students have repeatedly expressed an interest in simulating 
water. However, water takes so many forms that writing an introductory section on the 
topic is challenging. Ultimately, we decided to present water in a way that would comple-
ment related topics in the book such as terrain, sky, etc., and so in Chapter 15 we focus on 
utilizing our noise maps from Chapter 14 to generate water surfaces such as are seen in 
lakes and oceans.

The new chapter on stereoscopy is motivated by the increased popularity of virtual 
reality. However, it is also applicable to the development of animation for “3D movies”, 
and we have tried to provide introductory coverage of both uses equally.

As a result of these additions, this 2nd edition is larger than the previous edition.
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Besides the new material, there are important revisions throughout the book. For 
example, we fixed bugs in our Torus class in Chapter 6 and made significant improve-
ments to our noise map functions in Chapter 14. We expanded our Utils.cpp utility class 
to handle the loading of compute shaders. We also helped identify a bug in SOIL2 (now 
fixed) that affected Macintosh users attempting to load cubemaps.

There are dozens of small changes in every chapter that the reader might not even 
notice: fixing typos, cleaning up code inconsistencies, updating the installation instruc-
tions, making slight wording changes, sprucing up figures, updating references, etc.  
Completely eliminating typos is virtually impossible in a book that covers an ever-
changing technology-rich topic, but we really have tried hard.

Intended Audience
This book is targeted at students of computer science. This could mean undergraduates 
pursuing a BS degree, but it could also mean anyone who studies computer science. As 
such, we are assuming that the reader has at least a solid background in object-oriented 
programming, at the level of someone who is, say, a computer science major at the junior 
or senior level.

There are also some specific things that we use in this book that we don’t cover, 
because we assume the reader already has sufficient background. In particular, these are:

•	 C++ and its most commonly used libraries, such as the Standard Template 
Library;

•	 familiarity with using an Integrated Development Environment (IDE), such as 
Visual Studio;

•	 basic data structures and algorithms, such as linked lists, stacks, and queues, etc.
•	 recursion;
•	 event-driven programming concepts;
•	 basic matrix algebra and trigonometry; and
•	 awareness of color models, such as RGB, RGBA, etc.

It is hoped that the potential audience for this new book is further bolstered by the 
existence of its “sister” textbook, Computer Graphics Programming in OpenGL with 
Java. In particular, we envision a learning environment where students are free to utilize 
either C++ or Java in the same classroom, selecting one or the other book. The two texts 
cover the material sufficiently in lockstep that we have been able to conduct a graphics 
programming course successfully in this manner.
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How to Use This Book
This book is designed to be read from front to back. That is, material in later chapters 
frequently relies on information learned in earlier chapters. So, it probably won’t work to 
jump back and forth in the chapters; rather, work your way forward through the material.

This is also intended mostly as a practical, hands-on guide. While there is plenty of 
theoretical material included, the reader should treat this text as a sort of “workbook,” in 
which you learn basic concepts by actually programming them yourself. We have pro-
vided code for all of the examples, but to really learn the concepts you will want to “play” 
with those examples—extend them to build your own 3D scenes.

At the end of each chapter are a few exercises to solve. Some are very simple, involv-
ing merely making simple modifications to the provided code. The problems that are 
marked “(PROJECT),” however, are expected to take some time to solve, and require writ-
ing a significant amount of code, or combining techniques from various examples. There 
are also a few marked “(RESEARCH)”—those are problems that encourage independent 
study because this textbook doesn’t provide sufficient detail to solve them. 

OpenGL calls often involve long lists of parameters. While writing this book, the 
authors debated whether or not to, in each case, describe all of the parameters. We decided 
that in the early chapters we would describe every detail. Further into the book, as the top-
ics progress, we decided to avoid getting bogged down in every piece of minutiae in the 
OpenGL calls (and there are many), for fear of the reader losing sight of the big picture. 
For this reason, it is essential when working through the examples to have ready access to 
reference material for OpenGL and the various libraries being used.

For this, there are a number of excellent online resources that we recommend using 
in conjunction with this book. The documentation for OpenGL is absolutely essential; 
details on the various commands are available either by simply using Google to search for 
the command in question, or by visiting:

			   https://www.khronos.org/registry/OpenGL-Refpages/gl4/

Our examples utilize a mathematics library called GLM. After installing GLM 
(described in the appendices), the reader should locate the accompanying online docu-
mentation and bookmark it. At press time, the current link is:

			   https://glm.g-truc.net/0.9.9/index.html
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Another library used throughout the book for which the reader may wish to periodi-
cally consult its documentation is SOIL2, which is used for loading and processing texture 
image files. SOIL2, and the image loading library stb on which it is based, doesn’t have 
a central documentation resource, but several examples are available via Google, and on 
their respective repositories:

			   https://github.com/SpartanJ/soil2
			   https://github.com/nothings/stb

There are many other books on 3D graphics programming that we recommend read-
ing in parallel with this book (such as for solving the “research” problems). Here are five 
that we often refer to:

•	 (Sellers et al.) OpenGL SuperBible [SW15]
•	 (Kessenich et al.) OpenGL Programming Guide [KS16] (the “red book”)
•	 (Wolff) OpenGL 4 Shading Language Cookbook [WO18]
•	 (Angel and Shreiner) Interactive Computer Graphics [AS14]
•	 (Luna) Introduction to 3D Game Programming with DirectX 12 [LU16]

Companion Files
This book is accompanied by a companion disc that contains the following items:

•	 All of the C++/OpenGL programs and related utility class files and GLSL 
shader code presented in the book

•	 The models and texture files used in the various programs and examples
•	 The cubemap and skydome image files used to make the skies and horizons
•	 Normal maps and height maps for lighting and surface detail effects
•	 All of the figures in the book, as image files

Readers who have purchased the electronic version of this book may obtain these files 
by contacting the publisher at info@merclearning.com.

Instructor Ancillaries
Instructors in a college or university setting are encouraged to obtain the instructor 
ancillary package that is available for this book, which contains the following additional 
items:
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•	 A complete set of PowerPoint slides covering all topics in the book
•	 Solutions to most of the exercises at the ends of the chapters, including code 

where applicable
•	 Sample syllabus for a course based on the book
•	 Additional hints for presenting the material, chapter-by-chapter

This instructor ancillary package is available by contacting the publisher at info@
merclearning.com.
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Errata
If you find any errors in our book, please let us know! Despite our best efforts, this book 
certainly contains mistakes. We will do our best to post corrections as soon as errors 
are reported to us. We have established a webpage for collecting errata and posting 
corrections:

			   http://ecs.csus.edu/~gordonvs/textC2E.html

The publisher, Mercury Learning, also maintains a link to our errata page. So, if the 
URL for our errata page should ever change, check the Mercury Learning website for the 
latest link.
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1Chapter

Getting Started

■ ■ ■ ■ ■

Graphics programming has a reputation for being among the most challeng-
ing computer science topics to learn. These days, graphics programming is shader 
based—that is, some of the program is written in a standard language such as C++ 
or Java for running on the CPU and some is written in a special-purpose shader 
language for running directly on the graphics card (GPU). Shader programming has 
a steep learning curve, so that even drawing something simple requires a convoluted 
set of steps to pass graphics data down a “pipeline.” Modern graphics cards are able 
to process this data in parallel, and so the graphics programmer must understand the 
parallel architecture of the GPU, even when drawing simple shapes.

The payoff, however, is extraordinary power. The blossoming of stunning virtual 
reality in videogames and increasingly realistic effects in Hollywood movies can be 
greatly attributed to advances in shader programming. If reading this book is your 
entrée into 3D graphics, you are taking on a personal challenge that will reward you 
not only with pretty pictures but with a level of control over your machine that you 
never imagined was possible. Welcome to the exciting world of computer graphics 
programming!

	 1.1	 LANGUAGES AND LIBRARIES
Modern graphics programming is done using a graphics library. That is, the 

programmer writes code which invokes functions in a predefined library (or set 
of  libraries) that provide support for lower-level graphical operations. There are 
many  graphics libraries in use today, but the most common library for platform-
independent graphics programming is called OpenGL (Open Graphics Library). This 
book describes how to use OpenGL for 3D graphics programming in C++.

1.1	 Languages and Libraries�����������������������������������������������������������������������������������������������1
1.2	 Installation and Configuration���������������������������������������������������������������������������������������5
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Using OpenGL with C++ requires configuring several libraries. At this time 
there is a dizzying array of options, depending on one’s individual needs. In this sec-
tion, we describe which libraries are needed, some common options for each, and the 
option(s) that we will use throughout the book. Details on how to install and config-
ure these libraries for use on your specific platform can be found in the Appendices.

In summary, you will need languages and libraries for the following functions:

•	 C++ development environment
•	 OpenGL / GLSL
•	 window management
•	 extension library
•	 math library
•	 texture management

It is likely that the reader will need to do several preparatory steps to ensure 
that each of these are installed and properly accessible on his/her system. In the 
following subsections we briefly describe each of them; see the Appendices for 
details on how to install and/or configure them for use.

	1.1.1	 C++
C++ is a general-purpose programming language that first appeared in the 

mid-1980s. Its design, and the fact that it is generally compiled to native machine 
code, make it an excellent choice for systems that require high performance, such 
as 3D graphics computing. Another advantage of C++ is that the OpenGL call 
library is C based.

Many C++ development environments are available. In this textbook we rec-
ommend using Microsoft Visual Studio [VS20] if using a PC, and Xcode [XC18] 
if using a Macintosh. Descriptions for installing and configuring each of them, 
depending on your platform, are given in the Appendices.

	1.1.2	 OpenGL / GLSL
Version 1.0 of OpenGL appeared in 1992 as an “open” alternative to vendor-

specific Application Programming Interfaces (APIs) for computer graphics. 
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Its specification and development was managed and controlled by the OpenGL 
Architecture Review Board (ARB), a then newly formed group of industry par-
ticipants. In 2006 the ARB transferred control of the OpenGL specification to 
the Khronos Group, a nonprofit consortium which manages not only the OpenGL 
specification but a wide variety of other open industry standards.

Since its beginning OpenGL has been revised and extended regularly. In 2004, 
version 2.0 introduced the OpenGL Shading Language (GLSL), allowing “shader 
programs” to be installed and run directly in graphics pipeline stages.

In 2009, version 3.1 removed a large number of features that had been depre-
cated, to enforce the use of shader programming as opposed to earlier approaches 
(referred to as “immediate mode”).1 Among the more recent features, version 4.0 
(in 2010) added a tessellation stage to the programmable pipeline.

This textbook assumes that the user is using a machine with a graphics card 
that supports at least version 4.3 of OpenGL. If you are not sure which version of 
OpenGL your GPU supports, there are free applications available on the web that 
can be used to find out. One such application is GLView, by a company named 
“realtechvr” [GV20].

	 1.1.3	 Window Management
OpenGL doesn’t actually draw to a computer screen. Rather, it renders to a 

frame buffer, and it is the job of the individual machine to then draw the con-
tents of the frame buffer onto a window on the screen. There are various libraries 
that support doing this. One option is to use the windowing capabilities provided 
by the operating system, such as the Microsoft Windows API. This is generally 
impractical and requires a lot of low-level coding. GLUT is a historically popu-
lar option; however, it is deprecated. A modernized extension is freeglut. Other 
related options are CPW, GLOW, and GLUI.

One of the most popular options, and the one used in this book, is GLFW, 
which has built-in support for Windows, Macintosh, Linux, and other systems 
[GF20]. It can be downloaded from www.glfw.org, and it must be compiled on the 
machine where it is to be used (we describe those steps in the Appendices).

1	 Despite this, many graphics card manufacturers (notably NVIDIA) continue to support 
deprecated functionality.
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	 1.1.4	 Extension Library
OpenGL is organized around a set of base functions and an extension mecha-

nism used to support new functionality as technologies advance. Modern versions 
of OpenGL, such as those found in version 4+ as we use in this book, require 
identifying the extensions available on the GPU. There are commands built into 
core OpenGL for doing this, but they involve several rather convoluted lines of 
code that would need to be performed for each modern command used—and in 
this book we use such commands constantly. Therefore, it has become standard 
practice to use an extension library to take care of these details, and to make mod-
ern OpenGL commands available to the programmer directly. Examples are Glee, 
GLLoader, GLEW, and more recently GL3W and GLAD.

A commonly used library among those listed is GLEW, which stands for 
OpenGL Extension Wrangler. It is available for a variety of operating systems 
including Windows, Macintosh, and Linux [GE20]. GLEW is not a perfect choice; 
for example, it requires an additional DLL. Recently, many developers are choos-
ing GL3W or GLAD. They have the advantage of being automatically updated, 
but they also require that Python be installed. For these reasons, in this book we 
have opted to use GLEW. It can be downloaded at glew.sourceforge.net. Complete 
instructions for installing and configuring GLEW are given in the appendices.

	 1.1.5	 Math Library
3D graphics programming makes heavy use of vector and matrix algebra. For 

this reason, use of OpenGL is greatly facilitated by accompanying it with a func-
tion library or class package to support common mathematical tasks. Two such 
libraries that are frequently used with OpenGL are Eigen and vmath, the latter 
being used in the popular OpenGL SuperBible [SW15].

Arguably the most popular, and the one used in this book, is OpenGL 
Mathematics, usually called GLM. It is a header-only C++ library compatible 
with Windows, Macintosh, and Linux [GM20]. GLM commands conveniently use 
the same naming conventions as those in GLSL, making it easy to go back and 
forth when reading C++ and GLSL code used in a particular application. GLM is 
available for download at glm.g-truc.net.

GLM provides classes and basic math functions related to graphics concepts, 
such as vector, matrix, and quaternion. It also contains a variety of utility classes 
for creating and using common 3D graphics structures, such as perspective and 
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look-at matrices. It was first released in 2005, and it is maintained by Christophe 
Riccio [GM20]. Instructions for installing GLM are given in the appendices.

	 1.1.6	 Texture Management
Starting with Chapter 5, we will use image files to add “texture” to the objects 

in our graphics scenes. This means that we will frequently need to load such image 
files into our C++/OpenGL code. It is possible to code a texture image loader 
from scratch; however, given the wide variety of image file formats, it is generally 
preferable to use a texture loading library. Some examples are FreeImage, DevIL, 
OpenGL Image (GLI), and Glraw. Probably the most commonly used OpenGL 
image loading library is Simple OpenGL Image Loader (SOIL), although it has 
become somewhat outdated.

The texture image loading library used in this book is SOIL2, an updated fork 
of SOIL. Like the previous libraries we have chosen, SOIL2 is compatible with 
a wide variety of platforms [SO20], and detailed installation and configuration 
instructions are given in the appendices.

	 1.1.7	 Optional Libraries
There are many other helpful libraries that the reader may wish to utilize. For 

example, in this book we show how to implement a simple “OBJ” model loader 
from scratch. However, as we will see, it doesn’t handle many of the options avail-
able in the OBJ standard. Some examples of more sophisticated OBJ importers are 
Assimp and tinyobjloader. For our examples, we will just use our simple model 
loader described and implemented in this book.

	 1.2	 INSTALLATION AND CONFIGURATION
While developing the C++ edition of this book, we wrestled with the best 

approach for including the platform-specific configuration information neces-
sary to run the example programs. Configuring a system for using OpenGL with 
C++ is considerably more complicated than the equivalent configuration using 
Java, which can be described in just a few short paragraphs (as can be seen in the 
Java edition of the book [GC18]). Ultimately, we opted to separate installation and 
configuration information into individual platform-specific Appendices. We hope 
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that this will provide each reader with a single relevant place to look for informa-
tion regarding his/her specific system, while at the same time avoiding bogging 
down the rest of the text with platform-specific details which may not be relevant 
to every reader. In this edition, we provide detailed configuration instructions for 
Microsoft Windows in Appendix A, and for the Apple Macintosh in Appendix B.

Continually updated library installation instructions will be maintained on this 
textbook’s website, available at: http://athena.ecs.csus.edu/~gordonvs/textC2E.html
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The OpenGL Graphics Pipeline
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■ ■ ■ ■ ■

OpenGL (Open Graphics Library) is a multi-platform 2D and 3D graphics API 
that incorporates both hardware and software. Using OpenGL requires a graphics 
card (GPU) that supports a sufficiently up-to-date version of OpenGL (as described 
in Chapter 1). 

On the hardware side, OpenGL provides a multi-stage graphics pipeline that 
is partially programmable using a language called GLSL (OpenGL Shading 
Language).

On the software side, OpenGL’s API is written in C, and thus the calls are 
directly compatible with C and C++. Stable language bindings (or “wrappers”) are 
available for more than a dozen other popular languages (Java, Perl, Python, Visual 
Basic, Delphi, Haskell, Lisp, Ruby, etc.) with virtually equivalent performance. 
This textbook uses C++, probably the most popular language choice. When using 
C++, the programmer writes code that runs on the CPU (compiled, of course) and 
includes OpenGL calls. We will refer to a C++ program that contains OpenGL calls 
as a C++/OpenGL application. One important task of a C++/OpenGL application is 
to install the programmer’s GLSL code onto the GPU.

An overview of a C++-based graphics application is shown in Figure 2.1, with 
the software components highlighted in pink.
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Some of the code we will write 
will be in C++, with OpenGL calls, 
and some will be written in GLSL. 
Our C++/OpenGL application will 
work together with our GLSL mod-
ules, and the hardware, to create our 
3D graphics output. Once our appli-
cation is complete, the end user will 
interact with the C++ application.

GLSL is an example of a shader 
language. Shader languages are 
intended to run on a GPU, in the 
context of a graphics pipeline. There 
are other shader languages, such as 

HLSL, which works with Microsoft’s 3D framework DirectX. GLSL is the spe-
cific shader language that is compatible with OpenGL, and thus we will write 
shader code in GLSL, in addition to our C++/OpenGL application code.

For the rest of this chapter, we will take a brief “tour” of the OpenGL 
pipeline.  The reader is not expected to understand every detail thoroughly but 
should just get a feel for how the stages work together.

	 2.1	 THE OPENGL PIPELINE
Modern 3D graphics programming utilizes a pipeline, in which the process 

of converting a 3D scene to a 2D image is broken down into a series of steps. 
OpenGL and DirectX both utilize similar pipelines.

A simplified overview of the OpenGL graphics pipeline is shown in Figure 2.2 
(not every stage is shown, just the major ones we will study). The C++/OpenGL 
application sends graphics data into the vertex shader—processing proceeds 
through the pipeline, and pixels emerge for display on the monitor.

The stages shaded in blue (vertex, tessellation, geometry, and fragment) are 
programmable in GLSL. It is one of the responsibilities of the C++/OpenGL appli-
cation to load GLSL programs into these shader stages, as follows:

	 1.	 It uses C++ to obtain the GLSL shader code, either from text files or hard-
coded as strings.

Figure 2.1
Overview of a C++-based graphics application.
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	 2.	 It then creates OpenGL shader 
objects and loads the GLSL 
shader code into them.

	 3.	 Finally, it uses OpenGL com-
mands to compile and link 
objects and install them on the 
GPU.

In practice, it is usually necessary to 
provide GLSL code for at least the vertex 
and fragment stages, whereas the tessel-
lation and geometry stages are optional. 
Let’s walk through the entire process 
and see what takes place at each step.

	 2.1.1	 C++/OpenGL Application
The bulk of our graphics application is written in C++. Depending on the 

purpose of the program, it may interact with the end user using standard C++ 
libraries. For tasks related to 3D rendering, it uses OpenGL calls. As described 
in the previous chapter, we will be using several additional libraries: GLEW 
(OpenGL Extension Wrangler), GLM (OpenGL Mathematics), SOIL2 (Simple 
OpenGL Image Loader), and GLFW (Graphics Library Framework).

The GLFW library includes a class called GLFWwindow on which we can draw 
3D scenes. As already mentioned, OpenGL also gives us commands for install-
ing GLSL programs onto the programmable shader stages and compiling them. 
Finally, OpenGL uses buffers for sending 3D models and other related graphics 
data down the pipeline.

Before we try writing shaders, let’s write a simple C++/OpenGL application 
that instantiates a GLFWwindow and sets its background color. Doing that won’t 
require any shaders at all! The code is shown in Program 2.1. The main() function 
shown in Program 2.1 is the same one that we will use throughout this textbook. 
Among the significant operations in main() are: (a) initializes the GLFW library, 
(b) instantiates a GLFWwindow, (c) initializes the GLEW library, (d) calls the function 
“init()” once, and (e) calls the function “display()” repeatedly.

The “init()” function is where we will place application-specific initialization 
tasks. The display() method is where we place code that draws to the GLFWwindow. 

Figure 2.2
Overview of the OpenGL pipeline.
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In this example, the glClearColor() command specifies the color value to be applied 
when clearing the background—in this case (1,0,0,1), corresponding to the RGB 
values of the color red (plus a “1” for the opacity component). We then use the 
OpenGL call glClear(GL_COLOR_BUFFER_BIT) to actually fill the color buffer with 
that color.

Program 2.1 First C++/OpenGL Application
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include <iostream>

using namespace std;

void init(GLFWwindow* window) { }

void display(GLFWwindow* window, double currentTime) {
	 glClearColor(1.0, 0.0, 0.0, 1.0);
	 glClear(GL_COLOR_BUFFER_BIT);
}

int main(void) {
	 if (!glfwInit()) { exit(EXIT_FAILURE); }
	 glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
	 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	 GLFWwindow* window = glfwCreateWindow(600, 600, "Chapter2 - program1", NULL, NULL);
	 glfwMakeContextCurrent(window);
	 if (glewInit() != GLEW_OK) { exit(EXIT_FAILURE); }
	 glfwSwapInterval(1);

	 init(window);

	 while (!glfwWindowShouldClose(window)) {
		  display(window, glfwGetTime());
		  glfwSwapBuffers(window);
		  glfwPollEvents();
	 }

	 glfwDestroyWindow(window);
	 glfwTerminate();
	 exit(EXIT_SUCCESS);
}

The output of Program 2.1 is shown in Figure 2.3.
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The mechanism by which these 
functions are deployed is as follows: the 
GLFW and GLEW libraries are initial-
ized using the commands glfwInit() and 
glewInit() respectively. The GLFW win-
dow and an associated OpenGL context1 
are created with the glfwCreateWindow() 
command, with options set by any pre-
ceding window hints. Our window hints 
specify that the machine must be com-
patible with OpenGL version 4.3 (“major”=4. and “minor”=3). The parameters 
on the glfwCreateWindow() command specify the width and height of the window 
(in pixels) and the title placed at the top of the window. (The additional two param-
eters which are set to NULL, and which we aren’t using, allow for full screen 
mode and resource sharing.) Vertical synchronization (VSync) is enabled by using 
the glfwSwapInterval() and glfwSwapBuffers() commands—GLFW windows are by 
default double-buffered.2 Note that creating the GLFW window doesn’t automati-
cally make the associated OpenGL context current—for that reason we also call 
glfwMakeContextCurrent().

Our main() includes a very simple rendering loop that calls our display() 
function repeatedly. It also calls glfwSwapBuffers(), which paints the screen, and 
glfwPollEvents(), which handles other window-related events (such as a key being 
pressed). The loop terminates when GLFW detects an event that should close the 
window (such as the user clicking the “X” in the upper right corner). Note that we 
have included a reference to the GLFW window object on the init() and display() 
calls; those functions may in certain circumstances need access to it. We have also 
included the current time on the call to display(), which will be useful for ensur-
ing that our animations run at the same speed regardless of the computer being 
used. For this purpose, we use glfwGetTime(), which returns the elapsed time since 
GLFW was initialized.

1	 The term “context” refers to an OpenGL instance and its state information, which includes items 
such as the color buffer.

2	 “Double buffering” means that there are two color buffers—one that is displayed, and one that is 
being rendered to. After an entire frame is rendered, the buffers are swapped. Double buffering 
is used to reduce undesirable visual artifacts.

Figure 2.3
Output of Program 2.1.
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Now is an appropriate time to take a closer look at the OpenGL calls in 
Program 2.1. Consider this one:

glClear(GL_COLOR_BUFFER_BIT);

In this case, the OpenGL function being called, as described in the OpenGL 
reference documentation (available on the web at https://www.opengl.org/sdk/docs), is:

void glClear(GLbitfield mask);

The parameter references a “GLbitfield” called “GL_COLOR_BUFFER_BIT”. 
OpenGL has many predefined constants (some of them are called enums); this one 
references the color buffer that contains the pixels as they are rendered. OpenGL 
has several color buffers, and this command clears all of them—that is, it fills 
them with a predefined color called the “clear color.” Note that “clear” in this con-
text doesn’t mean “a color that is clear”; rather, it refers to the color that is applied 
when a color buffer is reset (cleared).

Immediately before the call to glClear() is a call to glClearColor(). This allows us 
to specify the value placed in the elements of a color buffer when it is cleared. Here 
we have specified (1,0,0,1), which corresponds to the RGBA color red.

Finally, our render loop exits when the user attempts to close the GLFW 
window. At that time, our main() asks GLFW to destroy the window and terminate, 
via calls to glfwDestroyWindow() and glfwTerminate() respectively.

	 2.1.2	 Vertex and Fragment Shaders
Our first OpenGL program didn’t actually draw anything—it simply filled the 

color buffer with a single color. To actually draw something, we need to include a 
vertex shader and a fragment shader.

You may be surprised to learn that OpenGL is capable of drawing only a few 
kinds of very simple things, such as points, lines, or triangles. These simple things 
are called primitives, and for this reason, most 3D models are made up of lots and 
lots of primitives, usually triangles.

Primitives are made up of vertices—for example, a triangle consists of three 
vertices. The vertices can come from a variety of sources—they can be read from 
files and then loaded into buffers by the C++/OpenGL application, or they can be 
hardcoded in the C++ code or even in the GLSL code.
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Before any of this can happen, the C++/OpenGL application must compile and 
link appropriate GLSL vertex and fragment shader programs, and then load them 
into the pipeline. We will see the commands for doing this shortly.

The C++/OpenGL application also is responsible for telling OpenGL to 
construct triangles. We do this by using the following OpenGL function:

glDrawArrays(GLenum mode, GLint first, GLsizei count);

The mode is the type of primitive—for triangles we use GL_TRIANGLES. The 
parameter “first” indicates which vertex to start with (generally vertex number 0, 
the first one), and count specifies the total number of vertices to be drawn.

When glDrawArrays() is called, the GLSL code in the pipeline starts executing. 
Let’s now add some GLSL code to that pipeline.

Regardless of where they originate, all of the vertices pass through the vertex 
shader. They do so one by one; that is, the shader is executed once per vertex. For 
a large and complex model with a lot of vertices, the vertex shader may execute 
hundreds, thousands, or even millions of times, often in parallel.

Let’s write a simple program with only one vertex, hardcoded in the vertex 
shader. That’s not enough to draw a triangle, but it is enough to draw a point. For 
it to display, we also need to provide a fragment shader. For simplicity we will 
declare the two shader programs as arrays of strings.

Program 2.2 Shaders, Drawing a POINT
(…..#includes are the same as before )

#define numVAOs 1

GLuint renderingProgram;
GLuint vao[numVAOs];

GLuint createShaderProgram() {
	 const char *vshaderSource =
		  "#version 430    \n"
		  "void main(void) \n"
		  "{ gl_Position = vec4(0.0, 0.0, 0.0, 1.0); }";

	 const char *fshaderSource =
		  "#version 430    \n"
		  "out vec4 color; \n"

new declarations
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		  "void main(void) \n"
		  "{ color = vec4(0.0, 0.0, 1.0, 1.0); }";

	 GLuint vShader = glCreateShader(GL_VERTEX_SHADER);
	 GLuint fShader = glCreateShader(GL_FRAGMENT_SHADER);

	 glShaderSource(vShader, 1, &vshaderSource, NULL);
	 glShaderSource(fShader, 1, &fshaderSource, NULL);
	 glCompileShader(vShader);
	 glCompileShader(fShader);

	 GLuint vfProgram = glCreateProgram();
	 glAttachShader(vfProgram, vShader);
	 glAttachShader(vfProgram, fShader);
	 glLinkProgram(vfProgram);

	 return vfProgram;
}

void init(GLFWwindow* window) {
	 renderingProgram = createShaderProgram();
	 glGenVertexArrays(numVAOs, vao);
	 glBindVertexArray(vao[0]);
}

void display(GLFWwindow* window, double currentTime) {
	 glUseProgram(renderingProgram);
	 glDrawArrays(GL_POINTS, 0, 1);
}

. . . main() same as before

The program appears to have output a blank window (see Figure 2.4). But close 
examination reveals a tiny blue dot in the center of the window (assuming that this printed 
page is of sufficient resolution). The default size of a point in OpenGL is one pixel.

There are many important details in 
Program 2.2 (color-coded in the program, 
for convenience) for us to discuss. First, 
note the  frequent use of “GLuint”—this is 
a  platform-independent shorthand for 
“unsigned int”, provided by OpenGL (many 
OpenGL constructs have integer refer-
ences). Next, note that init() is no longer 
empty—it now calls another function 

Figure 2.4
Output of Program 2.2.
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named “createShaderProgram()” (that we wrote). This function starts by declaring two 
shaders as character strings called vshaderSource and fshaderSource. It then calls 
glCreateShader() twice, which generates the two shaders of types GL_VERTEX_
SHADER and GL_FRAGMENT_SHADER. OpenGL creates each shader object (initially 
empty), and returns an integer ID for each that is an index for referencing it later—
our code stores this ID in the variables vShader and fShader. It then calls glShader-
Source(), which loads the GLSL code from the strings into the empty shader objects. 
The shaders are then each compiled using glCompileShader(). glShaderSource() has four 
parameters: (a) the shader object in which to store the shader, (b) the number of strings 
in the shader source code, (c) an array of pointers to strings containing the source 
code, and (d) an additional parameter we aren’t using (it will be explained later, in the 
supplementary chapter notes). Note that the two calls specify the number of lines of 
code in each shader as being “1”—this too is explained in the supplementary notes.

The application then creates a program object named vfProgram, and saves 
the integer ID that points to it. An OpenGL “program” object contains a series of 
compiled shaders, and here we see the following commands: glCreateProgram() to 
create the program object, glAttachShader() to attach each of the shaders to it, and then 
glLinkProgram() to request that the GLSL compiler ensure that they are compatible.

As we saw earlier, after init() finishes, display() is called. One of the first things 
display() does is call glUseProgram(), which loads the program containing the two 
compiled shaders into the OpenGL pipeline stages (onto the GPU!). Note that 
glUseProgram() doesn’t run the shaders, it just loads them onto the hardware.

As we will see later in Chapter 4, ordinarily at this point the C++/OpenGL 
program would prepare the vertices of the model being drawn for sending down 
the pipeline. But not in this case, because for our first shader program we sim-
ply hardcoded a single vertex in the vertex shader. Therefore in this example the 
display() function next proceeds to the glDrawArrays() call, which initiates pipeline 
processing. The primitive type is GL_POINTS, and there is just one point to display.

Now let’s look at the shaders themselves, shown in green earlier (and dupli-
cated in the explanations that follow). As we saw, they have been declared in the 
C++/OpenGL program as arrays of strings. This is a clumsy way to code, but it is 
sufficient in this very simple case. The vertex shader is:

#version 430
void main(void)
{  gl_Position = vec4(0.0,  0.0,  0.0,  1.0);  }
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The first line indicates the OpenGL version, in this case 4.3. There follows 
a “main” function (as we will see, GLSL is somewhat C++-like in syntax). The 
primary purpose of any vertex shader is to send a vertex down the pipeline (which, 
as mentioned before, it does for every vertex). The built-in variable gl_Position is 
used to set a vertex’s coordinate position in 3D space, and is sent to the next stage 
in the pipeline. The GLSL datatype vec4 is used to hold a 4-tuple, suitable for such 
coordinates, with the associated four values representing X, Y, Z, and a fourth 
value set here to 1.0 (we will learn the purpose of this fourth value in Chapter 3). 
In this case, the vertex is hardcoded to the origin location (0,0,0).

The vertices move through the pipeline to the rasterizer, where they are trans-
formed into pixel locations (or more accurately fragments—this is described later). 
Eventually, these pixels (fragments) reach the fragment shader:

#version 430
out vec4 color;
void main(void)
{  color = vec4(0.0,  0.0,  1.0,  1.0);  }

The purpose of any fragment shader is to set the RGB color of a pixel to be 
displayed. In this case the specified output color (0, 0, 1) is blue (the fourth value 1.0 
specifies the level of opacity). Note the “out” tag indicating that the variable color is 
an output. (It wasn’t necessary to specify an “out” tag for gl_Position in the vertex 
shader, because gl_Position is a predefined output variable.)

There is one detail in the code that we haven’t discussed, in the last two lines 
in the init() function (shown in red). They probably appear a bit cryptic. As we will 
see in Chapter 4, when sets of data are prepared for sending down the pipeline, 
they are organized into buffers. Those buffers are in turn organized into Vertex 
Array Objects (VAOs). In our example, we hardcoded a single point in the vertex 
shader, so we didn’t need any buffers. However, OpenGL still requires that at least 
one VAO be created whenever shaders are being used, even if the application isn’t 
using any buffers. So the two lines create the required VAO.

Finally, there is the issue of how the vertex that came out of the vertex shader 
became a pixel in the fragment shader. Recall from Figure 2.2 that between vertex 
processing and pixel processing is the rasterization stage. It is there that primitives 
(such as points or triangles) are converted into sets of pixels. The default size of 
an OpenGL “point” is one pixel, so that is why our single point was rendered as a 
single pixel.
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Let’s add the following com-
mand in display(), right before the 
glDrawArrays() call:

glPointSize(30.0f);

Now, when the rasterizer 
receives the vertex from the vertex 
shader, it will set pixel color val-
ues that form a point having a size 
of 30 pixels. The resulting output is 
shown in Figure 2.5.

Let’s now continue examining the remainder of the OpenGL pipeline.

	 2.1.3	 Tessellation
We cover tessellation in Chapter 12. The programmable tessellation stage is one 

of the most recent additions to OpenGL (in version 4.0). It provides a tessellator that 
can generate a large number of triangles, typically as a grid, and also some tools 
to manipulate those triangles in a variety of ways. For example, the programmer 
might manipulate a tessellated grid of triangles as shown in Figure 2.6.

Tessellation is useful when a lot of vertices are needed on what is otherwise a 
simple shape, such as on a square area or curved surface. It is also very useful for 
generating complex terrain, as we will see later. In such instances, it is sometimes 

Figure 2.5
Changing glPointSize.

Figure 2.6
Grid produced by tessellator.
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much more efficient to have the tessellator in the GPU generate the triangle mesh 
in hardware, rather than doing it in C++.

	 2.1.4	 Geometry Shader
We cover the geometry shader stage in Chapter 13. Whereas the vertex shader 

gives the programmer the ability to manipulate one vertex at a time (i.e., “per-
vertex” processing), and the fragment shader (as we will see) allows manipulating 
one pixel at a time (“per-fragment” processing), the geometry shader provides the 
capability to manipulate one primitive at a time—“per-primitive” processing.

Recalling that the most common primitive is the triangle, by the time we 
have reached the geometry stage, the pipeline must have completed grouping 
the vertices into triangles (a process called primitive assembly). The geometry 
shader then makes all three vertices in each triangle accessible to the programmer 
simultaneously.

There are a number of uses for per-primitive processing. The primitives could 
be altered, such as by stretching or shrinking them. Some of the primitives could 
be deleted, thus putting “holes” in the object being rendered—this is one way of 
turning a simple model into a more complex one.

The geometry shader also provides a mechanism for generating additional 
primitives. Here too, this opens the door to many possibilities for turning simple 
models into more complex ones.

An interesting use for the geometry shader is for adding surface texture such 
as bumps or scales—even “hair” or “fur”—to an object. Consider for example 
the simple torus shown in Figure 2.7 (we will see how to generate this later in the 
book). The surface of this torus is built out of many hundreds of triangles. If at each 
triangle we use a geometry shader to add additional triangles that face outward, 
we get the result shown in Figure 2.8. This “scaly torus” would be computation-
ally expensive to try and model from scratch in the C++/OpenGL application side.

It might seem redundant to provide a per-primitive shader stage when the tes-
sellation stage(s) give the programmer access to all of the vertices in an entire 
model simultaneously. The difference is that tessellation only offers this capability 
in very limited circumstances—specifically when the model is a grid of triangles 
generated by the tessellator. It does not provide such simultaneous access to all the 
vertices of, say, an arbitrary model being sent in from C++ through a buffer.
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	 2.1.5	 Rasterization
Ultimately, our 3D world of vertices, triangles, colors, and so on needs to 

be displayed on a 2D monitor. That 2D monitor screen is made up of a raster—
a rectangular array of pixels.

When a 3D object is rasterized, OpenGL converts the primitives in the object 
(usually triangles) into fragments. A fragment holds the information associated 
with a pixel. Rasterization determines the locations of pixels that need to be drawn 
in order to produce the triangle specified by its three vertices.

Rasterization starts by interpolating, pairwise, between the three vertices 
of the triangle. There are some options for doing this interpolation; for now it is 
sufficient to consider simple linear interpolation as shown in Figure 2.9. The origi-
nal three vertices are shown in red.

If rasterization were to stop here, the resulting image would appear as wire-
frame. This is an option in OpenGL, 
by adding the following command in 
the display() function, before the call 
to glDrawArrays():

glPolygonMode(GL_FRONT_AND_BACK, 
GL_LINE);

If the torus shown previously 
in Section 2.1.4 is rendered with the 
addition of this line of code, it appears 
as shown in Figure 2.10.

Figure 2.7
Torus model.

Figure 2.8
Torus modified in geometry shader.

Figure 2.9
Rasterization (step 1).
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If we didn’t insert the preceding 
line of code (or if GL_FILL had been 
specified instead of GL_LINE), inter-
polation would continue along raster 
lines and fill the interior of the trian-
gle, as shown in Figure 2.11. When 
applied to the torus, this results in 
the fully rasterized or “solid” torus 
shown in Figure 2.12 (on the left). 
Note that in this case the overall 
shape and curvature of the torus 
is not evident—that is because we 
haven’t included any texturing or 
lighting techniques, so it appears 
“flat.” At the right, the same “flat” 
torus is shown with the wireframe 
rendering superimposed. The torus 
shown earlier in Figure 2.7 included 
lighting effects, and thus revealed 
the shape of the torus much more 
clearly. We will study lighting in 
Chapter 7.

As we will see in later chapters, the rasterizer can interpolate more than just 
pixels. Any variable that is output by the vertex shader and input by the fragment 
shader will be interpolated based on the corresponding pixel position. We will use 
this capability to generate smooth color gradations, achieve realistic lighting, and 
many more effects.

	 2.1.6	 Fragment Shader
As mentioned earlier, the purpose of the fragment shader is to assign colors 

to the rasterized pixels. We have already seen an example of a fragment shader in 
Program 2.2. There, the fragment shader simply hardcoded its output to a specific 
value, so every generated pixel had the same color. However, GLSL affords us 
virtually limitless creativity to calculate colors in other ways.

One simple example would be to base the output color of a pixel on its loca-
tion. Recall that in the vertex shader, the outgoing coordinates of a vertex are 

Figure 2.10
Torus with wireframe rendering.

Figure 2.11
Fully rasterized triangle.
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specified using the predefined variable gl_Position. In the fragment shader, there is 
a similar variable available to the programmer for accessing the coordinates of an 
incoming fragment, called gl_FragCoord. We can modify the fragment shader from 
Program 2.2 so that it uses gl_FragCoord (in this case referencing its x component 
using the GLSL field selector notation) to set each pixel’s color based on its loca-
tion, as shown here:

#version 430
out vec4 color;
void main(void)
{   if (gl_FragCoord.x < 295) color = vec4(1.0, 0.0, 0.0, 1.0); else color = vec4(0.0, 0.0, 1.0, 1.0);
}

Assuming that we increase the GL_PointSize as we did at the end of Section 
2.1.2, the pixel colors will now vary across the rendered point—red where the 
x coordinates are less than 200, and 
blue otherwise, as seen in Figure 2.13.

	 2.1.7	 Pixel Operations
As objects in our scene are drawn 

in the display() function using the 
glDrawArrays() command, we usually 
expect objects in front to block our 
view of objects behind them. This 

Figure 2.12
Torus with fully rasterized primitives (left), and with wireframe grid superimposed (right).

Figure 2.13
Fragment shader color variation.
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also extends to the objects themselves, wherein we expect to see the front of an 
object, but generally not the back.

To achieve this, we need hidden surface removal, or HSR. OpenGL can 
perform a variety of HSR operations, depending on the effect we want in our 
scene. And even though this phase is not programmable, it is extremely impor-
tant that we understand how it works. Not only will we need to configure it 
properly, we will later need to carefully manipulate it when we add shadows to 
our scene.

Hidden surface removal is accomplished by OpenGL through the cleverly 
coordinated use of two buffers: the color buffer (which we have discussed 
previously), and the depth buffer (sometimes called the Z-buffer). Both of 
these buffers are the same size as the raster—that is, there is an entry in each 
buffer for every pixel on the screen.

As various objects are drawn in a scene, pixel colors are generated by the frag-
ment shader. The pixel colors are placed in the color buffer—it is the color buffer 
that is ultimately written to the screen. When multiple objects occupy some of the 
same pixels in the color buffer, a determination must be made as to which pixel 
color(s) are retained, based on which object is nearest the viewer.

Hidden surface removal is done as follows:

•	 Before a scene is rendered, the depth buffer is filled with values 
representing maximum depth.

•	 As a pixel color is output by the fragment shader, its distance from the 
viewer is calculated.

•	 If the computed distance is less than the distance stored in the depth 
buffer (for that pixel), then: (a) the pixel color replaces the color in the 
color buffer, and (b) the distance replaces the value in the depth buffer. 
Otherwise, the pixel is discarded.

This procedure is called the Z-buffer algorithm, as expressed in Figure 2.14.

	 2.2	 DETECTING OPENGL AND GLSL ERRORS
The workflow for compiling and running GLSL code differs from standard 

coding, in that GLSL compilation happens at C++ runtime. Another complication 
is that GLSL code doesn’t run on the CPU (it runs on the GPU), so the operating 
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system cannot always catch OpenGL runtime errors. This makes debugging dif-
ficult, because it is often hard to detect if a shader failed, and why.

Program 2.3 (which follows) presents some modules for catching and 
displaying GLSL errors. They make use of the OpenGL functions glGetShaderiv() 
and glGetProgramiv(), which are used to provide information about compiled GLSL 
shaders and programs. Accompanying them is the createShaderProgram() function 
from the previous Program 2.2, but with the error-detecting calls added.

Program 2.3 contains the following three utilities:

•	 checkOpenGLError – checks the OpenGL error flag for the occurrence of 
an OpenGL error

•	 printShaderLog – displays the contents of OpenGL’s log when GLSL 
compilation failed

•	 printProgramLog – displays the contents of OpenGL’s log when GLSL 
linking failed

The first, checkOpenGLError(), is useful for detecting both GLSL compila-
tion errors and OpenGL runtime errors, so it is highly recommended to use it 
throughout a C++/OpenGL application during development. For example, in the 
prior example (Program 2.2), the calls to glCompileShader() and glLinkProgram() 
could easily be augmented with the code shown in Program 2.3 to ensure that any 

Figure 2.14
Z-buffer algorithm.
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typos or other compile errors would be caught and their cause reported. Calls to 
checkOpenGLError() could be added after runtime OpenGL calls, such as immedi-
ately after the call to glDrawArrays().

Another reason that it is important to use these tools is that a GLSL error does 
not cause the C++ program to stop. So unless the programmer takes steps to catch 
errors at the point that they happen, debugging will be very difficult.

Program 2.3 Modules to Catch GLSL Errors
void printShaderLog(GLuint shader) {
	 int len = 0;
	 int chWrittn = 0;
	 char *log;
	 glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &len);
	 if (len > 0) {
		  log = (char *)malloc(len);
		  glGetShaderInfoLog(shader, len, &chWrittn, log);
		  cout << "Shader Info Log: " << log << endl;
		  free(log);
}	 }

void printProgramLog(int prog) {
	 int len = 0;
	 int chWrittn = 0;
	 char *log;
	 glGetProgramiv(prog, GL_INFO_LOG_LENGTH, &len);
	 if (len > 0) {
		  log = (char *)malloc(len);
		  glGetProgramInfoLog(prog, len, &chWrittn, log);
		  cout << "Program Info Log: " << log << endl;
		  free(log);
}	 }

bool checkOpenGLError() {
	 bool foundError = false;
	 int glErr = glGetError();
	 while (glErr != GL_NO_ERROR) {
		  cout << "glError: " << glErr << endl;
		  foundError = true;
		  glErr = glGetError();
	 }
	 return foundError;
}
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Example of checking for OpenGL errors:
GLuint createShaderProgram() {
	 GLint vertCompiled;
	 GLint fragCompiled;
	 GLint linked;
	 . . .
	 // catch errors while compiling shaders

	 glCompileShader(vShader);
	 checkOpenGLError();
	 glGetShaderiv(vShader, GL_COMPILE_STATUS, &vertCompiled);
	 if (vertCompiled != 1) {
		  cout << "vertex compilation failed" << endl;
		  printShaderLog(vShader);
	 }

	 glCompileShader(fShader);
	 checkOpenGLError();
	 glGetShaderiv(fShader, GL_COMPILE_STATUS, &fragCompiled);
	 if (fragCompiled != 1) {
		  cout << "fragment compilation failed" << endl;
		  printShaderLog(fShader);
	 }

	 // catch errors while linking shaders

	 glAttachShader(vfProgram, vShader);
	 glAttachShader(vfProgram, fShader);

	 glLinkProgram(vfProgram);
	 checkOpenGLError();
	 glGetProgramiv(vfProgram, GL_LINK_STATUS, &linked);
	 if (linked != 1) {
		  cout << "linking failed" << endl;
		  printProgramLog(vfProgram);
	 }
	 return vfProgram;
}

There are other tricks for deducing the causes of runtime errors in shader 
code. A common result of shader runtime errors is for the output screen to be 
completely blank, essentially with no output at all. This can happen even if the 
error is a very small typo in a shader, yet it can be difficult to tell at which stage of 
the pipeline the error occurred. With no output at all, it’s like looking for a needle 
in a haystack.
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One useful trick in such cases is to temporarily replace the fragment shader 
with the one shown in Program 2.2. Recall that in that example, the fragment 
shader simply output a particular color—solid blue, for example. If the subsequent 
output is of the correct geometric form (but solid blue), the vertex shader is prob-
ably correct, and there is an error in the original fragment shader. If the output is 
still a blank screen, the error is more likely earlier in the pipeline, such as in the 
vertex shader.

In Appendix C, we show how to use yet another useful debugging tool called 
Nsight, which is available for machines equipped with certain Nvidia graphics 
cards.

	 2.3	 READING GLSL SOURCE CODE FROM FILES
So far, our GLSL shader code has been stored inline in strings. As our pro-

grams grow in complexity, this will become impractical. We should instead store 
our shader code in files and read them in.

Reading text files is a basic C++ skill, and won’t be covered here. However, 
for practicality, code to read shaders is provided in readShaderSource(), shown in 
Program 2.4. It reads the shader text file and returns an array of strings, where 
each string is one line of text from the file. It then determines the size of that 
array based on how many lines were read in. Note that here, createShaderProgram() 
replaces the version from Program 2.2.

In this example, the vertex and fragment shader code is now placed in the text 
files “vertShader.glsl” and “fragShader.glsl” respectively.

Program 2.4 Reading GLSL Source from Files
(.…#includes same as before, main(), display(), init() as before, plus the following…)

#include <string>
#include <iostream>
#include <fstream>
. . .
string readShaderSource(const char *filePath) {
	 string content;
	 ifstream fileStream(filePath, ios::in);
	 string line = "";
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	 while (!fileStream.eof()) {
		  getline(fileStream, line);
		  content.append(line + "\n");
	 }
	 fileStream.close();
	 return content;
}

GLuint createShaderProgram() {
	 (…… as before plus….)
	 string vertShaderStr = readShaderSource("vertShader.glsl");
	 string fragShaderStr = readShaderSource("fragShader.glsl");

	 const char *vertShaderSrc = vertShaderStr.c_str();
	 const char *fragShaderSrc = fragShaderStr.c_str();

	 glShaderSource(vShader, 1, &vertShaderSrc, NULL);
	 glShaderSource(fShader, 1, &fragShaderSrc, NULL);

	 (….etc., building rendering program as before)
}

	 2.4	 BUILDING OBJECTS FROM VERTICES
Ultimately we want to draw more than just a single point. We’d like to draw 

objects that are constructed of many vertices. Large sections of this book will be 
devoted to this topic. For now we just start with a simple example—we will define 
three vertices and use them to draw a triangle.

We can do this by making two small changes to Program 2.2 (actually, the ver-
sion in Program 2.4 which reads the shaders from files): (a) modify the vertex shader 
so that three different vertices are output to the subsequent stages of the pipeline, 
and (b) modify the glDrawArrays() call to specify that we are using three vertices.

In the C++/OpenGL application (specifically in the glDrawArrays() call) we 
specify GL_TRIANGLES (rather than GL_POINTS), and also specify that there are 
three vertices sent through the pipeline. This causes the vertex shader to run three 
times, and at each iteration, the built-in variable gl_VertexID is automatically incre-
mented (it is initially set to 0). By testing the value of gl_VertexID, the shader is 
designed to output a different point each of the three times it is executed. Recall 
that the three points then pass through the rasterization stage, producing a filled-
in triangle. The modifications are shown in Program 2.5 (the remainder of the 
code is the same as previously shown in Program 2.4).
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Program 2.5 Drawing a Triangle
Vertex Shader
#version 430
void main(void)
{	 if (gl_VertexID == 0) gl_Position = vec4( 0.25, -0.25, 0.0, 1.0);
	 else if (gl_VertexID == 1) gl_Position = vec4(-0.25, -0.25, 0.0, 1.0);
	 else gl_Position = vec4( 0.25, 0.25, 0.0, 1.0);
}

C++/OpenGL application—in display()
. . .
glDrawArrays(GL_TRIANGLES, 0, 3);

Figure 2.15
Drawing a simple triangle.

	 2.5	 ANIMATING A SCENE
Many of the techniques in this book can be animated. This is when things in 

the scene are moving or changing, and the scene is rendered repeatedly to reflect 
these changes in real time.

Recall from Section 2.1.1 that we have constructed our main() to make a single 
call to init(), and then to call display() repeatedly. Thus, while each of the preceding 
examples may have appeared to be a single fixed rendered scene, in actuality the 
loop in the main was causing it to be drawn over and over again.

For this reason, our main() is already structured to support animation. We sim-
ply design our display() function to alter what it draws over time.  Each rendering 
of our scene is then called a frame, and the frequency of the calls to display() is 
the frame rate. Handling the rate of movement within the application logic can be 
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controlled using the elapsed time since the previous frame (this is the reason for 
including “currentTime” as a parameter on the display() function).

An example is shown in Program 2.6. We have taken the triangle from 
Program 2.5 and animated it so that it moves to the right, then moves to the left, 
back and forth. In this example, we don’t consider the elapsed time, so the triangle 
may move more or less quickly depending on the speed of the computer. In future 
examples, we will use the elapsed time to ensure that our animations run at the 
same speed regardless of the computer on which they are run.

In Program 2.6, the application’s display() method maintains a variable “x” 
used to offset the triangle’s X coordinate position. Its value changes each time 
display() is called (and thus is different for each frame), and it reverses direction 
each time it reaches 1.0 or -1.0. The value in x is copied to a corresponding vari-
able called “offset” in the vertex shader. The mechanism that performs this copy 
uses something called a uniform variable, which we will study later in Chapter 4. 
It isn’t necessary to understand the details of uniform variables yet. For now, just 
note that the C++/OpenGL application first calls glGetUniformLocation() to get a 
pointer to the “offset” variable, and then calls glProgramUniform1f() to copy the 
value of x into offset. The vertex shader then adds the offset to the X coordinate 
of the triangle being drawn. Note also that the background is cleared at each call 
to display(), to avoid the triangle leaving a trail as it moves. Figure 2.16 illustrates 
the display at three time instances (of course, the movement can’t be shown in a 
still figure).

Program 2.6 Simple Animation Example
C++/OpenGL application:
//	 same #includes and declarations as before, plus the following:

	 float x = 0.0f;		  // location of triangle on x axis
	 float inc = 0.01f;		 // offset for moving the triangle

	 void display(GLFWwindow* window, double currentTime) {
		  glClear(GL_DEPTH_BUFFER_BIT);
		  glClearColor(0.0, 0.0, 0.0, 1.0);
		  glClear(GL_COLOR_BUFFER_BIT);	 // clear the background to black, each time

		  glUseProgram(renderingProgram);

		  x += inc; 				    // move the triangle along x axis
		  if (x > 1.0f) inc = -0.01f;			  // switch to moving the triangle to the left
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		  if (x < -1.0f) inc = 0.01f;			  // switch to moving the triangle to the right
		  GLuint offsetLoc = glGetUniformLocation(renderingProgram, "offset");	 // get ptr to "offset"
		  glProgramUniform1f(renderingProgram, offsetLoc, x);	 // send value in "x" to "offset"

		  glDrawArrays(GL_TRIANGLES,0,3);
	 }
	 . . .  // remaining functions, same as before
}

Vertex shader:
#version 430
uniform float offset;
void main(void)
{	 if (gl_VertexID == 0) gl_Position = vec4( 0.25 + offset, -0.25, 0.0, 1.0);
 	 else if (gl_VertexID == 1) gl_Position = vec4(-0.25 + offset, -0.25, 0.0, 1.0);
	 else gl_Position = vec4( 0.25 + offset, 0.25, 0.0, 1.0);
}

Note that in addition to adding code 
to animate the triangle, we have also 
added the following line at the begin-
ning of the display() function:

glClear(GL_DEPTH_BUFFER_BIT);

While not strictly necessary in this 
particular example, we have added it 
here and it will continue to appear in 
most of our applications. Recall from the 
discussion in Section 2.1.7 that hidden 
surface removal requires both a color 
buffer and a depth buffer. As we proceed 
to drawing progressively more complex 
3D scenes, it will be necessary to initial-
ize (clear) the depth buffer each frame, 
especially for scenes that are animated, 
to ensure that depth comparisons aren’t 
affected by old depth data. It should be 
apparent from the previous example that Figure 2.16

An animated, moving triangle.
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the command for clearing the depth buffer is essentially the same as for clearing 
the color buffer.

	 2.6	 ORGANIZING THE C++ CODE FILES
So far, we have been placing all of the C++/OpenGL application code in a 

single file called “main.cpp”, and the GLSL shaders into files called “vertShader.
glsl” and “fragShader.glsl”. While we admit that stuffing a lot of application code 
into main.cpp isn’t a best practice, we have adopted this convention in this book so 
that it is absolutely clear in every example which file contains the main block of 
C++/OpenGL code relevant to the example being discussed. Throughout this text-
book, it will always be called “main.cpp”. In practice, applications should of course 
be modularized to appropriately reflect the tasks performed by the application.

However, as we proceed, there will be circumstances in which we create mod-
ules that will be useful in many different applications. Wherever appropriate, we 
will move those modules into separate files to facilitate reuse. For example, later 
we will define a Sphere class that will be useful in many different examples, and 
so it will be separated into its own files (Sphere.cpp and Sphere.h).

Similarly, as we encounter functions that we wish to reuse, we will place them 
in a file called “Utils.cpp” (and an associated “Utils.h”). We have already seen several 
functions that are appropriate to move into “Utils.cpp”: the error-detecting modules 
described in Section 2.2, and the functions for reading in GLSL shader programs 
described in Section 2.3. The latter is particularly well-suited to overloading, such 
that a “createShaderProgram()” function can be defined for each possible combina-
tion of pipeline shaders assembled in a given application:

•	 GLuint Utils::createShaderProgram(const char *vp, const char *fp)
•	 GLuint Utils::createShaderProgram(const char *vp, const char *gp, const  

  char *fp)
•	 GLuint Utils::createShaderProgram(const char *vp, const char *tCS, const  

  char* tES, const char *fp)
•	 GLuint Utils::createShaderProgram(const char *vp, const char *tCS, const char*  

  tES, const char *gp, const char *fp)

The first case in the previous list supports shader programs which utilize 
only  a  vertex and fragment shader. The second supports those utilizing vertex, 
geometry, and fragment shaders. The third supports those using vertex, tessellation, 
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and fragment shaders. The fourth supports those using vertex, tessellation, geom-
etry, and fragment shaders. The parameters accepted in each case are pathnames 
for the GLSL files containing the shader code. For example, the following call uses 
one of the overloaded functions to compile and link a shader pipeline program that 
includes a vertex and fragment shader. The completed program is placed in the 
variable “renderingProgram”:

renderingProgram = Utils::createShaderProgram("vertShader.glsl", "fragShader.glsl");

These createShaderProgram() implementations can all be found on the accom-
panying CD (in the “Utils.cpp” file), and all of them incorporate the error-detecting 
modules from Section 2.2 as well. There is nothing new about them; they are sim-
ply organized in this way for convenience. As we move forward in the book, other 
similar functions will be added to Utils.cpp as we go along. The reader is strongly 
encouraged to examine the Utils.cpp file on the accompanying CD, and even add 
to it as desired. The programs found there are built from the methods as we learn 
them in the book, and studying their organization should serve to strengthen one’s 
own understanding.

Regarding the functions in the “Utils.cpp” file, we have implemented them as 
static methods so that it isn’t necessary to instantiate the Utils class. Readers may 
prefer to implement them as instance methods rather than static methods, or even 
as freestanding functions, depending on the architecture of the particular system 
being developed.

All of our shaders will be named with a “.glsl” extension.

SUPPLEMENTAL NOTES

There are many details of the OpenGL pipeline that we have not discussed 
in this introductory chapter. We have skipped a number of internal stages and 
have completely omitted how textures are processed. Our goal was to map out, 
as simply as possible, the framework in which we will be writing our code. As we 
proceed we will continue to learn additional details.

We have also deferred presenting code examples for tessellation and geom-
etry. In later chapters, we will build complete systems that show how to write 
practical shaders for each of the stages.
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There are more sophisticated ways to organize the code for animating a scene, 
especially with respect to managing threads. Some language bindings such as 
JOGL and LWJGL (for Java) offer classes to support animation. Readers interested 
in designing a render loop (or “game loop”) appropriate for a particular application 
are encouraged to consult some of the more specialized books on game engine 
design (e.g., [NY14]), and to peruse the related discussions on gamedev.net [GD20].

We glossed over one detail on the glShaderSource() command. The fourth 
parameter is used to specify a “lengths array” that contains the integer string 
lengths of each line of code in the given shader program. If this parameter is set 
to null, as we have done, OpenGL will build this array automatically if the strings 
are null-terminated. While we have been careful to ensure that our strings sent to 
glShaderSource() are null-terminated (by calling the c_str() function in createShad-
erProgram()), it is not uncommon to encounter applications that build these arrays 
manually rather than sending null.

Throughout this book, the reader may at times wish to know one or more 
of  OpenGL’s upper limits. For example, the programmer might need to know 
the maximum number of outputs that can be produced by the geometry shader, 
or  the  maximum size that can be specified for rendering a point. Many such 
values are implementation-dependent, meaning that they can vary between differ-
ent machines. OpenGL provides a mechanism for retrieving such limits using the 
glGet() command, which takes various forms depending on the type of the parameter 
being queried. For example, to find the maximum allowable point size, the follow-
ing call will place the minimum and maximum values (for your machine’s OpenGL 
implementation) into the first two elements of the float array named “size”:

glGetFloatv(GL_POINT_SIZE_RANGE, size)

Many such queries are possible. Consult the OpenGL reference [OP16] docu-
mentation for examples.

In this chapter, we have tried to describe each parameter on each OpenGL 
call. However, as the book proceeds, this will become unwieldy and we will 
sometimes not bother describing a parameter when we believe that doing so 
would complicate matters unnecessarily. This is because many OpenGL func-
tions have a large number of parameters that are irrelevant to our examples. The 
reader should get used to using the OpenGL documentation to fill in such details 
when necessary.
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Exercises

	2.1	Modify Program 2.2 to add animation that causes the drawn point to grow and 
shrink, in a cycle. Hint: use the glPointSize() function, with a variable as the 
parameter.

	2.2	Modify Program 2.5 so that it draws an isosceles triangle (rather than the right 
triangle shown in Figure 2.15).

	2.3	(PROJECT) Modify Program 2.5 to include the error-checking modules shown 
in Program 2.3. After you have that working, try inserting various errors into 
the shaders and observing both the resulting behavior and the error messages 
generated.

	2.4	Modify Program 2.6 so that it calculates the amount of movement for the 
triangle using the “currentTime” variable passed into the display() function.  
Hint: the “currentTime” variable contains the total time that has elapsed since 
the program began. Your solution will need to determine the time that has 
elapsed since the last frame, and compute the increment amount based on that. 
Computing animations in this way will ensure that they move at the same 
speed regardless of the speed of the computer.
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■ ■ ■ ■ ■

Computer graphics makes heavy use of mathematics, particularly matri-
ces and  matrix algebra. Although we tend to consider 3D graphics programming 
to  be  among the most contemporary of technical fields (and in many respects 
it is), many of the techniques that are used actually date back hundreds of years. 
Some of them were first understood and codified by the great philosophers of the 
Renaissance era.

Virtually every facet of 3D graphics, every effect—movement, scale, perspec-
tive, texturing, lighting, shadows, and so on—will be accomplished largely math-
ematically. Therefore, this chapter lays the groundwork upon which every subsequent 
chapter relies.

It is assumed the reader has a basic knowledge of matrix operations; a full 
coverage of basic matrix algebra is beyond the scope of this text. Therefore, if at any 
point a particular matrix operation is unfamiliar, it may be necessary to do some 
supplementary background reading to ensure full understanding before proceeding.
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	 3.1	 3D COORDINATE SYSTEMS
3D space is generally represented with three axes: X, Y, and Z. The three axes 

can be arranged into two configurations, right-handed or left-handed. (The name 
derives from the orientation of the axes as if constructed by pointing the thumb 
and first two fingers of the right versus the left hand, at right angles.)

Figure 3.1
3D coordinate systems.

It is important to know which coordinate system your graphics programming 
environment uses. For example, the majority of coordinate systems in OpenGL 
are right-handed, whereas in Direct3D the majority are left-handed. Throughout 
this book, we will assume a right-handed configuration unless otherwise stated.

	 3.2	 POINTS
Points in 3D space can be specified by listing the X, Y, Z values, using a nota-

tion such as (2, 8, -3). However, it turns out to be much more useful to specify 
points using homogeneous notation, a representation first described in the early 
1800s. Points in homogeneous notation contain four values. The first three corre-
spond to X, Y, and Z, and the fourth, W, is always a fixed nonzero value, usually 1. 
Thus, we represent this point as (2, 8, -3, 1). As we will see shortly, homogeneous 
notation will make many of our graphics computations more efficient.

The appropriate GLSL data type for storing points in homogeneous 3D nota-
tion is vec4 (“vec” refers to vector, but it can also be used for a point). The 
GLM library includes classes appropriate for creating and storing 3-element and 
4-element (homogeneous) points in the C++/OpenGL application, called vec3 
and vec4 respectively.
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	 3.3	 MATRICES
A matrix is a rectangular array of values, and its elements are typically 

accessed by means of subscripts. The first subscript refers to the row number, and 
the second subscript refers to the column number, with the subscripts starting at 0. 
Most of the matrices that we will use for 3D graphics computations are of size 4x4, 
as shown in Figure 3.2:

Figure 3.2
4x4 matrix.

The GLSL language includes a data type called mat4 that can be used for stor-
ing 4x4 matrices. Similarly, GLM includes a class called mat4 for instantiating and 
storing 4x4 matrices.

The identity matrix contains all zeros, with ones along the diagonal:

Any point or matrix multiplied by the identity matrix is unchanged. In GLM, 
the constructor call glm::mat4 m(1.0f) builds the identity matrix in the variable m.

The transpose of a matrix is computed by interchanging its rows and columns. 
For example:

The GLM library and GLSL both have transpose functions: glm::transpose(mat4) 
and transpose(mat4) respectively.
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Matrix addition is straightforward:

In GLSL the + operator is overloaded on mat4 to support matrix addition.

There are various multiplication operations that can be done with matrices 
that are useful in 3D graphics. Matrix multiplication in general can be done either 
left to right or right to left (note that since these operations are different, it follows 
that matrix multiplication is not commutative). Most of the time we will use right-
to-left multiplication.

In 3D graphics, multiplying a point by a matrix is in most cases done right to 
left, and produces a point, as follows:

Note that we represent the point (X,Y,Z) in homogeneous notation as a 1-column 
matrix.

GLSL and GLM both support multiplying a point (a vec4, to be exact) by a 
matrix with the * operator.

Multiplying a 4x4 Matrix by another 4x4 matrix is done as follows:

CGP_C++_CH03_2E_2pp.indd   38 05-Oct-20   4:04:58 PM



Chapter  3  ·  Mathematical  Foundat ions   ■  39

Matrix multiplication is frequently referred to as concatenation, because as 
will be seen, it is used to combine a set of matrix transforms into a single matrix. 
This ability to combine matrix transforms is made possible because of the asso-
ciative property of matrix multiplication. Consider the following sequence of 
operations:

New Point = Matrix1 * (Matrix2 * (Matrix3 * Point))

Here, we multiply a point by Matrix3, then multiply that result by Matrix2, and 
that result finally by Matrix1. The result is a new point. The associative property 
ensures that the previous computation is equivalent to:

New Point = (Matrix1 * Matrix2 * Matrix3) * Point

Here, we first multiply the three matrices together, forming the concatenation 
of Matrix1, Matrix2, and Matrix3 (which itself is also a 4x4 matrix). If we refer to this 
concatenation as MatrixC, we can rewrite the previous operation as:

New Point = MatrixC * Point

The advantage here, as we will see in Chapter 4, is that we will frequently 
need to apply the same sequence of matrix transformations to every point in our 
scene. By pre-computing the concatenation of all of those matrices once, it turns 
out that we can reduce the total number of matrix operations needed manyfold.

GLSL and GLM both support matrix multiplication with the overloaded * operator.

The inverse of a 4x4 matrix M is another 4x4 matrix, denoted M-1, that has the 
following property under matrix multiplication:

M*(M-1) = (M-1)*M = identity matrix

We won’t present the details of computing the inverse here. However, it is 
worth knowing that determining the inverse of a matrix can be computationally 
expensive; fortunately, we will rarely need it. In the rare instances when we do, 
it is available in both GLSL and GLM through the mat4.inverse() function.

	 3.4	 TRANSFORMATION MATRICES
In graphics, matrices are typically used for performing transforma-

tions  on objects. For example, a matrix can be used to move a point from one 
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location to  another. In this chapter, we will learn several useful transformation 
matrices:

•	 Translation
•	 Rotation
•	 Scale
•	 Projection
•	 Look-At

An important property of our transformation matrices is that they are all of 
size 4x4. This is made possible by our decision to use the homogeneous notation. 
Otherwise, some of the transforms would be of diverse and incompatible dimen-
sions. As we have seen, ensuring they are the same size is not just for convenience; 
it also makes it possible to combine them arbitrarily, and pre-compute groups of 
transforms for improved performance.

	 3.4.1	 Translation
A translation matrix is used to move items from one location to another. It 

consists of an identity matrix, with the X, Y, and Z movement(s) given in locations 
A03, A13, A23. Figure 3.3 shows the form of a translation matrix and its effect when 
multiplied by a homogeneous point; the result is a new point “moved” by the trans-
late values.

Figure 3.3
Translation matrix transform.

Note that point (X,Y,Z) is translated (or moved) to location (X+Tx, Y+Ty, Z+Tz) as a 
result of being multiplied by the translation matrix. Also note that multiplication 
is specified right to left.

For example, if we wish to move a group of points upward 5 units along the 
positive Y direction, we could build a translation matrix by taking an identity 
matrix and placing the value 5 in the Ty position. Then we simply multiply each of 
the points we wish to move by the matrix.
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There are several functions in GLM for building translation matrices and for 
multiplying points by matrices. Some relevant operations are:

•	 glm::translate(x, y, z)	 builds a matrix that translates by (x,y,z)
•	 mat4 * vec4

	 3.4.2	 Scaling
A scale matrix is used to change the size of objects or move points toward 

or away from the origin. Although it may initially seem strange to scale a point, 
objects in OpenGL are defined by groups of points. So, scaling an object involves 
expanding or contracting its set of points.

The scale matrix transform consists of an identity matrix with the X, Y, and Z 
scale factors given in locations A00, A11, A22. Figure 3.4 shows the form of a scale 
matrix and its effect when multiplied by a homogeneous point; the result is a new 
point modified by the scale values.

Figure 3.4
Scale matrix transform.

There are several functions in GLM for building scale matrices and multiply-
ing points by scale matrix transforms. Some relevant operations are:

•	 glm::scale(x,y,z)	 builds a matrix that scales by (x,y,z)
•	 mat4 * vec4

Scaling can be used to switch coordinate systems. For example, we can use scale 
to determine what the left-hand coordinates would be, given a set of right-hand coor-
dinates. From Figure 3.1, we see that negating the Z coordinate would toggle between 
right-hand and left-hand systems, so the scale matrix transform to accomplish this is:
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	 3.4.3	 Rotation
Rotation is a bit more complex, because rotating an item in 3D space requires 

specifying (a) an axis of rotation and (b) a rotation amount in degrees or radians.

In the mid-1700s, the mathematician Leonhard Euler showed that a rotation 
around any desired axis could be specified instead as a combination of rotations 
around the X, Y, and Z axes [EU76]. These three rotation angles around the respec-
tive axes have come to be known as Euler angles. The discovery, known as Euler’s 
Theorem, is very useful to us, because rotations around each of the three axes can 
be specified using matrix transforms.

The three rotation transforms, around the X, Y, and Z axes respectively, are 
shown in Figure 3.5. There are several functions in GLM for building and using 
rotation matrices as well:

•	 glm::rotate(mat4, θ, x, y, z)	� builds a rotation matrix for an angle θ 
around an axis x,y,z.

•	 mat4 * vec4

Figure 3.5
Rotation transform matrices.
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In practice, using Euler angles to rotate an item around an arbitrary line in 3D 
space takes a couple of additional steps if the line doesn’t pass through the origin. 
In general:

	 1.	 Translate the axis of rotation so that it goes through the origin.
	 2.	 Rotate by appropriate Euler angles around X, Y, and Z.
	 3.	 Undo the translation of Step 1.

The three rotation transforms shown in Figure 3.5 each have the interesting 
property that the inverse rotation happens to equal the transpose of the matrix. 
This can be verified by examining the previous matrices, recalling that cos(-θ) = 
cos(θ), and sin(-θ) = -sin(θ). This property will become useful later.

Euler angles can cause certain artifacts in some 3D graphics applications. For 
that reason it is often advisable to use quaternions for computing rotations. Many 
resources exist for those readers interested in exploring quaternions (e.g., [KU98]). 
Euler angles will suffice for most of our needs.

	 3.5	 VECTORS
Vectors specify a magnitude and direction. They are not bound to a specific 

location; a vector can be “moved” without changing what it represents.

There are various ways to notate a vector, such as a line segment with an 
arrowhead at one end, or as a pair (magnitude, direction), or as the difference 
between two points. In 3D graphics, vectors are frequently represented as a single 
point in space, where the vector is the distance and direction from the origin to 
that point. In Figure 3.6, vector V (shown in red) can be specified either as the 

Figure 3.6
Two representations for a vector V.
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difference between points P1 and P2, or as an equivalent distance from the origin 
to P3. In all of our applications, we specify V as simply (x,y,z), the same notation 
used to specify the point P3.

It is convenient to represent a vector the same way as a point, because we can 
use our matrix transforms on points or vectors interchangeably. However, it also 
can be confusing. For this reason we sometimes will notate a vector with a small 
arrow above it (such as 



V ). Many graphics systems do not distinguish between a 
point and a vector at all, such as in GLSL and GLM, which provide data types 
vec3/vec4 that can be used to hold either points or vectors. Some systems (such as 
the graphicslib3D library used in an earlier Java-based edition of this book) have 
separate point and vector classes, and enforce appropriate use of one or the other 
depending on the operation being done. It is an open debate as to whether it is 
clearer to use one data type for both, or separate data types.

There are several vector operations that are used frequently in 3D graphics, 
for which there are functions available in GLM and GLSL. For example, assuming 
vectors A(u,v,w) and B(x,y,z):

Addition and Subtraction:

	 A ± B = (u ± x, v ± y, w ± z)
	 glm: vec3 ± vec3
	 GLSL: vec3 ± vec3

Normalize (change to length=1):

	 Â = A/|A| = A/sqrt(u2+v2+w2), where |A| ≡ length of vector A
	 glm: normalize(vec3) or normalize(vec4)
	 GLSL: normalize(vec3) or normalize(vec4)

Dot Product:

	 A ● B = ux + vy + wz
	 glm:  dot(vec3,vec3) or dot(vec4,vec4)
	 GLSL:  dot(vec3,vec3) or dot(vec4,vec4)

Cross Product:

	 A x B = (vz-wy, wx-uz, uy-vx)
	 glm:  cross(vec3,vec3)
	 GLSL:  cross(vec3,vec3)
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Other useful vector functions are magnitude (which is available in both 
GLSL and GLM as length()), and reflection and refraction (both are available in 
GLSL and GLM).

We shall now take a closer look at the functions dot product and cross product.

	 3.5.1	 Uses for Dot Product
Throughout this book, our programs make heavy use of the dot product. The 

most important and fundamental use is for finding the angle between two vectors. 
Consider two vectors 



V  and 


W , and say we wish to find the angle θ separating them.

Therefore, if 


V  and 


W  are normalized (i.e., of unit length—here we use the “^” 
notation for normalization, as shown earlier), then:

Interestingly, we will later see that often it is cos(θ) that we need, rather than θ 
itself. So, both of the previous derivations will be directly useful.

The dot product also has a variety of other uses:

•	 Finding a vector’s magnitude: 
•	 Finding whether two vectors are perpendicular, if: 
•	 Finding whether two vectors are parallel, if: 
•	 Finding whether two vectors are parallel but pointing in opposite 

directions, if: 
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•	 Finding whether the angle between vectors lies in the range (-90°..+90°): 

•	 Finding the minimum signed distance from point P=(x,y,z) to plane 
S=(a,b,c,d). First, find unit vector normal to S:  

, and shortest distance 

 from the origin to the plane. Then, the minimum signed  
distance from P to S is: ˆ( )n P D• +



 and the sign of this distance 
determines on which side of the plane S point P lies.

	 3.5.2	 Uses for Cross Product
An important property of the cross product of two vectors, which we will 

make heavy use of throughout this book, is that it produces a vector that is normal 
(perpendicular) to the plane defined by the original two vectors.

Any two non-collinear vectors define a plane. For example, consider two 
arbitrary vectors 



V  and 


W . Since vectors can be moved without changing their 
meaning, they can be moved so that their origins coincide. Figure 3.8 shows 
a  plane defined by 



V  and 


W , and the normal vector resulting from their cross 
product. The direction of the resulting normal obeys the right-hand rule, wherein 
curling the fingers of one’s right hand from 



V  to 


W  causes the thumb to point in 
the direction of the normal vector 



R.

Figure 3.7
Cross product produces normal vector.

Note that the order is significant; 
r r

W V×  would produce a vector in the opposite 
direction from 



R.

The ability to find normal vectors by using the cross product will become 
extremely useful later when we study lighting. In order to determine lighting 
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effects, we will need to know outward normals associated with the model we are 
rendering. Figure 3.8 shows an example of a simple model made up of six points 
(vertices) and the computation employing cross product that determines the outward 
normal of one of its faces.

Figure 3.8
Computing outward normals.

	 3.6	 LOCAL AND WORLD SPACE
The most common use for 3D graphics (with OpenGL or any other framework) 

is to simulate a three-dimensional world, place objects in it, and then view that 
simulated world on a monitor. The objects placed in the 3D world are usually mod-
eled as collections of triangles. Later, in Chapter 6, we will dive into modeling. But 
we can start looking at the overall process now.

When building a 3D model of an object, we generally orient the model in 
the most convenient manner for describing it. For example, when modeling a 
sphere, we might orient the model with the sphere’s center at the origin (0,0,0) 
and give it a convenient radius, such as 1. The space in which a model is defined 
is called its local space, or model space. OpenGL documentation uses the term 
object space.

The sphere might then be used as a piece of a larger model, such as becoming 
the head on a robot. The robot would, of course, be defined in its own local/model 
space. Positioning the sphere model into the robot model space can be done using the 
matrix transforms for scale, rotation, and translation, as illustrated in Figure 3.9. In 
this manner, complex models can be built hierarchically (this is developed further 
in Section 4.8 of Chapter 4 using a stack of matrices).

In the same manner, modeled objects are placed in a simulated world by 
deciding on the orientation and dimensions of that world, called world space. 
The matrix that positions and orients an object into world space is called a model 
matrix, or M.
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	 3.7	 EYE SPACE AND THE SYNTHETIC CAMERA
So far, the transform matrices we have seen all operate in 3D space. Ultimately, 

however, we will want to display our 3D space—or a portion of it—on a 2D moni-
tor. In order to do this, we need to decide on a vantage point. Just as we see our 
real world through our eyes from a particular point in a particular direction, so too 
must we establish a position and orientation as the window into our virtual world. 
This vantage point is called “view” or “eye” space, or the “synthetic camera.”

Figure 3.10
Positioning a camera in the 3D world.

As shown in Figures 3.10 and 3.12, viewing involves: (a) placing the camera at 
some world location; (b) orienting the camera, which usually requires maintaining 
its own set of orthogonal axes 

  

U/V/N ; (c) defining a view volume; and (d) projecting 
objects within the volume onto a projection plane.

OpenGL includes a camera that is permanently fixed at the origin (0,0,0) and 
faces down the negative Z-axis, as shown in Figure 3.11.

Figure 3.9
Model spaces for a sphere and a robot.
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Figure 3.11
OpenGL fixed camera.

In order to use the OpenGL camera, one of the things we need to do is simulate 
moving it to some desired location and orientation. This is done by figuring out 
where our objects in the world are located relative to the desired camera position 
(i.e., where they are located in “camera space,” as defined by the U, V, and N axes of 
the camera as illustrated in Figure 3.12). Given a point at world space location PW, 
we need a transform to convert it to the equivalent point in camera space, making 
it appear as though we are viewing it from the desired camera location Cw. We do 
this by computing its camera space position PC. Knowing that the OpenGL camera 
location is always at the fixed position (0,0,0), what transform would achieve this?

Figure 3.12
Camera orientation.

The necessary transforms are determined as follows:

	 1.	 Translate PW by the negative of the desired camera location.
	 2.	 Rotate PW by the negative of the desired camera orientation Euler angles.
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We can build a single transform that does both the rotation and the translation 
in one matrix, called the viewing transform matrix, or V. The matrix V is produced 
by concatenating the two matrices T (a translation matrix containing the negative 
of the desired camera location) and R (a rotation matrix containing the negative of 
the desired camera orientation). In this case, working from right to left, we first 
translate world point P, then rotate it:

PC = R * ( T * PW )

As we saw earlier, the associative rule allows us to group the operations 
instead thusly:

PC = ( R * T ) * PW

If we save the concatenation R*T in the matrix V, the operation now looks like:

PC = V * PW

The complete computation, and the exact contents of matrices T and R, are 
shown in Figure 3.13 (we omit the derivation of matrix R—a derivation is available 
in [FV95]).

Figure 3.13
Deriving a view matrix.

More commonly, the V matrix is concatenated with the model matrix M to 
form a single model-view (MV) matrix:

MV = V * M
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Then, a point PM in its own model space is transformed directly to camera 
space in one step as follows:

PC = MV * PM

The advantage of this approach becomes clear when one considers that, in a 
complex scene, we will need to perform this transformation not on just one point, 
but on every vertex in the scene. By pre-computing MV, transforming each point 
into view space will require us to do just one matrix multiplication per vertex, 
rather than two. Later, we will see that we can extend this process to pre-computing 
several matrix concatenations, reducing the per-vertex computations considerably.

	 3.8	 PROJECTION MATRICES
Now that we have established the camera, we can examine projection matrices. 

Two important projection matrices that we will now examine are (a) perspective 
and (b) orthographic.

	 3.8.1	 The Perspective Projection Matrix
Perspective projection attempts to make a 2D picture appear 3D, by utilizing the 

concept of perspective to mimic what we see when we look at the real world. Objects 
that are close appear larger than objects that are far away, and in some cases, lines 
that are parallel in 3D space are no longer parallel when drawn with perspective.

Perspective was one of the great discoveries of the Renaissance era in the 
1400–1500s, when artists started painting with more realism than did their 
predecessors.

An excellent example can be seen in Figure 3.14, “The Annunciation, with 
Saint Emidius” by Carlo Crivelli, painted in 1486 (currently held at the National 
Gallery in London [CR86]). The intense use of perspective is clear—the receding 
lines of the left-facing wall of the building on the right are slanted toward each 
other dramatically. This creates the illusion of depth and 3D space, and in the pro-
cess lines that are parallel in reality are not parallel in the picture. Also, the people 
in the foreground are larger than the people in the background. While today we 
take these devices for granted, finding a transformation matrix to accomplish this 
requires some mathematical analysis.
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We achieve this effect by using 
a matrix transform that converts 
parallel lines into appropriate non-
parallel lines. Such a matrix is called 
a perspective matrix or perspective 
transform, and is built by defining 
the four parameters of a view volume. 
Those parameters are (a) aspect ratio, 
(b) field of view, (c) projection plane 
or  near clipping plane, and (d) far 
clipping plane.

Only objects between the near 
and far clipping planes are rendered. 
The near clipping plane also serves as 
the plane on which objects are pro-
jected, and is generally positioned 
close to the eye or camera (shown on 
the left in Figure 3.15). Selection of 
an appropriate value for the far clip-
ping plane is discussed in Chapter 4. 

The field of view is the vertical angle of viewable space. The aspect ratio is the 
ratio width/height of the near and far clipping planes. The shape formed by these 
elements and shown in Figure 3.15 is called a frustum.

Figure 3.15
Perspective view volume or frustum.

Figure 3.14
The Annunciation, with Saint Emidius (Crivelli – 1486).
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The perspective matrix is used to transform points in 3D space to their appro-
priate position on the near clipping plane, and it is built by first computing values 
q, A, B, and C, and then using those values to construct the matrix, as shown in 
Figure 3.16 (and derived in [FV95]).

Figure 3.16
Building a perspective matrix.

Generating a perspective transform matrix is a simple matter, by simply 
inserting the described formulas into the cells of a 4x4 matrix. The GLM library 
also includes a function glm::perspective() for building a perspective matrix.

	 3.8.2	 The Orthographic Projection Matrix
In orthographic projection, parallel lines remain parallel; that is, perspec-

tive isn’t employed. Instead, objects that are within the view volume are projected 
directly, without any adjustment of their sizes due to their distances from the camera.

An orthographic projection is a parallel projection in which all projections are 
at right angles with the projection plane. An orthographic matrix is built by defin-
ing the following parameters: (a) the distance Znear from the camera to the projection 
plane, (b) the distance Zfar from the camera to the far clipping plane, and (c) values 
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for L, R, T, and B, with L and R corresponding to the X coordinates of the left and right 
boundaries of the projection plane respectively, and T and B corresponding to the Y 
coordinates of the top and bottom boundaries of the projection plane respectively. 
The orthographic projection matrix as derived in [WB15] is shown in Figure 3.18.

Figure 3.18
Orthographic projection matrix.

Not all parallel projections are orthographic, but others are out of the scope of 
this textbook.

Parallel projections don’t match what the eye sees when looking at the real 
world. But they are useful in a variety of situations, such as in casting shadows, 
performing 3D clipping, and in CAD (computer aided design)—the latter because 
they preserve measurement regardless of the placement of the objects. Regardless, 
the great majority of examples in this book use perspective projection.

	 3.9	 LOOK-AT MATRIX
The final transformation we will examine is the look-at matrix. This is handy 

when you wish to place the camera at one location and look toward a particular 

Figure 3.17
Orthographic projection.
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other location, as illustrated in Figure 3.19. Of course, it would be possible to 
achieve this using the methods we have already seen, but it is such a common 
operation that building one matrix transform to do it is often useful.

Figure 3.19
Elements of look-at.

A look-at transform still requires deciding on a camera orientation. We do this 
by specifying a vector approximating the general orientation desired (such as the 
world 



Y  axis). Typically, a sequence of cross products can be used to then generate 
a suitable set of forward, side, and up vectors for the desired camera orientation. 
Figure 3.20 shows the computations, starting with the camera location (eye), target 
location, and initial up vector 



Y , to build the look-at matrix, as derived in [FV95].

Figure 3.20
Look-At matrix.
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We could encode this as a simple C++/OpenGL utility function that builds a 
look-at matrix, given specified values for camera location, target location, and the 
initial “up” vector 



Y . Since GLM includes the function glm::lookAt() for building a 
look-at matrix, we will simply use that. This function will be useful later in this 
textbook, particularly in Chapter 8 when we generate shadows.

	 3.10	� GLSL FUNCTIONS FOR BUILDING 
MATRIX TRANSFORMS

Although GLM includes predefined functions for performing many of the 3D 
transformations covered in this chapter, such as translation, rotation, and scale, GLSL 
only includes basic matrix operations such as addition, concatenation, and so on. It is 
therefore sometimes necessary to write our own GLSL utility functions for building 
3D transformation matrices when we need them to perform certain 3D computations 
in a shader. The appropriate datatype to hold such a matrix in GLSL is mat4.

The syntax for initializing mat4 matrices in GLSL loads values by columns. 
The first four values are put into the first column, the next four into the next col-
umn, and so forth, as illustrated in the following example:

	 mat4 translationMatrix =
		  mat4(1.0, 0.0, 0.0, 0.0,	// note this is the leftmost column, not the top row
			     0.0, 1.0, 0.0, 0.0,
			     0.0, 0.0, 1.0, 0.0,
			     tx, ty, tz, 1.0 );

which builds the translation matrix described previously in Figure 3.3.

Program 3.1 includes five GLSL functions for building 4x4 translation, rotation, 
and scale matrices, each corresponding to formulas given earlier in this chapter. We 
will use some of these functions later in the book.

Program 3.1 Building Transformation Matrices in GLSL
// builds and returns a translation matrix
mat4 buildTranslate(float x, float y, float z)
{	 mat4 trans = mat4(1.0, 0.0, 0.0, 0.0,
					     0.0, 1.0, 0.0, 0.0,
					     0.0, 0.0, 1.0, 0.0,
					     x, y, z, 1.0 );
	 return trans;
}
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// builds and returns a matrix that performs a rotation around the X axis
mat4 buildRotateX(float rad)
{	 mat4 xrot = mat4(1.0, 0.0, 0.0, 0.0,
					    0.0, cos(rad), -sin(rad), 0.0,
					    0.0, sin(rad), cos(rad), 0.0,
					    0.0, 0.0, 0.0, 1.0 );
	 return xrot;
}

// builds and returns a matrix that performs a rotation around the Y axis
mat4 buildRotateY(float rad)
{	 mat4 yrot = mat4(cos(rad), 0.0, sin(rad), 0.0,
					    0.0, 1.0, 0.0, 0.0,
					    -sin(rad), 0.0, cos(rad), 0.0,
					    0.0, 0.0, 0.0, 1.0 );
	 return yrot;
}

// builds and returns a matrix that performs a rotation around the Z axis
mat4 buildRotateZ(float rad)
{	 mat4 zrot = mat4(cos(rad), -sin(rad), 0.0, 0.0,
					    sin(rad), cos(rad), 0.0, 0.0,
					    0.0, 0.0, 1.0, 0.0,
					    0.0, 0.0, 0.0, 1.0 );
	 return zrot;
}

// builds and returns a scale matrix
mat4 buildScale(float x, float y, float z)
{	 mat4 scale = mat4(x, 0.0, 0.0, 0.0,
					     0.0, y, 0.0, 0.0,
					     0.0, 0.0, z, 0.0,
					     0.0, 0.0, 0.0, 1.0 );
	 return scale;
}

SUPPLEMENTAL NOTES

In this chapter, we have seen examples of applying matrix transformations to 
points. Later, we will also want to apply these same transforms to vectors. In order 
to accomplish a transform on a vector V equivalent to applying some matrix trans-
form M to a point, it is necessary in the general case to compute the inverse trans-
pose of M, denoted (M-1)T, and multiply V by that matrix. In some cases, M=(M-1)T, 
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and in those cases it is possible to simply use M. For example, the basic rotation 
matrices we have seen in this chapter are equal to their own inverse transpose and 
can be applied directly to vectors (and therefore also to points). Thus, the examples 
in this book sometimes use (M-1)T when applying a transform to a vector, and some-
times simply use M.

One of the things we haven’t discussed in this chapter is techniques for moving 
the camera smoothly through space. This is very useful, especially for games 
and CGI movies, but also for visualization, virtual reality, and for 3D modeling. 
Code that does this is called a camera controller, and there are many resources 
available online for this topic [TR15].

We didn’t include complete derivations for all of the matrix transforms that 
were presented (they can be found in other sources, such as [FV95]). We strove 
instead for a concise summary of the point, vector, and matrix operations neces-
sary for doing basic 3D graphics programming. As this book proceeds, we will 
encounter many practical uses for the methods presented.

Exercises

	3.1	Modify Program 2.5 so that the vertex shader includes one of the buildRotate() 
functions from Program 3.1 and applies it to the points comprising the triangle. 
This should cause the triangle to be rotated from its original orientation. You 
don’t need to animate the rotation.

	3.2	 (RESEARCH) At the end of Section 3.4 we indicated that Euler angles can in 
some cases lead to undesirable artifacts. The most common is called “gimbal 
lock.” Describe gimbal lock, give an example, and explain why gimbal lock 
can cause problems.

	3.3	 (RESEARCH) One way of avoiding the artifacts that can manifest when using 
Euler angles is to use quaternions. We didn’t study quaternions; however, GLM 
includes several quaternion classes and functions. Do some independent study 
on quaternions and familiarize yourself with the related GLM quaternion 
capabilities.
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■ ■ ■ ■ ■

Using OpenGL to render 3D images generally involves sending several datasets 
through the OpenGL shader pipeline. For example, to draw a simple 3D object such 
as a cube, you will need to at least send the following items:

•	 the vertices for the cube model
•	 some transformation matrices to control the appearance of the cube’s 

orientation in 3D space

To complicate matters a bit, there are two ways of sending data through the 
OpenGL pipeline:

•	 through a buffer to a vertex attribute or
•	 directly to a uniform variable.

It is important to understand exactly how these two mechanisms work, so as to 
use the appropriate method for each item we are sending through.

Let’s start by rendering a simple cube.
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	 4.1	 BUFFERS AND VERTEX ATTRIBUTES
For an object to be drawn, its vertices must be sent to the vertex shader. 

Vertices are usually sent by putting them in a buffer on the C++ side and associ-
ating that buffer with a vertex attribute declared in the shader. There are several 
steps to accomplish this, some of which only need to be done once, and some of 
which—if the scene is animated—must be done at every frame:

Done once—typically in init():

	 1.	 create a buffer
	 2.	 copy the vertices into the buffer

Done at each frame—typically in display():

	 1.	 enable the buffer containing the vertices
	 2.	 associate the buffer with a vertex attribute
	 3.	 enable the vertex attribute
	 4.	 use glDrawArrays(…) to draw the object

Buffers are typically created all at once at the start of the program, either in 
init() or in a function called by init(). In OpenGL, a buffer is contained in a Vertex 
Buffer Object, or VBO, which is declared and instantiated in the C++/OpenGL 
application. A scene may require many VBOs, so it is customary to generate and 
then fill several of them in init() so that they are available whenever your program 
needs to draw one or more of them.

A buffer interacts with a ver-
tex attribute in a specific way. When 
glDrawArrays() is executed, the data 
in the buffer starts flowing, sequen-
tially from the beginning of the buf-
fer, through the vertex shader. As 
described in Chapter 2, the vertex 
shader executes once per vertex. A ver-
tex in 3D space requires three values, 
so an appropriate vertex attribute in 
the shader to receive these three values 
would be of type vec3. Then, for each 
three values in the buffer, the shader 
is invoked, as illustrated in Figure 4.1.

Figure 4.1
Data transmission between a VBO and a vertex attribute.
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A related structure in OpenGL is called a Vertex Array Object, or VAO. VAOs 
were introduced in version 3.0 of OpenGL and are provided as a way of organizing 
buffers and making them easier to manipulate in complex scenes. OpenGL requires 
that at least one VAO be created, and for our purposes one will be sufficient.

For example, suppose that we wish to display two objects. On the C++ side, 
we could do this by declaring a single VAO and an associated set of two VBOs 
(one per object), as follows:

GLuint vao[1];	 // OpenGL requires these values be specified in arrays
GLuint vbo[2];
…
glGenVertexArrays(1, vao);
glBindVertexArray(vao[0]);
glGenBuffers(2, vbo);

The two OpenGL commands glGenVertexArrays() and glGenBuffers() create 
VAOs and VBOs respectively, and produce integer IDs for these items that are 
stored in the arrays vao and vbo. The two parameters on each of them refer to 
how many IDs are created, and an array to hold the returned IDs. The purpose of 
glBindVertexArrays() is to make the specified VAO “active” so that the generated 
buffers1 will be associated with that VAO.

A buffer needs to have a corresponding vertex attribute variable declared in 
the vertex shader. Vertex attributes are generally the first variables declared in a 
shader. In our cube example, a vertex attribute to receive the cube vertices could 
be declared in the vertex shader as follows:

layout (location = 0) in vec3 position;

The keyword in means “input” and indicates that this vertex attribute will be 
receiving values from a buffer (as we will see later, vertex attributes can also be used 
for “output”). As seen before, the “vec3” means that each invocation of the shader will 
grab three float values (presumably x, y, z, comprising a single vertex). The variable 
name is “position”. The “layout (location=0)” portion of the command is called a “layout 
qualifier” and is how we will associate the vertex attribute with a particular buffer. 
Thus this vertex attribute has an identifier 0 that we will use later for this purpose.

1	 Throughout this example, two buffers are declared, to emphasize that usually we will use several 
buffers. Later we will use the additional buffer(s) to store other information associated with the 
vertex, such as color. In the current case we are using only one of the declared buffers, so it would 
have been sufficient to declare just one VBO.
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The manner in which we load the vertices of a model into a buffer (VBO) 
depends on where the model’s vertex values are stored. In Chapter 6, we will see 
how models are commonly built in a modeling tool (such as Blender [BL20] or 
Maya [MA16]), exported to a standard file format (such as .obj—also described in 
Chapter 6), and imported into the C++/OpenGL application. We will also see how 
a model’s vertices can be calculated on the fly or generated inside the pipeline 
using a tessellation shader.

For now, let’s say that we wish to draw a cube, and let’s presume that the verti-
ces of our cube are hardcoded in an array in the C++/OpenGL application. In that 
case, we need to copy those values into one of our two buffers that we previously 
generated. To do that, we need to (a) make that buffer (say, the 0th buffer) “active” 
with the OpenGL glBindBuffer() command, and (b) use the glBufferData() command 
to copy the array containing the vertices into the active buffer (the 0th VBO in this 
case). Presuming that the vertices are stored in a float array named vPositions, the 
following C++ code2 would copy those values into the 0th VBO:

glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(vPositions), vPositions, GL_STATIC_DRAW);

Next, we add code to display() that will cause the values in the buffer to be sent 
to the vertex attribute in the shader. We do this with the following three steps: (a) 
make that buffer “active” with the glBindBuffer() command as we did above, (b) 
associate the active buffer with a vertex attribute in the shader, and (c) enable the 
vertex attribute. The following lines of code accomplish these steps:

glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);	 // make the 0th buffer "active"
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);	 // associate 0th attribute with buffer
glEnableVertexAttribArray(0);	 // enable the 0th vertex attribute

Now when we execute glDrawArrays(), data in the 0th VBO will be transmitted 
to the vertex attribute that has a layout qualifier with location 0. This sends the 
cube vertices to the shader.

2	 Note that here, for the first time, we are refraining from describing every parameter in one or 
more OpenGL calls. As mentioned in Chapter 2, the reader is encouraged to utilize the OpenGL 
documentation for such details as needed.
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	 4.2	 UNIFORM VARIABLES
Rendering a scene so that it appears 3D requires building appropriate transfor-

mation matrices, such as those described in Chapter 3, and applying them to each 
of the models’ vertices. It is most efficient to apply the required matrix operations 
in the vertex shader, and it is customary to send these matrices from the C++/
OpenGL application to the shader in a uniform variable.

Uniform variables are declared in a shader by using the “uniform” keyword. 
The following example, which declares variables to hold model-view and projec-
tion matrices, will be suitable for our cube program:

uniform mat4 mv_matrix;
uniform mat4 proj_matrix;

The keyword “mat4” indicates that these are 4x4 matrices. Here we have named 
the variable mv_matrix to hold the model-view matrix and the variable proj_matrix to 
hold the projection matrix. Since 3D transformations are 4x4, mat4 is a commonly 
used datatype in GLSL shader uniforms.

Sending data from a C++/OpenGL application to a uniform variable requires 
the following steps: (a) acquire a reference to the uniform variable and (b) associ-
ate a pointer to the desired values with the acquired uniform reference. Assuming 
that the linked rendering program is saved in a variable called “renderingProgram”, 
the following lines of code would specify that we will be sending model-view 
and projection matrices to the two uniforms mv_matrix and proj_matrix in our cube 
example:

mvLoc = glGetUniformLocation(renderingProgram,"mv_matrix");	 // get locations of uniforms
projLoc = glGetUniformLocation(renderingProgram,"proj_matrix");	 // in the shader program
glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvMat));	// send matrix data to the
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));	 // uniform variables

The above example assumes that we have utilized the GLM utilities to build 
model-view and projection matrix transforms mvMat and pMat, as will be discussed 
in greater detail shortly. They are of type mat4 (a GLM class). The GLM func-
tion call value_ptr() returns a reference to the matrix data, which is needed by 
glUniformMatrix4fv() to transfer those matrix values to the uniform variable.
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	 4.3	 INTERPOLATION OF VERTEX ATTRIBUTES
It is important to understand how vertex attributes are processed in the 

OpenGL pipeline, versus how uniform variables are processed. Recall that 
immediately before the fragment shader is rasterization, where primitives (e.g., 
triangles) defined by vertices are converted to fragments. Rasterization linearly 
interpolates vertex attribute values so that the displayed pixels seamlessly connect 
the modeled surfaces.

By contrast, uniform variables behave like initialized constants and remain 
unchanged across each vertex shader invocation (i.e., for each vertex sent from the 
buffer). A uniform variable is not interpolated; it always contains the same value 
regardless of the number of vertices.

The interpolation done on vertex attributes by the rasterizer is useful in many 
ways. Later, we will use rasterization to interpolate colors, texture coordinates, 
and surface normals. It is important to understand that all values sent through a 
buffer to a vertex attribute will be interpolated further down the pipeline.

We have seen vertex attributes in a vertex shader declared as “in” to indicate 
that they receive values from a buffer. Vertex attributes may instead be declared 
as “out”, meaning that they send their values forward toward the next stage in the 
pipeline. For example, the following declaration in a vertex shader specifies a vertex 
attribute named “color” that outputs a vec4:

out vec4 color;

It is not necessary to declare an “out” variable for the vertex positions, because 
OpenGL has a built-in out vec4 variable named gl_Position for that purpose. In 
the vertex shader, we apply the matrix transformations to the incoming vertex 
(declared earlier as position), assigning the result to gl_Position:

gl_Position = proj_matrix * mv_matrix * position;

The transformed vertices will then be 
automatically output to the rasterizer, with 
corresponding pixel locations ultimately sent 
to the fragment shader.

The rasterization process is illustrated in 
Figure 4.2. When specifying GL_TRIANGLES 
in the glDrawArrays() function, rasterization is 

Figure 4.2
Rasterization of vertices.
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done per triangle. Interpolation starts along the lines connecting the vertices, at 
a level of precision corresponding to the pixel display density. The pixels in the 
interior space of the triangle are then filled by interpolating along the horizontal 
lines connecting the edge pixels.

	 4.4	 MODEL-VIEW AND PERSPECTIVE MATRICES
A fundamental step in rendering an object in 3D is to create appropriate trans-

formation matrices and send them to uniform variables like we did in Section 4.2. 
We start by defining three matrices:

	 1.	 a Model matrix
	 2.	 a View matrix
	 3.	 a Perspective matrix

The Model matrix positions and orients the object in the world coordinate 
space. Each model has its own model matrix, and that matrix would need to be 
continuously rebuilt if the model moves.

The View matrix moves and rotates the models in the world to simulate the 
effect of a camera at a desired location. Recall from Chapter 2 that the OpenGL 
camera exists at location (0,0,0) and faces down the negative Z axis. To simulate 
the appearance of that camera being moved a certain way, we will need to move 
the objects themselves in the opposite direction. For example, moving a camera 
to the right would cause the objects in the scene to appear to move to the left; 
although the OpenGL camera is fixed, we can make it appear as though we have 
moved it to the right by moving the objects to the left.

The Perspective matrix is a transform that provides the 3D effect according to 
the desired frustum, as described earlier in Chapter 3.

It is also important to understand when to compute each type of matrix. 
Matrices that never change can be built in init(), but those that change would need 
to be built in display() so that they are rebuilt for each frame. Let’s assume that the 
models are animated and the camera is movable. Then:

•	 A model matrix needs to be created for each model and at each frame.
•	 The view matrix needs to be created once per frame (because the camera 

can be moved), but it is the same for all objects rendered during that 
frame.
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•	 The perspective matrix is created once (in init()), using the screen 
window’s width and height (and desired frustum parameters), and 
it usually remains unchanged unless the window is resized.

Generating model and view transformation matrices then happens in the 
display() function, as follows:

	 1.	 Build the view matrix based on the desired camera location and orientation.
	 2.	 For each model, do the following:
		    i.  Build a model matrix based on the model’s location and orientation.
		   ii.  Concatenate the model and view matrices into a single “MV” matrix.
		  iii. � Send the MV and projection matrices to the corresponding shader 

uniforms.

Technically, it isn’t necessary to combine the model and view matrices into a 
single matrix. That is, they could be sent to the vertex shader in individual, separate 
matrices. However, there are certain advantages to combining them, while keeping 
the perspective matrix separate. For example, in the vertex shader, each vertex in 
the model is multiplied by the matrices. Since complex models may have hundreds 
or even thousands of vertices, performance can be improved by pre-multiplying 
the model and view matrices once before sending them to the vertex shader. Later, 
we will see the need to keep the perspective matrix separate for lighting purposes.

	 4.5	 OUR FIRST 3D PROGRAM – A 3D CUBE
It’s time to put all the pieces together! In order to build a complete C++/

OpenGL/GLSL system to render our cube in a 3D “world,” all of the mechanisms 
described so far will need to be put together and perfectly coordinated. We can 
reuse some of the code that we have seen previously in Chapter 2. Specifically, we 
won’t repeat the following functions for reading in files containing shader code, 
compiling and linking them, and detecting GLSL errors; in fact, recall that we 
have moved them to a “Utils.cpp” file:

•	 createShaderProgram()
•	 readShaderSource()
•	 checkOpenGLError()
•	 printProgramLog()
•	 printShaderLog()
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We will also need a utility function that builds a perspective matrix, given a 
specified field-of-view angle for the Y axis, the screen aspect ratio, and the desired 
near and far clipping planes (selecting appropriate values for near and far clipping 
planes is discussed in Section 4.9). While we could easily write such a function 
ourselves, GLM already includes one:

glm::perspective(<field of view>, <aspect ratio>, <near plane>, <far plane>);

We now build the complete 3D cube program, shown as follows in Program 4.1:

Program 4.1 Plain Red Cube
C++/OpenGL Application
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include <string>
#include <iostream>
#include <fstream>
#include <cmath>
#include <glm/glm.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include "Utils.h"
using namespace std;

#define numVAOs 1
#define numVBOs 2

float cameraX, cameraY, cameraZ;
float cubeLocX, cubeLocY, cubeLocZ;
GLuint renderingProgram;
GLuint vao[numVAOs];
GLuint vbo[numVBOs];

// allocate variables used in display() function, so that they won’t need to be allocated during rendering
GLuint mvLoc, projLoc;
int width, height;
float aspect;
glm::mat4 pMat, vMat, mMat, mvMat;

void setupVertices(void) {	 // 36 vertices, 12 triangles, makes 2x2x2 cube placed at origin
	 float vertexPositions[108] = {
		  -1.0f,  1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f,
		  1.0f, -1.0f, -1.0f, 1.0f,  1.0f, -1.0f, -1.0f,  1.0f, -1.0f,
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		  1.0f, -1.0f, -1.0f, 1.0f, -1.0f,  1.0f, 1.0f,  1.0f, -1.0f,
		  1.0f, -1.0f,  1.0f, 1.0f,  1.0f,  1.0f, 1.0f,  1.0f, -1.0f,
		  1.0f, -1.0f,  1.0f, -1.0f, -1.0f,  1.0f, 1.0f,  1.0f,  1.0f,
		  -1.0f, -1.0f,  1.0f, -1.0f,  1.0f,  1.0f, 1.0f,  1.0f,  1.0f,
		  -1.0f, -1.0f,  1.0f, -1.0f, -1.0f, -1.0f, -1.0f,  1.0f,  1.0f,
		  -1.0f, -1.0f, -1.0f, -1.0f,  1.0f, -1.0f, -1.0f,  1.0f,  1.0f,
		  -1.0f, -1.0f,  1.0f,  1.0f, -1.0f,  1.0f,  1.0f, -1.0f, -1.0f,
		  1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f,  1.0f,
		  -1.0f,  1.0f, -1.0f, 1.0f,  1.0f, -1.0f, 1.0f,  1.0f,  1.0f,
		  1.0f,  1.0f,  1.0f, -1.0f,  1.0f,  1.0f, -1.0f,  1.0f, -1.0f
	 };
	 glGenVertexArrays(1, vao);
	 glBindVertexArray(vao[0]);
	 glGenBuffers(numVBOs, vbo);

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glBufferData(GL_ARRAY_BUFFER, sizeof(vertexPositions), vertexPositions, GL_STATIC_DRAW);
}

void init(GLFWwindow* window) {
	 renderingProgram = Utils::createShaderProgram("vertShader.glsl", "fragShader.glsl");
	 cameraX = 0.0f; cameraY = 0.0f; cameraZ = 8.0f;
	 cubeLocX = 0.0f; cubeLocY = -2.0f; cubeLocZ = 0.0f;	 // shift down Y to reveal perspective
	 setupVertices();
}

void display(GLFWwindow* window, double currentTime) {
	 glClear(GL_DEPTH_BUFFER_BIT);
	 glUseProgram(renderingProgram);

	 // get the uniform variables for the MV and projection matrices
	 mvLoc = glGetUniformLocation(renderingProgram, "mv_matrix");
	 projLoc = glGetUniformLocation(renderingProgram, "proj_matrix");

	 // build perspective matrix
	 glfwGetFramebufferSize(window, &width, &height);
	 aspect = (float)width / (float)height;
	 pMat = glm::perspective(1.0472f, aspect, 0.1f, 1000.0f);	 // 1.0472 radians = 60 degrees

	 // build view matrix, model matrix, and model-view matrix
	 vMat = glm::translate(glm::mat4(1.0f), glm::vec3(-cameraX, -cameraY, -cameraZ));
	 mMat = glm::translate(glm::mat4(1.0f), glm::vec3(cubeLocX, cubeLocY, cubeLocZ));
	 mvMat = vMat * mMat;
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	 // copy perspective and MV matrices to corresponding uniform variables
	 glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvMat));
	 glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));

	 // associate VBO with the corresponding vertex attribute in the vertex shader
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);

	 // adjust OpenGL settings and draw model
	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);
	 glDrawArrays(GL_TRIANGLES, 0, 36);
}

int main(void) {				    // main() is unchanged from before
	 if (!glfwInit()) { exit(EXIT_FAILURE); }
	 glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
	 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	 GLFWwindow* window = glfwCreateWindow(600, 600, "Chapter 4 - program 1", NULL, NULL);
	 glfwMakeContextCurrent(window);
	 if (glewInit() != GLEW_OK) { exit(EXIT_FAILURE); }
	 glfwSwapInterval(1);

	 init(window);

	 while (!glfwWindowShouldClose(window)) {
		  display(window, glfwGetTime());
		  glfwSwapBuffers(window);
		  glfwPollEvents();
	 }
	 glfwDestroyWindow(window);
	 glfwTerminate();
	 exit(EXIT_SUCCESS);
}

Vertex shader (file name: "vertShader.glsl")
#version 430

layout (location=0) in vec3 position;

uniform mat4 mv_matrix;
uniform mat4 proj_matrix;

void main(void)
{	 gl_Position = proj_matrix * mv_matrix * vec4(position,1.0);
}
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Fragment shader (file name: "fragShader.glsl")
#version 430

out vec4 color;

uniform mat4 mv_matrix;
uniform mat4 proj_matrix;

void main(void)
{	 color = vec4(1.0, 0.0, 0.0, 1.0);
}

Let’s take a close look at the code in 
Program 4.1. It is important that we under-
stand how all of the pieces work, and how 
they work together.

Start by examining the function set-
upVertices(), called by init(). At the start of 
this function, an array is declared called 
vertexPositions that contains the 36 vertices 
comprising the cube. At first you might 
wonder why this cube has 36 vertices, 
when logically a cube should only require 
eight. The answer is that we need to build 
our cube out of triangles, and so each of 
the six cube faces needs to be built of two 
triangles, for a total of 6x2=12 triangles (see 
Figure 4.4). Since each triangle is specified 
by three vertices, this totals 36 vertices. 
Since each vertex has three values (x,y,z), 
there are a total of 36x3=108 values in the 
array. It is true that each vertex participates 
in multiple triangles, but we still specify 
each vertex separately because for now we 
are sending each triangle’s vertices down 
the pipeline separately.

The cube is defined in its own coordi-
nate system, with (0,0,0) at its center, and 
with its corners ranging from -1.0 to +1.0 
along the x, y, and z axes. The rest of the 

Figure 4.3
Output of Program 4.1. red cube positioned at (0,-2,0) 
viewed from (0,0,8).

Figure 4.4
Cube made of triangles.
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setupVertices() function sets up the VAO and two VBOs (although only one is used) 
and loads the cube vertices into the 0th VBO buffer.

Note that the init() function performs tasks that only need to be done once: 
reading in shader code and building the rendering program, and loading cube ver-
tices into the VBO (by calling setupVertices()). Note that it also positions the cube 
and the camera in the world. Later we will animate the cube and also see how to 
move the camera around, at which point we may need to remove this hardcoded 
positioning.

Now let’s look at the display() function. Recall that display() may be called 
repeatedly and the rate at which it is called is referred to as the frame rate. That is, 
animation works by continually drawing and redrawing the scene, or frame, very 
quickly. It is usually necessary to clear the depth buffer before rendering a frame 
so that hidden surface removal occurs properly (not clearing the depth buffer can 
sometimes result in every surface being removed, resulting in a completely black 
screen). By default, depth values in OpenGL range from 0.0 to 1.0. Clearing the 
depth buffer is done by calling glClear(GL_DEPTH_BUFFER_BIT), which fills the 
depth buffer with the default value (usually 1.0).

Next, display() enables the shaders by calling glUseProgram(), installing the 
GLSL code on the GPU. Recall this doesn’t run the shader program, but it does 
enable subsequent OpenGL calls to determine the shader’s vertex attribute and 
uniform locations. The display() function next gets the uniform variable locations, 
builds the perspective, view, and model matrices3, concatenates the view and 
model matrices into a single MV matrix, and assigns the perspective and MV matri-
ces to their corresponding uniforms. Here, it is worth noting also the form of the 
GLM call to the translate() function:

vMat = glm::translate(glm::mat4(1.0f), glm::vec3(-cameraX, -cameraY, -cameraZ));

The somewhat cryptic-looking call builds a translation matrix by (a) starting 
with an identity matrix (using the glm::mat4(1.0f) constructor) and (b) specifying 
translation values in the form of a vector (with the glm::vec3(x,y,z) constructor). 
Many of the GLM transform operations utilize this approach.

3	 An astute reader may notice that it shouldn’t be necessary to build the perspective matrix every 
time display() is called, because its value doesn’t change. This is partially true—the perspective 
matrix would need to be recomputed if the user were to resize the window while the program was 
running. In Section 4.11 we will handle this situation more efficiently, and in the process we will 
move the computation of the perspective matrix out of display() and into the init() function.
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Next, display() enables the buffer containing the cube vertices and attaches it to 
0th vertex attribute to prepare for sending the vertices to the shader.

The last thing display() does is draw the model by calling glDrawArrays(), speci-
fying that the model is composed of triangles and has 36 total vertices. The call to 
glDrawArrays() is typically preceded by additional commands that adjust rendering 
settings for this model.4  In this example there are two such commands, both of 
which are related to depth testing. Recall from Chapter 2 that depth testing is used 
by OpenGL to perform hidden surface removal. Here, we enable depth testing and 
specify the particular depth test we wish OpenGL to use. The settings shown here 
correspond to the description in Chapter 2; later in the book we will see other uses 
for these commands.

Finally, consider the shaders. First, note that they both include the same block 
of uniform variable declarations. Although this is not always required, it is often a 
good practice to include the same block of uniform variable declarations in all of 
the shaders within a particular rendering program.

Note also in the vertex shader the presence of the layout qualifier on the incom-
ing vertex attribute position. Since the location is specified as “0”, the display() 
function can reference this variable simply by using 0 in the first parameter of the 
glVertexAttribPointer() function call and in the  glEnableVertexAttribArray() function call. 
Note also that the position vertex attribute is declared as a vec3, and so it needs to be 
converted to a vec4 in order to be compatible with the 4x4 matrices with which it will 
be multiplied. This conversion is done with vec4(position,1.0), which builds a vec4 out 
of the variable named “position”, putting a value of 1.0 in the newly added 4th spot.

The multiplication in the vertex shader applies the matrix transforms to the 
vertex, converting it to camera space (note the right-to-left concatenation order). 
Those values are put in the built-in OpenGL output variable gl_Position, and then 
proceed through the pipeline and are interpolated by the rasterizer.

The interpolated pixel locations (referred to as fragments) are then sent to the 
fragment shader. Recall that the primary purpose of the fragment shader is to set 
the color of an outputted pixel. In a manner similar to the vertex shader, the frag-
ment shader processes the pixels one by one, with a separate invocation for each 
pixel. In this case, it outputs a hardcoded value corresponding to red. For reasons 

4	 Often, these calls may be placed in init() rather than in display(). However, it is necessary to place 
one or more of them in display() when drawing multiple objects with different properties. For 
simplicity, we always place them in display().
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indicated earlier, the uniform variables have been included in the fragment shader 
even though they aren’t being used there in this example.

An overview of the flow of data starting with the C++/OpenGL application 
and passing through the pipeline is shown in Figure 4.5.

Figure 4.5
Data flow through Program 4.1.

Let’s make a slight modification to the shaders. In particular, we will assign 
a color to each vertex according to its location, and put that color in the outgoing 
vertex attribute varyingColor. The fragment shader is similarly revised to accept the 
incoming color (interpolated by the rasterizer) and use that to set the color of the 
output pixel. Note that the code also multiplies the location by 1/2 and then adds 
1/2 to convert the range of values from [-1..+1] to [0..1]. Note also the use of the 
common convention of assigning variable names that include the word “varying” 
to programmer-defined interpolated vertex attributes. The changes in each shader 
are highlighted, and the resulting output is as follows.

Revised vertex shader:

#version 430

layout (location=0) in vec3 position;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;

out vec4 varyingColor;

void main(void)
{	 gl_Position = proj_matrix * mv_matrix * vec4(position,1.0);
	 varyingColor = vec4(position,1.0) * 0.5 + vec4(0.5, 0.5, 0.5, 0.5);
}
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Revised fragment shader:

#version 430

in vec4 varyingColor;

out vec4 color;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;

void main(void)
{	 color = varyingColor;
}

Figure 4.6
Cube with interpolated colors.

Note that because the colors are sent out from the vertex shader in a vertex 
attribute (varyingColor), they too are interpolated by the rasterizer! The effect of 
this can be seen in Figure 4.6, where the colors from corner to corner are clearly 
interpolated smoothly throughout the cube.

Note also that the “out” variable varyingColor in the vertex shader is also the 
“in” variable in the fragment shader. The two shaders know which variable from 
the vertex shader feeds which variable in the fragment shader because they have 
the same name “varyingColor” in both shaders.

Since our main() includes a render loop, we can animate our cube as we did in 
Program 2.6, by building the model matrix using a varying translation and rotation 
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based on the time. For example, the code in the display() function in Program 4.1 
could be modified as follows (changes are highlighted):

glClear(GL_DEPTH_BUFFER_BIT);
glClear(GL_COLOR_BUFFER_BIT);
. . .
// use current time to compute different translations in x, y, and z
tMat = glm::translate(glm::mat4(1.0f),
	 glm::vec3(sin(0.35f*currentTime)*2.0f, cos(0.52f*currentTime)*2.0f, sin(0.7f*currentTime)*2.0f));
rMat = glm::rotate(glm::mat4(1.0f), 1.75f*(float)currentTime, glm::vec3(0.0f, 1.0f, 0.0f));
rMat = glm::rotate(rMat, 1.75f*(float)currentTime, glm::vec3(1.0f, 0.0f, 0.0f));
rMat = glm::rotate(rMat, 1.75f*(float)currentTime, glm::vec3(0.0f, 0.0f, 1.0f));
// the 1.75 adjusts the rotation speed

mMat = tMat * rMat;

The use of current time (and a variety of trigonometric functions) in the model 
matrix causes the cube to appear to tumble around in space. Note that adding this 
animation illustrates the importance of clearing the depth buffer each time through 
display() to ensure correct hidden surface removal. It also necessitates clearing the 
color buffer as shown; otherwise, the cube will leave a trail as it moves.

The translate() and rotate() functions are part of the GLM library. Also, note the 
matrix multiplication in the last line—the order in which tMat and rMat are listed 
in the operation is significant. It computes a concatenation of the two transforms, 
with translation on the left and rotation on the right. When a vertex is subsequently 
multiplied by this matrix, the computation is right to left, meaning that the rotation 
is done first, followed by the translation. The order of application of transforms is 
significant, and changing the order would result in different behavior. Figure 4.7 
shows some of the frames that are displayed after animating the cube.

Figure 4.7
Animated (“tumbling”) 3D cube.
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	 4.6	� RENDERING MULTIPLE COPIES 
OF AN OBJECT

We now extend what we have learned to rendering multiple objects. Before 
we tackle the general case of rendering a variety of models in a single scene, let’s 
consider the simpler case of multiple occurrences of the same model. Suppose, 
for instance, that we wish to expand the previous example so that it renders a 
“swarm” of 24 tumbling cubes. We can do this by moving the portions of the code 
in display() that build the MV matrix and that draw the cube (shown as follows 
in blue) into a loop that executes 24 times. We incorporate the loop variable into 
the cube’s rotation and translation so that each time the cube is drawn, a different 
model matrix is built. (We also positioned the camera further down the positive 
Z axis so we can see all of the cubes.) A frame from the resulting animated scene 
is shown in Figure 4.8.

void display(GLFWwindow* window, double currentTime) {
	 . . .
	 for (i=0; i<24; i++)
	 {	 tf = currentTime + i;	 // tf == "time factor", declared as type float
		  tMat = glm::translate(glm::mat4(1.0f), glm::vec3(sin(.35f*tf)*8.0f, cos(.52f*tf)*8.0f,  
� sin(.70f*tf)*8.0f));
		  rMat = glm::rotate(glm::mat4(1.0f), 1.75f*tf, glm::vec3(0.0f, 1.0f, 0.0f));
		  rMat = glm::rotate(rMat, 1.75f*tf, glm::vec3(1.0f, 0.0f, 0.0f));
		  rMat = glm::rotate(rMat, 1.75f*tf, glm::vec3(0.0f, 0.0f, 1.0f));
		  mMat = tMat * rMat;
		  mvMat = vMat * mMat;

		  glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvMat));
		  glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));

		  glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
		  glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
		  glEnableVertexAttribArray(0);

		  glEnable(GL_DEPTH_TEST);
		  glDepthFunc(GL_LEQUAL);
		  glDrawArrays(GL_TRIANGLES, 0, 36);
	 }
}
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	 4.6.1	 Instancing
Instancing provides a mechanism for telling the graphics card to render mul-

tiple copies of an object using only a single C++/OpenGL call. This can result in a 
significant performance benefit, particularly when there are thousands or millions 
of copies of the object being drawn—such as when rendering many flowers in a 
field, or many zombies in an army.

We start by changing the glDrawArrays() call in our C++/OpenGL application to 
glDrawArraysInstanced(). Now, we can ask OpenGL to draw as many copies as we 
want. We can specify drawing 24 cubes as follows:

glDrawArraysInstanced(GL_TRIANGLES, 0, 36, 24);

When using instancing, the vertex shader has access to a built-in variable 
gl_InstanceID, an integer that refers to which numeric instance of the object is cur-
rently being processed.

To replicate our previous tumbling cubes example using instancing, we will 
need to move the computations that build the different model matrices (previously 
inside a loop in display()) into the vertex shader. Since GLSL does not provide 
translate or rotate functions, and we cannot make calls to GLM from inside a 
shader, we will need to use the utility functions from Program 3.1. We will also 

Figure 4.8
Multiple tumbling cubes.

CGP_C++_CH04_2E_2pp.indd   79 05-Oct-20   4:11:52 PM



80  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

need to pass the “time factor” from the C++/OpenGL application to the vertex 
shader in a uniform. We also need to pass the view matrix in its own uniform vari-
able because the rotation computations have been moved to the vertex shader. The 
revisions, including those in the C++/OpenGL application and those in the new 
vertex shader, are shown in Program 4.2.

Program 4.2 Instancing – Twenty-Four Animated Cubes
Vertex Shader:
#version 430
layout (location=0) in vec3 position;

uniform mat4 v_matrix;
uniform mat4 proj_matrix;
uniform float tf;	 // time factor for animation and placement of cubes

out vec4 varyingColor;

mat4 buildRotateX(float rad);	 // declaration of matrix transformation utility functions
mat4 buildRotateY(float rad);	 // (GLSL requires functions to be declared prior to invocation)
mat4 buildRotateZ(float rad);
mat4 buildTranslate(float x, float y, float z);

void main(void)
{	 float i = gl_InstanceID + tf;	 // value based on time factor, but different for each cube instance
	 float a = sin(2.0 * i) * 8.0;	 // these are the x, y, and z components for the translation, below
	 float b = sin(3.0 * i) * 8.0;
	 float c = sin(4.0 * i) * 8.0;

	 //  build the rotation and translation matrices to be applied to this cube’s model matrix	
	 mat4 localRotX = buildRotateX(1000*i);
	 mat4 localRotY = buildRotateY(1000*i);
	 mat4 localRotZ = buildRotateZ(1000*i);
	 mat4 localTrans = buildTranslate(a,b,c);

	 //  build the model matrix and then the model-view matrix
	 mat4 newM_matrix = localTrans * localRotX * localRotY * localRotZ;
	 mat4 mv_matrix = v_matrix * newM_matrix;

	 gl_Position = proj_matrix * mv_matrix * vec4(position,1.0);
	 varyingColor = vec4(position,1.0) * 0.5 + vec4(0.5, 0.5, 0.5, 0.5);
}
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//  utility function to build a translation matrix (from Chapter 3)
mat4 buildTranslate(float x, float y, float z)
{	 mat4 trans = mat4(1.0, 0.0, 0.0, 0.0,
			   0.0, 1.0, 0.0, 0.0,
			   0.0, 0.0, 1.0, 0.0,
			   x, y, z, 1.0 );
	 return trans;
}

//  similar functions included for rotation around the X, Y, and Z axes (also from Chapter 3)
. . .

C++/OpenGL Application (in display())
	 . . .
	 //  computations that build (and transform) mMat have been moved to the vertex shader.
	 //  there is no longer any need to build an MV matrix in the C++ application.
	 glUniformMatrix4fv(vLoc, 1, GL_FALSE, glm::value_ptr(vMat));	 // shader needs the V matrix
	 timeFactor = ((float)currentTime);	 // uniform for the time factor
	 tfLoc = glGetUniformLocation(renderingProgram, "tf");	 // (the shader needs that too)
	 glUniform1f(tfLoc, (float)timeFactor);
	 . . .
	 glDrawArraysInstanced(GL_TRIANGLES, 0, 36, 24);

The resulting output of Program 4.2 is identical to that for the previous 
example, and can be seen in the previous Figure 4.8.

Instancing makes it possible to greatly expand the number of copies of an 
object; in this example animating 100,000 cubes is still feasible even for a modest 
GPU. The changes to the code—mainly just a few modified constants to spread 
the large number of cubes further apart—are as follows:

Vertex Shader:
	 . . .
	 float a = sin(203.0 * i/8000.0) * 403.0;
	 float b = cos(301.0 * i/4001.0) * 401.0;
	 float c = sin(400.0 * i/6003.0) * 405.0;
	 . . .

C++/OpenGL Application
	 . . .
	 cameraZ = 420.0f;	 // move camera further down the Z axis to view the increased number of cubes
	 . . .
	 glDrawArraysInstanced(GL_TRIANGLES, 0, 36, 100000);
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The resulting output is shown in Figure 4.9.

Figure 4.9
Instancing: 100,000 animated cubes.

	 4.7	� RENDERING MULTIPLE DIFFERENT 
MODELS IN A SCENE

To render more than one model in a single scene, a simple approach is to use 
a separate buffer for each model. Each model will need its own model matrix, and 
thus a new model-view matrix will be generated for each model that we render. 
There will also need to be separate calls to glDrawArrays() for each model. Thus 
there will need to be changes both in init() and in display().

Another consideration is whether or not we will need different shaders—or a 
different rendering program—for each of the objects we wish to draw. As it turns 
out, in many cases we can use the same shaders (and thus the same rendering 
program) for the various objects we are drawing. We usually only need to employ 
different rendering programs for the various objects if they are built of different 
primitives (such as lines instead of triangles), or if there are complex lighting or 
other effects involved. For now, that isn’t the case, so we can reuse the same vertex 
and fragment shaders, and just modify our C++/OpenGL application to send each 
model down the pipeline when display() is called.
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Let’s proceed by adding a simple pyramid, so our scene includes both a 
single cube and a pyramid. The relevant modifications to the code are shown in 
Program 4.3. A few of the key details are highlighted, such as where we specify 
one or the other buffer, and where we specify the number of vertices contained in 
the model. Note that the pyramid is composed of six triangles—four on the sides 
and two on the bottom, totaling 6×3=18 vertices.

The resulting scene, containing both the cube and the pyramid, is then shown 
in Figure 4.10.

Program 4.3 Cube and Pyramid
void setupVertices() {
	 float cubePositions[108] =
	 { -1.0f,  1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f,
	     1.0f, -1.0f, -1.0f, 1.0f,  1.0f, -1.0f, -1.0f,  1.0f, -1.0f,
			   … same as before, for the rest of the cube vertices
	 };

	 // pyramid with 18 vertices, comprising 6 triangles (four sides, and two on the bottom)
	 float pyramidPositions[54] =
	 {	 -1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 0.0f,	 // front face
		  1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 1.0f, 0.0f,	 // right face
		  1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 1.0f, 0.0f,	 // back face
		  -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 0.0f,	 // left face
		  -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f,	 // base – left front
		  1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f	 // base – right back
	 };
	 glGenVertexArrays(numVAOs, vao);			  // we need at least 1 VAO
	 glBindVertexArray(vao[0]);
	 glGenBuffers(numVBOs, vbo);			   // we need at least 2 VBOs

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glBufferData(GL_ARRAY_BUFFER, sizeof(cubePositions), cubePositions, GL_STATIC_DRAW);

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	 glBufferData(GL_ARRAY_BUFFER, sizeof(pyramidPositions), pyramidPositions, GL_STATIC_DRAW);
}

void display(GLFWwindow* window, double currentTime) { 
	 . . .
	 //  clear the color and depth buffers as before (not shown here)
	 //  use rendering program and obtain uniform locations as before (not shown here)
	 //  projection matrix computed as before (not shown here)
	 . . .
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	 // the view matrix is computed once and used for both objects

	 vMat = glm::translate(glm::mat4(1.0f), glm::vec3(-cameraX, -cameraY, -cameraZ)); 

	 // draw the cube (use buffer #0)

	 mMat = glm::translate(glm::mat4(1.0f), glm::vec3(cubeLocX, cubeLocY, cubeLocZ));
	 mvMat = vMat * mMat;

	 glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvMat));
	 glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);

	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);
	 glDrawArrays(GL_TRIANGLES, 0, 36); 

	 // draw the pyramid (use buffer #1)

	 mMat = glm::translate(glm::mat4(1.0f), glm::vec3(pyrLocX, pyrLocY, pyrLocZ));
	 mvMat = vMat * mMat;

	 glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvMat));
	 glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);

	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);
	 glDrawArrays(GL_TRIANGLES, 0, 18);
}

Figure 4.10
3D cube and pyramid.
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A few other minor details to note regarding Program 4.3:

•	 The variables pyrLocX, pyrLocY, and pyrLocZ need to be declared and then 
initialized in init() to the desired pyramid location, as was done for the 
cube location.

•	 The view matrix vMat is built at the top of display() and then used in both 
the cube’s and the pyramid’s model-view matrices.

•	 The vertex and fragment shaders are not shown—they are unchanged 
from Section 4.5.

	 4.8	 MATRIX STACKS
So far, the models we have rendered have each been constructed of a single set of 

vertices. It is often desired, however, to build complex models by assembling smaller, 
simple models. For example, a model of a “robot” could be created by separately draw-
ing the head, body, legs, and arms, where each of those is a separate model. An object 
built in this manner is often called a hierarchical model. The tricky part of building 
hierarchical models is keeping track of all the model-view matrices and making sure 
they stay perfectly coordinated—otherwise the robot might fly apart into pieces!

Hierarchical models are useful not only for building complex objects—they 
can also be used to generate complex scenes. For example, consider how our 
planet Earth revolves around the sun, and in turn how the moon revolves around 
the Earth. Such a scene is shown in Figure 4.11.5 Computing the moon’s actual 

5	 Yes, we know that the moon doesn’t revolve in this “vertical” trajectory around the earth, but 
rather in one that is more co-planar with the earth’s revolution around the sun. We chose this orbit 
to make our program’s execution clearer.

Figure 4.11
Animated planetary system (sun and earth textures from [HT12], moon texture from [NA16]).
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path through space could be complex. However, if we can combine the transforms 
representing the two simple circular paths—the moon’s path around the Earth 
and the Earth’s path around the sun—we avoid having to explicitly compute the 
moon’s trajectory.

It turns out that we can do this fairly easily with a matrix stack. A matrix stack 
is, as its name implies, a stack of transformation matrices. As we will see, matrix 
stacks make it easy to create and manage complex hierarchical objects and scenes, 
where transforms can be built upon (and removed from) other transforms.

OpenGL has a built-in matrix stack, but as part of the older fixed-function 
(non-programmable) pipeline it has long been deprecated [OL16]. However, the 
C++ Standard Template Library (STL) has a class called “stack” that is relatively 
straightforward to adapt as a matrix stack, by using it to build a stack of mat4s. 
As we will see, many of the model, view, and model-view matrices that would 
normally be needed in a complex scene can be replaced by a single instance of 
stack<glm::mat4>.

We will first examine the basic commands for instantiating and utilizing a 
C++ stack, then use one to build a complex animated scene. We will use the C++ 
stack class in the following ways:

•	 push() – makes available a new entry on the top of the stack. We will 
typically use this command by pushing a copy of the matrix that 
is currently at the top of the stack, with the intent of concatenating 
additional transforms onto the copy.

•	 pop() – removes (and returns) the top matrix.
•	 top() – returns a reference to the matrix at the top of the stack, without 

removing it.
•	 <stack>.top() *= rotate(parameters to build a rotation matrix)
•	 <stack>.top() *= scale(parameters to build a scale matrix)	
•	 <stack>.top() *= translate(parameters to build a translation  

� matrix)

As shown in the previous list, the “*=” operator is overloaded in mat4 so that it 
can be used to concatenate matrices. Therefore, we will typically use it in one of 
the forms shown to add translations, rotations, and so on to the matrix at the top 
of the matrix stack.

apply 
transforms 
directly 
to the top 
matrix in 
the stack
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Now, rather than building transforms by creating instances of mat4, we instead 
use the push() command to create new matrices at the top of the stack. Desired 
transforms are then applied as needed to the newly created matrix on the top of 
the stack.

The first matrix pushed on the stack is frequently the VIEW matrix. The matri-
ces above it are model-view matrices of increasing complexity; that is, they have 
an increasing number of model transforms applied to them. These transforms can 
either be applied directly or by first concatenating other matrices.

In our planetary system example, the matrix positioned immediately above the 
VIEW matrix would be the sun’s MV matrix. The matrix on top of that matrix would 
be the earth’s MV matrix, which consists of a copy of the sun’s MV matrix with the 
Earth’s model matrix transforms applied to it. That is, the Earth’s MV matrix is 
built by incorporating the planet’s transforms into the sun’s transforms. Similarly, 
the moon’s MV matrix sits on top of the planet’s MV matrix and is constructed by 
applying the moon’s model matrix transforms to the planet’s MV matrix immedi-
ately below it.

After rendering the moon, a second “moon” could be rendered by “popping” 
the first moon’s matrix off of the stack (restoring the top of the stack to the planet’s 
model-view matrix) and then repeating the process for the second moon.

The basic approach is as follows:

	 1.	 We declare our stack, giving it the name “mvStack”.
	 2.	 When a new object is created relative to a parent object, call “mvStack 

.push(mvStack.top())”.
	 3.	 Apply the new object’s desired transforms; i.e., multiply a desired trans-

form onto it.
	 4.	 When an object or sub-object has finished being drawn, call “mvStack 

.pop()” to remove its model-view matrix from atop the matrix stack.

In later chapters, we will learn how to create spheres and make them look 
like planets and moons. For now, to keep things simple, we will build a “planetary 
system” using our pyramid and a couple of cubes. 

Here is an overview of how a display() function using a matrix stack is typically 
organized:
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Note that the pyramid (“sun”) rotation on its axis is in its own local coordinate 
space, and should not be allowed to affect the “children” (the planet and moon, 
in this case). Therefore, the sun’s rotation (shown in the image below) is pushed 
onto the stack, but then after drawing the sun, it must be removed (popped) from 
the stack.

Setup ●  Instantiate the matrix stack.

Camera ● � Push a new matrix onto the stack. 
(this will instantiate an empty VIEW matrix).

●  Apply transform(s) to the view matrix on the top of the stack.

Parent ● � Push a new matrix onto the stack (this will be the parent MV 
matrix—for the first parent, it duplicates the view matrix).

● � Apply transforms to incorporate the parent’s M 
matrix into the duplicated view matrix.

● � Send the topmost matrix (i.e., use "glm::value_ptr()") to the  
MV uniform variable in the vertex shader.

●  Draw the parent object.

Child ● � Push a new matrix onto the stack. This will be the 
child’s MV matrix, duplicating the parent MV matrix.

● � Apply transforms to incorporate the child’s M 
matrix into the duplicated parent MV matrix.

● � Send the topmost matrix (i.e., use "glm::value_ptr()") to the  
MV uniform variable in the vertex shader.

●  Draw the child object.

Cleanup ●  Pop the child’s MV matrix off the stack.

●  Pop the parent’s MV matrix off the stack.

●  Pop the VIEW matrix off the stack.
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The big cube’s (planet) revolution around the sun (left image, below) will 
affect the moon’s movement, and so it is pushed on the stack and remains there 
when drawing the moon as well. By contrast, the planet’s rotation on its axis (right 
image, below) is local and does not affect the moon, so it is popped off the stack 
before drawing the moon.

 

Similarly, we would push transforms onto the stack for the moon’s rotations 
(around the planet, and on its axis), indicated in the following images.
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Here is the sequence of steps for the “planet”:

•	 push() This will be the portion of the planet’s MV matrix that will also 
affect children.

•	 translate(...) To incorporate the planet movement around the sun into the 
planet’s MV matrix. In this example we use trigonometry to calculate the 
planet movement as a translation.

•	 push() This will be the planet’s complete MV matrix, also including its 
axis rotation.

•	 rotate(...) To incorporate the planet’s axis rotation (this will later be 
popped and not affect children).

•	 glm::value_ptr(mvStack.top()) To obtain the MV matrix and then send it to 
the MV uniform.

•	 Draw the planet.
•	 pop() This removes the planet MV matrix off the stack, exposing 

underneath it an earlier copy of the planet MV matrix that doesn’t 
include the planet’s axis rotation (so that only the planet’s translation 
will affect the moon).

We now can write the complete display() routine, shown in Program 4.4.

Program 4.4 Simple Solar System Using Matrix Stack
stack<glm::mat4> mvStack;
void display(GLFWwindow* window, double currentTime) {
 	 // setup of background, depth buffer, rendering program, and proj matrices unchanged
	 . . .
	 // push view matrix onto the stack
	 vMat = glm::translate(glm::mat4(1.0f), glm::vec3(-cameraX, -cameraY, -cameraZ));
	 mvStack.push(vMat);

	 // ----------------------  pyramid == sun  --------------------------------------------
	 mvStack.push(mvStack.top());
	 mvStack.top() *= glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, 0.0f));	 // sun position
	 mvStack.push(mvStack.top());
	 mvStack.top() *= glm::rotate(glm::mat4(1.0f), (float)currentTime, glm::vec3(1.0f, 0.0f, 0.0f)); 
� // sun rotation
	 glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvStack.top()));
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
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	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);
	 glEnable(GL_DEPTH_TEST);
	 glEnable(GL_LEQUAL);
	 glDrawArrays(GL_TRIANGLES, 0, 18);	 // draw the sun
	 mvStack.pop();				    // remove the sun’s axial rotation from the stack

	 //-----------------------  cube == planet  ---------------------------------------------
	 mvStack.push(mvStack.top());
	 mvStack.top() *=
		  glm::translate(glm::mat4(1.0f), glm::vec3(sin((float)currentTime)*4.0, 0.0f, cos((float)currentTime)*4.0));
	 mvStack.push(mvStack.top());
	 mvStack.top() *= glm::rotate(glm::mat4(1.0f), (float)currentTime, glm::vec3(0.0, 1.0, 0.0)); 
� // planet rotation
	 glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvStack.top()));
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);
	 glDrawArrays(GL_TRIANGLES, 0, 36);	 // draw the planet
	 mvStack.pop();				    // remove the planet’s axial rotation from the stack

	 //-----------------------  smaller cube == moon  -----------------------------------
	 mvStack.push(mvStack.top());
	 mvStack.top() *=
		  glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, sin((float)currentTime)*2.0,  
� cos((float)currentTime)*2.0));
	 mvStack.top() *= glm::rotate(glm::mat4(1.0f), (float)currentTime, glm::vec3(0.0, 0.0, 1.0)); 
� // moon rotation
	 mvStack.top() *= glm::scale(glm::mat4(1.0f), glm::vec3(0.25f, 0.25f, 0.25f));  // make the moon smaller
	 glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvStack.top()));
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);
	 glDrawArrays(GL_TRIANGLES, 0, 36);	 // draw the moon

	 // remove moon scale/rotation/position, planet position, sun position, and view matrices from stack
	 mvStack.pop();  mvStack.pop();  mvStack.pop();  mvStack.pop();
}

The matrix stack operations have been highlighted. There are several details 
worth noting:

•	 We have introduced a scale operation in a model matrix. We want the 
moon to be a smaller cube than the planet, so we use a call to scale() 
when building the MV matrix for the moon.
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•	 In this example, we are using the trigonometric operations sin() and cos() 
to compute the revolution of the planet around the sun (as a translation), 
and also for the moon around the planet.

•	 The two buffers #0 and #1 contain cube and pyramid vertices 
respectively.

•	 Note the use of the glm::value_ptr(mvMatrix.top()) function call within the 
glUniformMatrix() command. This call retrieves the values in the matrix on 
top of the stack, and those values are then sent to the uniform variable 
(in this case, the sun, the planet, and then the moon’s MV matrices).

The vertex and fragment shaders are not shown—they are unchanged from 
the previous example. We also moved the initial position of the pyramid (sun) and 
the camera to center the scene on the screen.

	 4.9	 COMBATING “Z-FIGHTING” ARTIFACTS
Recall that when rendering multiple objects, OpenGL uses the Z-buffer algorithm 

(shown earlier in Figure 2.14) for performing hidden surface removal. Ordinarily, 
this resolves which object surfaces are visible and rendered to the screen, versus 
which surfaces lie behind other objects and thus should not be rendered, by choos-
ing a pixel’s color to be that of the corresponding fragment closest to the camera.

However, there can be occasions when two object surfaces in a scene overlap and 
lie in coincident planes, making it problematic for the Z-buffer algorithm to deter-

mine which of the two surfaces should 
be rendered (since neither is “closest” to 
the camera). When this happens, floating 
point rounding errors can lead to some 
portions of the rendered surface using the 
color of one of the objects, and other por-
tions using the color of the other object. 
This artifact is known as Z-fighting or 
depth-fighting, because the effect is the 
result of rendered fragments “fighting” 
over mutually corresponding pixel entries 
in the Z-buffer. Figure 4.12 shows an 
example of Z-fighting between two boxes 
with overlapping coincident (top) faces.

Figure 4.12
Z-fighting example.
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Situations like this often occur when creating terrain or shadows. It is some-
times possible to predict Z-fighting in such instances, and a common way of cor-
recting it in these cases is to move one object slightly, so that the surfaces are no 
longer coplanar. We will see an example of this in Chapter 8.

Z-fighting can also occur due to limited precision of the values in the depth 
buffer. For each pixel processed by the Z-buffer algorithm, the accuracy of its 
depth information is limited by the number of bits available for storing it in the 
depth buffer. The greater the range between near and far clipping planes used to 
build the perspective matrix, the more likely two objects’ points with similar (but 
not equal) actual depths will be represented by the same numeric value in the 
depth buffer. Therefore, it is up to the programmer to select near and far clipping 
plane values to minimize the distance between the two planes, while still ensuring 
that all objects essential to the scene lie within the viewing frustum.

It is also important to understand that, due to the effect of the perspective 
transform, changing the near clipping plane value can have a greater impact on 
the likelihood of Z-fighting artifacts than making an equivalent change in the far 
clipping plane. Therefore, it is advisable to avoid selecting a near clipping plane 
that is too close to the eye.

Previous examples in this book have simply used values of 0.1 and 1000 (in 
our calls to perspective()) for the near and far clipping planes. These may need to 
be adjusted for your scene.

	 4.10	 OTHER OPTIONS FOR PRIMITIVES
OpenGL supports a number of primitive types—so far we have seen two: 

GL_TRIANGLES and GL_POINTS. In fact, there are several others. All of the avail-
able primitive types supported in OpenGL fall into the categories of triangles, 
lines, points, and patches. Here is a complete list:

Triangle primitives:

GL_TRIANGLES The most common primitive type in this book. 
Vertices that pass through the pipeline form 
distinct triangles:

vertices:    etc.
triangles:  
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GL_TRIANGLE_STRIP Each vertex that passes through the pipeline 
efficiently forms a triangle with the previous 
two vertices:

vertices:    etc.

triangles:  
GL_TRIANGLE_FAN Each pair of vertices that passes through the 

pipeline forms a triangle with the very first 
vertex:

vertices:      0   1   2   3   4    etc.

triangles: 
GL_TRIANGLES_ADJACENCY Intended only for use with geometry shaders. 

Allows the shader to access the vertices in the 
current triangle, plus additional adjacent 
vertices.

GL_TRIANGLE_STRIP_
ADJACENCY

Intended only for use with geometry shaders. 
Similar to GL_TRIANGLES_ADJACENCY, 
except that triangle vertices overlap as for 
GL_TRIANGLE_STRIP.

Line primitives:

GL_LINES Vertices that pass through the pipeline form 
distinct lines:

vertices:  etc.

lines: 
GL_LINE_STRIP Each vertex that passes through the pipeline 

efficiently forms a line with the previous 
vertex:

vertices:  etc.

lines:  
GL_LINE_LOOP Same as GL_LINE_STRIP, except a line is also 

formed between the very first and very last 
vertices.
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GL_LINES_ADJACENCY Intended only for use with geometry shaders. 
Allows the shader to access the vertices  
in the current line, plus additional 
adjacent vertices.

GL_LINE_STRIP_ADJACENCY Similar to GL_LINES_ADJACENCY, except that 
line vertices overlap as for GL_LINE_STRIP.

Point primitives:

GL_POINTS Each vertex that passes through the pipeline is 
a point.

Patch primitives:

GL_PATCHES Intended only for use with tessellation shaders. 
Indicates that a set of vertices passes from the 
vertex shader to the tessellation control shader, 
where they are typically used to shape a 
tessellated grid into a curved surface.

	 4.11	 CODING FOR PERFORMANCE
As the complexity of our 3D scenes grows, we will become increasingly con-

cerned with performance. We have already seen a few instances where coding 
decisions were made in the interest of speed, such as when we used instancing, and 
when we moved expensive computations into the shaders.

Actually, the code we have presented has already also included some addi-
tional optimizations that we haven’t yet discussed. We now explore these and other 
important techniques. 

	4.11.1	 Minimizing Dynamic Memory Allocation
The critical section of our C++ code, with respect to performance, is clearly 

the display() function. This is the function that is called repeatedly during any ani-
mation or real-time rendering, and it is thus in this function (or in any function that 
it calls) where we must strive for maximum efficiency.
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One important way of keeping overhead in the display() function to a minimum 
is by avoiding any steps that require memory allocation. Obvious examples of 
things to avoid thus would include:

•	 instantiating objects
•	 declaring variables

The reader is encouraged to review the programs that we have developed so 
far, and observe that virtually every variable used in the display() function was 
declared, and its space allocated, before the display() function was ever actually 
called. Declarations or instantiations almost never appear in display(). For example, 
Program 4.1 included the following block of code early in its listing:

// allocate variables used in display() function, so that they won’t need to be allocated during rendering
GLuint mvLoc, projLoc;
int width, height;
float aspect;
glm::mat4 pMat, vMat, mMat, mvMat;

Note that we purposely placed a comment at the top of the block indicating 
that these variables are pre-allocated for later use in the display() function (although 
we are only explicitly pointing that out now).

One case of a variable that wasnʼt pre-allocated occurred in our matrix 
stack example. By using the C++ stack class, each “push” operation results in a 
dynamic memory allocation. Interestingly in Java, the JOML library provides a 
MatrixStack class intended for use with OpenGL that allows one to pre-allocate 
space for a matrix stack! We utilize it in our Java-based “sister” book Computer 
Graphics Programming in OpenGL with Java, Second Edition.

There are other, more subtle examples. For example, function calls that con-
vert data from one type to another may in some cases instantiate and return the 
newly converted data. It is thus important to understand the behaviors of any 
library functions called from display(). The math library, GLM, was not specifi-
cally designed with speed in mind. As a result, some of the operations can lead 
to dynamic allocation. We have tried to use GLM functions that operate directly 
onto (or into) variables whose space has already been allocated, when possible. 
The reader is encouraged to explore alternative methods when performance is 
critical.
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	4.11.2	 Pre-Computing the Perspective Matrix
Another optimization that can be done to reduce overhead in the display() func-

tion is to move the computation of the perspective matrix into the init() function. 
We mentioned this possibility earlier in Section 4.5 (well, in a footnote). While 
this is certainly easy to do, there is one slight complication. Although it is not nor-
mally necessary to recompute the perspective matrix, it would be necessary if the 
user running the application resizes the window (such as by dragging the window 
corner resize handle).

Fortunately, GLFW can be configured to automatically make a callback to a 
specified function whenever the window is resized. We add the following to the 
main(), just before the call to init():

glfwSetWindowSizeCallback(window, window_reshape_callback);

The first parameter is the GLFW window, and the second is the name of a 
function that GLFW calls whenever the window is resized. We then move the code 
that computes the perspective matrix into init(), and also copy it into a new function 
called window_reshape_callback().

Consider for example Program 4.1. If we reorganize the code so as to remove 
the computation of the perspective matrix from display(), then the revised versions 
of the main(), init(), display(), and the new function window_reshape_callback() would 
be as follows:

	 void init(GLFWwindow* window) {
		  . . .
		  // same as earlier, plus the following three lines:
		  glfwGetFramebufferSize(window, &width, &height);
		  aspect = (float)width / (float)height;
		  pMat = glm::perspective(1.0472f, aspect, 0.1f, 1000.0f);	 // 1.0472 radians = 60 degrees
	 }

	 void display(GLFWwindow* window, double currentTime) {
		  . . .
		  // same as earlier, except with the following lines removed:

		  // build perspective matrix
		  glfwGetFramebufferSize(window, &width, &height);
		  aspect = (float)width / (float)height;
		  pMat = glm::perspective(1.0472f, aspect, 0.1f, 1000.0f);
		  // the rest of the function is unchanged
		  . . .
	 }
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	 void window_reshape_callback(GLFWwindow* window, int newWidth, int newHeight) {
		  aspect = (float)newWidth / (float)newHeight;	 // new width&height provided by the callback
		  glViewport(0, 0, newWidth, newHeight);	 // sets screen region associated with framebuffer 
		  pMat = glm::perspective(1.0472f, aspect, 0.1f, 1000.0f);
	 }

	 int main(void) {
		  . . .
		  // same as earlier, plus the following additional call:

		  glfwSetWindowSizeCallback(window, window_reshape_callback);

		  init(window)

		  while (!glfwWindowShouldClose(window)) {
			   // etc. as before
		  }

The implementations of the programs found on this book’s accompanying 
files are all organized in this manner with respect to perspective matrix computa-
tion, starting with the interpolated colors version of Program 4.1.

	4.11.3	 Back-Face Culling
Another way of improving rendering efficiency is to take advantage of 

OpenGL’s ability to do back-face culling. When a 3D model is entirely “closed,” 
meaning the interior is never visible (such as for the cube and for the pyramid), 
then it turns out that those portions of the outer surface that are angled away from 
the viewer will always be obscured by some other portion of the same model. That 
is, those triangles that face away from the viewer cannot possibly be seen (they 
would be overwritten by hidden surface removal anyway), and thus there is no 
reason to rasterize or render them.

We can ask OpenGL to identify and “cull” (not render) back-facing triangles 
with the command glEnable(GL_CULL_FACE). We can also disable face culling 
with glDisable(GL_CULL_FACE). By default, face culling is disabled, so if you want 
OpenGL to cull back-facing triangles, you must enable it.

When face culling is enabled, by default triangles are rendered only if they 
are front-facing. Also by default a triangle is considered front-facing if its three 
vertices progress in a counter-clockwise direction (based on the order that they 
were defined in the buffer) as viewed from the OpenGL camera. Triangles whose 
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vertices progress in a clockwise direction (as viewed from the OpenGL cam-
era) are back-facing, and are not rendered. This counter-clockwise definition of 
“front-facing” is sometimes called the winding order, and can be set explicitly 
using the function call glFrontFace(GL_CCW) for counter-clockwise (the default) 
or glFrontFace(GL_CW) for clockwise. Similarly, whether it is the front-facing or 
the back-facing triangles that are rendered can also be set explicitly. Actually, for 
this purpose we specify which ones are not to be rendered—that is, which ones 
are “culled.” We can specify that the back-facing triangles be culled (although this 
would be unnecessary because it is the default) by calling glCullFace(GL_BACK). 
Alternatively, we can specify instead that the front-facing triangles be culled, or 
even that all of the triangles be culled, by replacing the parameter GL_BACK with 
either GL_FRONT or GL_FRONT_AND_BACK respectively.

As we will see in Chapter 6, 3D models are typically designed so that the 
outer surface is constructed of triangles with the same winding order—most com-
monly counter-clockwise—so that if culling is enabled, then by default the portion 
of the model’s outer surface that faces the camera is rendered. Since by default 
OpenGL assumes the winding order is counter-clockwise, if a model is designed 
to be displayed with a clockwise winding order, it is up to the programmer to call 
gl_FrontFace(GL_CW) to account for this if back-face culling is enabled.

Note that in the case of GL_TRIANGLE_STRIP, the winding order of each tri-
angle alternates. OpenGL compensates for this by “flipping” the vertex sequence 
when building each successive triangle, as follows: 0-1-2, then 2-1-3, 2-3-4, 4-3-5, 
4-5-6, and so on.

Back-face culling improves performance by ensuring that OpenGL doesn’t 
spend time rasterizing and rendering surfaces that are never intended to be seen. 
Most of the examples we have seen in this chapter are so small that there is little 
motivation to enable face culling (an exception is the example shown in Figure 4.9, 
with the 100,000 instanced animated cubes, which may pose a performance chal-
lenge on some systems). In practice, it is common for most 3D models to be “closed,” 
and so it is customary to routinely enable back-face culling. For example, we can 
add back-face culling to Program 4.3 by modifying the display() function as follows:

void display(GLFWwindow* window, double currentTime) {
	 . . .
	 glEnable(GL_CULL_FACE);

	 //  draw the cube
	 . . .
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	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);
	 glFrontFace(GL_CW);		  // the cube vertices have clockwise winding order
	 glDrawArrays(GL_TRIANGLES, 0, 36);

	 //  draw the pyramid
	 . . .
	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);
	 glFrontFace(GL_CCW);		  // the pyramid vertices have counter-clockwise winding order
	 glDrawArrays(GL_TRIANGLES, 0, 18);
}

Properly setting the winding order is important when using back-face culling. 
An incorrect setting, such as GL_CW when it should be GL_CCW, can lead to the 
interior of an object being rendered rather than its exterior, which in turn can pro-
duce distortion similar to that of an incorrect perspective matrix.

Efficiency isn’t the only reason for doing face culling. In later chapters, we 
will see other uses, such as for those circumstances when we want to see the inside 
of a 3D model, or when using transparency.

SUPPLEMENTAL NOTES

There is a myriad of other capabilities and structures available for managing 
and utilizing data in OpenGL/GLSL, and we have only scratched the surface in 
this chapter. We haven’t, for example, described a uniform block, which is a mech-
anism for organizing uniform variables similar to a struct in C. Uniform blocks 
can even be set up to receive data from buffers. Another powerful mechanism is a 
shader storage block, which is essentially a buffer into which a shader can write.

An excellent reference on the many options for managing data is the OpenGL 
SuperBible [SW15], particularly the chapter entitled “Data” (Chapter 5 in the 7th 
edition). It also describes many of the details and options for the various commands 
that we have covered. The first two example programs in this chapter, Program 4.1 
and Program 4.2, were inspired by similar examples in the SuperBible.

There are other types of data that we will need to learn how to manage, and 
how to send down the OpenGL pipeline. One of these is a texture, which contains 
color image data (such as in a photograph) that can be used to “paint” the objects 
in our scene. We will study texture images in Chapter 5. Another important buffer 
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that we will study further is the depth buffer (or Z-buffer). This will become 
important when we study shadows in Chapter 8. We still have much to learn about 
managing graphics data in OpenGL!

Exercises

	4.1	 (PROJECT) Modify Program 4.1 to replace the cube with some other simple 
3D shape of your own design. Be sure to properly specify the number of 
vertices in the glDrawArrays() command.

	4.2	 (PROJECT) In Program 4.1, the “view” matrix is defined in the display() 
function simply as the negative of the camera location:

vMat = glm::translate(glm::mat4(1.0f), glm::vec3(-cameraX, -cameraY, -cameraZ));

		 Replace this code with an implementation of the computation shown in 
Figure 3.13. This will allow you to position the camera by specifying a camera 
position and three orientation axes. You will find it necessary to store the 
vectors U,V,N described in Section 3.7. Then, experiment with different camera 
viewpoints, and observe the resulting appearance of the rendered cube.

	4.3	(PROJECT) Modify Program 4.4 to include a second “planet,” which is your 
custom 3D shape from Exercise 4.1. Make sure that your new “planet” is in a 
different orbit than the existing planet so that they don’t collide.

	4.4	 (PROJECT) Modify Program 4.4 so that the “view” matrix is constructed 
using the “look-at” function (as described in Section 3.9). Then experiment 
with setting the “look-at” parameters to various locations, such as looking at 
the sun (in which case the scene should appear normal), looking at the planet, 
or looking at the moon.

	4.5	 (RESEARCH) Propose a practical use for glCullFace(GL_FRONT_AND_BACK).

References

[BL20]	� Blender, The Blender Foundation, accessed July 2020, https://www 
.blender.org/

[HT12]	� J. Hastings-Trew, JHT’s Planetary Pixel Emporium, accessed July 2020, 
http://planetpixelemporium.com/

CGP_C++_CH04_2E_2pp.indd   101 05-Oct-20   4:11:54 PM



102  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

[MA16]	� Maya, AutoDesk, Inc., accessed July 2020, http://www.autodesk.com/
products/maya/overview

[NA16]	 NASA 3D Resources, accessed July 2020, http://nasa3d.arc.nasa.gov/

[OL16]	� Legacy OpenGL, accessed July 2020, https://www.opengl.org/wiki/
Legacy_OpenGL

[SW15]	� G. Sellers, R. Wright Jr., and N. Haemel, OpenGL SuperBible: 
Comprehensive Tutorial and Reference, 7th ed. (Addison-Wesley, 2015).

CGP_C++_CH04_2E_2pp.indd   102 05-Oct-20   4:11:54 PM



Chapter 5
Texture Mapping

5.1	 Loading Texture Image Files�������������������������������������������������������������������������������������104
5.2	 Texture Coordinates���������������������������������������������������������������������������������������������������106
5.3	 Creating a Texture Object������������������������������������������������������������������������������������������108
5.4	 Constructing Texture Coordinates�����������������������������������������������������������������������������109
5.5	� Loading Texture Coordinates into Buffers ���������������������������������������������������������������110
5.6	� Using the Texture in a Shader: Sampler Variables and Texture Units������������������� 111
5.7	 Texture Mapping: Example Program�����������������������������������������������������������������������112
5.8	 Mipmapping�����������������������������������������������������������������������������������������������������������������114
5.9	 Anisotropic Filtering���������������������������������������������������������������������������������������������������119
5.10	 Wrapping and Tiling���������������������������������������������������������������������������������������������������120
5.11	 Perspective Distortion������������������������������������������������������������������������������������������������122
5.12	 Textures – Additional OpenGL Details���������������������������������������������������������������������124
	 Supplemental Notes�����������������������������������������������������������������������������������������������������125

■ ■ ■ ■ ■

Texture mapping is the technique of overlaying an image across a rasterized 
model surface. It is one of the most fundamental and important ways of adding realism 
to a rendered scene.

Texture mapping is so important that there is hardware support for it, allowing 
for very high performance resulting in real-time photorealism. Texture Units are 
hardware components designed specifically for texturing, and modern graphics cards 
typically come with several texture units included.
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	 5.1	 LOADING TEXTURE IMAGE FILES
There are a number of datasets and mechanisms that need to be coordinated to 

accomplish texture mapping efficiently in OpenGL/GLSL:

•	 a texture object to hold the texture image (in this chapter we consider 
only 2D images)

•	 a special uniform sampler variable so that the vertex shader can access 
the texture

Figure 5.1
Texturing a dolphin model with two different images [TU16].
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•	 a buffer to hold the texture coordinates
•	 a vertex attribute for passing the texture coordinates down the pipeline
•	 a texture unit on the graphics card

A texture image can be a picture of anything. It can be a picture of something 
man-made or occurring in nature, such as cloth, grass, or a planetary surface; or, 
it could be a geometric pattern, such as the checkerboard in Figure 5.1. In video-
games and animated movies, texture images are commonly used to paint faces and 
clothing on characters or paint skin on creatures such as the dolphin in Figure 5.1.

Images are typically stored in image files, such as .jpg, .png, .gif, or .tiff. In order 
to make a texture image available to shaders in the OpenGL pipeline, we need to 
extract the colors from the image and put them into an OpenGL texture object 
(a built-in OpenGL structure for holding a texture image).

Many C++ libraries are available for reading and processing image files. 
Among the popular choices are Cimg, Boost GIL, and Magick++. We have opted 
to use a library designed particularly for OpenGL called SOIL2 [SO20], which is 
based on the very popular but now outdated library SOIL. The installation steps 
for SOIL2 are given in Appendices A and B.

The general steps we will use for loading a texture into an OpenGL applica-
tion are: (a) use SOIL2 to instantiate an OpenGL texture object and read the data 
from an image file into it, (b) call glBindTexture() to make the newly created texture 
object active, and (c) adjust the texture settings using the glTexParameter() function. 
The result is an integer ID for the now available OpenGL texture object.

Texturing an object starts by declaring a variable of type GLuint. As we have 
seen, this is an OpenGL type for holding integer IDs referencing OpenGL objects. 
Next, we call SOIL_load_OGL_texture() to actually generate the texture object. The 
SOIL_load_OGL_texture() function accepts an image file name as one of its param-
eters (some of the other parameters will be described later). These steps are imple-
mented in the following function:

GLuint loadTexture(const char *texImagePath) {
	 GLuint textureID;
	 textureID = SOIL_load_OGL_texture(texImagePath,
		  SOIL_LOAD_AUTO, SOIL_CREATE_NEW_ID, SOIL_FLAG_INVERT_Y);
	 if (textureID == 0) cout << "could not find texture file" << texImagePath << endl;
	 return textureID;
}
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We will use this function often, so we add it our Utils.cpp utility class. The C++ 
application then simply calls the above loadTexture() function to create the OpenGL 
texture object as follows:

GLuint myTexture = Utils::loadTexture("image.jpg");

where image.jpg is a texture image file, and myTexture is an integer ID for the result-
ing OpenGL texture object. Several image file types are supported, including the 
ones listed previously.

	 5.2	 TEXTURE COORDINATES
Now that we have a means for loading a texture image into OpenGL, we need 

to specify how we want the texture to be applied to the rendered surface of an 
object. We do this by specifying texture coordinates for each vertex in our model.

Texture coordinates are references to the pixels in a (usually 2D) texture 
image. Pixels in a texture image are referred to as texels, in order to differentiate 
them from the pixels being rendered on the screen. Texture coordinates are used 
to map points on a 3D model to locations in a texture. Each point on the surface 
of the model has, in addition to (x,y,z) coordinates that place it in 3D space, texture 
coordinates (s,t) that specify which texel in the texture image provides its color. 
Thus, the surface of the object is “painted” by the texture image. The orientation of 
a texture across the surface of an object is determined by the assignment of texture 
coordinates to object vertices.

In order to use texture mapping, it is necessary to provide texture coordinates 
for every vertex in the object to be textured. OpenGL will use these texture coor-
dinates to determine the color of each rasterized pixel in the model by looking 
up the color stored at the referenced texel in the texure image. In order to ensure 
that every pixel in a rendered model is painted with an appropriate texel from the 
texture image, the texture coordinates are put into a vertex attribute so that they 
are also interpolated by the rasterizer. In that way the texture image is interpo-
lated, or filled in, along with the model vertices.

For each set of vertex coordinates (x,y,z) passing through the vertex shader, 
there will be an accompanying set of texture coordinates (s,t). We will thus set up 
two buffers, one for the vertices (with three components x, y, and z in each entry) 
and one for the corresponding texture coordinates (with two components s and t 
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in each entry). Each vertex shader invocation thus receives one vertex, now com-
prised of both its spatial coordinates and its corresponding texture coordinates.

Texture coordinates are most often 2D (OpenGL does support some other 
dimensionalities, but we won’t cover them in this chapter). It is assumed that the 
image is rectangular, with location (0,0) at the lower left and (1,1) at the upper 
right.1 Texture coordinates, then, should ideally have values in the range [0..1].

Consider the example shown in Figure 5.2. The cube model, recall, is con-
structed of triangles. The four corners of one side of the cube are highlighted, 
but remember that it takes two triangles to specify each square side. The texture 
coordinates for each of the six vertices that specify this one cube side are listed 
alongside the four corners, with the corners at the upper left and lower right each 
composed of a pair of vertices. A texture image is also shown. The texture coor-
dinates (indexed by s and t) have mapped portions of the image (the texels) onto 
the rasterized pixels of the front face of the model. Note that all of the intervening 
pixels in between the vertices have been painted with the intervening texels in the 
image. This is achieved because the texture coordinates are sent to the fragment 
shader in a vertex attribute, and thus are also interpolated just like the vertices 
themselves.

1	 This is the orientation that OpenGL texture objects assume. However, this is different from the 
orientation of an image stored in many standard image file formats, in which the origin is at the 
upper left. Reorienting the image by flipping it vertically so that it corresponds to OpenGL’s 
expected format is accomplished by specifying the SOIL_FLAG_INVERT_Y parameter as was 
done in the call that we made to SOIL_load_OGL_texture() in our loadTexture() function.

Figure 5.2
Texture coordinates.
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In this example, for purposes of illustration, we deliberately specified texture 
coordinates that result in an oddly painted surface. If you look closely, you can 
also see that the image appears slightly stretched—that is because the aspect ratio 
of the texture image doesn’t match the aspect ratio of the cube face relative to the 
given texture coordinates.

For simple models like cubes or pyramids, selecting texture coordinates is 
relatively easy. But for more complex curved models with lots of triangles, it isn’t 
practical to determine them by hand. In the case of curved geometric shapes, such 
as a sphere or torus, texture coordinates can be computed algorithmically or math-
ematically. In the case of a model built with a modeling tool such as Maya [MA20] 
or Blender [BL20], such tools offer “UV-mapping” (outside of the scope of this 
book) to make this task easier.

Let us return to rendering our pyramid, only this time texturing it with an 
image of bricks. We will need to specify: (a) the integer ID referencing the tex-
ture image, (b) texture coordinates for the model vertices, (c) a buffer for holding 
the texture coordinates, (d) vertex attributes so that the vertex shader can receive 
and forward the texture coordinates through the pipeline, (e) a texture unit on the 
graphics card for holding the texture object, and (f) a uniform sampler variable 
for accessing the texture unit in GLSL, which we will see shortly. These are each 
described in the next sections.

	 5.3	 CREATING A TEXTURE OBJECT
Suppose the image shown here is stored in a file named “brick1.jpg” [LU16].

As shown previously, we can load this image by calling our loadTexture() function, 
as follows:

GLuint brickTexture = Utils::loadTexture("brick1.jpg");
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Recall that texture objects are identified by integer IDs, so brickTexture is of 
type GLuint.

	 5.4	 CONSTRUCTING TEXTURE COORDINATES
Our pyramid has four triangular sides and a square on the bottom. Although 

geometrically this only requires five (5) points, we have been rendering it with 
triangles. This requires four triangles for the sides, and two triangles for the square 
bottom, for a total of six triangles. Each triangle has three vertices, for a total of 
6x3=18 vertices that must be specified in the model.

We already listed the pyramid’s geometric vertices in Program 4.3 in the float 
array pyramidPositions[ ]. There are many ways that we could orient our texture 
coordinates so as to draw our bricks onto the pyramid. One simple (albeit imper-
fect) way would be to make the top center of the image correspond to the peak of 
the pyramid, as follows:

We can do this for all four of the triangle sides. We also need to paint the bot-
tom square of the pyramid, which is comprised of two triangles. A simple and 
reasonable approach would be to texture it with the entire area from the picture 
(the pyramid has been tipped back and is sitting on its side):
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Using this very simple strategy for the first nine of the pyramid vertices from 
Program 4.3, the corresponding set of vertex and texture coordinates is shown in 
Figure 5.3.

Figure 5.3
Texture coordinates for the pyramid (partial list).

	 5.5	� LOADING TEXTURE COORDINATES 
INTO BUFFERS

We can load the texture coordinates into a VBO in a similar manner as seen 
previously for loading the vertices. In setupVertices(), we add the following declara-
tion of the texture coordinate values:

float pyrTexCoords[36] =
{	 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f,	 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f,	 // top and right faces
	 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f,	 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f,	 // back and left faces
	 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,	 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f  };	 // base triangles

Then, after the creation of at least two VBOs (one for the vertices, and one 
for the texture coordinates), we add the following lines of code to load the texture 
coordinates into VBO #1:

glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(pyrTexCoords), pyrTexCoords, GL_STATIC_DRAW);
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	 5.6	� USING THE TEXTURE IN A SHADER: SAMPLER 
VARIABLES AND TEXTURE UNITS

To maximize performance, we will want to perform the texturing in hardware. 
This means that our fragment shader will need a way of accessing the texture 
object that we created in the C++/OpenGL application. The mechanism for doing 
this is via a special GLSL tool called a uniform sampler variable. This is a vari-
able designed for instructing a texture unit on the graphics card as to which texel 
to extract or “sample” from a loaded texture object.

Declaring a sampler variable in the shader is easy—just add it to your set of 
uniforms:

layout (binding=0) uniform sampler2D samp;

Ours is named “samp”. The “layout (binding=0)” portion of the declaration spec-
ifies that this sampler is to be associated with texture unit 0.

A texture unit (and associated sampler) can be used to sample whichever 
texture object you wish, and that can change at runtime. Your display() function 
will need to specify which texture object you want the texture unit to sample for 
the current frame. So each time you draw an object, you will need to activate a 
texture unit and bind it to a particular texture object, for example:

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, brickTexture);

The number of available texture units depends on how many are provided on 
the graphics card. According to the OpenGL API documentation, OpenGL ver-
sion 4.5 requires that this be at least 16 per shader stage, and at least 80 total units 
across all stages [OP16]. In this example, we have made the 0th texture unit active 
by specifying GL_TEXTURE0 in the glActiveTexture() call.

To actually perform the texturing, we will need to modify how our fragment 
shader outputs colors. Previously, our fragment shader either output a constant 
color, or it obtained colors from a vertex attribute. This time instead, we need to use 
the interpolated texture coordinates received from the vertex shader (through the 
rasterizer) to sample the texture object, by calling the texture() function as follows:

in vec2 tc;	 // texture coordinates
. . .
color = texture(samp, tc);

CGP_C++_CH05_2E_2pp.indd   111 05-Oct-20   4:15:58 PM



112  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

	 5.7	 TEXTURE MAPPING: EXAMPLE PROGRAM
Program 5.1 combines the previous 

steps into a single program. The result, 
showing the pyramid textured with 
the brick image, appears in Figure 5.4. 
Two rotations (not shown in the code 
listing) were added to the pyramid’s 
model matrix to expose the underside 
of the pyramid.

It is now a simple matter to replace 
the brick texture image with other 
texture images, as desired, simply by 

changing the filename in the loadTexture() call. For example, if we replace “brick1.jpg”  
with the image file “ice.jpg” [LU16], we get the result shown in Figure 5.5.

Figure 5.5
Pyramid texture mapped with “ice” image.

Program 5.1 Pyramid with Brick Texture
C++/OpenGL Application
#include <SOIL2/soil2.h>
// other #includes as before
. . .
#define numVAOs 1
#define numVBOs 2

// variables for camera and object location, rendering program, VAOs and VBOs as before
. . .

Figure 5.4
Pyramid texture mapped with brick image.
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// variable allocation for display function same as before
. . .
GLuint brickTexture;
void setupVertices(void) {
	 float pyramidPositions[54] = { /* data as listed previously in Program 4.2 */ }
	 float pyrTexCoords[36] = {
		  0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f,	 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f,
		  0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f,	 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f,
		  0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,	 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f
	 };

	 // . . . generate the VAO as before, and at least two VBOs, then load the two buffers as follows:
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glBufferData(GL_ARRAY_BUFFER, sizeof(pyramidPositions), pyramidPositions, GL_STATIC_DRAW);
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	 glBufferData(GL_ARRAY_BUFFER, sizeof(pyrTexCoords), pyrTexCoords, GL_STATIC_DRAW);
}
void init(GLFWwindow* window) {
	 // setup of rendering program, camera and object location unchanged
	 . . .
	 brickTexture = Utils::loadTexture("brick1.jpg");
}

void display(GLFWwindow* window, double currentTime) {
	 . . .
	 // setup of background color, depth buffer, rendering program, M, V, MV, and PROJ matrices unchanged
	 . . .
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	 glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(1);

	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_2D, brickTexture);

	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);

	 glDrawArrays(GL_TRIANGLES, 0, 18);
}

// main() same as before
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Vertex shader
#version 430
layout (location=0) in vec3 pos;
layout (location=1) in vec2 texCoord;
out vec2 tc;	 // texture coordinate output to rasterizer for interpolation
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
layout (binding=0) uniform sampler2D samp;	 // not used in vertex shader 

void main(void)
{	 gl_Position = proj_matrix * mv_matrix * vec4(pos,1.0);
	 tc = texCoord;
}

Fragment shader
#version 430
in vec2 tc;	 // interpolated incoming texture coordinate
out vec4 color;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
layout (binding=0) uniform sampler2D samp;

void main(void)
{	 color = texture(samp, tc);
}

	 5.8	 MIPMAPPING
Texture mapping commonly produces a variety of undesirable artifacts in the 

rendered image. This is because the resolution or aspect ratio of the texture image 
rarely matches that of the region in the scene being textured.

A very common artifact occurs when the image resolution is less than that of 
the region being drawn. In this case, the image would need to be stretched to cover 
the region, becoming blurry (and possibly distorted). This can sometimes be com-
bated, depending on the nature of the texture, by assigning the texture coordinates 
differently so that applying the texture requires less stretching. Another solution is 
to use a higher resolution texture image.

The reverse situation is when the resolution of the image texture is greater 
than that of the region being drawn. It is probably not at all obvious why this 
would pose a problem, but it does! In this case, noticeable aliasing artifacts can 
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occur, giving rise to strange-looking false patterns, or “shimmering” effects in 
moving objects.

Aliasing is caused by sampling errors. It is most often associated with signal 
processing, where an inadequately sampled signal appears to have different proper-
ties (such as wavelength) than it actually does when it is reconstructed. An example 
is shown in Figure 5.6. The original waveform is shown in red. The yellow dots 
along the waveform represent the samples. If they are used to reconstruct the wave, 
and if there aren’t enough of them, they can define a different wave (shown in blue).

Figure 5.6
Aliasing due to inadequate sampling.

Similarly, in texture-mapping, when a high-resolution (and highly detailed) image 
is sparsely sampled (such as when using a uniform sampler variable), the colors 
retrieved will be inadequate to reflect the actual detail in the image, and may instead 
seem random. If the texture image has a repeated pattern, aliasing can result in a different 
pattern being produced than the one in the original image. If the object being textured 
is moving, rounding errors in texel 
lookup can result in constant 
changes in the sampled pixel at a 
given texture coordinate, produc-
ing an unwanted sparkling effect 
across the surface of the object 
being drawn.

Figure 5.7 shows a tilted, 
close-up rendering of the top 
of a cube which has been tex-
tured by a large, high-resolution 
image of a checkerboard.

Figure 5.7
Aliasing in a texture map.
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Aliasing is evident near 
the top of the image, where the 
under-sampling of the checker-
board has produced a “striped” 
effect. Although we can’t show 
it here in a still image, if this 
were an animated scene, the 
patterns would likely undulate 
between various incorrect pat-
terns such as this one.

Another example appears in 
Figure 5.8, in which the cube has 
been textured with an image of 
the surface of the moon [HT12]. 

At first glance, this image appears sharp and full of detail. However, some of the 
detail at the upper right of the image is false and causes “sparkling” as the cube 
object (or the camera) moves. (Unfortunately, we can’t show the sparkling effect 
clearly in a still image.)

These and similar sampling error artifacts can be largely corrected by a 
technique called mipmapping, in which different versions of the texture image 
are created at various resolutions. OpenGL then uses the texture image that most 
closely matches the resolution at the point being textured. Even better, colors 
can  be averaged between the images closest in resolution to that of the region 
being textured. Results of applying mipmapping to the images in Figure 5.7 and 
Figure 5.8 are shown in Figure 5.9.

Figure 5.8
“Sparkling” in a texture map.

Figure 5.9
Mipmapped results.
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Mipmapping works by a clever mechanism for storing a series of successively 
lower-resolution copies of the same image in a texture image one-third larger than 
the original image. This is achieved by storing the R, G, and B components of the 
image separately in three-quarters of the texture image space, then repeating the 
process in the remaining one-quarter of the image space for the same image at 
one-quarter the original resolution. This subdividing repeats until the remaining 
quadrant is too small to contain any useful image data. An example image and a 
visualization of the resulting mipmap is shown in Figure 5.10.

Figure 5.10
Mipmapping an image.

This method of stuffing several images into a small space (well, just a bit bigger 
than the space needed to store the original image) is how mipmapping got its name. 
MIP stands for Multum In Parvo [WI83], which is Latin for “much in a small space.”

When actually texturing an object, the mipmap can be sampled in several 
ways. In OpenGL, the manner in which the mipmap is sampled can be chosen 
by  setting the GL_TEXTURE_MIN_FILTER parameter to the desired minification 
technique, which is one of the following:

•	 GL_NEAREST_MIPMAP_NEAREST 
chooses the mipmap with the resolution most similar to that of the region 
of pixels being textured. It then obtains the nearest texel to the desired 
texture coordinates.
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•	 GL_LINEAR_MIPMAP_NEAREST 
chooses the mipmap with the resolution most similar to that of the region 
of pixels being textured. It then interpolates the four texels nearest to the 
texture coordinates. This is called “linear filtering.”

•	 GL_NEAREST_MIPMAP_LINEAR 
chooses the two mipmaps with resolutions nearest to that of the region 
of pixels being textured. It then obtains the nearest texel to the texture 
coordinates from each mipmap and interpolates them. This is called 
“bilinear filtering.”

•	 GL_LINEAR_MIPMAP_LINEAR 
chooses the two mipmaps with resolutions nearest to that of the region 
of pixels being textured. It then interpolates the four nearest texels 
in each mipmap and interpolates those two results. This is called 
“trilinear filtering” and is illustrated in Figure 5.11.

Figure 5.11
Trilinear filtering.

Trilinear filtering is usually prefer-
able, as lower levels of blending often 
produce artifacts, such as visible separa-
tions between mipmap levels. Figure 5.12 
shows a close-up of the checkerboard 
using mipmapping with only linear fil-
tering enabled. Note the circled arti-
facts where the vertical lines suddenly 
change from thick to thin at a mipmap 
boundary. By contrast, the example in 
Figure 5.9 used trilinear filtering.

Figure 5.12
Linear filtering artifacts.
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Mipmapping is richly supported in OpenGL. There are mechanisms provided 
for building your own mipmap levels or having OpenGL build them for you. In 
most cases, the mipmaps built automatically by OpenGL are sufficient. This is done 
by adding the following lines of code to the Utils::loadTexture() function (described 
earlier in Section 5.1), immediately after the getTextureObject() function call:

glBindTexture(GL_TEXTURE_2D, textureID);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glGenerateMipmap(GL_TEXTURE_2D);

This tells OpenGL to generate the mipmaps. The brick texture is made active 
with the glBindTexture() call, and then the glTexParameteri() function call enables one 
of the minification factors listed previously, such as GL_LINEAR_MIPMAP_LINEAR 
shown in the above call, which enables trilinear filtering.

Once the mipmap is built, the filtering option can be changed (although this 
is rarely necessary) by calling glTexParameteri() again, such as in the display func-
tion. Mipmapping can even be disabled by selecting GL_NEAREST or GL_LINEAR.

For critical applications, it is possible to build the mipmaps yourself, using 
whatever is your preferred image editing software. They can then be added as 
mipmap levels when creating the texture object by repeatedly calling OpenGL’s 
glTexImage2D() function for each mipmap level. Further discussion of this approach 
is outside the scope of this book.

	 5.9	 ANISOTROPIC FILTERING
Mipmapped textures can sometimes appear more blurry than non-mipmapped 

textures, especially when the textured object is rendered at a heavily tilted viewing 
angle. We saw an example of this back in Figure 5.9, where reducing artifacts with 
mipmapping led to reduced detail (compared with Figure 5.8).

This loss of detail occurs because when an object is tilted, its primitives 
appear smaller along one axis (i.e., width vs. height) than along the other. When 
OpenGL textures a primitive, it selects the mipmap appropriate for the smaller 
of the two axes (to avoid “sparkling” artifacts). In Figure 5.9, the surface is tilted 
heavily away from the viewer, so each rendered primitive will utilize the mipmap 
appropriate for its reduced height, which is likely to have a resolution lower than 
appropriate for its width.
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One way of restoring some of this lost detail is to use anisotropic filtering (AF). 
Whereas standard mipmapping samples a texture image at a variety of square 
resolutions (e.g., 256x256, 128x128, etc.), AF samples the textures at a number of 
rectangular resolutions as well, such as 256x128, 64x128, and so on. This enables 
viewing at various angles while retaining as much detail in the texture as possible.

Anisotropic filtering is more computationally expensive than standard mip-
mapping and is not a required part of OpenGL. However, most graphics cards sup-
port AF (this is referred to as an OpenGL extension), and OpenGL does provide 
both a way of querying the card to see if it supports AF, and a way of accessing AF 
if it does. The code is added immediately after generating the mipmap:

. . .
// if mipmapping
glBindTexture(GL_TEXTURE_2D, textureID);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glGenerateMipmap(GL_TEXTURE_2D);

// if also anisotropic filtering
if (glewIsSupported("GL_EXT_texture_filter_anisotropic")) {
	 GLfloat anisoSetting = 0.0f;
	 glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &anisoSetting);
	 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisoSetting);
}

The call to glewIsSupported() tests 
whether the graphics card supports 
AF. If it does, we set it to the maxi-
mum degree of sampling supported, 
a value retrieved using glGetFloatv() as 
shown. It is then applied to the active 
texture object using glTexParameterf(). 
The result is shown in Figure 5.13. 
Note that much of the lost detail from 
Figure 5.8 has been restored, while 
still removing the sparkling artifacts.

	 5.10	 WRAPPING AND TILING
So far we have assumed that texture coordinates all fall in the range [0..1]. 

However, OpenGL actually supports texture coordinates of any value. There are 

Figure 5.13
Anisotropic filtering.
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several options for specifying what happens when texture coordinates fall outside 
the range [0..1]. The desired behavior is set using glTexParameteri(), and some of the 
options are as follows:

•	 GL_REPEAT: The integer portion of the texture coordinates are ignored, 
generating a repeating or “tiling” pattern. This is the default behavior.

•	 GL_MIRRORED_REPEAT: The integer portion is ignored, except that the 
coordinates are reversed when the integer portion is odd, so the repeating 
pattern alternates between normal and mirrored.

•	 GL_CLAMP_TO_EDGE: Coordinates less than 0 and greater than 1 are set 
to 0 and 1 respectively.

•	 GL_CLAMP_TO_BORDER: Texels outside of [0..1] will be assigned some 
specified border color.

For example, consider a pyramid in which the texture coordinates have 
been defined in the range [0..5] rather than the range [0..1]. The default behav-
ior (GL_REPEAT), using the texture image shown previously in Figure 5.2, would 
result in the texture repeating five times across the surface (sometimes called 
“tiling”), as shown in Figure 5.14:

Figure 5.14
Texture coordinate wrapping with GL_REPEAT.

To make the tiles’ appearance alternate between normal and mirrored, we can 
specify the following:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);

Specifying that values less than 0 and greater than 1 be set to 0 and 1 respectively 
can be done by replacing GL_MIRRORED_REPEAT with GL_CLAMP_TO_EDGE.
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Specifying that values less than 0 and greater than 1 result in a “border” color 
can be done as follows:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
float redColor[4] = { 1.0f, 0.0f, 0.0f, 1.0f };
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, redColor);

The effect of each of these options (mirrored repeat, clamp to edge, and clamp 
to border), with texture coordinates ranging from -2 to +3, are shown respectively 
(left to right) in Figure 5.15.

Figure 5.15
Textured pyramid with various wrapping options.

In the center example (clamp to edge), the pixels along the edges of the texture 
image are replicated outward. Note that as a side effect, the lower-left and lower-
right regions of the pyramid faces obtain their color from the lower-left and lower-
right pixels of the texture image respectively.

	 5.11	 PERSPECTIVE DISTORTION
We have seen that as texture coordinates are passed from the vertex shader 

to the fragment shader, they are interpolated as they pass through the rasterizer. 
We have also seen that this is the result of the automatic linear interpolation that is 
always performed on vertex attributes.

However, in the case of texture coordinates, linear interpolation can lead to 
noticeable distortion in a 3D scene with perspective projection.
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Consider a rectangle made of two triangles, textured with a checkerboard 
image, facing the camera. As the rectangle is rotated around the X axis, the top 
part of the rectangle tilts away from the camera, while the lower part of the rect-
angle swings closer to the camera. Thus, we would expect the squares at the top to 
become smaller and the squares at the bottom to become larger. However, linear 
interpolation of the texture coordinates will instead cause the height of all squares 
to be equal. The distortion is exacerbated along the diagonal defining the two tri-
angles that make up the rectangle. The resulting distortion is shown in Figure 5.16.

Fortunately, there are algorithms for correcting perspective distortion, and by 
default, OpenGL applies a perspective correction algorithm [OP14, SP16] during 
rasterization. Figure 5.17 shows the same rotating checkerboard, properly rendered 
by OpenGL.

Figure 5.16
Texture perspective distortion.   

Figure 5.17
OpenGL perspective correction.

Although not common, it is possible to disable OpenGL’s perspective correc-
tion by adding the keyword “noperspective” in the declaration of the vertex attri-
bute containing the texture coordinates. This has to be done in both the vertex 
and fragment shaders. For example, the vertex attribute in the vertex shader of 
Program 5.1 would be declared as follows:

noperspective out vec2 tc;

The corresponding attribute in the fragment shader would be declared:

noperspective in vec2 tc;

This syntax was in fact used to produce the distorted checkerboard in  
Figure 5.16.
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	 5.12	 TEXTURES – ADDITIONAL OPENGL DETAILS
The SOIL2 texture image loading library that we are using throughout this 

book has the advantage that it is relatively easy and intuitive to use. However, when 
learning OpenGL, using SOIL2 has the unintended consequence of shielding the 
user from some important OpenGL details that are useful to learn. In this section, 
we describe some of those details a programmer would need to know in order to 
load and use textures in the absence of a texture loading library such as SOIL2.

It is possible to load texture image file data into OpenGL directly, using C++ 
and OpenGL functions. While it is quite a bit more complicated, it is commonly 
done. The general steps are:

	 1.	 Read the image file using C++ tools.
	 2.	 Generate an OpenGL texture object.
	 3.	 Copy the image file data into the texture object.

We won’t describe the first step in detail—there are numerous methods. 
One approach is described nicely at opengl-tutorials.org (the specific tutorial page 
is [OT18]), and uses C++ functions fopen() and fread() to read in data from a .bmp 
image file into an array of type unsigned char.

Steps 2 and 3 are more generic and involve mostly OpenGL calls. In step 2, 
we create one or more texture objects using the OpenGL glGenTextures() command. 
For example, generating a single OpenGL texture object (with an integer reference 
ID) can be done as follows:

GLuint textureID;	 // or an array of GLuint if making more than one texture object
glGenTextures(1, &textureID);

In step 3, we associate the image data from step 1 into the texture object 
created in step 2. This is done using the OpenGL glTexImage2D() command. The 
following example loads the image data from the unsigned char array described in 
step 1 (and denoted here as “data”) into the texture object created in step 2:

glBindTexture(GL_TEXTURE_2D, textureID)
glTexImage2D(GL_TEXTURE_2D, 0,GL_RGB, width, height, 0, GL_BGR,  
� GL_UNSIGNED_BYTE, data);

At this point, the various glTexParameteri() calls described earlier in this chapter 
for setting up mipmaps and so forth can be applied to the texture object. We also 
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now use the integer reference (textureID) in the same manner as was described 
throughout the chapter.

SUPPLEMENTAL NOTES

Researchers have developed a number of uses for texture units beyond just 
texturing models in a scene. In later chapters, we will see how texture units can be 
used for altering the way light reflects off an object, making it appear bumpy. We 
can also use a texture unit to store “height maps” for generating terrain, and for 
storing “shadow maps” to efficiently add shadows to our scenes. These uses will 
be described in subsequent chapters.

Shaders can also write to textures, allowing shaders to modify texture images, 
or even copy part of one texture into some portion of another texture.

Mipmaps and anisotropic filtering are not the only tools for reducing aliasing 
artifacts in textures. Full-scene anti-aliasing (FSAA) and other supersampling 
methods, for example, can also improve the appearance of textures in a 3D scene. 
Although not part of the OpenGL core, they are supported on many graphics cards 
through OpenGL’s extension mechanism [OE20].

There is an alternative mechanism for configuring and managing textures and 
samplers. Version 3.3 of OpenGL introduced sampler objects (sometimes called 
“sampler states”—not to be confused with sampler variables) that can be used 
to hold a set of texture settings independent of the actual texture object. Sampler 
objects are attached to texture units and allow for conveniently and efficiently 
changing texture settings. The examples shown in this textbook are sufficiently 
simple that we decided to omit coverage of sampler objects. For interested read-
ers, usage of sampler objects is easy to learn, and there are many excellent online 
tutorials (such as [GE11]).

Exercises

	5.1	Modify Program 5.1 by adding the “noperspective” declaration to the texture 
coordinate vertex attributes, as described in Section 5.11. Then rerun the 
program and compare the output with the original. Is any perspective distortion 
evident?
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	5.2	Using a simple “paint” program (such as Windows “Paint” or GIMP [GI16]), 
draw a freehand picture of your own design. Then use your image to texture 
the pyramid in Program 5.1.

	5.3	(PROJECT) Modify Program 4.4 so that the “sun,” “planet,” and “moon” are 
textured. You may continue to use the shapes already present, and you may 
use any texture you like. This will require you to build texture coordinates for 
the cube.
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So far we have dealt only with very simple 3D objects, such as cubes and pyra-
mids. These objects are so simple that we have been able to explicitly list all of the 
vertex information in our source code and place it directly into buffers.

However, most interesting 3D scenes include objects that are too complex to 
continue building them as we have, by hand. In this chapter, we will explore more 
complex object models, how to build them, and how to load them into our scenes.

3D modeling is itself an extensive field, and our coverage here will necessarily 
be very limited. We will focus on the following two topics:

•	 building models procedurally
•	 loading models produced externally

While this only scratches the surface of the rich field of 3D modeling, it will 
give us the capability to include a wide variety of complex and realistically detailed 
objects in our scenes.

	 6.1	 PROCEDURAL MODELS – BUILDING A SPHERE
Some types of objects, such as spheres, cones, and so forth, have mathemati-

cal definitions that lend themselves to algorithmic generation. Consider for example 
a circle of radius R—coordinates of points around its perimeter are well defined 
(Figure 6.1).
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We can systematically use our knowledge of the geometry of a circle to 
algorithmically build a sphere model. Our strategy is as follows:

	 1.	 Select a precision representing a number of circular regions the sphere is 
divided into. In the left side Figure 6.2, the sphere is sliced into four regions.

	 2.	 Subdivide the circumference of each circular slice into some number 
of points. See the right side of Figure 6.2. More points and horizontal 
slices produces a more accurate and smoother model of the sphere. In our 
model, each slice will have the same number of points, including at the 
very top and bottom (where those points are coincident).

Figure 6.2
Building vertices for a sphere.

	 3.	 Group the vertices into triangles. One approach is to step through the 
vertices, building two triangles at each step. For example, as we move 
along the row of the five colored vertices on the sphere in Figure 6.3, 
for each of those five vertices we build the two triangles shown in the 
corresponding color (the steps are described in greater detail below).

Figure 6.1
Points on a circle.
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Figure 6.3
Grouping vertices into triangles.

	 4.	 Select texture coordinates depending on the nature of our texture images. 
In the case of a sphere, there exist many topographical texture images, 
such as the one shown in Figure 6.4 [VE16] for planet Earth. If we assume 
this sort of texture image, then by imagining the image “wrapped” around 
the sphere as shown in Figure 6.5, we can assign texture coordinates to 
each vertex according to the resulting corresponding positions of the 
texels in the image.

Figure 6.4
Topographical texture image [VE16].   

Figure 6.5
Sphere texture coordinates.

	 5.	 It is also often desirable to generate normal vectors—vectors that are 
perpendicular to the model’s surface—for each vertex. We will use them 
soon, in Chapter 7, for lighting.
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Determining normal vectors can be tricky, but in the case of a sphere, the 
vector pointing from the center of the sphere to a vertex happens to conveniently 
equal the normal vector for that vertex! Figure 6.6 illustrates this property (the 
center of the sphere is indicated with a “star”).

Figure 6.6
Sphere vertex normal vectors.

Some models define triangles using indices. Note in Figure 6.3 that each ver-
tex appears in multiple triangles, which would lead to each vertex being specified 
multiple times. Rather than doing this, we instead store each vertex once, and then 
specify indices for each corner of a triangle, referencing the desired vertices. Since 
we will store a vertex’s location, texture coordinates, and normal vector, this can 
facilitate memory savings for large models.

The vertices are stored in a one-dimensional array, starting with the vertices 
in the bottommost horizontal slice. When using indexing, the associated array of 
indices includes an entry for each triangle corner. The contents are integer ref-
erences (specifically, subscripts) into the vertex array. Assuming that each slice 
contains n vertices, the vertex array would look as shown in Figure 6.7, along with 
an example portion of the corresponding index array.

We can then traverse the vertices in a circular fashion around each horizon-
tal slice, starting at the bottom of the sphere. As we visit each vertex, we build 
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two triangles forming a square region above and to its right, as shown earlier in 
Figure 6.3. The processing is thus organized into nested loops, as follows:

for each horizontal slice i in the sphere (i ranges from 0 through all the slices in the sphere)
{	 for each vertex j in slice i (j ranges from 0 through all the vertices in the slice)
	 {	 calculate indices for two triangles which point to neighboring vertices to the right,
		  above, and to the above-right of vertex j
}	 }

For example, consider the “red” vertex from Figure 6.3 (repeated in Figure 6.8). 
The vertex in question is at the lower left of the yellow triangles shown in Figure 6.8, 
and given the loops just described, would be indexed by i*n+j, where i is the slice 
currently being processed (the outer loop), j is the vertex currently being processed 
within that slice (the inner loop), and n is the number of vertices per slice. Figure 6.8 
shows this vertex (in red) along with its three relevant neighboring vertices, each 
with formulas showing how they would 
be indexed.

These four vertices are then used 
to build the two triangles (shown in 
yellow) generated for this (red) vertex. 
The six entries in the index table for 
these two triangles are indicated in 
the figure in the order shown by the 
numbers 1 through 6. Note that entries 
3 and 6 both refer to the same vertex, 
which is also the case for entries 2 

Figure 6.7
Vertex array and corresponding index array.

Figure 6.8
Indices generated for the jth vertex in the ith slice (n = number of 
vertices per slice).
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and 4. The two triangles thus defined when we reach the vertex highlighted in red 
(i.e., vertex[i*n+j]) are built out of these six vertices—one with entries marked 1, 2, 
3 referencing vertices vertex[i*n+j], vertex[i*n+j+1], and vertex[(i+1)*n+j], and one with 
entries marked 4, 5, 6 referencing the three vertices vertex[i*n+j+1], vertex[(i+1)*n+j+1], 
and vertex[(i+1)*n+j].

Program 6.1 shows the implementation of our sphere model as a class named 
Sphere. The center of the resulting sphere is at the origin. Code for using Sphere 
is also shown. Note that each vertex is stored in C++ vectors containing instances 
of the GLM classes vec2 and vec3 (this is different from previous examples, where 
vertices were stored in float arrays). vec2 and vec3 include methods for obtaining 
the desired x, y, and z components as float values, which are then put into float 
buffers as before. We store these values in variable-length C++ vectors because 
the size depends on the number of slices specified at runtime.

Note the calculation of triangle indices in the Sphere class, as described ear-
lier in Figure 6.8. The variable “prec” refers to the “precision,” which in this 
case is used both for the number of sliced sphere regions and the number of 
desired points per slice. Because the texture map wraps completely around the 
sphere, we will need an extra coincident vertex at each of the points where the 
left and right edges of the texture map meet. Thus, the total number of vertices 
is (prec+1)*(prec+1). Since six triangle indices are generated per vertex, the total 
number of indices is prec*prec*6.

Program 6.1 Procedurally Generated Sphere
Sphere class (Sphere.cpp)
#include <cmath>
#include <vector>
#include <iostream>
#include <glm/glm.hpp>
#include "Sphere.h"
using namespace std;

Sphere::Sphere() {
	 init(48);
}

Sphere::Sphere(int prec) {	 // prec is precision, or number of slices
	 init(prec);
}
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float Sphere::toRadians(float degrees) { return (degrees * 2.0f * 3.14159f) / 360.0f; }

void Sphere::init(int prec) {
	 numVertices = (prec + 1) * (prec + 1);
	 numIndices = prec * prec * 6;
	 for (int i = 0; i < numVertices; i++) { vertices.push_back(glm::vec3()); }	 // std::vector::push_back()
	 for (int i = 0; i < numVertices; i++) { texCoords.push_back(glm::vec2()); }	 // inserts new element at
	 for (int i = 0; i < numVertices; i++) { normals.push_back(glm::vec3()); }	 // the end of a vector and
	 for (int i = 0; i < numIndices; i++) { indices.push_back(0); }� // increases the vector size by 1

	 // calculate triangle vertices
	 for (int i = 0; i <= prec; i++) {
		  for (int j = 0; j <= prec; j++) {
			   float y = (float)cos(toRadians(180.0f - i * 180.0f / prec));
			   float x = -(float)cos(toRadians(j*360.0f / prec)) * (float)abs(cos(asin(y)));
			   float z = (float)sin(toRadians(j*360.0f / prec)) * (float)abs(cos(asin(y)));
			   vertices[i*(prec + 1) + j] = glm::vec3(x, y, z);
			   texCoords[i*(prec + 1) + j] = glm::vec2(((float)j / prec), ((float)i / prec));
			   normals[i*(prec + 1) + j] = glm::vec3(x,y,z);
		  }
	 }

	 // calculate triangle indices
	 for (int i = 0; i<prec; i++) {
		  for (int j = 0; j<prec; j++) {
			   indices[6 * (i*prec + j) + 0] = i*(prec + 1) + j;
			   indices[6 * (i*prec + j) + 1] = i*(prec + 1) + j + 1;
			   indices[6 * (i*prec + j) + 2] = (i + 1)*(prec + 1) + j;
			   indices[6 * (i*prec + j) + 3] = i*(prec + 1) + j + 1;
			   indices[6 * (i*prec + j) + 4] = (i + 1)*(prec + 1) + j + 1;
			   indices[6 * (i*prec + j) + 5] = (i + 1)*(prec + 1) + j;
		  }
	 }
}

// accessors
int Sphere::getNumVertices() { return numVertices; }
int Sphere::getNumIndices() { return numIndices; }
std::vector<int> Sphere::getIndices() { return indices; }
std::vector<glm::vec3> Sphere::getVertices() { return vertices; }
std::vector<glm::vec2> Sphere::getTexCoords() { return texCoords; }
std::vector<glm::vec3> Sphere::getNormals() { return normals; }
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Sphere header file (Sphere.h)
#include <cmath>
#include <vector>
#include <glm/glm.hpp>

class Sphere
{
private:
	 int numVertices;
	 int numIndices;
	 std::vector<int> indices;
	 std::vector<glm::vec3> vertices;
	 std::vector<glm::vec2> texCoords;
	 std::vector<glm::vec3> normals;
	 void init(int);
	 float toRadians(float degrees);

public:
	 Sphere(int prec);
	 int getNumVertices();
	 int getNumIndices();
	 std::vector<int> getIndices();
	 std::vector<glm::vec3> getVertices();
	 std::vector<glm::vec2> getTexCoords();
	 std::vector<glm::vec3> getNormals();
};

Using the Sphere class
. . .
#include "Sphere.h"
. . .
Sphere mySphere(48);
. . .

void setupVertices(void) {
	 std::vector<int> ind = mySphere.getIndices();
	 std::vector<glm::vec3> vert = mySphere.getVertices();
	 std::vector<glm::vec2> tex = mySphere.getTexCoords();
	 std::vector<glm::vec3> norm = mySphere.getNormals();

	 std::vector<float> pvalues;		 // vertex positions
	 std::vector<float> tvalues;		  // texture coordinates
	 std::vector<float> nvalues;		 // normal vectors
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	 int numIndices = mySphere.getNumIndices();
	 for (int i = 0; i < numIndices; i++)  {
		  pvalues.push_back((vert[ind[i]]).x);
		  pvalues.push_back((vert[ind[i]]).y);
		  pvalues.push_back((vert[ind[i]]).z);

		  tvalues.push_back((tex[ind[i]]).s);
		  tvalues.push_back((tex[ind[i]]).t);

		  nvalues.push_back((norm[ind[i]]).x);
		  nvalues.push_back((norm[ind[i]]).y);
		  nvalues.push_back((norm[ind[i]]).z);
	 }

	 glGenVertexArrays(1, vao);
	 glBindVertexArray(vao[0]);
	 glGenBuffers(3, vbo);

	 // put the vertices into buffer #0
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glBufferData(GL_ARRAY_BUFFER, pvalues.size()*4, &pvalues[0], GL_STATIC_DRAW);

	 // put the texture coordinates into buffer #1
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	 glBufferData(GL_ARRAY_BUFFER, tvalues.size()*4, &tvalues[0], GL_STATIC_DRAW);

	 // put the normals into buffer #2
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
	 glBufferData(GL_ARRAY_BUFFER, nvalues.size()*4, &nvalues[0], GL_STATIC_DRAW);
}

in display()
. . .
glDrawArrays(GL_TRIANGLES, 0, mySphere.getNumIndices());
. . .

When using the Sphere class, we will need three values for each vertex posi-
tion and normal vector, but only two values for each texture coordinate. This 
is reflected in the declarations for the vectors (vertices, texCoords, and normals) 
shown in the Sphere.h header file, and from which the data is later loaded into the 
buffers.

It is important to note that although indexing is used in the process of build-
ing the sphere, the ultimate sphere vertex data stored in the VBOs doesn’t utilize 
indexing. Rather, as setupVertices() loops through the sphere indices, it generates 
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separate (often redundant) vertex entries 
in the VBO for each of the index entries. 
OpenGL does have a mechanism for index-
ing vertex data; for simplicity we didn’t use 
it in this example, but we will use OpenGL’s 
indexing in the next example.

Figure 6.9 shows the output of 
Program 6.1, with a precision of 48. The 
view has been slightly rotated for clar-
ity. The texture from Figure 6.5 has been 
loaded as described in Chapter 5.

Many other models can be created 
procedurally, from geometric shapes 
to real-world objects. One of the most 
well-known is the “Utah teapot” [CH20], 
which was developed in 1975 by Martin 
Newell, using a variety of Bézier curves and 
surfaces. The OpenGL Utility Toolkit (or 
“GLUT”) [GL20] even includes procedures 
for drawing teapots(!) (see Figure 6.10). We 
don’t cover GLUT in this book, but Bézier 
surfaces are covered in Chapter 11.

	 6.2	 OPENGL INDEXING – BUILDING A TORUS
	6.2.1	 The Torus

Algorithms for producing a torus can be found on various websites. Paul Baker 
gives a step-by-step description for defining a circular slice, and then rotating 
the slice around a circle to form a donut, in his OpenGL bump mapping tutorial 
[PP07]. Figure 6.11 shows two views, from the side and from above.

The way that the torus vertex positions are generated is rather different from 
what was done to build the sphere. For the torus, the algorithm positions a vertex to 
the right of the origin and then rotates that vertex in a circle on the XY plane using a 
rotation around the Z axis to form a “ring.” The ring is then moved outward by the 
“inner radius” distance. Texture coordinates and normal vectors are computed for 

Figure 6.9
Textured sphere model.

Figure 6.10
OpenGL GLUT teapot.
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each of these vertices as they are built. An additional vector tangent to the surface 
of the torus (called the tangent vector) is also generated for each vertex.

Vertices for additional torus rings are formed by rotating the original ring 
around the Y axis. Tangent and normal vectors for each resulting vertex are com-
puted by also rotating the tangent and normal vectors of the original ring around the 
Y axis. After the vertices are created, they are traversed from ring to ring, and for 
each vertex two triangles are generated. The generation of six index table entries 
comprising the two triangles is done in a similar manner as we did for the sphere.

Our strategy for choosing texture coordinates for the remaining rings will be 
to arrange them so that the S axis of the texture image wraps halfway around the 
horizontal perimeter of the torus and then repeats for the other half. As we rotate 
around the Y axis generating the rings, we specify a variable ring that starts at 1 
and increases up to the specified precision (again dubbed “prec”). We then set the 
S texture coordinate value to ring*2.0/prec, causing S to range between 0.0 and 2.0, 
then set the texture’s tiling mode to GL_REPEAT as described in Section 5.10. The 
motivation for this approach is to avoid having the texture image appear overly 
“stretched” horizontally. If instead we did want the texture to stretch completely 
around the torus, we would simply remove the “*2.0” multiplier from the texture 
coordinate computation.

Building a torus class in C++/OpenGL could be done in a virtually identical 
manner as for the Sphere class. However, we have the opportunity to take advan-
tage of the indices that we created while building the torus by using OpenGL’s 
support for vertex indexing (we could have also done this for the sphere, but we 
didn’t). For very large models with thousands of vertices, using OpenGL indexing 
can result in improved performance, and so we will describe how to do that next.

Figure 6.11
Building a torus.
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	 6.2.2	 Indexing in OpenGL
In both our sphere and torus models, we generate an array of integer indices 

referencing into the vertex array. In the case of the sphere, we use the list of indi-
ces to build a complete set of individual vertices and load them into a VBO just 
as we did for examples in earlier chapters. Instantiating the torus and loading its 
vertices, normals, and so on into buffers could be done in a similar manner as was 
done in Program 6.1, but instead we will use OpenGL’s indexing.

When using OpenGL indexing, we also load the indices themselves into a 
VBO. We generate one additional VBO for holding the indices. Since each index 
value is simply an integer reference, we first copy the index array into a C++ 
vector of integers, and then use glBufferData() to load the vector into the added 
VBO, specifying that the VBO is of type GL_ELEMENT_ARRAY_BUFFER (this tells 
OpenGL that the VBO contains indices). The code that does this can be added to 
setupVertices():

std::vector<int> ind = myTorus.getIndices();	 // torus index accessor returns indices as an int vector
. . .
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);	 // vbo #3 is the additional added vbo
glBufferData(GL_ELEMENT_ARRAY_BUFFER, ind.size()*4, &ind[0], GL_STATIC_DRAW);

In the display() method, we replace the glDrawArrays() call with a call to 
glDrawElements(), which tells OpenGL to utilize the index VBO for looking up 
the vertices to be drawn. We also enable the VBO that contains the indices by 
using glBindBuffer(), specifying which VBO contains the indices and that it is a 
GL_ELEMENT_ARRAY_BUFFER. The code is as follows:

numTorusIndices = myTorus.getNumIndices();
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

Interestingly, the shaders used for drawing the sphere continue to work, 
unchanged, for the torus, even with the changes that we made in the C++/OpenGL 
application to implement indexing. OpenGL is able to recognize the presence of a 
GL_ELEMENT_ARRAY_BUFFER and utilize it to access the vertex attributes.

Program 6.2 shows a class named Torus based on Baker’s implementation. The 
“inner” and “outer” variables refer to the corresponding inner and outer radius in 
Figure 6.11. The prec (“precision”) variable has a similar role as in the sphere, 
with analogous computations for number of vertices and indices. By contrast, 
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determining normal vectors is much more complex than it was for the sphere. We 
have used the strategy given in Baker’s description, wherein two tangent vectors 
are computed (dubbed sTangent and tTangent by Baker, although more commonly 
referred to as “tangent” and “bitangent”), and their cross-product forms the normal.

We will use this torus class (and the sphere class described earlier) in many 
examples throughout the remainder of the textbook.

Program 6.2 Procedurally Generated Torus
Torus class (Torus.cpp)
#include <cmath>
#include <vector>
#include <iostream>
#include "Torus.h"
using namespace std;

Torus::Torus()  {
	 prec = 48;
	 inner = 0.5f;
	 outer = 0.2f;
	 init();
}

Torus::Torus(float innerRadius, float outerRadius, int precIn)  {
	 prec = precIn;
	 inner = innerRadius;
	 outer = outerRadius;
	 init();
}

float Torus::toRadians(float degrees) { return (degrees * 2.0f * 3.14159f) / 360.0f; }

void Torus::init()  {
	 numVertices = (prec + 1) * (prec + 1);
	 numIndices = prec * prec * 6;
	 for (int i = 0; i < numVertices; i++) { vertices.push_back(glm::vec3()); }
	 for (int i = 0; i < numVertices; i++) { texCoords.push_back(glm::vec2()); }
	 for (int i = 0; i < numVertices; i++) { normals.push_back(glm::vec3()); }
	 for (int i = 0; i < numVertices; i++) { sTangents.push_back(glm::vec3()); }
	 for (int i = 0; i < numVertices; i++) { tTangents.push_back(glm::vec3()); }
	 for (int i = 0; i < numIndices; i++) { indices.push_back(0); }

	 // calculate first ring
	 for (int i = 0; i < prec + 1; i++) {
		  float amt = toRadians(i*360.0f / prec);
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		  // build the ring by rotating points around the origin, then moving them outward
		  glm::mat4 rMat = glm::rotate(glm::mat4(1.0f), amt, glm::vec3(0.0f, 0.0f, 1.0f));
		  glm::vec3 initPos(rMat * glm::vec4(0.0f, outer, 0.0f, 1.0f));
		  vertices[i] = glm::vec3(initPos + glm::vec3(inner, 0.0f, 0.0f));
		  // compute texture coordinates for each vertex on the ring
		  texCoords[i] = glm::vec2(0.0f, ((float)i / (float)prec));
		  // compute tangents and normals -- first tangent is Y-axis rotated around Z
		  rMat = glm::rotate(glm::mat4(1.0f), amt+(3.14159f/2.0f), glm::vec3(0.0f, 0.0f, 1.0f));
		  tTangents[i] = glm::vec3(rMat * glm::vec4(0.0f, -1.0f, 0.0f, 1.0f));
		  sTangents[i] = glm::vec3(glm::vec3(0.0f, 0.0f, -1.0f));	 // second tangent is -Z.
		  normals[i] = glm::cross(tTangents[i], sTangents[i]);	 // their X-product is the normal.
	 }
	 // rotate the first ring about Y to get the other rings
	 for (int ring = 1; ring < prec + 1; ring++) {
		  for (int vert = 0; vert < prec + 1; vert++) {
			   // rotate the vertex positions of the original ring around the Y axis
			   float amt = (float)( toRadians(ring * 360.0f / prec));
			   glm::mat4 rMat = glm::rotate(glm::mat4(1.0f), amt, glm::vec3(0.0f, 1.0f, 0.0f)); 
			   vertices[ring*(prec + 1) + i] = glm::vec3(rMat * glm::vec4(vertices[i], 1.0f));

			   // compute the texture coordinates for the vertices in the new rings
			   texCoords[ring*(prec + 1) + vert] = glm::vec2((float)ring*2.0f / (float)prec, texCoords[vert].t);

			   // rotate the tangent and bitangent vectors around the Y axis
			   rMat = glm::rotate(glm::mat4(1.0f), amt, glm::vec3(0.0f, 1.0f, 0.0f));
			   sTangents[ring*(prec + 1) + i] = glm::vec3(rMat * glm::vec4(sTangents[i], 1.0f));
			   rMat = glm::rotate(glm::mat4(1.0f), amt, glm::vec3(0.0f, 1.0f, 0.0f));
			   tTangents[ring*(prec + 1) + i] = glm::vec3(rMat * glm::vec4(tTangents[i], 1.0f));

			   // rotate the normal vector around the Y axis
			   rMat = glm::rotate(glm::mat4(1.0f), amt, glm::vec3(0.0f, 1.0f, 0.0f)); 
			   normals[ring*(prec + 1) + i] = glm::vec3(rMat * glm::vec4(normals[i], 1.0f));
	 }	 }
	 // calculate triangle indices corresponding to the two triangles built per vertex
	 for (int ring = 0; ring < prec; ring++) {
		  for (int vert = 0; vert < prec; vert++) {
			   indices[((ring*prec + vert) * 2) * 3 + 0] = ring*(prec + 1) + vert;
			   indices[((ring*prec + vert) * 2) * 3 + 1] = (ring + 1)*(prec + 1) + vert;
			   indices[((ring*prec + vert) * 2) * 3 + 2] = ring*(prec + 1) + vert + 1;
			   indices[((ring*prec + vert) * 2 + 1) * 3 + 0] = ring*(prec + 1) + vert + 1;
			   indices[((ring*prec + vert) * 2 + 1) * 3 + 1] = (ring + 1)*(prec + 1) + vert;
			   indices[((ring*prec + vert) * 2 + 1) * 3 + 2] = (ring + 1)*(prec + 1) + vert + 1;
}	 }	 }
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// accessors for the torus indices and vertices
int Torus::getNumVertices() { return numVertices; }
int Torus::getNumIndices() { return numIndices; }
std::vector<int> Torus::getIndices() { return indices; }
std::vector<glm::vec3> Torus::getVertices() { return vertices; }
std::vector<glm::vec2> Torus::getTexCoords() { return texCoords; }
std::vector<glm::vec3> Torus::getNormals() { return normals; }
std::vector<glm::vec3> Torus::getStangents() { return sTangents; }
std::vector<glm::vec3> Torus::getTtangents() { return tTangents; }

Torus header file  (Torus.h)
#include <cmath>
#include <vector>
#include <glm/glm.hpp>
class Torus
{
private:
	 int numVertices;
	 int numIndices;
	 int prec;
	 float inner;
	 float outer;
	 std::vector<int> indices;
	 std::vector<glm::vec3> vertices;
	 std::vector<glm::vec2> texCoords;
	 std::vector<glm::vec3> normals;
	 std::vector<glm::vec3> sTangents;
	 std::vector<glm::vec3> tTangents;
	 void init();
	 float toRadians(float degrees);

public:
	 Torus();
	 Torus(float innerRadius, float outerRadius, int prec);
	 int getNumVertices();
	 int getNumIndices();
	 std::vector<int> getIndices();
	 std::vector<glm::vec3> getVertices();
	 std::vector<glm::vec2> getTexCoords();
	 std::vector<glm::vec3> getNormals();
	 std::vector<glm::vec3> getStangents();
	 std::vector<glm::vec3> getTtangents();
}; 
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Using the Torus class (with OpenGL indexing)
. . .
#include "Torus.h"
. . .
Torus myTorus(0.5f, 0.2f, 48);
. . .
void setupVertices(void) {
	 std::vector<int> ind = myTorus.getIndices();
	 std::vector<glm::vec3> vert = myTorus.getVertices();
	 std::vector<glm::vec2> tex = myTorus.getTexCoords();
	 std::vector<glm::vec3> norm = myTorus.getNormals();

	 std::vector<float> pvalues;
	 std::vector<float> tvalues;
	 std::vector<float> nvalues;

	 int numVertices = myTorus.getNumVertices();	
	 for (int i = 0; i < numVertices; i++) {
		  pvalues.push_back(vert[i].x);
		  pvalues.push_back(vert[i].y);
		  pvalues.push_back(vert[i].z);

		  tvalues.push_back(tex[i].s);
		  tvalues.push_back(tex[i].t);

		  nvalues.push_back(norm[i].x);
		  nvalues.push_back(norm[i].y);
		  nvalues.push_back(norm[i].z);
	 }
	 glGenVertexArrays(1, vao);
	 glBindVertexArray(vao[0]);
	 glGenBuffers(4, vbo);	 // generate VBOs as before, plus one for indices

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);	 // vertex positions
	 glBufferData(GL_ARRAY_BUFFER, pvalues.size() * 4, &pvalues[0], GL_STATIC_DRAW);

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);	 // texture coordinates
	 glBufferData(GL_ARRAY_BUFFER, tvalues.size() * 4, &tvalues[0], GL_STATIC_DRAW);

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);	 // normal vectors
	 glBufferData(GL_ARRAY_BUFFER, nvalues.size() * 4, &nvalues[0], GL_STATIC_DRAW);

	 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);	 // indices
	 glBufferData(GL_ELEMENT_ARRAY_BUFFER, ind.size() * 4, &ind[0], GL_STATIC_DRAW);
}
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in display()
. . .
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
glDrawElements(GL_TRIANGLES, myTorus.getNumIndices(), GL_UNSIGNED_INT, 0);

Note in the code that uses the Torus class that the loop in setupVertices() now 
stores the data associated with each vertex once, rather than once for each index 
entry (as was the case in the sphere example). This difference is also reflected in the 
declared array sizes for the data being entered into the VBOs. Also note that in the 
torus example, rather than using the index values when retrieving vertex data, they 
are simply loaded into VBO #3. Since that VBO is designated as a GL_ELEMENT_
ARRAY_BUFFER, OpenGL knows that that VBO contains vertex indices.

Figure 6.12 shows the result of instantiating a torus and texturing it with the 
brick texture.

Figure 6.12
Procedurally generated torus.

	 6.3	 LOADING EXTERNALLY PRODUCED MODELS
Complex 3D models, such as characters found in videogames or computer-

generated movies, are typically produced using modeling tools. Such “DCC” 
(digital content creation) tools make it possible for people (such as artists) to build 
arbitrary shapes in 3D space and automatically produce the vertices, texture coor-
dinates, vertex normals, and so on. There are too many such tools to list, but some 
examples are Maya, Blender, Lightwave, Cinema4D, and many others. Blender 
is free and open source. Figure 6.13 shows an example Blender screen during the 
editing of a 3D model.
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In order for us to use a DCC-created model in our OpenGL scenes, that model 
needs to be saved (exported) in a format that we can read (import) into our pro-
gram. There are several standard 3D model file formats; again, there are too many 
to list, but some examples are Wavefront (.obj), 3D Studio Max (.3ds), Stanford 
Scanning Repository (.ply), Ogre3D (.mesh), to name a few. Arguably the simplest 
is Wavefront (usually dubbed OBJ), so we will examine that one.

OBJ files are simple enough that we can develop a basic importer relatively 
easily. In an OBJ file, lines of text specify vertex geometric data, texture coordi-
nates, normals, and other information. It has some limitations—for example, OBJ 
files have no way of specifying model animation.

Lines in an OBJ file start with a character tag indicating what kind of data is 
on that line. Some common tags include:

•	 v  – geometric (vertex location) data
•	 vt  – texture coordinates
•	 vn – vertex normal
•	 f  – face (typically vertices in a triangle)

Other tags make it possible to store the object name, materials it uses, curves, 
shadows, and many other details. We will limit our discussion to the four tags 
listed above, which are sufficient for importing a wide variety of complex models.

Figure 6.13
Example Blender model creation [BL20].
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Suppose we use Blender to build a simple pyramid such as the one we developed 
for Program 4.3. Figure 6.14 is a screenshot of a similar pyramid being created in 
Blender:

Figure 6.14
Pyramid built in Blender.

In Blender, if we now export our pyramid model, specify the .obj format, and 
also set Blender to output texture coordinates and vertex normals, an OBJ file is 
created that includes all of this information. The resulting OBJ file is shown in 
Figure 6.15. (The actual values of the texture coordinates can vary depending on 
how the model is built.)

We have color-coded the important sections of the OBJ file for reference. The 
lines at the top beginning with “#” are comments placed there by Blender, which 
our importer ignores. This is followed by a line beginning with “o” giving the 
name of the object. Our importer can ignore this line as well. Later, there is a line 
beginning with “s” that specifies that the faces shouldn’t be smoothed. Our code 
will also ignore lines starting with “s”.

The first substantive set of lines in the OBJ file are those starting with “v”, 
colored blue. They specify the X, Y, and Z local spatial coordinates of the five 
vertices of our pyramid model relative to the origin, which in this case is at the 
center of the pyramid.
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The values colored red (starting with “vt”) are the various texture coordinates. 
The reason that the list of texture coordinates is longer than the list of vertices is 
that some of the vertices participate in more than one triangle, and in those cases 
different texture coordinates might be used.

The values colored green (starting with “vn”) are the various normal vectors. 
This list too is often longer than the list of vertices (although not in this example), 
again because some of the vertices participate in more than one triangle, and in 
those cases different normal vectors might be used.

Figure 6.15
Exported OBJ file for the pyramid.
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The values colored purple (starting with “f”), near the bottom of the file, specify 
the triangles (i.e., “faces”). In this example, each face (triangle) has three elements, 
each with three values separated by “/” (OBJ allows other formats as well). The 
values for each element are indices into the lists of vertices, texture coordinates, 
and normal vectors respectively. For example, the third face is:

f  2 / 7 / 3  5 / 8 / 3  3 / 9 / 3

This indicates that the second, fifth, and third vertices from the list of vertices 
(in blue) comprise a triangle (note that OBJ indices start at 1). The corresponding 
texture coordinates are the seventh, eighth, and ninth from the list of texture coor-
dinates in the section colored red. All three vertices have the same normal vector, 
the third in the list of normals in the section colored green.

Models in OBJ format are not required to have normal vectors, or even texture 
coordinates. If a model does not have texture coordinates or normals, the face 
values would specify only the vertex indices:

f  2  5  3

If a model has texture coordinates, but not normal vectors, the format would 
be as follows:

f  2 / 7  5 / 8  3 / 9

And, if the model has normals but not texture coordinates, the format 
would be:

f  2 / / 3  5 / / 3  3 / / 3

It is not unusual for a model to have tens of thousands of vertices. There are 
hundreds of such models available for download on the Internet for nearly every 
conceivable application, including models of animals, buildings, cars, planes, 
mythical creatures, people, and so on.

Programs of varying sophistication that can import an OBJ model are available 
on the Internet. Alternatively, it is relatively easy to write a very simple OBJ loader 
function that can handle the basic tags we have seen (v, vt, vn, and f). Program 6.3 
shows one such loader, albeit a very limited one. It incorporates a class to hold an 
arbitrary imported model, which in turn calls the importer.
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Before we describe the code in our simple OBJ importer, we must warn the 
reader of its limitations:

•	 It only supports models that include all three face attribute fields. That is, 
vertex positions, texture coordinates, and normals must all be present and 
in the form:  f  #/#/#  #/#/#  #/#/#.

•	 The material tag, often used to specify a texture file, is ignored—
texturing must be done using the methods described in Chapter 5.

•	 Only OBJ models composed of a single triangle mesh are supported 
(the OBJ format supports models comprised of multiple meshes, but our 
simple importer does not).

•	 It assumes that elements on each line are separated by exactly one 
space.

If you have an OBJ model that doesn’t satisfy all of the above criteria, and you 
wish to import it using the simple loader in Program 6.3, it may still be feasible 
to do so. It is often possible to load such a model into Blender, and then export it 
to another OBJ file that accommodates the loader’s limitations. For instance, if 
the model doesn’t include normal vectors, it is possible to have Blender produce 
normal vectors while it exports the revised OBJ file.

Another limitation of our OBJ loader has to do with indexing. Observe in the 
previous descriptions that the “face” tag allows for the possibility of mix-and-
matching vertex positions, texture coordinates, and normal vectors. For example, 
two different “face” rows may include indices which point to the same v entry, but 
different vt entries. Unfortunately, OpenGL’s indexing mechanism does not sup-
port this level of flexibility—index entries in OpenGL can only point to a particu-
lar vertex along with its attributes. This complicates writing an OBJ model loader 
somewhat, as we cannot simply copy the references in the triangle face entries into 
an index array. Rather, using OpenGL indexing would require ensuring that entire 
combinations of v, vt, and vn values for a face entry each have their own references 
in the index array. A simpler, albeit less efficient, alternative is to create a new 
vertex for every triangle face entry. We opt for this simpler approach here in the 
interest of clarity, despite the space-saving advantage of using OpenGL indexing 
(especially when loading larger models).

The ModelImporter class includes a parseOBJ() function that reads in each line 
of an OBJ file one by one, handling separately the four cases v, vt, vn, and f. In 
each case, the subsequent numbers on the line are extracted, first by using erase() 
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to skip the initial v, vt, vn, or f character(s), and then using the “>>” operator in 
the C++ stringstream class to extract each subsequent parameter value, and then 
storing them in a C++ float vector. As the face (f) entries are processed, the verti-
ces are built with corresponding entries in C++ float vectors for vertex positions, 
texture coordinates, and normal vectors.

The ModelImporter class is included in the file containing the ImportedModel 
class, which simplifies loading and accessing the vertices of an OBJ file by putting 
the imported vertices into vectors of vec2 and vec3 objects. Recall these are GLM 
classes; we use them here to store vertex positions, texture coordinates, and nor-
mal vectors. The accessors in the ImportedModel class then make them available to 
the C++/OpenGL application in much the same manner as was done in the Sphere 
and Torus classes.

Following the ModelImporter and ImportedModel classes is an example sequence 
of calls for loading an OBJ file and then transferring the vertex information into a 
set of VBOs for subsequent rendering.

Figure 6.16 shows a rendered model of the space shuttle downloaded as an OBJ 
file from the NASA website [NA20], imported using the code from Program 6.3, 
and textured using the code from Program 5.1 with the associated NASA texture 
image file with anisotropic filtering. This texture image is an example of the use 
of UV-mapping, where texture coordinates in the model are carefully mapped to 
particular regions of the texture image. (As mentioned in Chapter 5, the details of 
UV-mapping are outside the scope of this book.)

Figure 6.16
NASA space shuttle model with texture.
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Program 6.3 Simple (Limited) OBJ Loader
ImportedModel and ModelImporter classes  (ImportedModel.cpp)
#include <fstream>
#include <sstream>
#include <glm/glm.hpp>
#include "ImportedModel.h"
using namespace std;

// ------------  Imported Model class

ImportedModel::ImportedModel(const char *filePath)  {
	 ModelImporter modelImporter = ModelImporter();
	 modelImporter.parseOBJ(filePath);		  // uses modelImporter to get vertex information
	 numVertices = modelImporter.getNumVertices();
	 std::vector<float> verts = modelImporter.getVertices();
	 std::vector<float> tcs = modelImporter.getTextureCoordinates();
	 std::vector<float> normals = modelImporter.getNormals();

	 for (int i = 0; i < numVertices; i++) {
		  vertices.push_back(glm::vec3(verts[i*3], verts[i*3+1], verts[i*3+2]));
		  texCoords.push_back(glm::vec2(tcs[i*2], tcs[i*2+1]));
		  normalVecs.push_back(glm::vec3(normals[i*3], normals[i*3+1], normals[i*3+2]));
}	 }

int ImportedModel::getNumVertices() { return numVertices; }	 // accessors
std::vector<glm::vec3> ImportedModel::getVertices() { return vertices; }
std::vector<glm::vec2> ImportedModel::getTextureCoords() { return texCoords; }
std::vector<glm::vec3> ImportedModel::getNormals() { return normalVecs; }

// --------------  Model Importer class

ModelImporter::ModelImporter() {}

void ModelImporter::parseOBJ(const char *filePath)  {
	 float x, y, z;
	 string content;
	 ifstream fileStream(filePath, ios::in);
	 string line = "";
	 while (!fileStream.eof()) {
		  getline(fileStream, line);
		  if (line.compare(0, 2, "v ") == 0) {			  // vertex position ("v" case)
			   stringstream ss(line.erase(0, 1));
			   ss >> x; ss >> y; ss >> z;			   // extract the vertex position values
			   vertVals.push_back(x);
			   vertVals.push_back(y);
			   vertVals.push_back(z);
		  }
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		  if (line.compare(0, 2, "vt") == 0) {	 // texture coordinates ("vt" case)
			   stringstream ss(line.erase(0, 2));
			   ss >> x; ss >> y;	 // extract texture coordinate values
			   stVals.push_back(x);
			   stVals.push_back(y);
		  }
		  if (line.compare(0, 2, "vn") == 0) {	 // vertex normals ("vn" case)
			   stringstream ss(line.erase(0, 2));
			   ss >> x; ss >> y; ss >> z;	 // extract the normal vector values
			   normVals.push_back(x);
			   normVals.push_back(y);
			   normVals.push_back(z);
		  }
		  if (line.compare(0, 2, "f ") == 0) {	 // triangle faces ("f" case)
			   string oneCorner, v, t, n;
			   stringstream ss(line.erase(0, 2));
			   for (int i = 0; i < 3; i++) {
				    getline(ss, oneCorner, ' ');	 // extract triangle face references
				    stringstream oneCornerSS(oneCorner);
				    getline(oneCornerSS, v, '/');
				    getline(oneCornerSS, t, '/');
				    getline(oneCornerSS, n, '/');

				    int vertRef = (stoi(v) - 1) * 3;	 // "stoi" converts string to integer
				    int tcRef = (stoi(t) - 1) * 2;
				    int normRef = (stoi(n) - 1) * 3;

				    triangleVerts.push_back(vertVals[vertRef]);	 // build vector of vertices
				    triangleVerts.push_back(vertVals[vertRef + 1]);
				    triangleVerts.push_back(vertVals[vertRef + 2]);

				    textureCoords.push_back(stVals[tcRef]);	 // build vector of texture coords
				    textureCoords.push_back(stVals[tcRef + 1]);

				    normals.push_back(normVals[normRef]);	 //… and normals
				    normals.push_back(normVals[normRef + 1]);
				    normals.push_back(normVals[normRef + 2]);
}	 }	 }	 }

int ModelImporter::getNumVertices() { return (triangleVerts.size()/3); }		 // accessors
std::vector<float> ModelImporter::getVertices() { return triangleVerts; }
std::vector<float> ModelImporter::getTextureCoordinates() { return textureCoords; }
std::vector<float> ModelImporter::getNormals() { return normals; }
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ImportedModel and ModelImporter header file (ImportedModel.h)
#include <vector>

class ImportedModel
{
private:
	 int numVertices;
	 std::vector<glm::vec3> vertices;
	 std::vector<glm::vec2> texCoords;
	 std::vector<glm::vec3> normalVecs;
public:
	 ImportedModel(const char *filePath);
	 int getNumVertices();
	 std::vector<glm::vec3> getVertices();
	 std::vector<glm::vec2> getTextureCoords();
	 std::vector<glm::vec3> getNormals();
};

class ModelImporter
{
private:
	 // values as read in from OBJ file
	 std::vector<float> vertVals;
	 std::vector<float> stVals;
	 std::vector<float> normVals;

	 // values stored for later use as vertex attributes
	 std::vector<float> triangleVerts;
	 std::vector<float> textureCoords;
	 std::vector<float> normals;

public:
	 ModelImporter();
	 void parseOBJ(const char *filePath);
	 int getNumVertices();
	 std::vector<float> getVertices();
	 std::vector<float> getTextureCoordinates();
	 std::vector<float> getNormals();
};

Using the Model Importer
. . .	
ImportedModel myModel("shuttle.obj");		 // in top-level declarations
. . .
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void setupVertices(void) {
 	 std::vector<glm::vec3> vert = myModel.getVertices();
	 std::vector<glm::vec2> tex = myModel.getTextureCoords();
	 std::vector<glm::vec3> norm = myModel.getNormals();
	 int numObjVertices = myModel.getNumVertices();

	 std::vector<float> pvalues;		 // vertex positions
	 std::vector<float> tvalues;		  // texture coordinates
	 std::vector<float> nvalues;		 // normal vectors

	 for (int i = 0; i < numObjVertices(); i++) {
		  pvalues.push_back((vert[i]).x);
		  pvalues.push_back((vert[i]).y);
		  pvalues.push_back((vert[i]).z);
		  tvalues.push_back((tex[i]).s);
		  tvalues.push_back((tex[i]).t);
		  nvalues.push_back((norm[i]).x);
		  nvalues.push_back((norm[i]).y);
		  nvalues.push_back((norm[i]).z);
	 }
	 glGenVertexArrays(1, vao);
	 glBindVertexArray(vao[0]);
	 glGenBuffers(numVBOs, vbo);
	 // VBO for vertex locations
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glBufferData(GL_ARRAY_BUFFER, pvalues.size() * 4, &pvalues[0], GL_STATIC_DRAW);
	 // VBO for texture coordinates
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	 glBufferData(GL_ARRAY_BUFFER, tvalues.size() * 4, &tvalues[0], GL_STATIC_DRAW);
	 // VBO for normal vectors
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
	 glBufferData(GL_ARRAY_BUFFER, nvalues.size() * 4, &nvalues[0], GL_STATIC_DRAW);
}

in display():
. . .
glDrawArrays(GL_TRIANGLES, 0, myModel.getNumVertices());

SUPPLEMENTAL NOTES

Although we discussed the use of DCC tools for creating 3D models, we didn’t 
discuss how to use such tools. While such instruction is outside the scope of this 
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text, there is a wealth of tutorial video material documentation for all of the popu-
lar tools such as Blender and Maya.

The topic of 3D modeling is itself a rich field of study. Our coverage in this 
chapter has been just a rudimentary introduction, with emphasis on its relation-
ship to OpenGL. Many universities offer entire courses in 3D modeling, and read-
ers interested in learning more are encouraged to consult some of the popular 
resources that offer greater detail (e.g., [BL20], [CH11], [VA12]).

We reiterate that the OBJ importer we presented in this chapter is limited, and 
can only handle a subset of the features supported by the OBJ format. Although 
sufficient for our needs, it will fail on some OBJ files. In those cases it would be 
necessary to first load the model into Blender (or Maya, etc.) and re-export it as 
an OBJ file that complies with the importer’s limitations as described earlier in 
this chapter.

Exercises

	6.1	Modify Program 4.4 so that the “sun,” “planet,” and “moon” are textured 
spheres, such as the ones shown in Figure 4.11.

	6.2	 (PROJECT) Modify your program from Exercise 6.1 so that the imported 
NASA shuttle object from Figure 6.16 also orbits the “sun.” You’ll want to 
experiment with the scale and rotation applied to the shuttle to make it look 
realistic.

	6.3	(RESEARCH & PROJECT) Learn the basics of how to use Blender to create 
a 3D object of your own. To make full use of Blender with your OpenGL 
applications, you’ll want to learn how to use Blender’s UV-unwrapping tools 
to generate texture coordinates and an associated texture image. You can then 
export your object as an OBJ file and load it using the code from Program 6.3.
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Light affects the appearance of our world in varied and sometimes dramatic 
ways. When a flashlight shines on an object, we expect it to appear brighter on the 
side facing the light. The earth on which we live is itself brightly lit where it faces 
the sun at noon, but as it turns, that daytime brightness gradually fades into evening, 
until becoming completely dark at midnight.

Objects also respond differently to light. Besides having different colors, objects 
can have different reflective characteristics. Consider two objects, both green, but 
where one is made of cloth versus another made of polished steel—the latter will 
appear more “shiny.”

	 7.1	 LIGHTING MODELS
Light is the product of photons being emitted by high energy sources and sub-

sequently bouncing around until some of the photons reach our eyes. Unfortunately, 
it is computationally infeasible to emulate this natural process, as it would require 
simulating and then tracking the movement of a huge number of photons, adding 
many objects (and matrices) to our scene. What we need is a lighting model.
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Lighting models are sometimes called shading models, although in the pres-
ence of shader programming, that can be a bit confusing. Sometimes the term 
reflection model is used, complicating the terminology further. We will try to 
stick to whichever terminology is simple and most practical.

The most common lighting models today are called “ADS” models, because 
they are based on three types of reflection labeled A, D, and S:

•	 Ambient reflection simulates a low-level illumination that equally affects 
everything in the scene.

•	 Diffuse reflection brightens objects to various degrees depending on the 
light’s angle of incidence.

•	 Specular reflection conveys the shininess of an object by strategically 
placing a highlight of appropriate size on the object’s surface where 
light is reflected most directly toward our eyes.

ADS models can be used to simulate different lighting effects and a variety 
of materials.

Figure 7.1 illustrates the ambi-
ent, diffuse, and specular contribu-
tions of a positional light on a shiny 
gold torus.

Recall that a scene is ulti-
mately drawn by having the frag-
ment shader output a color for each 
pixel on the screen. Using an ADS 
lighting model requires specifying 
contributions due to lighting on a 
pixel’s RGBA output value. Factors 
include:

•	 The type of light source and its ambient, diffuse, and specular 
characteristics

•	 The object’s material’s ambient, diffuse, and specular characteristics
•	 The object’s material’s specified “shininess”
•	 The angle at which the light hits the object
•	 The angle from which the scene is being viewed

Figure 7.1
ADS Lighting contributions.
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	 7.2	 LIGHTS
There are many types of lights, each with different characteristics and requir-

ing different steps to simulate their effects. Some types include:

•	 Global (usually called “global ambient” because it includes only an 
ambient component)

•	 Directional (or “distant”)
•	 Positional (or “point source”)
•	 Spotlight

Global ambient light is the simplest type of light to model. Global ambient 
light has no source position—the light is equal everywhere, at each pixel on every 
object in the scene, regardless of where the objects are. Global ambient lighting 
simulates the real-world phenomenon of light that has bounced around so many 
times that its source and direction are undeterminable. Global ambient light has 
only an ambient component, specified as an RGBA value; it has no diffuse or 
specular components. For example, global ambient light can be defined as follows:

float globalAmbient[4] = { 0.6f, 0.6f, 0.6f, 1.0f };

RGBA values range from 0 to 1, so global ambient light is usually modeled as 
dim white light, where each of the RGB values is set to the same fractional value 
between 0 and 1 and the alpha is set to 1.

Directional or distant light also doesn’t have a source location, but it does 
have a direction. It is useful for situations where the source of the light is so far 
away that the light rays are effectively parallel, such as light coming from the 
sun. In many such situations we may only be interested in modeling the light and 
not the object that produces the light. The effect of directional light on an object 
depends on the light’s angle of impact; objects are brighter on the side facing a 
directional light than on a tangential or opposite side. Modeling directional light 
requires specifying its direction (as a vector) and its ambient, diffuse, and specular 
characteristics (as RGBA values). A red directional light pointing down the nega-
tive Z axis might be specified as follows:

float dirLightAmbient[4] = { 0.1f, 0.0f, 0.0f, 1.0f };
float dirLightDiffuse[4] = { 1.0f, 0.0f, 0.0f, 1.0f };
float dirLightSpecular[4] = { 1.0f, 0.0f, 0.0f, 1.0f };
float dirLightDirection[3] = { 0.0f, 0.0f, -1.0f };
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It might seem redundant to include an ambient contribution for a light when 
we already have global ambient light. The separation of the two, however, is inten-
tional and noticeable when the light is “on” or “off.” When “on,” the total ambi-
ent contribution would be increased, as expected. In the above example, we have 
included only a small ambient contribution for the light. It is important to balance 
the two contributions depending on the needs of your scene.

A Positional light has a specific location in the 3D scene. Light sources that are 
near the scene, such as lamps, candles, and so forth, are examples. Like directional 
lights, the effect of a positional light depends on angle of impact; however, its direc-
tion is not specified, as it is different for each vertex in our scene. Positional lights 
may also incorporate attenuation factors in order to model how their intensity 
diminishes with distance. As with the other types of lights we have seen, positional 
lights have ambient, diffuse, and specular properties specified as RGBA values. 
A red positional light at location (5, 2, -3) could for example be specified as follows:

float posLightAmbient[4] = { 0.1f, 0.0f, 0.0f, 1.0f };
float posLightDiffuse[4] = { 1.0f, 0.0f, 0.0f, 1.0f };
float posLightSpecular[4] = { 1.0f, 0.0f, 0.0f, 1.0f };
float posLightLocation[3] = { 5.0f, 2.0f, -3.0f };

Attenuation factors can be modeled in a variety of ways. One way is to include 
tunable non-negative parameters for constant, linear, and quadratic attenuation 
(kc, kl, and kq respectively). These parameters are then combined, taking into 
account the distance (d) from the light source:

attenuationFactor
k k d k dc l q

=
+ +

1

2

Multiplying this factor by the light intensity causes the intensity to be decreased 
the greater the distance is to the light source. Note that kc should always be set 
greater than or equal to 1.0, and at least one of the other parameters greater than 
0.0, so that the attenuation factor will always be in the range [0..1] and approach 0 
as the distance d increases.

Spotlights have both a position and a direction. The effect of the spotlight’s 
“cone” can be simulated using a cutoff angle θ between 0° and 90° specifying 
the half-width of the light beam, and a falloff exponent to model the variation of 
intensity across the angle of the beam. As shown in Figure 7.2, we determine the 
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angle ϕ between the spotlight’s direction and a vector from the spotlight to the 
pixel. We then compute an intensity factor by raising the cosine of ϕ to the fall-
off exponent when ϕ is less than θ (when ϕ is greater than θ, the intensity factor 
is set to 0). The result is an intensity factor that ranges from 0 to 1. The falloff 
exponent adjusts the rate at which the intensity factor tends to 0 as the angle ϕ 
increases. The intensity factor is then multiplied by the light’s intensity to simu-
late the cone effect.

A red spotlight at location (5,2,-3) pointing down the negative Z axis could be 
specified as:

float spotLightAmbient[4] = { 0.1f, 0.0f, 0.0f, 1.0f }; 
float spotLightDiffuse[4] = { 1.0f, 0.0f, 0.0f, 1.0f };
float spotLightSpecular[4] = { 1.0f,0.0f, 0.0f, 1.0f }; 
float spotLightLocation[3] = { 5.0f, 2.0f, -3.0f };
float spotLightDirection[3] = { 0.0f, 0.0f, -1.0f };
float spotLightCutoff = 20.0f;
float spotLightExponent = 10.0f;

Spotlights also can include attenuation factors. We haven’t shown them in the 
above settings, but defining them can be done in the same manner as described 
earlier for positional lights.

Historically, spotlights have been iconic in computer graphics since Pixar’s 
popular animated short “Luxo Jr.” appeared in 1986 [DI20].

Figure 7.2
Spotlight components.

When designing a system containing many types of lights, a programmer 
should consider creating a class hierarchy, such as defining a “Light” class and 
subclasses for “Global Ambient,” “Directional,” “Positional,” and “Spotlight.” 
Because spotlights share characteristics of both directional and positional lights, it 
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is worth considering utilizing C++’s multiple inheritance capability, and to design 
a Spotlight class that inherits from both directional and positional light classes. 
Our examples are sufficiently simple that we omit building such a class hierarchy 
for lighting in this edition.

	 7.3	 MATERIALS
The “look” of the objects in our scene has so far been handled exclusively by 

color and texture. The addition of lighting allows us to also consider the reflec-
tance characteristics of the surfaces. By that we mean how the object interacts 
with our ADS lighting model. This can be modeled by considering each object to 
be “made of” a certain material.

Materials can be simulated in an ADS lighting model by specifying four val-
ues, three of which we are already familiar with—ambient, diffuse, and specular 
RGB colors. The fourth is called shininess, which, as we will see, is used to build 
an appropriate specular highlight for the intended material. ADS and shininess 
values have been developed for many different types of common materials. For 
example, “pewter” can be specified as follows:

float pewterMatAmbient[4] = { .11f, .06f, .11f, 1.0f };
float pewterMatDiffuse[4] = { .43f, .47f, .54f, 1.0f };
float pewterMatSpecular[4] = { .33f, .33f, .52f, 1.0f };
float pewterMatShininess = 9.85f;

ADS RGBA values for a few other materials are given in Figure 7.3 (from 
[BA16]).

Sometimes other properties are included in the material properties. 
Transparency is handled in the RGBA specifications in the fourth (or “alpha”) 
channel, which specifies an opacity; a value of 1.0 represents completely opaque 
and 0.0 represents completely transparent. For most materials it is simply set to 
1.0, although for certain materials a slight transparency plays a role. For example, 
in Figure 7.3, note that the materials “jade” and “pearl” include a small amount of 
transparency (values slightly less than 1.0) to add realism.

Emission is also sometimes included in an ADS material specification. This is 
useful when simulating a material that emits its own light, such as phosphorescent 
materials.
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Figure 7.3
Material ADS and shininess coefficients.

When an object is rendered that doesn’t have a texture, it is often desirable to 
specify material characteristics. For that reason, it will be very convenient to have 
a few predefined materials available to us. We thus add the following lines of code 
to our “Utils.cpp” file:

// GOLD material - ambient, diffuse, specular, and shininess
float* Utils::goldAmbient() { static float a[4] = { 0.2473f, 0.1995f, 0.0745f, 1 }; return (float*)a; }
float* Utils::goldDiffuse() { static float a[4] = { 0.7516f, 0.6065f, 0.2265f, 1 }; return (float*)a; }
float* Utils::goldSpecular() { static float a[4] = { 0.6283f, 0.5558f, 0.3661f, 1 }; return (float*)a; }
float Utils::goldShininess() { return 51.2f; }

// SILVER material - ambient, diffuse, specular, and shininess
float* Utils::silverAmbient() { static float a[4] = { 0.1923f, 0.1923f, 0.1923f, 1 }; return (float*)a; }
float* Utils::silverDiffuse() { static float a[4] = { 0.5075f, 0.5075f, 0.5075f, 1 }; return (float*)a; }
float* Utils::silverSpecular() { static float a[4] = { 0.5083f, 0.5083f, 0.5083f, 1 }; return (float*)a; }
float Utils::silverShininess() { return 51.2f; }

// BRONZE material - ambient, diffuse, specular, and shininess
float* Utils::bronzeAmbient() { static float a[4] = { 0.2125f, 0.1275f, 0.0540f, 1 }; return (float*)a; }
float* Utils::bronzeDiffuse() { static float a[4] = { 0.7140f, 0.4284f, 0.1814f, 1 }; return (float*)a; }
float* Utils::bronzeSpecular() { static float a[4] = { 0.3935f, 0.2719f, 0.1667f, 1 }; return (float*)a; }
float Utils::bronzeShininess() { return 25.6f; }
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This makes it very easy to specify that an object has, say, a “gold” material, in 
either the init() function or in the top level declarations, as follows:

float* matAmbient = Utils::goldAmbient();
float* matDiffuse = Util::goldDiffuse();
float* matSpecular = util.goldSpecular();
float matShininess = util.goldShininess();

Note that our code for light and material properties described so far in these 
sections does not actually perform lighting. It merely provides a way to specify 
and store desired light and material properties for elements in a scene. We still 
need to actually compute the lighting ourselves. This is going to require some 
serious mathematical processing in our shader code. So let’s now dive into the nuts 
and bolts of implementing ADS lighting in our C++/OpenGL and GLSL graphics 
programs.

	 7.4	 ADS LIGHTING COMPUTATIONS
As we draw our scene, recall that each vertex is transformed so as to 

simulate a 3D world on a 2D screen. Pixel colors are the result of rasterization 
as well as texturing and interpolation. We must now incorporate the additional 
step of adjusting those rasterized pixel colors to effect the lighting and mate-
rials in our scene. The basic ADS computation that we need to perform is to 
determine the reflection intensity (I) for each pixel. This computation takes the 
following form:

I I I Iobserved ambient diffuse specular= + +

That is, we need to compute and sum the ambient, diffuse, and specular reflec-
tion contributions for each pixel, for each light source. This will of course depend 
on the type of light(s) in our scene and the type of material associated with the 
rendered model.

Ambient contribution is the simplest. It is the product of the specified ambient 
light and the specified ambient coefficient of the material:

I Light * Materialambient ambient ambient=
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Keeping in mind that light and material intensities are specified via RGB val-
ues, the computation is more precisely:

I Light * Material
I

ambient
red

ambient
red

ambient
red

ambient
gre

=
een

ambient
green

ambient
green

ambient
blue

Light * Material
I Li

=

= gght * Materialambient
blue

ambient
blue

Diffuse contribution is more complex because it depends on the angle of 
incidence between the light and the surface. Lambert’s Cosine Law (published in 
1760) specifies that the amount of light that reflects from a surface is proportional 
to the cosine of the light’s angle of incidence. This can be modeled as follows:

I Light * Material *diffuse diffuse diffuse� cos ( )�

As before, the actual computations involve red, green, and blue components.

Determining the angle of incidence θ requires us to (a) find a vector from 
the pixel being drawn to the light source (or, similarly, a vector opposite the light 
direction), and (b) find a vector that is normal (perpendicular) to the surface of the 
object being rendered. Let’s denote these vectors 



L and 


N  respectively, as shown 
in Figure 7.4:

Figure 7.4
Angle of light incidence.

Depending on the nature of the lights in the scene, 


L could be computed by 
negating the light direction vector or by computing a vector from the location of the 
pixel to the location of the light source. Determining vector 



N  may be trickier—
normal vectors may be available for the vertices in the model being rendered, but 
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if the model doesn’t include normals, 


N  would need to be estimated geometrically 
based on the locations of neighboring vertices. For the rest of the chapter, we will 
assume that the model being rendered includes normal vectors for each vertex (this 
is common in models constructed with modeling tools such as Maya or Blender).

It turns out that in this case, it isn’t necessary to compute θ itself. What we 
really desire is cos(θ), and recall from Chapter 3 that this can be found using the 
dot product. Thus, the diffuse contribution can be computed as follows:

I Light * Material *diffuse diffuse diffuse= •( )N L� �

The diffuse contribution is only relevant when the surface is exposed to the 
light, which occurs when -90 ≤ θ ≤ 90; that is, when cos(θ) ≥ 0. Thus, we must 
replace the rightmost term in the previous equation with:

max ( ( ), )N L� �• 0

Specular contribution determines whether the pixel being rendered should be 
brightened because it is part of a “specular highlight.” It involves not only the angle 
of incidence of the light source, but also the angle between the reflection of the light 
on the surface and the viewing angle of the “eye” relative to the object’s surface.

Figure 7.5
View angle incidence.

In Figure 7.5, 


R represents the direction of reflection of the light, and 


V  (called 
the view vector) is a vector from the pixel to the eye. Note that 



V  is the negative of 
the vector from the eye to the pixel (in camera space, the eye is at the origin). The 
smaller the angle φ between 



R and 


V , the more the eye is on-axis or “looking into” 
the reflection, and the more this pixel contributes to the specular highlight (and 
thus the brighter it should appear).
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The manner in which φ is used to compute the specular contribution depends 
on the desired “shininess” of the object being rendered. Objects that are extremely 
shiny, such as a mirror, have very small specular highlights—that is, they reflect the 
incoming light to the eye exactly. Materials that are less shiny have specular high-
lights that are more “spread out,” and thus more pixels are a part of the highlight.

Shininess is generally modeled 
with a falloff function that expresses 
how quickly the specular contribu-
tion reduces to zero as the angle φ 
grows. We can use cos(φ) to model 
falloff, and increase or decrease 
the shininess by using powers of 
the cosine function, such as cos(φ), 
cos2(φ), cos3(φ), cos10(φ), cos50(φ), 
and so on, as illustrated in Figure 7.6.

Note that the higher the value of the exponent, the faster the falloff, and 
thus the smaller the specular contribution of pixels with light reflections that are 
off-axis from the viewing angle.

We call the exponent n, as used in the cosn(φ) falloff function, the shininess 
factor for a specified material. Note back in Figure 7.3 that shininess factors for 
each of the materials listed are specified in the rightmost column.

We now can specify the full specular calculation:

I Light * Material *specular specular specular� �max ( , ( ) )0 R V n
 

Note that we use the max() function in a similar manner as we did for the 
diffuse computation. In this case, we need to ensure that the specular contribu-
tion does not ever utilize negative values for cos(φ), which could produce strange 
artifacts such as “darkened” specular highlights.

And of course as before, the actual computations involve red, green, and blue 
components.

	 7.5	 IMPLEMENTING ADS LIGHTING
The computations described in Section 7.4 have so far been mostly theo-

retical, as they have assumed that we can perform them for every pixel. This is 

Figure 7.6
Shininess modeled as cosine exponent.
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complicated by the fact that normal (


N ) vectors are typically available to us only 
for the vertices that define the models, not for each pixel. Thus, we need to either 
compute normals for each pixel, which could be time-consuming, or find some 
way of estimating the values that we need to achieve a sufficient effect.

One approach is called “faceted shading” or “flat shading.” Here we assume 
that every pixel in each rendered primitive (i.e., polygon or triangle) has the same 
lighting value. Thus, we need only do the lighting computations for one vertex in 
each polygon in the model, and then copy those lighting values across the nearby 
rendered pixels on a per-polygon or per-triangle basis.

Faceted shading is rarely used today, 
because the resulting images tend to not 
look very realistic, and because modern 
hardware makes more accurate computa-
tions feasible. An example of a faceted-
shaded torus, in which each triangle 
behaves as a flat reflective surface, is 
shown in Figure 7.7.

Although faceted shading can be ade-
quate in some circumstances (or used as 

a deliberate effect), usually a better approach is “smooth shading,” in which the 
lighting intensity is computed for each pixel. Smooth shading is feasible because 
of the parallel processing done on modern graphics cards, and because of the inter-
polated rendering that takes place in the OpenGL graphics pipeline.

We will examine two popular methods for smooth shading: Gouraud shading 
and Phong shading.

	 7.5.1	 Gouraud Shading
The French computer scientist Henri Gouraud published a smooth shading 

algorithm in 1971 that has come to be known as Gouraud shading [GO71]. It is 
particularly well suited to modern graphics cards, because it takes advantage of 
the automatic interpolated rendering that is available in 3D graphics pipelines such 
as OpenGL. The process for Gouraud shading is as follows:

	 1.	 Determine the color of each vertex, incorporating the lighting 
computations.

Figure 7.7
Torus with faceted shading.
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	 2.	 Allow those colors to be interpolated across intervening pixels through 
the normal rasterization process (which will also in effect interpolate the 
lighting contributions).

In OpenGL, this means that most of the lighting computations will be done 
in the vertex shader. The fragment shader will simply be a pass-through, so as to 
reveal the automatically interpolated lighted colors.

Figure 7.8 outlines the strategy we will use to implement our Gouraud shader 
in OpenGL, for a scene with a torus and one positional light. The strategy is then 
implemented in Program 7.1.

Figure 7.8
Implementing Gouraud shading.

Program 7.1 Torus with Positional Light and Gouraud Shading
C++/OpenGL application
. . .
#include "Torus.h"
#include "Utils.h"
. . .

// declarations for building shaders and rendering program, as before.
// declaration of one VAO, and two VBOs, and Torus as before.
// declaration and assignment of torus and camera location as before.
// Utils.cpp now has gold, silver, and bronze material accessors added.
. . .
// allocate variables for display() function
GLuint mvLoc, projLoc, nLoc;

// locations for shader uniform variables
GLuint globalAmbLoc, ambLoc, diffLoc, specLoc, posLoc, mAmbLoc, mDiffLoc, mSpecLoc, mShiLoc;
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glm::mat4 pMat, vMat, mMat, mvMat, invTrMat;
glm::vec3 currentLightPos, lightPosV;	 // light position as Vector3f, in both model and view space
float lightPos[3];			   // light position as float array

// initial light location
glm::vec3 initialLightLoc = glm::vec3(5.0f, 2.0f, 2.0f);

// white light properties
float globalAmbient[4] = { 0.7f, 0.7f, 0.7f, 1.0f };
float lightAmbient[4] = { 0.0f, 0.0f, 0.0f, 1.0f };
float lightDiffuse[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
float lightSpecular[4] = { 1.0f, 1.0f, 1.0f, 1.0f };

// gold material properties
float* matAmb = Utils::goldAmbient();
float* matDif = Utils::goldDiffuse();
float* matSpe = Utils::goldSpecular();
float matShi = Utils::goldShininess();

void setupVertices(void) {
	 // This function is unchanged from the previous chapter
	 // The following portion is repeated for clarity, because we now will actually use the normals:

	 . . .
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
	 glBufferData(GL_ARRAY_BUFFER, nvalues.size() * 4, &nvalues[0], GL_STATIC_DRAW);
}

void display(GLFWwindow* window, double currentTime) {
	 // clear the depth buffer, and load rendering program as in earlier examples

	 . . .
	 // uniforms for model-view, projection, and inverse-transpose (normal) matrices
	 mvLoc = glGetUniformLocation(renderingProgram, "mv_matrix");
	 projLoc = glGetUniformLocation(renderingProgram, "proj_matrix");
	 nLoc = glGetUniformLocation(renderingProgram, "norm_matrix");

	 // setup of projection and view matrices as in earlier examples
	 . . .
	 // build the MODEL matrix based on the torus location
	 mMat = glm::translate(glm::mat4(1.0f), glm::vec3(torLocX, torLocY, torLocZ));
	 // rotate the torus to make it easier to see 
	 mMat *= glm::rotate(mMat, toRadians(35.0f), glm::vec3(1.0f, 0.0f, 0.0f));

	 // set up lights based on the current light’s position
	 currentLightPos = glm::vec3(initialLightLoc.x, initialLightLoc.y, initialLightLoc.z);
	 installLights(vMat);
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	 // build the MODEL-VIEW (MV) matrix by concatenating matrices v and m, as before
	 mvMat = vMat * mMat;

	 // build the inverse-transpose of the MV matrix, for transforming normal vectors
	 invTrMat = glm::transpose(glm::inverse(mvMat));

	 // put the MV, PROJ, and Inverse-transpose(normal) matrices into the corresponding uniforms
	 glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvMat));
	 glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));
	 glUniformMatrix4fv(nLoc, 1, GL_FALSE, glm::value_ptr(invTrMat));

	 // bind the vertices buffer (VBO #0) to vertex attribute #0 in the vertex shader
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
	 glEnableVertexAttribArray(0);

	 // bind the normals buffer (in VBO #2) to vertex attribute #1 in the vertex shader
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
	 glVertexAttribPointer(1, 3, GL_FLOAT, false, 0, 0);
	 glEnableVertexAttribArray(1);

	 glEnable(GL_CULL_FACE);
	 glFrontFace(GL_CCW);
	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);

	 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
	 glDrawElements(GL_TRIANGLES, myTorus.getNumIndices(), GL_UNSIGNED_INT, 0);
}

void installLights(glm::mat4 vMatrix) {
	 // convert light’s position to view space, and save it in a float array
	 lightPosV = glm::vec3(vMatrix * glm::vec4(currentLightPos, 1.0));
	 lightPos[0] = lightPosV.x;
	 lightPos[1] = lightPosV.y;
	 lightPos[2] = lightPosV.z;

	 // get the locations of the light and material fields in the shader
	 globalAmbLoc = glGetUniformLocation(renderingProgram, "globalAmbient");
	 ambLoc = glGetUniformLocation(renderingProgram, "light.ambient");
	 diffLoc = glGetUniformLocation(renderingProgram, "light.diffuse");
	 specLoc = glGetUniformLocation(renderingProgram, "light.specular");
	 posLoc = glGetUniformLocation(renderingProgram, "light.position");
	 mAmbLoc = glGetUniformLocation(renderingProgram, "material.ambient");
	 mDiffLoc = glGetUniformLocation(renderingProgram, "material.diffuse");
	 mSpecLoc = glGetUniformLocation(renderingProgram, "material.specular");
	 mShiLoc = glGetUniformLocation(renderingProgram, "material.shininess");
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	 // set the uniform light and material values in the shader
	 glProgramUniform4fv(renderingProgram, globalAmbLoc, 1, globalAmbient);
	 glProgramUniform4fv(renderingProgram, ambLoc, 1, lightAmbient);
	 glProgramUniform4fv(renderingProgram, diffLoc, 1, lightDiffuse);
	 glProgramUniform4fv(renderingProgram, specLoc, 1, lightSpecular);
	 glProgramUniform3fv(renderingProgram, posLoc, 1, lightPos);
	 glProgramUniform4fv(renderingProgram, mAmbLoc, 1, matAmb);
	 glProgramUniform4fv(renderingProgram, mDiffLoc, 1, matDif);
	 glProgramUniform4fv(renderingProgram, mSpecLoc, 1, matSpe);
	 glProgramUniform1f(renderingProgram, mShiLoc, matShi);
}
// init() and main() are the same as before

Most of the elements of Program 7.1 should be familiar. The Torus, light, and 
materials properties are defined. Torus vertices and associated normals are loaded 
into buffers. The display() function is similar to that in previous programs, except 
that it also sends the light and material information to the vertex shader. To do this, 
it calls installLights(), which loads the light viewspace location and the light and 
material ADS characteristics into corresponding uniform variables to make them 
available to the shaders. Note that we declared these uniform location variables 
ahead of time, for performance reasons.

An important detail is that the transformation matrix MV, used to move ver-
tex positions into view space, doesn’t always properly adjust normal vectors into 
view space. Simply applying the MV matrix to the normals doesn’t guarantee that 
they will remain perpendicular to the object surface. The correct transformation 
is the inverse transpose of MV, as described earlier in the supplemental notes to 
Chapter 3. In Program 7.1, this additional matrix, named “invTrMat”, is sent to the 
shaders in a uniform variable.

The variable lightPosV contains the light’s position in camera space. We only 
need to compute this once per frame, so we do it in installLights() (called from 
display()) rather than in the shader.

The shaders are shown in the following continuation of program 7.1. The ver-
tex shader utilizes some notations that we haven’t yet seen. Note for example the 
vector addition done at the end of the vertex shader—vector addition was described 
in Chapter 3, and is available as shown here in GLSL. We will discuss some of the 
other notations after presenting the shaders.
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(Program 7.1, continued)
Vertex Shader
#version 430
layout (location=0) in vec3 vertPos;
layout (location=1) in vec3 vertNormal;
out vec4 varyingColor;

struct PositionalLight
{	 vec4 ambient;  
	 vec4 diffuse;  
	 vec4 specular;  
	 vec3 position;
};
struct Material
{	 vec4 ambient;  
	 vec4 diffuse;  
	 vec4 specular;  
	 float shininess;
};
uniform vec4 globalAmbient;
uniform PositionalLight light;
uniform Material material;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
uniform mat4 norm_matrix;	 // for transforming normals

void main(void)
{	 vec4 color;

	 // convert vertex position to view space,
	 // convert normal to view space, and
	 // calculate view space light vector (from vertex to light)
	 vec4 P = mv_matrix * vec4(vertPos,1.0);
	 vec3 N = normalize((norm_matrix * vec4(vertNormal,1.0)).xyz);
	 vec3 L = normalize(light.position - P.xyz);

	 // view vector is equivalent to the negative of view space vertex position
	 vec3 V = normalize(-P.xyz);

	 // R is reflection of -L with respect to surface normal N
	 vec3 R = reflect(-L,N);

	 // ambient, diffuse, and specular contributions
	 vec3 ambient = ((globalAmbient * material.ambient) + (light.ambient * material.ambient)).xyz;
	 vec3 diffuse = light.diffuse.xyz * material.diffuse.xyz * max(dot(N,L), 0.0);
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	 vec3 specular =
		  material.specular.xyz * light.specular.xyz * pow(max(dot(R,V), 0.0f), material.shininess);

	 // send the color output to the fragment shader
	 varyingColor = vec4((ambient + diffuse + specular), 1.0);

	 // send the position to the fragment shader, as before
	 gl_Position = proj_matrix * mv_matrix * vec4(vertPos,1.0);
}

Fragment Shader
#version 430
in vec4 varyingColor;
out vec4 fragColor;

// uniforms match those in the vertex shader,
// but are not used directly in this fragment shader

struct PositionalLight
{	 vec4 ambient;
	 vec4 diffuse;
	 vec4 specular;
	 vec3 position;
};
struct Material
{	 vec4 ambient;
	 vec4 diffuse;
	 vec4 specular;
	 float shininess;
};
uniform vec4 globalAmbient;
uniform PositionalLight light;
uniform Material material;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
uniform mat4 norm_matrix;

void main(void)
{	 fragColor = varyingColor;
}

The output of Program 7.1 is shown in Figure 7.9.
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The vertex shader contains our first 
example of using the struct notation. A 
GLSL “struct” is like a datatype; it has a 
name and a set of fields. When a variable is 
declared using the name of a struct, it then 
contains those fields, which are accessed 
using the “.” notation. For example, variable 
“light” is declared of type “PositionalLight”, 
so we can thereafter refer to its fields  
light.ambient, light.diffuse, and so forth.

Also note the field selector notation “.xyz”, used in several places in the vertex 
shader. This is a shortcut for converting a vec4 to an equivalent vec3 containing 
only its first three elements.

The vertex shader is where most of the lighting computations are performed. 
For each vertex, the appropriate matrix transforms are applied to the vertex posi-
tion and associated normal vector, and vectors for light direction (



L) and reflec-
tion (



R) are computed. The ADS computations described in Section 7.4 are then 
performed, resulting in a color for each vertex (called varyingColor in the code). 
The colors are interpolated as part of the normal rasterization process. The frag-
ment shader is then a simple pass-through. The lengthy list of uniform variable 
declarations is also present in the fragment shader (for reasons described earlier in 
Chapter 4), but none of them are actually used there.

Note the use of the GLSL functions normalize(), which converts a vector to 
unit length and is necessary for proper application of the dot product, and reflect(), 
which computes the reflection of one vector about another.

Artifacts are evident in the output torus shown in Figure 7.9. Specular high-
lights have a blocky, faceted appearance. This artifact is more pronounced if the 
object is in motion (we can’t illustrate that here).

Gouraud shading is susceptible to other artifacts. If the specular highlight 
is entirely contained within one of the model’s triangles—that is, if it doesn’t 
contain at least one of the model vertices—then it may disappear entirely. The 
specular component is calculated per-vertex, so if a model vertex with a specular 
contribution does not exist, none of the rasterized pixels will include specular 
light either.

Figure 7.9
Torus with Gouraud shading.
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	 7.5.2	 Phong Shading
Bui Tuong Phong developed a smooth shading algorithm while a graduate stu-

dent at the University of Utah, and described it in his 1973 dissertation [PH73] and 
published it in [PH75]. The structure of the algorithm is similar to the algorithm 
for Gouraud shading, except that the lighting computations are done per-pixel 
rather than per-vertex. Since the lighting computations require a normal vector 



N  
and a light vector 



L, which are only available in the model on a per-vertex basis, 
Phong shading is often implemented using a clever “trick,” whereby 



N  and 


L are 
computed in the vertex shader and interpolated during rasterization. Figure 7.10 
outlines the strategy:

Figure 7.10
Implementing Phong shading.

The C++/OpenGL code is completely unchanged. Some of the computations 
previously done in the vertex shader are now moved into the fragment shader. The 
effect of interpolating normal vectors is illustrated in Figure 7.11:

Figure 7.11
Interpolation of normal vectors.
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We now are ready to implement our 
torus with positional lighting, using Phong 
shading. Most of the code is identical to 
that used for Gouraud shading. Since the 
C++/OpenGL code is unchanged, we pres-
ent only the revised vertex and fragment 
shaders, shown in Program 7.2. Examining 
the output of Program 7.2, as shown in 
Figure 7.12, Phong shading corrects the 
artifacts present in Gouraud shading.

Program 7.2 Torus with Phong Shading
Vertex Shader
#version 430
layout (location=0) in vec3 vertPos;
layout (location=1) in vec3 vertNormal;
out vec3 varyingNormal;	 // eye-space vertex normal 
out vec3 varyingLightDir;	 // vector pointing to the light 
out vec3 varyingVertPos;	 // vertex position in eye space

// structs and uniforms same as for Gouraud shading
. . .
void main(void)
{	 // output vertex position, light direction, and normal to the rasterizer for interpolation
	 varyingVertPos=(mv_matrix * vec4(vertPos,1.0)).xyz;
	 varyingLightDir = light.position - varyingVertPos;
	 varyingNormal=(norm_matrix * vec4(vertNormal,1.0)).xyz;

	 gl_Position=proj_matrix * mv_matrix * vec4(vertPos,1.0);
}

Fragment Shader
#version 430
in vec3 varyingNormal;
in vec3 varyingLightDir;
in vec3 varyingVertPos;
out vec4 fragColor;

// structs and uniforms same as for Gouraud shading
. . .

Figure 7.12
Torus with Phong shading.
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void main(void)
{	 // normalize the light, normal, and view vectors:
	 vec3 L = normalize(varyingLightDir);
	 vec3 N = normalize(varyingNormal);
	 vec3 V = normalize(-varyingVertPos);

	 // compute light reflection vector with respect to N:
	 vec3 R = normalize(reflect(-L, N));
	 // get the angle between the light and surface normal:
	 float cosTheta = dot(L,N);
	 // angle between the view vector and reflected light:
	 float cosPhi = dot(V,R);

	 // compute ADS contributions (per pixel), and combine to build output color:
	 vec3 ambient = ((globalAmbient * material.ambient) + (light.ambient * material.ambient)).xyz;
	 vec3 diffuse = light.diffuse.xyz * material.diffuse.xyz * max(cosTheta,0.0);
	 vec3 specular =
		  light.specular.xyz * material.specular.xyz * pow(max(cosPhi,0.0), material.shininess);

	 fragColor = vec4((ambient + diffuse + specular), 1.0);
}

Although Phong shading offers better realism than Gouraud shading, it does 
so while incurring a performance cost. One optimization to Phong shading was 
proposed by James Blinn in 1977 [BL77], and is referred to as the Blinn-Phong 
reflection model. It is based on the observation that one of the most expensive 
computations in Phong shading is determining the reflection vector 



R.

Blinn observed that the vector 


R itself actually is not needed—


R is only pro-
duced as a means of determining the angle φ. It turns out that φ can be found with-

out computing 


R, by instead computing a 
vector 



H  that is halfway between 


L and 


V . As shown in Figure 7.13, the angle 
α between 



H  and 


N  is usually close to 
½(φ). Although α isn’t identical to φ, Blinn 
showed that good results can be obtained 
by using α instead of φ.

The “halfway” vector 


H  is most easily 
determined by finding 

 

L V+  (see Figure 
7.14), after which cos(α) can be found 
using the dot product H N • .

Figure 7.13
Blinn-Phong reflection.
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The computations can be done in the fragment shader, or even in the vertex 
shader (with some tweaks) if necessary for performance. Figure 7.15 shows the 
torus rendered using Blinn-Phong shading; the quality is largely indistinguishable 
from Phong shading, with substantial performance cost savings.

Program 7.3 shows the revised vertex and fragment shaders for converting the 
Phong shading example shown in Program 7.2 to Blinn-Phong shading. As before, 
there is no change to the C++/OpenGL code.

Program 7.3 Torus with Blinn-Phong Shading
Vertex Shader
. . .
// half-vector "H" is an additional output varying
out vec3 varyingHalfVector;
. . .
void main(void)
{	 // computations same as before, plus the following that computes L+V
	 varyingHalfVector = (varyingLightDir + (-varyingVertPos)).xyz;

	 // (the rest of the vertex shader is unchanged)
}

Fragment Shader
. . .
in vec3 varyingHalfVector;
. . .

Figure 7.14
Blinn-Phong computation.

Figure 7.15
Torus with Blinn-Phong shading.
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void main(void)
{	 // note that it is no longer necessary to compute R in the fragment shader
	 vec3 L = normalize(varyingLightDir);
	 vec3 N = normalize(varyingNormal);
	 vec3 V = normalize(-varyingVertPos);
	 vec3 H = normalize(varyingHalfVector);

	 . . .
	 // get angle between the normal and the halfway vector
	 float cosPhi = dot(H,N);

	 // halfway vector H was computed in the vertex shader, and then interpolated by the rasterizer
	 vec3 ambient = ((globalAmbient * material.ambient) + (light.ambient * material.ambient)).xyz;
	 vec3 diffuse = light.diffuse.xyz * material.diffuse.xyz * max(cosTheta,0.0);
	 vec3 specular =
		  light.specular.xyz * material.specular.xyz * pow(max(cosPhi,0.0), material.shininess*3.0);
		  // the multiplication by 3.0 at the end is a "tweak" to improve the specular highlight.
	 fragColor = vec4((ambient + diffuse + specular), 1.0);
}

Figure 7.16 shows two 
examples of the effect of Phong 
shading on more complex 
externally generated models. 
The top image shows a render-
ing of an OBJ model of a dol-
phin created by Jay Turberville 
at Studio 522 Productions 
[TU16]. The bottom image is 
a rendering of the well-known 
“Stanford Dragon,” the result 
of a 3D scan of an actual figu-
rine, done in 1996 [ST96]. Both 
models were rendered using 
the “gold” material we placed 
in our “Utils.cpp” file. The 
Stanford dragon is widely used 
for testing graphics algorithms 
and hardware because of its 
size—it contains over 800,000 
triangles.

Figure 7.16
External models with Phong shading.
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	 7.6	 COMBINING LIGHTING AND TEXTURES
So far, our lighting model has assumed that we are using lights with specified 

ADS values to illuminate objects made of material that has also been defined with 
ADS values. However, as we saw in Chapter 5, some objects may instead have 
surfaces defined by texture images. Therefore, we need a way of combining colors 
retrieved by sampling a texture and colors produced from a lighting model.

The manner in which we combine lighting and textures depends on the nature 
of the object and the purpose of its texture. There are several scenarios, a few of 
which include:

•	 The texture image very closely reflects the actual appearance of the 
object’s surface.

•	 The object has both a material and a texture.
•	 The texture contains shadow or reflection information (covered in 

Chapters 8 and 9).
•	 There are multiple lights and/or multiple textures involved.

Let’s consider the first case, where we have a simple textured object and 
we wish to add lighting to it. One simple way of accomplishing this in the frag-
ment shader is to remove the material specification entirely, and to use the texel 
color returned from the texture sampler in place of the material ADS values. The 
following is one such strategy (expressed in pseudocode):

fragColor =  textureColor * ( ambientLight + diffuseLight ) + specularLight

Here the texture color contributes to the ambient and diffuse computation, 
while the specular color is defined entirely by the light. It is common to set the 
specular contribution solely based on the light color, especially for metallic or 
“shiny” surfaces. However, some less shiny surfaces, such as cloth or unvarnished 
wood (and even a few metals, such as gold) have specular highlights that include 
the color of the object surface. In those cases, a suitable slightly modified strategy 
would be:

fragColor =  textureColor * ( ambientLight + diffuseLight + specularLight )

There are also cases in which an object has an ADS material that is supple-
mented by a texture image, such as an object made of silver that has a texture that 
adds some tarnish to the surface. In those situations, the standard ADS model with 
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both light and material, as described in previous sections, can be combined with 
the texture color using a weighted sum. For example:

textureColor = texture(sampler, texCoord)
lightColor = (ambLight * ambMaterial) + (diffLight * diffMaterial) + specLight 
fragColor = 0.5 * textureColor + 0.5 * lightColor

This strategy for combining lighting, materials, and textures can be extended 
to scenes involving multiple lights and/or multiple textures. For example:

texture1Color = texture(sampler1, texCoord)
texture2Color = texture(sampler2, texCoord)

light1Color = (ambLight1 * ambMaterial) + (diffLight1 * diffMaterial) + specLight1
light2Color = (ambLight2 * ambMaterial) + (diffLight2 * diffMaterial) + specLight2

fragColor	 =	 0.25 * texture1Color
 	 +	 0.25 * texture2Color
	 +	 0.25 * light1Color
	 +	 0.25 * light2Color

Figure 7.17 shows the Studio 522 Dolphin with a UV-mapped texture image 
(produced by Jay Turberville [TU16]), and the NASA shuttle model we saw earlier 
in Chapter 6. Both textured models are enhanced with Blinn-Phong lighting, with-
out the inclusion of materials, and with specular highlights that utilize light only. 
In both cases, the relevant output color computation in the fragment shader is:

vec4 texColor = texture(sampler, texCoord);
fragColor = �texColor * (globalAmbient + lightAmb + lightDiff * max(dot(L,N),0.0)) 

+ lightSpec * pow(max(dot(H,N),0.0), matShininess*3.0);

Note that it is possible for the computation that determines fragColor to produce 
values greater than 1.0. When that happens, OpenGL clamps the computed value 
to 1.0.

SUPPLEMENTAL NOTES

The faceted-shaded torus shown in Figure 7.7 was created by adding the 
“flat” interpolation qualifier to the corresponding normal vector vertex attribute 
declarations in the vertex and fragment shaders. This instructs the rasterizer to not 
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perform interpolation on the specified variable and instead assign the same value 
for each fragment (by default it chooses the value associated with the first vertex 
in the triangle). In the Phong shading example, this could be done as follows:

flat out vec3 varyingNormal;	 in the vertex shader, and
flat in vec3 varyingNormal;	 in the fragment shader.

An important kind of light source that we haven’t discussed is a distributed 
light or area light, which is a light that is characterized by having a source that 

Figure 7.17
Combining lighting and textures.
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occupies an area rather than being a single point location. A real-world example 
would be a fluorescent tube-style light commonly found in an office or classroom. 
Interested readers can learn about such lighting details in [MH18].

HISTORICAL NOTE

We took the liberty of over-simplifying some of the terminology in this chapter 
with respect to the contributions of Gouraud and Phong. Gouraud is credited with 
Gouraud shading—the notion of generating a smoothly curved surface appearance 
by computing light intensities at vertices and allowing the rasterizer to interpolate 
these values (sometimes called “smooth shading”). Phong is credited with Phong 
shading, another form of smooth shading that instead interpolates normals and 
computes lighting per pixel. Phong is also credited with pioneering the successful 
incorporation of specular highlights into smooth shading. For this reason, the ADS 
lighting model, when applied to computer graphics, is often referred to as the Phong 
Reflection Model. So, our example of Gouraud shading is, more accurately, Gouraud 
shading with a Phong reflection model. Since Phong’s reflection model has become 
so ubiquitous in 3D graphics programming, it is common to demonstrate Gouraud 
shading in the presence of Phong reflection, although it is a bit misleading because 
Gouraud’s original 1971 work did not, for example, include any specular component.

Exercises

	7.1	 (PROJECT) Modify Program 7.1 so that the light can be positioned by moving 
the mouse. After doing this, move the mouse around and note the movement 
of the specular highlight and the appearance of the Gouraud shading artifacts. 
You may find it convenient to render a point (or small object) at the location of 
the light source.

	7.2	Repeat Exercise 7.1, but applied to Program 7.2. This should only require 
substituting the shaders for Phong shading into your solution to Exercise 
7.1. The improvement from Gouraud to Phong shading should be even more 
apparent here, when the light is being moved around.

	7.3	 (PROJECT) Modify Program 7.2 so that it incorporates TWO positional lights 
placed in different locations. The fragment shader will need to blend the 
diffuse and specular contributions of each of the lights. Try using a weighted 
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sum, similar to the one shown in Section 7.6. You can also try simply adding 
them and clamping the result so it doesn’t exceed the maximum light value.

	7.4	 (RESEARCH AND PROJECT) Replace the positional light in Program 7.2 
with a “spot” light as described in Section 7.2. Experiment with the settings 
for cutoff angle and falloff exponent and observe the effects.
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	 8.1	 THE IMPORTANCE OF SHADOWS
In Chapter 7, we learned how to add lighting to our 3D scenes. However, we 

didn’t actually add light; instead, we simulated the effects of light on objects—using 
the ADS model—and modified how we drew those objects accordingly.

The limitations of this approach become apparent when we use it to light more 
than one object in the same scene. Consider the scene in Figure 8.1, which includes 
both our brick-textured torus and a ground plane (the ground plane is the top of a 

giant cube with a grass texture from [LU16]).

At first glance our scene may appear 
reasonable. However, closer examination 
reveals that there is something very impor-
tant missing. In particular, it is impossible to 
discern the distance between the torus and 
the large textured cube below it. Is the torus 
floating above the cube, or is it resting on top 
of the cube?

Figure 8.1
Scene without shadows.

CGP_C++_CH08_2E_2pp.indd   189 03-Nov-20   5:06:52 PM



190  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

The reason we cannot answer this question is due to the lack of shadows in the 
scene. We expect to see shadows, and our brain uses shadows to help build a more 
complete mental model of the objects we see and where they are located.

Consider the same scene, shown in Figure 8.2, with shadows incorporated. 
It is now obvious that the torus is resting on the ground plane in the left example 
and floating above it in the right example.

Figure 8.2
Lighting with shadows.

	 8.2	 PROJECTIVE SHADOWS
A variety of interesting methods have been devised for adding shadows to 

3D scenes. One method that is well-suited to drawing shadows on a ground plane 
(such as our image in Figure 8.1), and relatively computationally inexpensive, 
is called projective shadows. Given a point light source position (XL, YL, ZL), an 
object to render, and a plane on which the object’s shadow is to be cast, it is pos-
sible to derive a transformation matrix that will convert points (XW, YW, ZW) on 
the object to corresponding shadow points (XS, 0, ZS) on the plane. The resulting 
“shadow polygon” is then drawn, typically as a dark object blended with the texture 
on the ground plane, as illustrated in Figure 8.3.

The advantages of projective shadow casting are that it is efficient and simple 
to implement. However, it only works on a flat plane—the method can’t be used 
to cast shadows on a curved surface or on other objects. It is still useful for 
performance-intensive applications involving outdoor scenes, such as in many 
video games.

Development of projective shadow transformation matrices is discussed in 
[BL88], [AS14], and [KS16].
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	 8.3	 SHADOW VOLUMES
Another important method, proposed by Crow in 1977, is to identify 

the spatial  volume shadowed by an object and reduce the color intensity of 
polygons  inside the intersection of the shadow volume with the view volume 
[CR77]. Figure 8.4 shows a cube in a shadow volume, so the cube would be drawn 
darker.

Shadow volumes have the 
advantage of being highly accu-
rate, with fewer artifacts than 
other methods. However, find-
ing the shadow volume and then 
computing whether each polygon 
is inside of it is computationally 
expensive even on modern GPU 
hardware. Geometry shaders can 
be used to generate shadow vol-
umes, and the stencil buffer1 can 
be used to determine whether a 
pixel is within the volume. Some 
graphics cards include hardware 
support for optimizing certain 
shadow volume operations.

1	 The stencil buffer is a third buffer—along with the color buffer and the z-buffer—accessible 
through OpenGL. The stencil buffer is not described in this textbook.

Figure 8.3
Projective shadow.

Figure 8.4
Shadow volume.
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	 8.4	 SHADOW MAPPING
One the most practical and popular methods for casting shadows is called 

shadow mapping. Although it is not always as accurate as shadow volumes (and 
is often accompanied by pesky artifacts), shadow mapping is easier to imple-
ment, can be used in a wide variety of situations, and enjoys powerful hardware 
support.

We would be remiss if we failed to clarify our use of the word “easier” in the 
previous paragraph. Although shadow mapping is simpler than shadow volumes 
(both conceptually and in practice), it is by no means “easy”! Students often find 
shadow mapping among the most difficult techniques to implement in a 3D graph-
ics course. Shader programs are by nature difficult to debug, and shadow mapping 
requires the perfect coordination of several components and shader modules. Be 
advised that successful implementation of shadow mapping will be greatly facili-
tated by liberal use of the debugging tools described earlier in Section 2.2.

Shadow mapping is based on a very simple and clever idea: namely, anything 
that cannot be seen by the light is in shadow. That is, if object #1 blocks the light 
from reaching object #2, it is the same as the light not being able to “see” object #2.

The reason this idea is so powerful is that we already have a method for 
determining if something can be “seen”—the hidden surface removal algorithm 
(HSR) using the Z-buffer, as described in Section 2.1.7. So, a strategy for finding 
shadows is to temporarily move the camera to the location of the light, apply the 
Z-buffer HSR algorithm, and then use the resulting depth information to find 
shadows.

Rendering our scene will require two passes: one to render the scene from the 
point of view of the light (but not actually drawing it to the screen), and a second 
pass to render it from the point of view of the camera. The purpose of pass one is 
to generate a Z-buffer from the light’s point of view. After completing pass one, 
we need to retain the Z-buffer and use it to help us generate shadows in pass two. 
Pass two actually draws the scene.

Our strategy is now becoming more refined:

•	 (Pass 1) Render the scene from the light’s position. The depth buffer then 
contains, for each pixel, the distance between the light and the nearest 
object to it.

•	 Copy the depth buffer to a separate "shadow buffer."
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•	 (Pass 2) Render the scene normally. For each pixel, look up the corresponding 
position in the shadow buffer. If the distance to the point being rendered is 
greater than the value retrieved from the shadow buffer, then the object being 
drawn at this pixel is further from the light than the object nearest the light, and 
therefore this pixel is in shadow.

When a pixel is found to be in shadow, we need to make it darker. One simple 
and effective way of doing this is to render only its ambient lighting, ignoring its 
diffuse and specular components.

The method described above is often called “shadow buffering.” The term 
“shadow mapping” arises when, in the second step, we instead copy the depth 
buffer into a texture. When a texture object is used in this way, we will refer to it 
as a shadow texture, and OpenGL has support for shadow textures in the form of 
a sampler2DShadow type (discussed below). This allows us to leverage the power of 
hardware support for texture units and sampler variables (i.e., “texture mapping”) 
in the fragment shader to quickly perform the depth lookup in pass 2. Our revised 
strategy now is:

•	 (Pass 1) as before.
•	 Copy the depth buffer into a texture.
•	 (Pass 2) as before, except that the shadow buffer is now a shadow texture.

Let’s now implement these steps.

	 8.4.1	 �Shadow Mapping (PASS ONE) – “Draw” Objects 
from Light Position

In step one, we first move our camera to the light’s position and then ren-
der  the  scene. Our goal here is not to actually draw the scene on the display, 
but  to  complete just enough of the rendering process that the depth buffer is 
properly filled. Thus, it will not be necessary to generate colors for the pixels, 
and so our first pass will utilize a vertex shader, but the fragment shader does 
nothing.

Of course, moving the camera involves constructing an appropriate view 
matrix. Depending on the contents of the scene, we will need to decide on an 
appropriate direction to view the scene from the light. Typically, we would 
want this direction to be toward the region that is ultimately rendered in pass 2. 
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This is often application specific—in our scenes, we will generally be pointing the 
camera from the light to the origin.

Several important details need to be handled in pass one:

•	 Configure the buffer and shadow texture.
•	 Disable color output.
•	 Build a look-at matrix from the light toward the objects in view.
•	 Enable the GLSL pass one shader program, containing only the simple 

vertex shader shown in Figure 8.5 that expects to receive an MVP matrix. 
In this case, the MVP matrix will include the object’s model matrix M, the 
look-at matrix computed in the previous step (serving as the view matrix V), 
and the perspective matrix P. We call this MVP matrix “shadowMVP” 
because it is based on the point of view of the light rather than the camera. 
Since the view from the light isn’t actually being displayed, the pass one 
shader program’s fragment shader doesn’t do anything.

•	 For each object, create the shadowMVP matrix and call glDrawArrays(). It is 
not necessary to include textures or lighting in pass one, because objects 
are not rendered to the screen.

Figure 8.5
Shadow mapping pass 1 vertex and fragment shaders.

	 8.4.2	 �Shadow Mapping (Intermediate Step) – Copying the 
Z-Buffer to a Texture

OpenGL offers two methods for putting Z-buffer depth data into a texture unit. 
The first method is to generate an empty shadow texture and then use the com-
mand glCopyTexImage2D() to copy the active depth buffer into the shadow texture.
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The second method is to build a “custom framebuffer” back in pass one (rather 
than use the default Z-buffer) and attach the shadow texture to it using the com-
mand glFrameBufferTexture(). This command was introduced into OpenGL in ver-
sion 3.0 to further support shadow mapping. When using this approach, it isn’t 
necessary to “copy” the Z-buffer into a texture, because the buffer already has 
a texture attached to it, and so the depth information is put into the texture by 
OpenGL automatically. This is the method we will use in our implementation.

	 8.4.3	 �Shadow Mapping (PASS TWO) – Rendering the 
Scene with Shadows

Much of pass two will resemble what we saw in Chapter 7. Namely, it is here 
that we render our complete scene and all of the items in it, along with the light-
ing, materials, and any textures adorning the objects in the scene. We also need to 
add the necessary code to determine, for each pixel, whether or not it is in shadow.

An important feature of pass two is that it utilizes two MVP matrices. One is the 
standard MVP matrix that transforms object coordinates into screen coordinates (as 
seen in most of our previous examples). The other is the shadowMVP matrix that was 
generated in pass one for use in rendering from the light’s point of view—this will 
now be used in pass two for looking up depth information from the shadow texture.

A complication arises in pass two when we try to look up pixels in a tex-
ture map. The OpenGL camera utilizes a [-1..+1] coordinate space, whereas texture 
maps utilize a [0..1] space. A common solution is to build an additional matrix 
transform, typically called B, that converts (or “biases,” hence the name) from 
camera space to texture space. Deriving B is fairly simple—a scale by one-half 
followed by a translate by one-half.

The B matrix is as follows:

B =



















0.5 0 0 0 5

0 0 5 0 0 5

0 0 0 5 0 5

0 0 0 1

.

. .

. .

B is then concatenated onto the shadowMVP matrix for use in pass two, as follows:

shadowMVP2 = [B] [shadowMVP(pass1)]
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Assuming that we use the method whereby a shadow texture has been attached 
to our custom framebuffer, OpenGL provides some relatively simple tools for 
determining whether each pixel is in shadow as we draw the objects. Here is a 
summary of the details handled in pass two:

•	 Build the “B” transform matrix for converting from light to texture space 
(actually, this is more appropriately done in init() ).

•	 Enable the shadow texture for lookup.
•	 Enable color output.
•	 Enable the GLSL pass two rendering program, containing both vertex 

and fragment shaders.
•	 Build the MVP matrix for the object being drawn based on the camera 

position (as normal).
•	 Build the shadowMVP2 matrix (incorporating the B matrix, as described 

earlier)—the shaders will need it to look up pixel coordinates in the 
shadow texture.

•	 Send the matrix transforms to shader uniform variables.
•	 Enable buffers containing vertices, normal vectors, and texture 

coordinates (if used), as usual.
•	 Call glDrawArrays().

In addition to their rendering duties, the vertex and fragment shaders have 
additional tasks:

•	 The vertex shader converts vertex positions from camera space to light 
space and sends the resulting coordinates to the fragment shader in a 
vertex attribute so that they will be interpolated. This makes it possible to 
retrieve the correct values from the shadow texture.

•	 The fragment shader calls the textureProj() function, which returns a 0 
or 1 indicating whether or not the pixel is in shadow (this mechanism is 
explained later). If it is in shadow, the shader outputs a darker pixel by 
not including its diffuse and specular contributions.

Shadow mapping is such a common task that GLSL provides a special type 
of sampler variable called a sampler2DShadow (as previously mentioned) that can 
be attached to a shadow texture in the C++/OpenGL application. The textureProj() 
function is used to look up values from a shadow texture, and it is similar to texture() 
that we saw previously in Chapter 5, except that it uses a vec3 to index the texture 

CGP_C++_CH08_2E_2pp.indd   196 03-Nov-20   5:06:58 PM



Chapter  8  ·  Shadows   ■  197

rather than the usual vec2. Since a pixel coordinate is a vec4, it is necessary to proj-
ect that onto 2D texture space in order to look up the depth value in the shadow 
texture map. As we will see in the following, textureProj() does all of this for us.

The remainder of the vertex and fragment shader code implements Blinn-
Phong shading. These shaders are shown in Figures 8.6 and 8.7, with the added 
code for shadow mapping highlighted.

Let’s examine more closely how we use OpenGL to perform the depth com-
parison between the pixel being rendered and the value in the shadow texture. We 
start in the vertex shader with vertex coordinates in model space, which we mul-
tiply by shadowMVP2 to produce shadow texture coordinates that correspond to 
vertex coordinates projected into light space, previously generated from the light’s 
point of view. The interpolated (3D) light space coordinates (x,y,z) are used in the 

Figure 8.6
Shadow mapping pass 2 vertex shader.
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fragment shader as follows. The z component represents the distance from the 
light to the pixel. The (x,y) components are used to retrieve the depth information 
stored in the (2D) shadow texture. This retrieved value (the distance to the object 
nearest the light) is compared with z. This comparison produces a “binary” result 
that tells us whether the pixel we are rendering is further from the light than the 
object nearest the light (i.e., whether the pixel is in shadow).

If in OpenGL we use glFrameBufferTexture() as described earlier, and we enable 
depth testing, then using a sampler2DShadow and textureProj() as shown in the frag-
ment shader (Figure 8.7) will do exactly what we need. That is, textureProj() will 
output either 0.0 or 1.0 depending on the depth comparison. Based on this value, 
we can then in the fragment shader omit the diffuse and specular contributions 
when the pixel is further from the light than the object nearest the light, effectively 
creating the shadow when appropriate. An overview is shown in Figure 8.8.

We are now ready to build our C++/OpenGL application to work with the 
previously described shaders.

Figure 8.7
Shadow mapping pass 2 fragment shader.
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	 8.5	 A SHADOW MAPPING EXAMPLE
Consider the scene in Figure 8.9 

that includes a torus and a pyramid. 
A positional light has been placed on 
the left (note the specular highlights).

The pyramid should be casting a 
shadow on the torus.

To clarify the development of 
the example, our first step will be 
to render pass one to the screen to 
make sure it is working properly. To 
do this, we will temporarily add a 
simple fragment shader (it will not be included in the final version) to pass one 
that just outputs a constant color (e.g., red); for example:

#version 430
out vec4 fragColor;
void main(void)
{   fragColor = vec4(1.0, 0.0, 0.0, 0.0);
}

Figure 8.8
Automatic depth comparison.

Figure 8.9
Lighted scene without shadows.
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Let’s assume that the origin of the previous scene is situated at the center of the 
figure, in between the pyramid and the torus. In pass one we place the camera at the 
light’s position (at the left in Figure 8.10) and point it toward (0,0,0). If we then draw 
the objects in red, it produces the output shown at the right in Figure 8.10. Note the 
torus near the top—from this vantage point it is partially behind the pyramid.

Figure 8.10
Pass one: Scene (left) from light’s point of view (right).

The complete two-pass C++/OpenGL code with lighting and shadow mapping 
is shown in Program 8.1.

Program 8.1 Shadow Mapping
// Much is the same as we have seen before. New sections to support shadows are highlighted.
// The imports necessary for lighting, etc., would be included at the start, are the same as before, 
// and are not shown here.

// variable declarations for rendering programs, buffers, shader sources, etc., would go here.
. . .
ImportedModel pyramid("pyr.obj");		  // define the pyramid
Torus myTorus(0.6f, 0.4f, 48);			  // define the torus
int numPyramidVertices, numTorusVertices, numTorusIndices;
. . .	
// locations of torus, pyramid, camera, and light
glm::vec3 torusLoc(1.6f, 0.0f, -0.3f);
glm::vec3 pyrLoc(-1.0f, 0.1f, 0.3f);
glm::vec3 cameraLoc(0.0f, 0.2f, 6.0f);
glm::vec3 lightLoc(-3.8f, 2.2f, 1.1f);

// properties of white light (global and positional) used in this scene
float globalAmbient[4] = { 0.7f, 0.7f, 0.7f, 1.0f };
float lightAmbient[4] = { 0.0f, 0.0f, 0.0f, 1.0f };
float lightDiffuse[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
float lightSpecular[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
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// gold material for the pyramid
float* goldMatAmb = Utils::goldAmbient();
float* goldMatDif = Utils::goldDiffuse();
float* goldMatSpe = Utils::goldSpecular();
float goldMatShi = Utils::goldShininess();
// bronze material for the torus
float* bronzeMatAmb = Utils::bronzeAmbient();
float* bronzeMatDif = Utils::bronzeDiffuse();
float* bronzeMatSpe = Utils::bronzeSpecular();
float bronzeMatShi = Utils::bronzeShininess();
// variables used in display() for transfering light to shaders
float curAmb[4], curDif[4], curSpe[4], matAmb[4], matDif[4], matSpe[4];
float curShi, matShi;
// shadow-related variables 
int screenSizeX, screenSizeY;
GLuint shadowTex, shadowBuffer;
glm::mat4 lightVmatrix;
glm::mat4 lightPmatrix;
glm::mat4 shadowMVP1;
glm::mat4 shadowMVP2;
glm::mat4 b;
// light and camera view matrix transforms are all declared here (mMat, vMat, etc.) of type mat4.
// Other variables used in display() are also declared here.
	 . . .
int main(void) {
	 // unchanged from previous examples
}
// The init() routine performs the usual calls to compile shaders and initialize objects.
// It also calls setupShadowBuffers() to instantiate the buffers related to shadow-mapping.
// Lastly, it builds the B matrix for converting from light space to texture space.
void init(GLFWwindow* window) {
	 renderingProgram1 = Utils::createShaderProgram("./vert1Shader.glsl", "./frag1Shader.glsl");
	 renderingProgram2 = Utils::createShaderProgram("./vert2Shader.glsl", "./frag2Shader.glsl");
	 setupVertices();
	 setupShadowBuffers();
	 b = glm::mat4(
		  0.5f, 0.0f, 0.0f, 0.0f,
		  0.0f, 0.5f, 0.0f, 0.0f,
		  0.0f, 0.0f, 0.5f, 0.0f,
		  0.5f, 0.5f, 0.5f, 1.0f);
}
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void setupShadowBuffers(GLFWwindow* window) {
	 glfwGetFramebufferSize(window, &width, &height);
	 screenSizeX = width;
	 screenSizeY = height;

	 // create the custom frame buffer
	 glGenFramebuffers(1, &shadowBuffer);

	 // create the shadow texture and configure it to hold depth information.
	 // these steps are similar to those in Program 5.2
	 glGenTextures(1, &shadowTex);
	 glBindTexture(GL_TEXTURE_2D, shadowTex);
	 glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32,
		  screenSizeX, screenSizeY, 0, GL_DEPTH_COMPONENT, GL_FLOAT, 0);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,  
� GL_COMPARE_REF_TO_TEXTURE);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);
}

void setupVertices(void) {
	 // same as in earlier examples. This function creates the VAO, the VBOs, and then
	 // loads vertices and normal vectors for the torus and pyramid into the buffers.
}

// The display() function manages the setup of the custom frame buffer and the shadow texture
// in preparation for pass 1 and pass 2 respectively. New shadow-related features are highlighted.

void display(GLFWwindow* window, double currentTime) {
	 glClear(GL_COLOR_BUFFER_BIT);
	 glClear(GL_DEPTH_BUFFER_BIT);

	 // set up view and perspective matrix from the light point of view, for pass 1
	 lightVmatrix = glm::lookAt(currentLightPos, origin, up);	 // vector from light to origin
	 lightPmatrix = glm::perspective(toRadians(60.0f), aspect, 0.1f, 1000.0f);

	 // make the custom frame buffer current, and associate it with the shadow texture
	 glBindFramebuffer(GL_FRAMEBUFFER, shadowBuffer);
	 glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, shadowTex, 0);

	 // disable drawing colors, but enable the depth computation
	 glDrawBuffer(GL_NONE);
	 glEnable(GL_DEPTH_TEST);

	 passOne();
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	 // restore the default display buffer, and re-enable drawing
	 glBindFramebuffer(GL_FRAMEBUFFER, 0);
	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_2D, shadowTex);
	 glDrawBuffer(GL_FRONT);		  // re-enables drawing colors

	 passTwo();
}

//	 What follows now are the methods for the first and second passes.
//	 They are largely identical to things we have seen before.
//	 Shadow-related additions are highlighted.

void passOne(void) {

	 // renderingProgram1 includes the pass one vertex and fragment shaders
	 glUseProgram(renderingProgram1);
	 . . .
	 // the following blocks of code render the torus to establish the depth buffer from the light point of view

	 mMat = glm::translate(glm::mat4(1.0f), torusLoc);
	 // slight rotation for viewability 
	 mMat = glm::rotate(mMat, toRadians(25.0f), glm::vec3(1.0f, 0.0f, 0.0f));

	 // we are drawing from the light’s point of view, so we use the light’s P and V matrices
	 shadowMVP1 = lightPmatrix * lightVmatrix * mMat;
	 sLoc = glGetUniformLocation(renderingProgram1, "shadowMVP");
	 glUniformMatrix4fv(sLoc, 1, GL_FALSE, glm::value_ptr(shadowMVP1));

	 // we only need to set up torus vertices buffer – we don’t need its textures or normals for pass one.
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);

	 glClear(GL_DEPTH_BUFFER_BIT);
	 glEnable(GL_CULL_FACE);
	 glFrontFace(GL_CCW);
	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);

	 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[4]);	 // vbo[4] contains torus indices
	 glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

	 // repeat for the pyramid (but don’t clear the GL_DEPTH_BUFFER_BIT)
	 // The pyramid is not indexed, so we use glDrawArrays() rather than glDrawElements()
	 . . .
	 glDrawArrays(GL_TRIANGLES, 0, numPyramidVertices);
}
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void passTwo(void) {
	 glUseProgram(renderingProgram2);		 // pass two vertex and fragment shaders

	 // draw the torus – this time we need to include lighting, materials, normals, etc.
	 // We also need to provide MVP tranforms for BOTH camera space and light space.
	 mvLoc = glGetUniformLocation(renderingProgram2, "mv_matrix");
	 projLoc = glGetUniformLocation(renderingProgram2, "proj_matrix");
	 nLoc = glGetUniformLocation(renderingProgram2, "norm_matrix");
	 sLoc = glGetUniformLocation(renderingProgram2, "shadowMVP");

	 // the torus is bronze
	 curAmb[0] = bronzeMatAmb[0];	 curAmb[1] = bronzeMatAmb[1];	 curAmb[2] = bronzeMatAmb[2];
	 curDif[0] = bronzeMatDif[0];	 curDif[1] = bronzeMatDif[1];	 curDif[2] = bronzeMatDif[2];
	 curSpe[0] = bronzeMatSpe[0];	 curSpe[1] = bronzeMatSpe[1];	 curSpe[2] = bronzeMatSpe[2];
	 curShi = bronzeMatShi;

	 vMat = glm::translate(glm::mat4(1.0f), glm::vec3(-cameraLoc.x, -cameraLoc.y, -cameraLoc.z));

	 currentLightPos = glm::vec3(lightLoc);
	 installLights(renderingProgram2, vMat);

	 mMat = glm::translate(glm::mat4(1.0f), torusLoc);
	 // slight rotation for viewability 
	 mMat = glm::rotate(mMat, toRadians(25.0f), glm::vec3(1.0f, 0.0f, 0.0f));

	 // build the MV matrix for the torus from the camera’s point of view
	 mvMat = vMat * mMat;
	 invTrMat = glm::transpose(glm::inverse(mvMat));

	 // build the MVP matrix for the torus from the light’s point of view
	 shadowMVP2 = b * lightPmatrix * lightVmatrix * mMat;

	 // put the MV and PROJ matrices into the corresponding uniforms
	 glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvMat));
	 glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));
	 glUniformMatrix4fv(nLoc, 1, GL_FALSE, glm::value_ptr(invTrMat));
	 glUniformMatrix4fv(sLoc, 1, GL_FALSE, glm::value_ptr(shadowMVP2));

	 // set up torus vertices and normals buffers (and texture coordinates buffer if used)
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);		  // torus vertices
	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);		  // torus normals
	 glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(1);

	 glClear(GL_DEPTH_BUFFER_BIT);
	 glEnable(GL_CULL_FACE);
	 glFrontFace(GL_CCW);
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	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);

	 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[4]);	 // vbo[4] contains torus indices
	 glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);
	 . . .
	 // repeat for the gold pyramid
}

Program 8.1 shows the relevant portions of the C++/OpenGL application that 
interact with the pass one and pass two shaders previously detailed. Not shown are 
the usual modules for reading in and compiling the shaders, building the models 
and their related buffers, installing the positional light’s ADS characteristics in the 
shaders, and performing the perspective and look-at matrix computations. Those 
are unchanged from previous examples.

	 8.6	 SHADOW MAPPING ARTIFACTS
Although we have imple-

mented all of the basic require-
ments for adding shadows to our 
scene, running Program 8.1 pro-
duces mixed results, as shown in 
Figure 8.11.

The good news is that our pyr-
amid is now casting a shadow on 
the torus! Unfortunately, this suc-
cess is accompanied by a severe 
artifact. There are wavy lines covering many of the surfaces in the scene. This is a 
common by-product of shadow mapping, and is called shadow acne or erroneous 
self-shadowing.

Shadow acne is caused by rounding errors during depth testing. The texture 
coordinates computed when looking up the depth information in a shadow texture 
often don’t exactly match the actual coordinates. Thus, the lookup may return the 
depth for a neighboring pixel, rather than the one being rendered. If the distance 
to the neighboring pixel is further, then our pixel will appear to be in shadow even 
if it isn’t.

Figure 8.11
Shadow “acne.”
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Shadow acne can also be caused by differences in precision between the tex-
ture map and the depth computation. This too can lead to rounding errors and 
subsequent incorrect assessment of whether or not a pixel is in shadow.

Fortunately, fixing shadow acne is fairly easy. Since shadow acne typically 
occurs on surfaces that are not in shadow, a simple trick is to move every pixel 
slightly closer to the light during pass one, and then move them back to their nor-
mal positions for pass two. This is usually sufficient to compensate for either type 
of rounding error. An easy way is to call glPolygonOffset() in the display() function, 
as shown in Figure 8.12 (highlighted).

Adding these few lines of code to our display() function improves the output 
of our program considerably, as shown in Figure 8.13. Note also that with the 
artifacts gone, we can now see that the inner circle of the torus displays a small 
correctly cast shadow on itself.

Figure 8.12
Combating shadow acne.
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Although fixing shadow acne is easy, sometimes the repair causes new arti-
facts. The “trick” of moving the object before pass one can sometimes cause a gap 
to appear inside an object’s shadow. An example of this is shown in Figure 8.14. This 
artifact is often called “Peter Panning,” because sometimes it causes the shadow 
of a resting object to inappropriately separate from the object’s base (thus making 
portions of the object’s shadow detach from the rest of the shadow, reminiscent of 
J. M. Barrie’s character Peter Pan [PP20]). Fixing this artifact requires adjusting the 
glPolygonOffset() parameters. If they are too small, shadow acne can appear; if too 
large, Peter Panning happens.

There are many other artifacts that can happen during shadow mapping. For 
example, shadows can repeat as a result of the region of the scene being rendered 
in pass one (into the shadow buffer) being different from the region of the scene 
rendered in pass two (they are from different vantage points). Because of this 
difference, those portions of the scene rendered in pass two that fall outside the 
region rendered in pass one will attempt to access the shadow texture using tex-
ture coordinates outside of the range [0..1]. Recall that the default behavior in this 
case is GL_REPEAT, which can result in incorrectly duplicated shadows.

One possible solution is to add the following lines of code to setupShadowBuffers(), 
to set the texture wrap mode to “clamp to edge”:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

This causes values outside of a texture edge to be clamped to the value at edge 
(instead of repeating). Note that this approach can introduce its own artifacts, 
namely, when a shadow exists at the edge of the shadow texture, clamping to the 
edge can produce a “shadow bar” extending to the edge of the scene.

Figure 8.13
Rendered scene with shadows.

Figure 8.14
”Peter Panning.”
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Another common error is jagged 
shadow edges. This can happen when the 
shadow being cast is significantly larger than 
the shadow buffer can accurately represent. 
This usually depends on the location of the 
objects and light(s) in the scene. In particular, 
it commonly occurs when the light source is 
relatively distant from the objects involved. 
An example is shown in Figure 8.15.

Eliminating jagged shadow edges is not as simple as for the previous artifacts. 
One technique is to move the light position closer to the scene during pass one, and 
then return it to the correct position in pass two. Another approach that is often 
effective is to employ one of the “soft shadow” methods that we will discuss next.

	 8.7	 SOFT SHADOWS
The methods presented thus far are limited to producing hard shadows. These 

are shadows with sharp edges. However, most shadows that occur in the real world 
are soft shadows. That is, their edges are blurred to various degrees. In this sec-
tion, we will explore the appearance of soft shadows as they occur in the real world 
and then describe a commonly used algorithm for simulating them in OpenGL.

	 8.7.1	 Soft Shadows in the Real World
There are many causes of soft shadows, and there are many types of soft shad-

ows. One thing that commonly causes soft shadows in nature is that real-world 
light sources are rarely points—more 
often they occupy some area. Another 
cause is the accumulation of imperfec-
tions in materials and surfaces, and the 
role that the objects themselves play in 
generating ambient light through their 
own reflective properties.

Figure 8.16 shows a photograph 
of an object casting a soft shadow on 
a table top. Note that this is not a 3D 

Figure 8.15
Jagged shadow edges.

Figure 8.16
Soft shadow real-world example.
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computer rendering, but an actual photograph of an object, taken in the home of 
one of the authors.

There are two aspects to note about the shadow in Figure 8.16:

•	 The shadow is “softer” the further it is from the object and “harder” the 
closer it is to the object. This is apparent when comparing the shadow 
near the legs of the object versus the wider portion of the shadow at the 
right region of the image.

•	 The shadow appears slightly darker the closer it is to the object.

The dimensionality of the light source 
itself can lead to soft shadows. As shown 
in Figure 8.17, the various regions across 
the light source cast slightly different 
shadows. The lighter areas at the edges 
of the shadow — where only a portion of 
the light is blocked by the object — are 
collectively called the penumbra.

	 8.7.2	 �Generating Soft Shadows – Percentage Closer 
Filtering (PCF)

There are various ways of simulating the penumbra effect to generate soft 
shadows in software. One of the simplest and most common is called Percentage 
Closer Filtering (PCF). In PCF (proposed in 1987 by Reeves et al. [RS87]), we 
sample the shadow texture at several surrounding locations to estimate what 
percentage of nearby locations are in shadow. Depending on how many of the nearby 
locations are in shadow, we increase or decrease the degree of lighting contribution 
for the pixel being rendered. The entire computation can 
be done in the fragment shader, and that is the only place 
where we have to change any of the code. PCF also can 
be used to reduce jagged line artifacts.

Before we study the actual PCF algorithm, let’s first 
look at a simple similar motivating example to illustrate 
the goal of PCF. Consider the set of output fragments 
(pixels) shown in Figure 8.18, whose colors are being 
computed by the fragment shader.

Figure 8.17
Soft shadow penumbra effect.

Figure 8.18
Hard shadow rendering.

CGP_C++_CH08_2E_2pp.indd   209 03-Nov-20   5:07:00 PM



210  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

Suppose that the darkened pixels are in shadow, as computed using shadow 
mapping. Instead of simply rendering the pixels as shown (i.e., with or without the 
diffuse and specular components included), suppose that we had access to neigh-
boring pixel information, so that we could see how many of the neighboring pixels 
are in shadow. For example, consider the particular pixel highlighted in yellow in 
Figure 8.19, which according to Figure 8.18 is not in shadow.

Figure 8.19
PCF sampling for a particular pixel.

In the nine-pixel neighborhood of the highlighted pixel, three of the pixels are in 
shadow and six are not. Thus, the color of the rendered pixel could be computed as 
the sum of the ambient contribution at that pixel, plus six-ninths of the diffuse and 
specular contributions, resulting in a fairly (but not completely) brightened pixel. 
Repeating this process throughout the grid would produce pixel colors approxi-
mately as shown in Figure 8.20. Note that for those pixels whose neighborhoods 
are entirely in (or out of) shadow, the resulting color is the same as for standard 
shadow-mapping.

Unlike the example just shown, implementations of PCF do not sample every 
pixel within a certain vicinity of the pixel being rendered. There are two reasons 
for this: (a) we’d like to perform this computation in the fragment shader, but the 

fragment shader does not have access to other pixels; 
and (b) obtaining a sufficiently broad penumbra effect 
(say, ten to twenty pixels wide) would require sampling 
hundreds of nearby pixels for each pixel being rendered.

PCF addresses these two issues as follows. First, 
rather than attempting to access nearby pixels, we instead 
sample nearby texels in the shadow map. The fragment 
shader can do this because even though it doesn’t have 
access to nearby pixel values, it does have access to the 

Figure 8.20
Soft shadow rendering.
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entire shadow map. Second, to achieve a 
sufficiently broad penumbra effect, a mod-
erate number of nearby shadow map texels 
are sampled, each at some modest distance 
from the texel corresponding to the pixel 
being rendered.

The width of the penumbra and the 
number of points sampled can be tuned 
depending on the scene and the perfor-
mance requirements. For example, the 
image shown in Figure 8.21 was generated using PCF, with each pixel’s brightness 
determined by sampling 64 nearby shadow map texels at various distances from 
the pixel’s texel.

The accuracy or smoothness of our soft shadows depends on the number of 
nearby texels sampled. Thus, there is a tradeoff between performance and quality—
the more points sampled, the better the results, but the more computational over-
head is incurred. Depending on the complexity of the scene and the framerate 
required for a given application, there is often a corresponding practical limit to the 
quality that can be achieved. Samping 64 points per pixel, such as in Figure 8.21, 
is usually impractical.

A commonly used algorithm for implementing PCF is to sample four nearby 
texels per pixel, with the samples selected at specified offset distances from the 
texel which corresponds to the pixel. As we process each pixel, we alter the offsets 
used to determine which four texels are sampled. Altering the offsets in a stag-
gered manner is sometimes called dithering, and aims to make the soft shadow 
boundary appear less “blocky” than it ordinarily would given the small number of 
sample points.

A common approach is to assume one of four different offset patterns—we can 
choose which pattern to use for a given pixel by computing the pixel’s glFragCoord 
mod 2. Recall that glFragCoord is of type vec2, containing the x and y coordinates 
of the pixel location; the result of the mod computation is then one of four values: 
(0,0), (0,1), (1,0), or (1,1). We use this result to select one of our four different offset 
patterns in texel space (i.e., in the shadow map).

The offset patterns are typically specified in the x and y directions with differ-
ent combinations of -1.5, -0.5, +0.5, and +1.5 (these can also be scaled as desired). 

Figure 8.21
Soft shadow rendering – 64 samples per pixel.

CGP_C++_CH08_2E_2pp.indd   211 03-Nov-20   5:07:00 PM



212  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

More specifically, the four usual offset patterns for each of the cases resulting 
from the glFragCoord mod 2 compuation are:

case (0,0)
sample points:
(sx-1.5, sy+1.5)
(sx-1.5, sy-0.5)
(sx+0.5, sy+1.5)
(sx+0.5, sy-0.5)

case (0,1)
sample points:
(sx-1.5, sy+0.5)
(sx-1.5, sy-1.5)
(sx+0.5, sy+0.5)
(sx+0.5, sy-1.5)

case (1,0)
sample points:
(sx-0.5, sy+1.5)
(sx-0.5, sy-0.5)
(sx+1.5, sy+1.5)
(sx+1.5, sy-0.5)

case (1,1)
sample points:
(sx-0.5, sy+0.5)
(sx-0.5, sy-1.5)
(sx+1.5, sy+0.5)
(sx+1.5, sy-1.5)

Sx and Sy refer to the location (Sx, Sy) in the shadow map corresponding to the 
pixel being rendered, identified as shadow_coord in the code examples throughout 
this chapter. These four offset patterns are illustrated in Figure 8.22, with each 
case shown in a different color. In each case, the texel corresponding to the pixel 
being rendered is at the origin of the graph for that case. Note that when shown 
together in Figure 8.23, the staggering/dithering of the offsets is apparent.

Figure 8.22
Dithered four-pixel PCF sampling cases.

Let’s walk through the entire computation for a particular pixel. Assume the 
pixel being rendered is located at glFragCoord = (48,13). We start by determining 
the four shadow map sample points for the pixel. To do that, we would compute 
vec2(48,13) mod 2, which equals (0,1). From that we would choose the offsets shown 
for case (0,1), shown in green in Figure 8.22, and the specific points to be sampled 
in the shadow map (assuming that no scaling of the offsets has been specified) 
would be:

•	 (shadow_coord.x–1.5, shadow_coord.y+0.5)
•	 (shadow_coord.x–1.5, shadow_coord.y–1.5)
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•	 (shadow_coord.x+0.5, shadow_coord.y+0.5)
•	 (shadow_coord.x+0.5, shadow_coord.y–1.5)

(Recall that shadow_coord is the location of 
the texel in the shadow map corresponding to the 
pixel being rendered—shown as a white circle in 
Figures 8.22 and 8.23.)

We next call textureProj() on each of these 
four points, which in each case returns either 0.0 
or 1.0 depending on whether or not that sampled 
point is in shadow. We sum the four results and 
divide by 4.0 to determine the percentage of sam-
pled points which are in shadow. This percentage is then used as a multiplier to 
determine the amount of diffuse and specular lighting to be applied when render-
ing the current pixel.

Despite the small sampling size—
only four samples per pixel—this 
dithered approach can often produce 
surprisingly good soft shadows. Figure 
8.24 was generated using four-point 
dithered PCF. While not quite as good 
as the 64-point sampled version shown 
previously in Figure 8.21, it renders 
considerably faster.

In the next section, we develop the 
GLSL fragment shader that produced 
both this four-sample dithered PCF 
soft shadow and the previously shown 
64-sample PCF soft shadow.

	 8.7.3	 A Soft Shadow/PCF Program
As mentioned earlier, the soft shadow computation can be done entirely in the 

fragment shader. Program 8.2 shows the fragment shader that replaces the one in 
Figure 8.7. The PCF additions are highlighted.

Figure 8.23
Dithered four-pixel PCF sampling (four cases 
shown together).

Figure 8.24
Soft shadow rendering – four samples per pixel, dithered.
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Program 8.2 Percentage Closer Filtering (PCF)
Fragment Shader
#version 430
// all variable declarations are unchanged
. . .

// Returns the shadow depth value for a texel at distance (x,y) from shadow_coord.  Recall that
// shadow_coord is the location in the shadow map corresponding to the current pixel being rendered.

float lookup(float ox, float oy)
{  	 float t = textureProj(shadowTex,
		  shadow_coord + vec4(ox * 0.001 * shadow_coord.w, oy * 0.001 * shadow_coord.w,
		  -0.01, 0.0));	 // the third parameter (-0.01) is an offset to counteract shadow acne
	 return t;
}

void main(void)
{	 float shadowFactor = 0.0;
	 vec3 L = normalize(vLightDir);
	 vec3 N = normalize(vNormal);
	 vec3 V = normalize(-vVertPos);
	 vec3 H = normalize(vHalfVec);

	 // ----- this section produces a 4-sample dithered soft shadow
	 float swidth = 2.5;	 // tunable amount of shadow spread
	 // produces one of 4 sample patterns depending on glFragCoord mod 2
	 vec2 offset = mod(floor(gl_FragCoord.xy), 2.0) * swidth;
	 shadowFactor += lookup(-1.5*swidth + offset.x,  1.5*swidth - offset.y);
	 shadowFactor += lookup(-1.5*swidth + offset.x, -0.5*swidth - offset.y);
	 shadowFactor += lookup( 0.5*swidth + offset.x,  1.5*swidth - offset.y);
	 shadowFactor += lookup( 0.5*swidth + offset.x, -0.5*swidth - offset.y);
	 shadowFactor = shadowFactor / 4.0;  // shadowFactor is an average of the four sampled points

	 // ----- this section, if un-commented, produces a 64-sample hi resolution soft shadow
	 //	 float swidth = 2.5;	 // tunable amount of shadow spread
	 //	 float endp = swidth*3.0 +swidth/2.0;
	 //	 for (float m=-endp ; m<=endp ; m=m+swidth)
	 //	 {	 for (float n=-endp ; n<=endp ; n=n+swidth)
	 //		  {	 shadowFactor += lookup(m,n);
	 //	 }	 }
	 //	 shadowFactor = shadowFactor / 64.0;

	 vec4 shadowColor = globalAmbient * material.ambient + light.ambient * material.ambient;
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	 vec4 lightedColor = light.diffuse * material.diffuse * max(dot(L,N),0.0)
				    + light.specular * material.specular
				    * pow(max(dot(H,N),0.0),material.shininess*3.0);

	 fragColor = vec4((shadowColor.xyz + shadowFactor*(lightedColor.xyz)),1.0);
}

The fragment shader shown in Program 8.2 contains code for both the four-
sample and 64-sample PCF soft shadows. First, a function lookup() is defined to 
make the sampling process more convenient. It makes a call to the GLSL func-
tion textureProj() that does a lookup in the shadow texture, but is offset by a speci-
fied amount (ox,oy). The offset is multiplied by 1/windowsize, which here we have 
simply hardcoded to .001, assuming a window size of 1000×1000 pixels.2 

The four-sample dithered computation appears highlighted in main(), and it 
follows the algorithm described in the previous section. A scale factor swidth has 
been added that can be used to adjust the size of the “soft” region at the edge of 
the shadows.

The 64-sample code follows and is commented out. It can be used instead of 
the four-sample computation by un-commenting it and instead commenting out 
the four-sample code. The swidth scale factor in the 64-sample code is used as 
a step size in the nested loop that samples points at various distances from the 
pixel being rendered. For example, using the value of swidth shown (2.5), points 
would be sampled along each axis at distances of 1.25, 3.75, 6.25, and 8.25 in 
both directions—then scaled based on the window size (as described earlier) and 
used as texture coordinates into the shadow texture. With this many samples, 
dithering is generally not necessary to obtain good results.

Figure 8.25 shows our running torus/pyramid shadow-mapping example, 
incorporating PCF soft shadowing with the fragment shader from Program 8.2, 
for both four-sample and 64-sample approaches. The value chosen for swidth is 
scene dependent; for the torus/pyramid example it was set to 2.5, whereas for the 
dolphin example shown previously in Figure 8.21, swidth was set to 8.0.

2	 We have also multiplied the offset by the w component of the shadow coordinate, because 
OpenGL automatically divides the input coordinate by w during texture lookup. This operation, 
called perspective divide, is one which we have ignored up to this point. It must be accounted for 
here. For more information on perspective divide, see [LO12].
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SUPPLEMENTAL NOTES

In this chapter, we have only given the most basic of introductions to the 
world of shadows in 3D graphics. Even using the basic shadow mapping methods 
presented here will likely require further study if used in more complex scenes.

For example, when adding shadows to a scene in which some of the objects are 
textured, it is necessary to ensure that the fragment shader properly distinguishes 
between the shadow texture and other textures. A simple way of doing this is to 
bind them to different texture units, such as:

layout (binding = 0) uniform sampler2DShadow shTex;
layout (binding = 1) uniform sampler2D otherTexture;

Then, the C++/OpenGL application can refer to the two samplers by their 
binding values.

When a scene utilizes multiple lights, multiple shadow textures are 
necessary—one for each light source. In addition, a pass one will need to be 
performed for each one, with the results blended in pass two.

Although we have used perspective projection at each phase of shadow map-
ping, it is worth noting that orthographic projection is often preferred when the 
light source is distant and directional, rather than the positional light we utilized.

Generating realistic shadows is a rich and complex area of computer graphics, 
and many of the available techniques are outside the scope of this text. Readers 

Figure 8.25
PCF Soft shadow rendering—4 samples per pixel, dithered (left), and 64 samples per pixel, not dithered (right).
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interested in more detail are encouraged to investigate more specialized resources 
such as [ES12], [GP10], and [MI18].

The second fragment shader of Program 8.2 contains an example of a GLSL 
function, lookup(). As in the C language, functions must be defined before (or 
“above”) where they are called, or else a forward declaration must be provided. 
In the example, a forward declaration isn’t required because the function has been 
defined above the call to it.

Exercises

	8.1	 In Program 8.1, experiment with different settings for glPolygonOffset(), and 
observe the effects on shadow artifacts such as Peter Panning.

	8.2	 (PROJECT) Modify Program 8.1 so that the light can be positioned by moving 
the mouse, similar to Exercise 7.1. You will probably notice that some lighting 
positions exhibit shadow artifacts, while others look fine.

	8.3	(PROJECT) Add animation to Program 8.1, such that either the objects or the 
light (or both) move around on their own—such as one revolving around the 
other. The shadow effects will be more pronounced if you add a ground plane 
to the scene, such as the one illustrated in Figure 8.14.

	8.4	 (PROJECT) Modify Program 8.2 to replace the hardcoded values 0.001 in the 
lookup() function with the more accurate values of 1.0/shadowbufferwidth and  
1.0/shadowbufferheight. Observe to what degree this change makes a difference 
(or not) for various window sizes.

	8.5	(RESEARCH) More sophisticated implementations of Percentage Closer 
Filtering (PCF) take into account the relative distance between the light and 
the shadow versus the light and the occluder. Doing this can make soft shadows 
more realistic, by allowing their penumbra to change in size as the light moves 
closer or further from the occluder (or as the occluder moves closer or further 
from the shadow). Study existing methods for incorporating this capability, 
and add it to Program 8.2.

References

[AS14]	� E. Angel and D. Shreiner, Interactive Computer Graphics: A Top-Down 
Approach with WebGL, 7th ed. (Pearson, 2014).

CGP_C++_CH08_2E_2pp.indd   217 03-Nov-20   5:07:01 PM



218  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

[BL88]	� J. Blinn, “Me and My (Fake) Shadow,” IEEE Computer Graphics and 
Applications 8, no. 2 (1988).

[CR77]	� F. Crow, “Shadow Algorithms for Computer Graphics,” Proceedings of 
SIGGRAPH ’77 11, no. 2 (1977).

[ES12]	� E. Eisemann, M. Schwarz, U. Assarsson, and M. Wimmer, Real-Time 
Shadows (CRC Press, 2012).

[GP10]	 GPU Pro (series), ed. Wolfgang Engel (A. K. Peters, 2010–2016).

[KS16]	� J. Kessenich, G. Sellers, and D. Shreiner, OpenGL Programming Guide: 
The Official Guide to Learning OpenGL, Version 4.5 with SPIR-V, 9th ed. 
(Addison-Wesley, 2016).

[LO12]	� Understanding OpenGL’s Matrices, Learn OpenGL ES (2012), accessed 
July 2020, http://www.learnopengles.com/tag/perspective-divide/

[LU16]	� F. Luna, Introduction to 3D Game Programming with DirectX 12, 2nd ed. 
(Mercury Learning, 2016).

[MI18]	� Common Techniques to Improve Shadow Depth Maps (Microsoft Corp., 
2018), accessed July 2020, https://docs.microsoft.com/en-us/windows/
win32/dxtecharts/common-techniques-to-improve-shadow-depth-maps

[PP20]	� Peter Pan, Wikipedia, accessed July 2020, https://en.wikipedia.org/wiki/
Peter_Pan

[RS87]	� Rendering Antialiased Shadows with Depth Maps, Computer Graphics, 
Volume 21, Number 4, July 1987.

CGP_C++_CH08_2E_2pp.indd   218 03-Nov-20   5:07:01 PM



Chapter 9
Sky and Backgrounds

9.1	 Skyboxes�����������������������������������������������������������������������������������������������������������������������219
9.2	 Skydomes���������������������������������������������������������������������������������������������������������������������222
9.3	 Implementing a Skybox�����������������������������������������������������������������������������������������������224
9.4	 Environment Mapping �����������������������������������������������������������������������������������������������231
	 Supplemental Notes�����������������������������������������������������������������������������������������������������236

■ ■ ■ ■ ■

The realism in a 3D scene can often be improved by generating a realistic effect 
at the distant horizon. As we look beyond our nearby buildings and trees, we are 
accustomed to seeing large distant objects such as clouds, mountains, or the sun (or 
at night, the moon and stars). However, adding such objects to our scene as individual 
models may come at an unacceptable performance cost. A skybox or skydome pro-
vides a relatively simple way of efficiently generating a convincing horizon.

	 9.1	 SKYBOXES
The concept of a skybox is a remarkably clever and simple one:

	 1.	 Instantiate a cube object.
	 2.	 Texture the cube with the desired environment.
	 3.	 Position the cube so it surrounds the camera.

We already know how to do all of these steps. There are a few additional details, 
however.

•	 How do we make the texture for our horizon?
A cube has six faces, and we will need to texture all of them. One way is to 

use  six  image files and six texture units. Another common (and efficient) way 
is to use  a single image that contains textures for all six faces, such as shown in 
Figure 9.1.
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An image that can texture all six faces of a cube with a single texture unit is an 
example of a texture cube map. The six portions of the cube map correspond to the 
top, bottom, front, back, and two sides of the cube. When “wrapped” around the 
cube, it acts as a horizon for a camera placed inside the cube, as shown in Figure 9.2.

Figure 9.2
Texture cube map wrapping around the camera.

Figure 9.1
Six-faced skybox texture cube map.
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Texturing the cube with a texture cube map requires specifying appropriate 
texture coordinates. Figure 9.3 shows the distribution of texture coordinates that 
are in turn assigned to each of the cube vertices.

Figure 9.3
Cube map texture coordinates.

•	 How do we make the skybox appear “distant”?
Another important factor in building a skybox is ensuring that the texture 

appears as a distant horizon. At first, one might assume this would require mak-
ing the skybox very large. However, it turns out that this isn’t desirable because 
it would stretch and distort the texture. Instead, it is possible to make the skybox 
appear very large (and thus distant), by using the following two-part trick:

○	Disable depth testing and render the skybox first (re-enabling depth 
testing when rendering the other objects in the scene).

○	Move the skybox with the camera (if the camera moves).

By drawing the skybox first with depth testing disabled, the depth buffer 
will still be filled completely with 1.0s (i.e., maximally far away). Thus, all other 
objects in the scene will be fully rendered; that is, none of the other objects will be 
blocked by the skybox. This causes the walls of the skybox to appear farther away 
than every other object, regardless of the actual size of the skybox. The actual 
skybox cube itself can be quite small, as long as it is moved along with the camera 
whenever the camera moves. Figure 9.4 shows viewing a simple scene (actually 
just a brick-textured torus) from inside a skybox.
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It is instructive to carefully examine Figure 9.4 in relation to the previous 
Figures 9.2 and 9.3. Note that the portion of the skybox that is visible in the 
scene is the rightmost section of the cube map. This is because the camera has been 
placed in the default orientation, facing in the negative Z direction, and is therefore 
looking at the back of the skybox cube (and so labeled in Figure 9.3). Also note that 
this back portion of the cube map appears horizontally reversed when rendered in 
the scene, because the cube map is being viewed from the inside of the cube. For 
example, see how the “back” (-Z) portion of the cube map has been folded around 
the camera and thus appears flipped sideways, as shown in Figure 9.2.

•	 How do we construct the texture cube map?
Building a texture cube map image, from artwork or photos, requires care to 

avoid “seams” at the cube face junctions and to create proper perspective so that the 
skybox will appear realistic and undistorted. Many tools exist for assisting in this 
regard: Terragen, Autodesk 3ds Max, Blender, and Adobe Photoshop have tools 
for building or working with cube maps. There are also many websites offering a 
variety of off-the-shelf cube maps, some for a price, some for free.

	 9.2	 SKYDOMES
Another way of building a horizon effect is to use a skydome. The basic idea 

is the same as for a skybox, except that instead of using a textured cube, we use 
a textured sphere (or half a sphere). As was done for the skybox, we render the 
skydome first (with depth testing disabled), and keep the camera positioned at 

Figure 9.4
Viewing a scene from inside a skybox.
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the center of the skydome. (The skydome texture in Figure 9.5 was made using 
Terragen [TE19].)

Skydomes have some advantages over skyboxes. For example, they are less 
susceptible to distortion and seams (although spherical distortion at the poles must 
be accounted for in the texture image). One disadvantage of a skydome is that a 
sphere or dome is a more complex model than a cube, with many more vertices 
and a potentially varying number of vertices depending on the desired precision.

When using a skydome to represent an outdoor scene, it is usually combined 
with a ground plane or some sort of terrain. When using a skydome to represent 
a scene in space, such as a starfield, it is often more practical to use a sphere such 
as is shown in Figure 9.6 (a dashed line has been added for clarity in visualizing 
the sphere).

Figure 9.6
Skydome of stars using a sphere (starfield from [BO11]).

Figure 9.5
Skydome with camera placed inside.
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	 9.3	 IMPLEMENTING A SKYBOX
Despite the advantages of a skydome, skyboxes are still more common. They 

also are better supported in OpenGL, which is advantageous when doing environ-
ment mapping (covered later in this chapter). For these reasons, we will focus on 
skybox implementation.

There are two methods of implementing a skybox: building a simple one from 
scratch, and using the cube map facilities in OpenGL. Each has its advantages, so 
we will cover them both.

	 9.3.1	 Building a Skybox from Scratch
We have already covered almost everything needed to build a simple skybox. 

A cube model was presented in Chapter 4; we can assign the texture coordinates 
as shown earlier in this chapter in Figure 9.3. We saw how to read in textures using 
the SOIL2 library and how to position objects in 3D space. We will see how to 
easily enable and disable depth testing (it’s a single line of code).

Program 9.1 shows the code organization for our simple skybox, with a scene 
consisting of just a single textured torus. Texture coordinate assignments and calls 
to enable/disable depth testing are highlighted.

Program 9.1 Simple Skybox
C++/OpenGL application
// all variable declarations, constructor, and init() same as before
. . .
void display(GLFWwindow* window, double currentTime) {
	 // clear color and depth buffers, and create projection and camera view matrix as before
	 . . .
	 glUseProgram(renderingProgram);

	 // Prepare to draw the skybox first. The M matrix places the skybox at the camera location
	 mMat = glm::translate(glm::mat4(1.0f), glm::vec3(cameraX, cameraY, cameraZ));

	 // build the MODEL-VIEW matrix
	 mvMat = vMat * mMat;

	 // put MV and PROJ matrices into uniforms, as before
	 . . .
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	 // set up buffer containing vertices
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glVertexAttribPointer(0,3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);

	 // set up buffer containing texture coordinates
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	 glVertexAttribPointer(1,2, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(1);

	 // activate the skybox texture
	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_2D, skyboxTexture);

	 glEnable(GL_CULL_FACE);
	 glFrontFace(GL_CCW);	 // cube has CW winding order, but we are viewing its interior

	 glDisable(GL_DEPTH_TEST);
	 glDrawArrays(GL_TRIANGLES, 0, 36);	 // draw the skybox without depth testing
	 glEnable(GL_DEPTH_TEST);

	 // now draw desired scene objects as before
	 . . .
	 glDrawElements( . . . );	 // as before for scene objects
}

void setupVertices(void) {
	 // cube_vertices defined same as before
	 // cube texture coordinates for the skybox as they appear in Figure 9.3
	 float cubeTextureCoord[72] = {
  		  1.00f, 0.66f, 1.00f, 0.33f, 0.75f, 0.33f,	 // back face lower right
		  0.75f, 0.33f, 0.75f, 0.66f, 1.00f, 0.66f,	 // back face upper left
		  0.75f, 0.33f, 0.50f, 0.33f, 0.75f, 0.66f,	 // right face lower right
		  0.50f, 0.33f, 0.50f, 0.66f, 0.75f, 0.66f,	 // right face upper left
		  0.50f, 0.33f, 0.25f, 0.33f, 0.50f, 0.66f,	 // front face lower right
		  0.25f, 0.33f, 0.25f, 0.66f, 0.50f, 0.66f,	 // front face upper left
		  0.25f, 0.33f, 0.00f, 0.33f, 0.25f, 0.66f,	 // left face lower right
		  0.00f, 0.33f, 0.00f, 0.66f, 0.25f, 0.66f,	 // left face upper left
		  0.25f, 0.33f, 0.50f, 0.33f, 0.50f, 0.00f,	 // bottom face upper right
		  0.50f, 0.00f, 0.25f, 0.00f, 0.25f, 0.33f,	 // bottom face lower left
		  0.25f, 1.00f, 0.50f, 1.00f, 0.50f, 0.66f,	 // top face upper right
		  0.50f, 0.66f, 0.25f, 0.66f, 0.25f, 1.00f	 // top face lower left
	 };
	 // set up buffers for cube and scene objects as usual
}
// modules for loading shaders, textures, main(), etc. as before
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Standard texturing shaders are now used for all objects in the 
scene, including the cube map:
Vertex Shader
#version 430
layout (location = 0) in vec3 position;
layout (location = 1) in vec2 tex_coord;
out vec2 tc;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
layout (binding = 0) uniform sampler2D s;

void main(void)
{	 tc = tex_coord;
	 gl_Position = proj_matrix * mv_matrix * vec4(position,1.0);
}

Fragment Shader
#version 430
in vec2 tc;
out vec4 fragColor;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
layout (binding = 0) uniform sampler2D s;

void main(void)
{	 fragColor = texture(s,tc);
}

The output of Program 9.1 is shown in Figure 9.7, for each of two different 
cube map textures.

As mentioned earlier, skyboxes are susceptible to image distortion 
and seams.  Seams are lines that are sometimes visible where two texture 
images meet,  such  as along the edges of the cube. Figure 9.8 shows an exam-
ple of a  seam  in  the  upper part of the image that is an artifact of running 
Program  9.1.  Avoiding seams requires careful construction of the cube map 
image  and assignment of precise texture coordinates. There exist tools for 
reducing seams along image edges (such as [GI20]); this topic is outside the scope 
of this book.
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	 9.3.2	 Using OpenGL Cube Maps
Another way to build a sky-

box is to use an OpenGL texture 
cube map. OpenGL cube maps are 
a bit more complex than the simple 
approach we saw in the previous 
section. There are advantages, how-
ever, to using OpenGL cube maps, 
such as seam reduction and support 
for environment mapping.

OpenGL texture cube maps 
are similar to 3D textures that we 

Figure 9.7
Simple skybox results.

Figure 9.8
Skybox “seam” artifact.
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will study later, in that they are accessed using three texture coordinates—often 
labeled (s,t,r)—rather than two as we have been doing thus far. Another unique 
characteristic of OpenGL texture cube maps is that the images in them are ori-
ented with texture coordinate (0,0,0) at the upper left (rather than the usual lower 
left) of the texture image; this is often a source of confusion.

Whereas the method shown in Program 9.1 reads in a single image for textur-
ing the cube map, the loadCubeMap() function shown in Program 9.2 reads in six 
separate cube face image files. As we learned in Chapter 5, there are many ways 
to read in texture images; we chose to use the SOIL2 library. Here too, SOIL2 
is very convenient for instantiating and loading an OpenGL cube map. We iden-
tify the files to read in and then call SOIL_load_OGL_cubemap(). The parameters 
include the six image files and additional parameters that are similar to the ones 
for SOIL_load_OGL_texture() that we saw in Chapter 5. In the case of OpenGL cube 
maps, it isn’t necessary to flip the textures vertically, since OpenGL does that 
automatically. Note that we have placed loadCubeMap() in our “Utils.cpp” file.

The init() function now includes a call to enable GL_TEXTURE_CUBE_MAP_
SEAMLESS, which tells OpenGL to attempt to blend adjoining edges of the cube 
to reduce or eliminate seams. In display(), the cube’s vertices are sent down the 
pipeline as before, but this time it is unnecessary to send the cube’s texture coor-
dinates. As we will see, this is because an OpenGL texture cube map usually uses 
the cube’s vertex positions as its texture coordinates. After disabling depth testing, 
the cube is drawn. Depth testing is then re-enabled for the rest of the scene.

The completed OpenGL texture cube map is referenced by an int identifier. 
As was the case for shadow-mapping, artifacts along a border can be reduced by 
setting the texture wrap mode to “clamp to edge.” In this case it can help further 
reduce seams. Note that this is set for all three texture coordinates: s, t, and r.

The texture is accessed in the fragment shader with a special type of sampler 
called a samplerCube. In a texture cube map, the value returned from the sampler 
is the texel “seen” from the origin as viewed along the direction vector (s,t,r). As a 
result, we can usually simply use the incoming interpolated vertex positions as the 
texture coordinates. In the vertex shader, we assign the cube vertex positions into 
the outgoing texture coordinate attribute so that they will be interpolated when 
they reach the fragment shader. Note also in the vertex shader that we convert 
the incoming view matrix to 3x3, and then back to 4x4. This “trick” effectively 
removes the translation component while retaining the rotation (recall that transla-
tion values are found in the fourth column of a transformation matrix). This fixes 
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the cube map at the camera location, while still allowing the synthetic camera to 
“look around.” The output of Program 9.2 is the same as for Program 9.1.

Program 9.2 OpenGL Cube Map Skybox
C++/OpenGL application
. . .
int brickTexture, skyboxTexture;
int renderingProgram, renderingProgramCubeMap;
. . .

void init(GLFWwindow* window) {
	 renderingProgram = Utils::createShaderProgram("vertShader.glsl", "fragShader.glsl");
	 renderingProgramCubeMap = Utils::createShaderProgram("vertCShader.glsl", "fragCShader.glsl");

	 setupVertices();

	 brickTexture = Utils::loadTexture("brick1.jpg");		  // for the torus in the scene
	 skyboxTexture = Utils::loadCubeMap("cubeMap");	 // folder containing the skybox textures
	 glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
}

void display(GLFWwindow* window, double currentTime) {
	 // clear color and depth buffers, projection and camera view matrix as before.
	 . . .
	 // draw cube map first – note that it now requires a different rendering program
	 glUseProgram(renderingProgramCubeMap);

	 // put the P and V matrices into their corresponding uniforms.
	 . . .
	 // set up vertices buffer for cube (buffer for texture coordinates not necessary)
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);

	 // make the cube map the active texture
	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_CUBE_MAP, skyboxTexture);

	 // disable depth testing, and then draw the cube map
	 glEnable(GL_CULL_FACE);
	 glFrontFace(GL_CCW);
	 glDisable(GL_DEPTH_TEST);
	 glDrawArrays(GL_TRIANGLES, 0, 36);
	 glEnable(GL_DEPTH_TEST);
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	 // draw remainder of the scene
	 . . .
}

GLuint Utils::loadCubeMap(const char *mapDir) {
	 GLuint textureRef;

	 // assumes that the six texture image files are named xp, xn, yp, yn, zp, zn and are JPG
	 string xp = mapDir; xp = xp + "/xp.jpg";
	 string xn = mapDir; xn = xn + "/xn.jpg";
	 string yp = mapDir; yp = yp + "/yp.jpg";
	 string yn = mapDir; yn = yn + "/yn.jpg";
	 string zp = mapDir; zp = zp + "/zp.jpg";
	 string zn = mapDir; zn = zn + "/zn.jpg";

	 textureRef = SOIL_load_OGL_cubemap(xp.c_str(), xn.c_str(), yp.c_str(), yn.c_str(),
		  zp.c_str(), zn.c_str(), SOIL_LOAD_AUTO, SOIL_CREATE_NEW_ID, SOIL_FLAG_MIPMAPS);

	 if (textureRef == 0) cout << "didnt find cube map image file" << endl;

	 glBindTexture(GL_TEXTURE_CUBE_MAP, textureRef);

	 // reduce seams
	 glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	 glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	 glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);

	 return textureRef;
}

Vertex shader
#version 430
layout (location = 0) in vec3 position;
out vec3 tc;

uniform mat4 v_matrix;
uniform mat4 proj_matrix;
layout (binding = 0) uniform samplerCube samp;

void main(void)
{
	 tc = position;	 // texture coordinates are simply the vertex coordinates
	 mat4 vrot_matrix = mat4(mat3(v_matrix));	 // removes translation from view matrix
	 gl_Position = proj_matrix * vrot_matrix * vec4(position, 1.0);
}
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Fragment shader
#version 430
in vec3 tc;
out vec4 fragColor;

uniform mat4 v_matrix;
uniform mat4 proj_matrix;
layout (binding = 0) uniform samplerCube samp;

void main(void)
{	 fragColor = texture(samp,tc);
}

	 9.4	 ENVIRONMENT MAPPING
When we looked at lighting and materials, we considered the “shininess” of 

objects. However, we never modeled very shiny objects, such as a mirror or some-
thing made out of chrome. Such objects don’t just have small specular highlights; 
they actually reflect their surroundings. When we look at them, we see things in 
the room, or sometimes even our own reflection. The ADS lighting model doesn’t 
provide a way of simulating this effect.

Texture cube maps, however, offer a relatively simple way to simulate reflec-
tive surfaces—at least partially. The trick is to use the cube map to texture the 
reflective object itself.1 Doing this so that it appears realistic requires finding 
texture coordinates that correspond to which part of the surrounding environment 
we should see reflected in the object from our vantage point.

Figure 9.9 illustrates the strategy of using a combination of the view vector 
and the normal vector to calculate a reflection vector which is then used to look 
up a texel from the cube map. The reflection vector can thus be used to access 
the texture cube map directly. When the cube map performs this function, it is 
referred to as an environment map.

We computed reflection vectors earlier when we studied Blinn-Phong lighting. 
The concept here is similar, except that now we are using the reflection vector to 
look up a value from a texture map. This technique is called environment mapping 
or reflection mapping. If the cube map is implemented using the second method 

1	 This same trick is also possible in those cases where a skydome is being used instead of a skybox, 
by texturing the reflective object with the skydome texture image.
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we described (in Section 9.3.2; that is, as an OpenGL GL_TEXTURE_CUBE_MAP), 
then OpenGL can perform the environment mapping lookup in the same manner 
as was done for texturing the cube map itself. We use the view vector and the 
surface normal to compute a reflection of the view vector off the object’s surface. 
The reflection vector can then be used to sample the texture cube map image 
directly. The lookup is facilitated by the OpenGL samplerCube; recall from the 
previous section that the samplerCube is indexed by a view direction vector. The 
reflection vector is thus well suited for looking up the desired texel.

The implementation requires a relatively small amount of additional code. 
Program 9.3 shows the changes that would be made to the display() and init() func-
tions and the relevant shaders for rendering a “reflective” torus using environment 
mapping. The changes are highlighted. It is worth noting that if Blinn-Phong light-
ing is present, many of these additions would likely already be present. The only 
truly new section of code is in the fragment shader (in the main() method).

In fact, it might at first appear as if the highlighted code in Program 9.3 (i.e., 
the yellow sections) isn’t really new at all. Indeed, we have seen nearly identi-
cal code before, when we studied lighting. However, in this case, the normal and 
reflection vectors are used for an entirely different purpose. Previously they were 
used to implement the ADS lighting model. Here they are instead used to compute 
texture coordinates for environment mapping. We highlighted these lines of code 
so that the reader can more easily track the use of normals and reflection computa-
tions for this new purpose.

Figure 9.9
Environment mapping overview.

CGP_C++_CH09_2E_2pp.indd   232 03-Nov-20   5:08:16 PM



Chapter  9  ·  Sky and Backgrounds   ■  233

The result, showing an environment-mapped “chrome” torus, is shown in 
Figure 9.10.

Figure 9.10
Example of environment mapping to create a reflective torus.

Program 9.3 Environment Mapping
void display(GLFWwindow* window, double currentTime) {
	 // the code for drawing the cube map is unchanged.
	 . . .
	 // the changes are all in drawing the torus:

	 glUseProgram(renderingProgram);

	 // uniform locations for matrix transforms, including the transform for normals
	 mvLloc = glGetUniformLocation(renderingProgram, "mv_matrix");
	 projLoc = glGetUniformLocation(renderingProgram, "proj_matrix");
	 nLoc = glGetUniformLocation(renderingProgram, "norm_matrix");

	 // build the MODEL matrix, as before
	 mMat = glm::translate(glm::mat4(1.0f), glm::vec3(torLocX, torLocY, torLocZ));

	 // build the MODEL-VIEW matrix, as before
	 mvMat = vMat * mMat;
	 invTrMat = glm::transpose(glm::inverse(mvMat));
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	 // the normals transform is now included in the uniforms:
	 glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvMat));
	 glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));	
	 glUniformMatrix4fv(nLoc, 1, GL_FALSE , glm::value_ptr(invTrMat));

	 // activate the torus vertices buffer, as before
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);

	 // we need to activate the torus normals buffer:
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
	 glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(1);

	 // the torus texture is now the cube map
	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_CUBE_MAP, skyboxTexture);

	 // drawing the torus is otherwise unchanged
	 glClear(GL_DEPTH_BUFFER_BIT);
	 glEnable(GL_CULL_FACE);
	 glFrontFace(GL_CCW);
	 glDepthFunc(GL_LEQUAL);

	 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
	 glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);
}

Vertex shader
#version 430
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 normal;
out vec3 varyingNormal;
out vec3 varyingVertPos;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
uniform mat4 norm_matrix;
layout (binding = 0) uniform samplerCube tex_map;

void main(void)
{	 varyingVertPos = (mv_matrix * vec4(position,1.0)).xyz;
	 varyingNormal = (norm_matrix * vec4(normal,1.0)).xyz;
	 gl_Position = proj_matrix * mv_matrix * vec4(position,1.0);
}
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Fragment shader
#version 430
in vec3 varyingNormal;
in vec3 varyingVertPos;
out vec4 fragColor;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
uniform mat4 norm_matrix;
layout (binding = 0) uniform samplerCube tex_map;

void main(void)
{	 vec3 r = -reflect(normalize(-varyingVertPos), normalize(varyingNormal));
	 fragColor = texture(tex_map, r);
}

Although two sets of shaders are required for this scene—one set for the cube 
map and another set for the torus—only the shaders used to draw the torus are 
shown in Program 9.3. This is because the shaders used for rendering the cube map 
are unchanged from Program 9.2. The changes made to Program 9.2, resulting in 
Program 9.3, are summarized as follows:

in init():

•	 A buffer of normals for the torus is created (actually done in 
setupVertices(), called by init()).

•	 The buffer of texture coordinates for the torus is no longer needed.

in display():

•	 The matrix for transforming normals (dubbed “norm_matrix” in Chapter 7) 
is created and linked to the associated uniform variable.

•	 The torus normal buffer is activated.
•	 The texture cube map is activated as the texture for the torus 

(rather than the “brick” texture).

in the vertex shader:

•	 The normal vectors and norm_matrix are added.
•	 The transformed vertex and normal vector are output in preparation for 

computing the reflection vector, similar to what was done for lighting 
and shadows.
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in the fragment shader:

•	 The reflection vector is computed in a similar way to what was done for 
lighting.

•	 The output color is retrieved from the texture (now the cube map), with 
the lookup texture coordinate now being the reflection vector.

The resulting rendering shown in Figure 9.10 is an excellent example 
of how  a  simple trick can achieve a powerful illusion. By simply painting the 
background on an object, we have made the object look “metallic,” when no 
such ADS material modeling has been done at all. It has also given the appear-
ance that light is reflecting off of the object, even though no ADS lighting what-
soever has been incorporated into the scene. In this example, there even seems 
to be a specular highlight on the lower left of the torus, because the cube map 
includes the sun s̓ reflection off of the water.

SUPPLEMENTAL NOTES

As was the case in Chapter 5 when we first studied textures, while using 
SOIL2 makes building and texturing a cube map easy, it can have the unintended 
conseqence of shielding a user from some OpenGL details that are useful to learn. 
Of course, it is possible to instantiate and load an OpenGL cube map in the absence 
of SOIL2. It is still advisable to use an image handling library, such as stb_image.h 
[SB20]. The basic steps are detailed in [dV14] and are summarized as follows:

	 1.	 Copy the stb_image.h header file into your project directory.
	 2.	 Use glGenTextures() to create a texture for the cube map and its integer 

reference.
	 3.	 Call glBindTexture(), specifying the texture’s ID and GL_TEXTURE_CUBE_

MAP.
	 4.	 Read the six image files using stbi_load().
	 5.	 Use glTexImage2D() to assign the images to cube faces.

The stb_image.h header file is already included with SOIL2, or it can be 
installed separately. For more details, see [dV14] or [GE16].
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A major limitation of environment mapping, as presented in this chapter, is 
that it is only capable of constructing objects that reflect the cube map. Other 
objects rendered in the scene are not reflected in the reflection-mapped object. 
Depending on the nature of the scene, this might or might not be acceptable. If 
other objects are present that must be reflected in a mirror or chrome object, other 
methods must be used. A common approach utilizes the stencil buffer (mentioned 
earlier in Chapter 8) and is described in various web tutorials ([OV12], [NE14], and 
[GR16], for example), but it is outside the scope of this text.

We didn’t include an implementation of skydomes, although they are in some 
ways arguably simpler than skyboxes and can be less susceptible to distortion. 
Even environment mapping is simpler—at least the math—but the OpenGL sup-
port for cube maps often makes skyboxes more practical.

Of the topics covered in the later sections of this textbook, skyboxes and 
skydomes are arguably among the simplest conceptually. However, getting them 
to look convincing can consume a lot of time. We have dealt only briefly with 
some of the issues that can arise (such as seams), but depending on the texture 
image files used, other issues can occur, requiring additional repair. This is 
especially true when the scene is animated, or when the camera can be moved 
interactively.

We also glossed over the generation of usable and convincing texture cube 
map images. There are excellent tools for doing this, one of the most popular being 
Terragen [TE19]. All of the cube maps in this chapter were made by the authors 
(except for the star field in Figure 9.6) using Terragen.

Exercises

	9.1	 (PROJECT) In Program 9.2, add the ability to move the camera around with 
the mouse or the keyboard. To do this, you will need to utilize the code you 
developed earlier in Exercise 4.2 for constructing a view matrix. You’ll also 
need to assign mouse or keyboard actions to functions that move the camera 
forward and backward, and functions that rotate the camera on one or more of 
its axes (you’ll need to write these functions too). After doing this, you should 
be able to “fly around” in your scene, noting that the skybox always appears 
to remain at the distant horizon.
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	9.2	Draw labels on the six cube map image files to confirm that the correct 
orientation is being achieved. For example, you could draw axis labels on the 
images, such as these:

		 Also use your “labeled” cube map to verify that the reflections in the 
environment-mapped torus are being rendered correctly.

	9.3	 (PROJECT) Modify Program 9.3 so that the object in the scene blends 
environment-mapping with a texture. Use a weighted sum in the fragment 
shader, as described in Chapter 7.

	9.4	 (RESEARCH & PROJECT) Learn the basics of how to use Terragen [TE19] to 
create a simple cube map. This generally entails making a “world” with the 
desired terrain and atmospheric patterns (in Terragen), and then positioning 
Terragen’s synthetic camera to save six images representing the views front, 
back, right, left, top, and bottom. Use your images in Programs 9.2 and 9.3 to 
see their appearance as cube maps and with environment mapping. The free 
version of Terragen is quite sufficient for this exercise.
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Suppose we want to model an object with an irregular surface—like the bumpy 
surface of an orange, the wrinkled surface of a raisin, or the cratered surface of the 
moon. How would we do it? So far, we have learned two potential methods: (a) we 
could model the entire irregular surface, which would often be impractical (a highly 
cratered surface would require a huge number of vertices); or (b) we could apply a 
texture-map image of the irregular surface to a smooth version of the object. The sec-
ond option is often effective. However, if the scene includes lights, and the lights (or 
camera angle) move, it becomes quickly obvious that the object is statically textured 
(and smooth), because the light and dark areas on the texture wouldn’t change as they 
would if the object was actually bumpy.

In this chapter, we are going to explore several related methods for using light-
ing effects to make objects appear to have realistic surface texture, even if the 
underlying object model is smooth. We will start by examining bump mapping and 
normal mapping, which can add considerable realism to the objects in our scenes 
when it would be too computationally expensive to include tiny surface details in 
the object models. We will also look at ways of actually perturbing the vertices in a 
smooth surface through height mapping, which is useful for generating terrain (and 
other uses).

	 10.1	 BUMP MAPPING
In Chapter 7, we saw how surface normals are critical to creating convincing 

lighting effects. Light intensity at a pixel is determined largely by the reflection angle, 
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taking into account the light source 
location, camera location, and the 
normal vector at the pixel. Thus, 
we can avoid generating detailed 
vertices corresponding to a bumpy 
or wrinkled surface if we can find a 
way of generating the correspond-
ing normals.

Figure 10.1 illustrates the con-
cept of modified normals corre-
sponding to a single “bump.”

Thus, if we want to make an 
object look as though it has bumps 
(or wrinkles, craters, etc.), one way 
is to compute the normals that 
would exist on such a surface. Then 
when the scene is lit, the lighting 
would produce the desired illusion. 
This was first proposed by Blinn in 
1978 [BL78], and it became practi-
cal with the advent of the capabil-
ity of performing per-pixel lighting 
computations in a fragment shader.

An example is illustrated in the 
vertex and fragment shaders shown 

in Program 10.1, which produces a torus with a “golf-ball” surface as shown in 
Figure 10.2. The code is almost identical to what we saw previously in Program 
7.2. The only significant change is in the fragment shader—the incoming interpo-
lated normal vectors (named “varyingNormal” in the original program) are altered 
with bumps calculated using a sine wave function in the X, Y, and Z axes applied 
to the original (untransformed) vertices of the torus model. Note that the ver-
tex shader therefore now needs to pass these untransformed vertices down the 
pipeline.

Altering the normals in this manner, with a mathematical function computed 
at runtime, is called procedural bump mapping.

Figure 10.1
Perturbed normal vectors for bump mapping.

Figure 10.2
Procedural bump mapping example.
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Program 10.1 Procedural Bump Mapping
Vertex Shader
#version 430
//	 same as Phong shading, but add this output vertex attribute:
out vec3 originalVertex;

. . .
void main(void)
{	 //  include this pass-through of original vertex for interpolation:
	 originalVertex = vertPos;
	 . . .
}

Fragment Shader
#version 430
//  same as Phong shading, but add this input vertex attribute:
in vec3 originalVertex;

. . .
void main(void)
{	 . . .
	 // add the following to perturb the incoming normal vector:
	 float a = 0.25;	 // a controls height of bumps
	 float b = 100.0;	 // b controls width of bumps
	 float x = originalVertex.x;
	 float y = originalVertex.y;
	 float z = originalVertex.z;
	 N.x = varyingNormal.x + a*sin(b*x);  // perturb incoming normal using sine function
	 N.y = varyingNormal.y + a*sin(b*y);
	 N.z = varyingNormal.z + a*sin(b*z);
	 N = normalize(N);
	 // lighting computations and output fragColor (unchanged) now utilize the perturbed normal N
	 . . .
}

	 10.2	 NORMAL MAPPING
An alternative to bump mapping is to replace the normals using a lookup table. 

This allows us to construct bumps for which there is no mathematical function, 
such as the bumps corresponding to the craters on the moon. A common way of 
doing this is called normal mapping.

CGP_C++_CH10_2E_2pp.indd   243 03-Nov-20   5:10:38 PM



244  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

To understand how this works, we start by noting that a vector can be stored 
to reasonable precision in three bytes, one for each of the X, Y, and Z components. 
This makes it possible to store normals in a color image file, with the R, G, and B 
components corresponding to X, Y, and Z. RGB values in an image are stored in 
bytes and are usually interpreted as values in the range [0..1], whereas vectors 
can have positive or negative component values. If we restrict normal vector 
components to the range [˗1..+1], a simple conversion to enable storing a normal 
vector N as a pixel in an image file is:

R N
G N
B N

X

Y

Z

= +
= +
= +

( ) /

( ) /

( ) /

1 2

1 2

1 2

Normal mapping utilizes an image file (called a normal map) that contains 
normals corresponding to a desired surface appearance in the presence of lighting. 
In a normal map, the vectors are represented relative to an arbitrary plane X-Y, 
with their X and Y components representing deviations from “vertical” and their 
Z component set to 1. A vector strictly perpendicular to the X-Y plane (i.e., with no 
deviation) would be represented (0,0,1), whereas non-perpendicular vectors would 
have non-zero X and/or Y components. We use the above formulae to convert to 
RGB space; for example, (0,0,1) would be stored as (.5,.5,1), since actual offsets 
range [˗1..+1], but RGB values range [0..1].

We can make use of such a normal map through yet another clever application 
of texture units: instead of storing colors in the texture unit, we store the desired 
normal vectors. We can then use a sampler to look up the value in the normal map 
for a given fragment, and then rather than applying the returned value to the output 

pixel color (as we did in texture mapping), we 
instead use it as the normal vector.

One example of such a normal map image 
file is shown in Figure 10.3. It was gener-
ated by applying the GIMP normal mapping 
plugin [GI20] to a texture from Luna [LU16]. 
Normal-mapping image files are not intended 
for viewing; we show this one to point out that 
such images end up being largely blue. This is 
because every entry in the image file has a B 
value of 1 (maximum blue), making the image 
appear “bluish” if viewed.

Figure 10.3
Normal mapping image file example [LU16].
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Figure 10.4 shows two different normal map image files (both are built 
out of textures from Luna [LU16]) and the result of applying them to a sphere 
in the presence of Blinn-Phong lighting.

Normal vectors retrieved from a normal map cannot be utilized directly, 
because they are defined relative to an arbitrary X-Y plane as described 
previously, without taking into account their position on the object and their 
orientation in camera space. Our strategy for addressing this will be to build a 
transformation matrix for converting the normals into camera space, as follows.

At each vertex on an object, we consider a plane that is tangent to the 
object. The object normal at that vertex is perpendicular to this plane. We 
define two mutually perpendicular vectors in that plane, also perpendicular to 
the normal, called the tangent and bitangent (sometimes called the binormal). 
Constructing our desired transformation matrix requires that our models include 
a tangent vector for each vertex (the bitangent can be built by computing the 
cross product of the tangent and the normal). If the model does not already 
have tangent vectors defined, they could be computed. In the case of a sphere 
they can be computed exactly, as shown in the following modifications to 
Program 6.1: 

. . .

for (int i=0; i<=prec; i++) {
	 for (int j=0; j<=prec; j++) {
		  float y = (float)cos(toRadians(180.0f - i*180.0f / prec));
		  float x = -(float)cos(toRadians(j*360.0f / prec)) * (float)abs(cos(asin(y)));
		  float z = (float)sin(toRadians(j*360.0f / prec)) * (float)abs(cos(asin(y)));
		  vertices[i*(prec+1)+j] = glm::vec3(x, y, z);

Figure 10.4
Normal mapping examples.
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		  // calculate tangent vector
		  if (((x==0) && (y==1) && (z==0)) || ((x==0) && (y==-1) && (z==0)))	 // if north or south pole,
		  {	 tangent[i*(prec+1)+j] = glm::vec3(0.0f, 0.0f, -1.0f);	 // set tangent to -Z axis
		  }
		  else		  // otherwise, calculate tangent
		  {	 tangent[i*(prec+1)+j] = glm::cross(glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(x,y,z));
		  }
		  . . .  // remaining computations are unchanged
	 }
}

For models that don’t lend themselves to exact analytic derivation of surface tan-
gents, the tangents can be approximated, for example by drawing vectors from each 
vertex to the next as they are constructed (or loaded). Note that such an approxima-
tion can lead to tangent vectors that are not strictly perpendicular to the correspond-
ing vertex normals. Implementing normal mapping that works across a variety of 
models therefore needs to take this possibility into account (our solution will).

The tangent vectors are sent from a buffer (VBO) to a vertex attribute in the 
vertex shader, as is done for the vertices, texture coordinates, and normals. The 
vertex shader then processes them the same as is done for normal vectors, by 
applying the inverse-transpose of the MV matrix and forwarding the result down the 
pipeline for interpolation by the rasterizer and ultimately into the fragment shader. 
The application of the inverse transpose converts the normal and tangent vectors 
into camera space, after which we construct the bitangent using the cross product.

Once we have the normal, tangent, and bitangent vectors in camera space, 
we  can use them to construct a matrix (called the “TBN” matrix, after its 
components) which transforms the normals retrieved from the normal map into 
their corresponding orientation in camera space relative to the surface of the object.

In the fragment shader, the computing of the new normal is done in the 
calcNewNormal() function. The computation in the third line of the function 
(the  one  containing dot(tangent, normal)) ensures that the tangent vector is 
perpendicular to the normal vector. A cross product between the new tangent and 
the normal produces the bitangent.

We then create the TBN as a 3×3 mat3 matrix. The mat3 constructor takes 
three vectors and generates a matrix containing the first vector in the top row, 
the second vector in the middle row, and the third in the bottom row (similar to 
building a view matrix from a camera position—see Figure 3.13).
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The shader uses the fragment’s texture coordinates to extract the normal map 
entry corresponding to the current fragment. The sampler variable “normMap” is 
used for this, and in this case is bound to texture unit 0 (note: the C++/OpenGL 
application must therefore have attached the normal map image to texture unit 0). 
To convert the color component from the stored range [0..1] to its original range 
[-1..+1], we multiply by 2.0 and subtract 1.0.

The TBN matrix is then applied to the resulting normal to produce the final 
normal for the current pixel. The rest of the shader is identical to the fragment 
shader used for Phong lighting. The fragment shader is shown in Program 10.2 and 
is based on a version by Etay Meiri [ME11].

A variety of tools exist for developing normal map images. Some image edit-
ing tools, such as GIMP [GI20] and Photoshop [PH20], have such capabilities. Such 
tools analyze the edges in an image, inferring peaks and valleys, and produce a 
corresponding normal map.

Figure 10.5 shows a texture map of the surface of the moon created by Hastings-
Trew [HT12] based on NASA satellite data. The corresponding normal map was 
generated by applying the GIMP normal map plugin [GP16] to a black and white 
reduction also created by Hastings-Trew.

Figure 10.5
Moon, texture and normal map.
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Program 10.2 Normal Mapping Fragment Shader
#version 430
in vec3 varyingLightDir;
in vec3 varyingVertPos;
in vec3 varyingNormal;
in vec3 varyingTangent;
in vec3 originalVertex;
in vec2 tc;
in vec3 varyingHalfVector;
out vec4 fragColor;
layout (binding=0) uniform sampler2D normMap;
// remaining uniforms same as before
. . .
vec3 calcNewNormal()
{	 vec3 normal = normalize(varyingNormal);
	 vec3 tangent = normalize(varyingTangent);
	 tangent = normalize(tangent - dot(tangent, normal) * normal);  // tangent is perpendicular to normal
	 vec3 bitangent = cross(tangent, normal);
	 mat3 tbn = mat3(tangent, bitangent, normal);	 // TBN matrix to convert to camera space
	 vec3 retrievedNormal = texture(normMap,tc).xyz;
	 retrievedNormal = retrievedNormal * 2.0 - 1.0;	 // convert from RGB space
	 vec3 newNormal = tbn * retrievedNormal;
	 newNormal = normalize(newNormal);
	 return newNormal;
}

void main(void)
{	 // normalize the light, normal, and view vectors:
	 vec3 L = normalize(varyingLightDir);
	 vec3 V = normalize(-varyingVertPos);
	 vec3 N = calcNewNormal();
	 // get the angle between the light and surface normal:
	 float cosTheta = dot(L,N);
	 // compute half vector for Blinn optimization:
	 vec3 H = normalize(varyingHalfVector);
	 // angle between the view vector and reflected light:
	 float cosPhi = dot(H,N);
	 // compute ADS contributions (per pixel):
	 fragColor = globalAmbient * material.ambient
	 + light.ambient * material.ambient
	 + light.diffuse * material.diffuse * max(cosTheta,0.0)
	 + light.specular * material.specular * pow(max(cosPhi,0.0), material.shininess*3.0);
}
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Figure 10.6 shows a sphere with the moon surface rendered in two different 
ways. On the left, it is simply textured with the original texture map; on the 
right, it is textured with the image normal map (for reference). Normal mapping 
has not been applied in either case. As realistic as the textured “moon” is, close 
examination reveals that the texture image was apparently taken when the moon 
was being lit from the left, because ridge shadows are cast to the right (most clearly 
evident in the crater near the bottom center). If we were to add lighting to this 
scene with Phong shading, and then animate the scene by moving the moon, the 
camera, or the light, those shadows would not change as we would expect them to.

Furthermore, as the light source moves (or as the camera moves), we would 
expect many specular highlights to appear on the ridges. But a plain textured 
sphere such as at the left of Figure 10.6 would produce only one specular highlight, 
corresponding to what would appear on a smooth sphere, which would look very 
unrealistic. Incorporation of the normal map can improve the realism of lighting 
on objects such as this considerably.

If we use normal mapping on the sphere (rather than applying the texture), we 
obtain the results shown in Figure 10.7. Although not as realistic (yet) as standard 
texturing, it now does respond to lighting changes. The first image is lit from the 
left, and the second is lit from the right. Note the blue and yellow arrows show-
ing the change in diffuse lighting around ridges and the movement of specular 
highlights.

Figure 10.8 shows the effect of combining normal mapping with standard tex-
turing in the presence of Phong lighting. The image of the moon is enhanced with 
diffuse-lit regions and specular highlights that respond to the movement of the 

Figure 10.6
Sphere textured with moon texture (left) and normal map (right).
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light source (or camera or object movement). Lighting in the two images is from 
the left and right sides respectively.

Our program now requires two textures—one for the moon surface image, 
and one for the normal map—and thus two samplers. The fragment shader blends 
the texture color with the color produced by the lighting computation as shown in 
Program 10.3, using the technique described previously in Section 7.6.

Program 10.3 Texturing plus Normal Map
// variables and structs as in previous fragment shader, plus:
layout (binding=0) uniform sampler2D s0;	 // normal map
layout (binding=1) uniform sampler2D s1;	 // texture

Figure 10.7
Normal map lighting effects on the moon.

Figure 10.8
Texturing plus normal mapping, with lighting from the left and right.
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void main(void)
{	 // computations same as before, until:

	 vec3 N = calcNewNormal();
	 vec4 texel = texture(s1,tc);	 	 // standard texture
	 . . .
	 // reflection computations as before, then blend results:
	 fragColor = globalAmbient +
		  texel * (light.ambient + light.diffuse * max(cosTheta,0.0)
		  + light.specular * pow(max(cosPhi,0.0), material.shininess));
}

Interestingly, normal mapping can benefit from mipmapping, because the same 
“aliasing” artifacts that we saw in Chapter 5 for texturing also occur when using 
a texture image for normal mapping. Figure 10.9 shows a normal-mapped moon, 
with and without mipmapping. Although not easily shown in a still image, the 
sphere at the left (not mipmapped) has shimmering artifacts around its perimeter.

Anisotropic filtering (AF) works even better, reducing sparkling artifacts 
while preserving detail, as illustrated in Figure 10.10 (compare the detail on the 
edge along the lower right). A version combining equal parts texture and lighting 
with normal mapping and AF is shown alongside, in Figure 10.11.

The results are imperfect. Shadows appearing in the original texture image 
will still show on the rendered result, regardless of lighting. Also, while normal 

Figure 10.9
Normal mapping artifacts, corrected with mipmapping.
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mapping can affect diffuse and specular effects, it cannot cast shadows. Therefore, 
this method is best used when the surface features are small.

	 10.3	 HEIGHT MAPPING
We now extend the concept of normal mapping—where a texture image is used 

to perturb normals—to instead perturb the vertex locations themselves. Actually 
modifying an object’s geometry in this way has certain advantages, such as mak-
ing the surface features visible along the object’s edge and enabling the features to 
respond to shadow-mapping. It can also facilitate building terrain, as we will see.

A practical approach is to use a texture image to store height values, which 
can then be used to raise (or lower) vertex locations. An image that contains height 
information is called a height map, and using a height map to alter an object’s 
vertices is called height mapping. Height maps usually encode height information 
as grayscale colors: (0,0,0) (black) = low height, and (1,1,1) (white) = high height. This 
makes it easy to create height maps algorithmically or by using a “paint” program. 
The higher the image contrast, the greater the variation in height expressed by the 
map. These concepts are illustrated in Figure 10.12 (showing randomly generated 
maps) and Figure 10.13 (showing a map with an organized pattern).

The usefulness of altering vertex locations depends on the model being 
altered. Vertex manipulation is easily done in the vertex shader, and when there 
is a high level of detail in the model vertices (such as in a sphere with sufficiently 

Figure 10.10
Normal mapping with AF.

Figure 10.11
Texturing plus normal mapping with AF.
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high precision), this approach 
can work well. However, when 
the underlying number of 
vertices is small (such as the 
corners of a cube), rendering the 
object’s surface relies on vertex 
interpolation in the rasterizer to 
fill in the detail. When there are 
very few vertices available in 
the vertex shader to perturb, the 
heights of many pixels would 
be interpolated rather than 
retrieved from the height map, 
leading to poor surface detail. 
Vertex manipulation in the 
fragment shader is, of course, 
impossible because by then the 
vertices have been rasterized 
into pixel locations.

Program 10.4 shows a vertex 
shader that moves the vertices 
“outward” (i.e., in the direction 
of the surface normal) by 
multiplying the vertex normal 
by the value retrieved from the 
height map and then adding that 
product to the vertex position.

Program 10.4 Height Mapping in Vertex Shader
#version 430

layout (location=0) in vec3 vertPos;
layout (location=1) in vec2 texCoord;
layout (location=2) in vec3 vertNormal;

out vec2 tc;

Figure 10.12
Height map examples.

Figure 10.13
Height map interpretation.
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uniform mat4 mv_matrix;
uniform mat4 proj_matrix;

layout (binding=0) uniform sampler2D t;		 // for texture
layout (binding=1) uniform sampler2D h;	 // for heightmap

void main(void)
{	 // "p" is the vertex position altered by the height map.
	 // Since the height map is grayscale, any of the color components can be
	 // used (we use "r"). Dividing by 5.0 is to adjust the height.
	 vec4 p = vec4(vertPos,1.0) + vec4( (vertNormal * ((texture(h, texCoord).r) / 5.0f)),1.0f );
	 tc = tex_coord;
	 gl_Position = proj_matrix * mv_matrix * p;
}

Figure 10.14 shows a simple height map (top left) created by scribbling in a 
paint program. A white square is also drawn in the height map image. A green-
tinted version of the height map (bottom left) is used as a texture. When the height 
map is applied to a rectangular 100x100 grid model using the shader shown in 
Program 10.4, it produces a sort of “terrain” (shown on the right). Note how the 
white square results in the precipice at the right.

Figure 10.15 shows another example of doing height mapping in a vertex 
shader. This time the height map is an outline of the continents of the world [HT12]. 
It is applied to a sphere textured with a blue-tinted version of the height map  

Figure 10.14
Terrain, height-mapped in the vertex shader.
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(see  top left—note the original black-and-white version is not shown), lit with 
Blinn-Phong shading using a normal map (shown at the lower left) built using 
the tool SSBump Generator [SS15]. The sphere precision was increased to 500 
to ensure that there are enough vertices to render the detail. Note how the raised 
vertices affect not only the lighting, but also the silhouette edges.

The rendered examples shown in Figure 10.14 and Figure 10.15 work accept-
ably because the two models (grid and sphere) have a sufficient number of vertices 
to sample the height map values. That is, they each have a fairly large number of 
vertices, and the height map is relatively coarse and adequately sampled at a low 
resolution. However, close inspection still reveals the presence of resolution arti-
facts, such as along the bottom left edge of the raised box at the right of the terrain 
in Figure 10.14. The reason that the sides of the raised box don’t appear perfectly 
square, and include gradations in color, is because the 100x100 resolution of the 
underlying grid cannot adequately align perfectly with the white box in the height 
map, and the resulting rasterization of texture coordinates produces artifacts along 
the sides.

The limitations of doing height mapping in the vertex shader are further 
exposed when trying to apply it with a more demanding height map. Consider 
the moon image shown back in Figure 10.5. Normal mapping did an excellent 
job of capturing the detail in the image (as shown previously in Figure 10.9 and 
Figure 10.11), and since it is grayscale, it would seem natural to try applying it as 

Figure 10.15
Vertex shader-based height mapping, applied to a sphere.
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a height map. However, vertex-shader-based height mapping would be inadequate 
for this task, because the number of vertices sampled in the vertex shader (even 
for a sphere with precision=500) is small compared to the fine level of detail in the 
image. By contrast, normal mapping was able to capture the detail impressively, 
because the normal map is sampled in the fragment shader, at the pixel level.

We will revisit height mapping later in Chapter 12 when we discuss methods 
for generating a greater number of vertices in a tessellation shader.

SUPPLEMENTAL NOTES

One of the fundamental limitations of bump or normal mapping is that, while 
they are capable of providing the appearance of surface detail in the interior of a 
rendered object, the silhouette (outer boundary) doesn’t show any such detail (it 
remains smooth). Height mapping, if used to actually modify vertex locations, 
fixes this deficiency, but it has its own limitations. As we will see later in this 
book, sometimes a geometry or tessellation shader can be used to increase the 
number of vertices, making height mapping more practical and more effective.

We have taken the liberty of simplifying some of the bump and normal map-
ping computations. More accurate and/or more efficient solutions are available for 
critical applications [BN12].

Exercises

	10.1	 Experiment with Program 10.1 by modifying the settings and/or computations 
in the fragment shader and observing the results.

	10.2	 Using a paint program, generate your own height map and use it in Program 
10.4. See if you can identify locations where detail is missing as the result of 
the vertex shader being unable to adequately sample the height map. You will 
probably find it useful to also texture the terrain with your height map image 
file as shown in Figure 10.14 (or with some sort of pattern that exposes the 
surface structure, such as a grid) so that you can see the hills and valleys of 
the resulting terrain.

	10.3	 (PROJECT) Add lighting to Program 10.4 so that the surface structure of the 
height-mapped terrain is further exposed.
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	10.4	 (PROJECT) Add shadow-mapping to your code from Exercise 10.3 so that 
your height-mapped terrain casts shadows.
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■ ■ ■ ■ ■

While working at the Renault corporation in the 1950s and 1960s, Pierre Bézier 
developed software systems for designing automobile bodies. His programs utilized 
mathematical systems of equations developed earlier by Paul de Casteljau, who was 
working for the competing Citroën automobile manufacturer [BE72, DC63]. The 
de Casteljau equations describe curves using just a few scalar parameters, and are 
accompanied by a clever recursive algorithm dubbed “de Casteljau’s algorithm” for 
generating the curves to arbitrary precision. Now known as “Bézier curves” and 
“Bézier surfaces,” these methods are commonly used to efficiently model many 
kinds of curved 3D objects.

	 11.1	 QUADRATIC BÉZIER CURVES
A quadratic Bézier curve is defined by a set 

of parametric equations that specify a particular 
curved shape using three control points, each 
of which is a point in 2D space.1 Consider, for 
example, the set of three points [p0, p1, p2] shown 
in Figure 11.1.

1	 Of course, a curve can exist in 3D space. However, a quadratic curve lies entirely within a 2D plane.

Figure 11.1
Control points for a Bézier curve.
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By introducing a parameter t, we can build 
a system of parametric equations that define 
a curve. The t represents a fraction of the 
distance along the line segment connecting one 
control point to the next control point. Values 
for t are within the range [0..1] for points along 
the segment. Figure 11.2 shows one such value, 
t = 0.75, applied to the lines connecting p0-p1 
and p1-p2 respectively. Doing this defines two 
new points p01(t) and p12(t) along the two original 
lines. We repeat this process for the line 
segment connecting the two new points p01(t) 
and p12(t), producing point P(t) where t = 0.75 
along the line p01(t)-p12(t). P(t) is one of the points 
on the resulting curve, and for this reason it is 
denoted with a capital P.

Collecting many points P(t) for various 
values of t generates a curve, as shown in Figure 11.3. The more parameter values 
for t that are sampled, the more points P(t) are generated, and the smoother the 
resulting curve.

The analytic definition for a quadratic Bézier curve can now be derived. First, 
we note that an arbitrary point p on the line segment pa-pb connecting two points pa 
and pb can be represented in terms of the parameter t as follows:

p p pab t( )t t b a� � �( )1

Using this, we find the points p01 and p12 (points on p0-p1 and p1-p2 respectively) 
as follows:

p p p
p p p

01 1 0

12 2 1

( )

( )

t t
t t

= + −
= + −

( )

( )

1

1

t
t

Similarly, a point on the connecting line segment between these points 
would be:

P t t t( )
12 01

t t= + −p p( ) ( ) ( )1

Figure 11.2
Points at parametric position t = 0.75.

Figure 11.3
Building a quadratic Bézier curve.
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Substituting the definitions of p12 and p01 gives:

P t t t t( )
2 1 1 0

t t t= + − + − + −[ ( ) ] ( )[ ( ) ]p p p p1 1 1

Factoring and combining terms then gives:

P( )
0 1 2

t = − + − + +( ) ( )1 2 2
2 2 2t t t tp p p

or,

P( )
i

t =
=∑ p B tii

( )
0

2

where:

B
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= − +

=

( )1

2 2

2

2

2

t
t t

t

Thus, we find any point on the curve by a weighted sum of the control points. 
The weighting function B is often called a “blending function” (although the name 
“B” actually derives from Sergei Bernstein [BE20], who first characterized this 
family of polynomials). Note that the blending functions are all quadratic in form, 
which is why the resulting curve is called a quadratic Bézier curve.

	 11.2	 CUBIC BÉZIER CURVES
We now extend our model to four control 

points, resulting in a cubic Bézier curve as 
shown in Figure 11.4. Cubic Bézier curves 
are capable of defining a much richer set of 
shapes than are quadratic curves, which are 
limited to concave shapes.

As for the quadratic case, we can derive 
an analytic definition for cubic Bézier curves:

p p p
p p p

01 1 0

12 2 1

( )

( )

t t
t t

= + −
= + −

( )

( )

1

1

t
t

Figure 11.4
Building a cubic Bézier curve.
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p p p
p p p
p
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A point on the curve would then be:

P t t t( )
12 23 01 12

t t= + −− −p p( ) ( ) ( )1

Substituting the definitions of p12-23 and p01-12 and collecting terms yields:
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There are many different techniques for rendering Bézier curves. One approach 
is to iterate through successive values of t, starting at 0.0 and ending at 1.0, using a 
fixed increment. For instance, if the increment is 0.1, then we could use a loop with 
t values 0.0, 0.1, 0.2, 0.3, and so on. For each value of t, the corresponding point 
on the Bézier curve would be computed, and a series of line segments connecting 
the successive points would be drawn, as described in the algorithm in Figure 11.5.

Another approach is to use de Casteljau’s algorithm to recursively subdivide 
the curve in half, where t=½ at each recursive step. Figure 11.6 shows the left side 
subdivision into new cubic control points (q0,q1,q2,q3) shown in green, as derived by 
de Casteljau (a full derivation can be found in [AS14]).

The algorithm is shown in Figure 11.7. It subdivides the curve segments in half 
repeatedly, until each curve segment is sufficiently straight enough that further 
subdivision produces no tangible benefit. In the limiting case (as the control points 
are generated closer and closer together), the curve segment itself is effectively 
the same as a straight line between the first and last control points (q0 and q3). 
Determining whether a curve segment is “straight enough” can therefore be done 
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by comparing the distance from the first control point to the last control point, 
versus the sum of the lengths of the three lines connecting the four control points:

D1 = | p0-p1 | + | p1-p2 | + | p2-p3 |

D2 = | p0-p3 |

Then, if D1-D2 is less than a 
sufficiently small tolerance, there is 
no point in further subdivision.

An interesting property of the 
de Casteljau algorithm is that it is 
possible to generate all of the points 
on the curve without actually using 
the previously described blending 

Figure 11.5
Iterative algorithm for rendering Bézier curves.

Figure 11.6
Subdividing a cubic Bézier curve.
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functions. Also, note that the center point at p(½) is “shared”; that is, it is both the 
rightmost control point in the left subdivision, and the leftmost control point in the 
right subdivision. It can be computed either using the blending functions at t=½, 
or by using the formula (q2 + r1)/2, as derived by de Casteljau.

As a side note, we point out that the subdivide() function shown in Figure 11.7 
assumes that the incoming parameters p, q, and r are “reference” parameters, and 
hence the computations in the function modify the actual parameters in the calls 
from the drawBezierCurve() function listed above it.

	 11.3	 QUADRATIC BÉZIER SURFACES
Whereas Bézier curves define curved lines (in 2D or 3D space), Bézier surfaces 

define curved surfaces in 3D space. Extending the concepts we saw in curves to 
surfaces requires extending our system of parametric equations from one parameter 
to two parameters. For Bézier curves, we called that parameter t. For Bézier surfaces, 

Figure 11.7
Recursive subdivision algorithm for Bézier curves.
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we will refer to the parameters as u and v. 
Whereas our curves were composed of 
points P(t), our surfaces will comprise 
points P(u,v), as shown in Figure 11.8.

For quadratic Bézier surfaces, there are 
three control points on each axis u and v, for 
a total of nine control points. Figure 11.9 
shows an example of a set of nine control 
points (typically called a control point 
“mesh”) in blue, and the associated cor-
responding curved surface (in red).

The nine control points in the mesh 
are labeled pij, where i and j represent 
the indices in the u and v directions 
respectively. Each set of three adjacent 
control points, such as (p00, p01, p02), defines 
a Bézier curve. Points P(u,v) on the surface 
are then defined as a sum of two blending 
functions, one in the u direction and one 
in the v direction. The form of the two blending functions for building Bézier 
surfaces then follows from the methodology given previously for Bézier curves:
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The points P(u,v) comprising the Bézier surface are then generated by summing 
the product of each control point pij and the ith and jth blending functions evaluated 
at parametric values u and v respectively:

P ij
i

( )

2

=0

u,v =
=

∑∑ p * ( )* ( )B u B vi j
j 0

2

Figure 11.8
Parametric surface.

Figure 11.9
Quadratic Bézier control mesh and corresponding surface.
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The set of generated points that comprise a Bézier surface is sometimes called 
a patch. The term “patch” can sometimes be confusing, as we will see later when 
we study tessellation shaders (useful for actually implementing Bézier surfaces). 
There, it is the grid of control points that is typically called a “patch.”

	 11.4	 CUBIC BÉZIER SURFACES
Moving from quadratic to cubic surfaces 

requires utilizing a larger mesh—4x4 rather 
than 3x3. Figure 11.10 shows an example of 
a 16-control-point mesh (in blue), and the 
corresponding curved surface (in red).

As before, we can derive the formula 
for points P(u,v) on the surface by combining 
the associated blending functions for cubic 
Bézier curves:

P ij
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Rendering Bézier surfaces can also be done with recursive subdivision [AS14], 
by  alternately splitting the surface in half along each dimension, as shown in 
Figure  11.11. Each subdivision produces four new control point meshes, each 
containing sixteen points which define one quadrant of the surface.

When rendering Bézier curves, we stopped subdividing when the curve was 
“straight enough.” For Bézier surfaces, we stop recursing when the surface is “flat 
enough.” One way of doing this is to ensure that all of the recursively generated 

Figure 11.10
Cubic Bézier control mesh and corresponding surface.
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points in a sub-quadrant control mesh are within some small allowable distance 
from a plane defined by three of the four corner points of that mesh. The distance 
d between a point (x,y,z) and a plane (A,B,C,D) is:

d abs Ax By Cz D
A B C

= + + +
+ +





2 2 2

If d is less than some sufficiently small tolerance, then we stop subdividing, 
and simply use the four corner control points of the sub-quadrant mesh to draw 
two triangles.

Figure 11.11
Recursive subdivision for Bézier surfaces.
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The tessellation stage of the OpenGL pipeline offers an attractive 
alternative approach for rendering Bézier surfaces based on the iterative algorithm 
in Figure 11.5 for Bézier curves. The strategy is to have the tessellator generate 
a large grid of vertices, and then use the blending functions to reposition those 
vertices onto the Bézier surface as specified by the cubic Bézier control points. We 
implement this in Chapter 12.

SUPPLEMENTAL NOTES

This chapter focused on the mathematical fundamentals of parametric Bézier 
curves and surfaces. We have deferred presenting an implementation of any of 
them in OpenGL, because an appropriate vehicle for this is the tessellation stage, 
which is covered in the next chapter. We also skipped some of the derivations, such 
as for the recursive subdivision algorithm.

In 3D graphics, there are many advantages to using Bézier curves for modeling 
objects. First, those objects can, in theory, be scaled arbitrarily and still retain 
smooth surfaces without “pixelating.” Second, many objects made up of complex 
curves can be stored much more efficiently as sets of Bézier control points, rather 
than storing thousands of vertices.

Bézier curves have many real-world applications besides computer graphics and 
automobiles. They can also be found in the design of bridges, such as in the Chords 
Bridge in Jerusalem [RG12]. Similar techniques are used for building TrueType 
fonts, which as a result can be scaled to any arbitrary size, or zoomed in to any 
degree of closeness, while always retaining smooth edges.

Exercises

	11.1	 A quadratic Bézier curve is limited to defining a curve that is wholly 
“concave” or “convex.” Describe (or draw) an example of a curve that bends 
in a manner that is neither wholly concave nor convex, and thus could not 
possibly be approximated by a quadratic Bézier curve.

	11.2	 Using a pen or pencil, draw an arbitrary set of four points on a piece of paper, 
number them from 1 to 4 in any order, and then try to draw an approximation 
of the cubic Bézier curve defined by those four ordered control points. Then 
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rearrange the numbering of the control points (i.e., their order, but without 
changing their positions) and redraw the new resulting cubic Bézier curve. 
There are numerous online tools for drawing Bézier curves you can use to 
check your approximation.
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■ ■ ■ ■ ■

The English language term “tessellation” refers to a large class of design activities 
in which tiles of various geometric shapes are arranged adjacently to form patterns, 
generally on a flat surface. The purpose can be artistic or practical, with examples 
dating back thousands of years [TS20].

In 3D graphics, tessellation refers to something a little bit different, but no 
doubt  inspired by its classical counterpart. Here, tessellation refers to the genera-
tion and manipulation of large numbers of triangles for rendering complex shapes 
and surfaces, preferably in hardware. Tessellation is a rather recent addition to the 
OpenGL core, not appearing until 2010 with version 4.0.1

	 12.1	 TESSELLATION IN OPENGL
OpenGL support for hardware tessellation is made available through three 

pipeline stages:

	 1.	 the tessellation control shader
	 2.	 the tessellator
	 3.	 the tessellation evaluation shader

1	 The OpenGL Utility library (GLU) had previously included a utility for tessellation much earlier 
called gluTess. In 2001, Radeon released the first commercial graphics card with tessellation support, 
but there were few tools able to take advantage of it.

CGP_C++_CH12_2E_2pp.indd   271 03-Nov-20   5:13:50 PM



272  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

The first and third stages are programmable; the intervening second stage is 
not. In order to use tessellation, the programmer generally provides both a control 
shader and an evaluation shader.

The tessellator (its full name is tessellation primitive generator, or TPG) is a 
hardware-supported engine that produces fixed grids of triangles.2 The control 
shader allows us to configure what sort of triangle mesh the tessellator is to build. 
The evaluation shader then lets us manipulate the grid in various ways. The 
manipulated triangle mesh is then the source of vertices that proceed through 
the pipeline. Recall from Figure 2.2 that tessellation sits in the pipeline between 
the vertex and geometry shader stages.

Let’s start with an application that simply uses the tessellator to create a triangle 
mesh of vertices, and then displays it without any manipulation. For this, we will 
need the following modules:

	 1.	 C++/OpenGL application:
		  Creates a camera and associated mvp matrix. The view (v) and projec-

tion (p) matrices orient the camera; the model (m) matrix can be used to 
modify the location and orientation of the grid.

	 2.	 Vertex Shader:
		  Essentially does nothing in this example; the vertices will be generated 

in the tessellator.
	 3.	 Tessellation Control Shader (TCS):
		  Specifies the grid for the tessellator to build.
	 4.	 Tessellation Evaluation Shader (TES):
		  Applies the mvp matrix to the vertices in the grid.
	 5.	 Fragment Shader:
		  Simply outputs a fixed color for every pixel.

Program 12.1 shows the entire application code. Even a simple example 
such as this one is fairly complex, so many of the code elements will require expla-
nation. Note that this is the first time we must build a GLSL rendering program 
with components beyond just vertex and fragment shaders. So, a four-parameter 
overloaded version of createShaderProgram() is implemented.

2	 Or lines, but we will focus on triangles.
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Program 12.1 Basic Tessellator Mesh
C++ / OpenGL application
GLuint createShaderProgram(const char *vp, const char *tCS, const char *tES, const char *fp) {
	 string vertShaderStr  = readShaderSource(vp);
	 string tcShaderStr = readShaderSource(tCS);
	 string teShaderStr = readShaderSource(tES);
	 string fragShaderStr  = readShaderSource(fp);

	 const char *vertShaderSrc = vertShaderStr.c_str();
	 const char *tcShaderSrc = tcShaderStr.c_str();
	 const char *teShaderSrc = teShaderStr.c_str();
	 const char *fragShaderSrc = fragShaderStr.c_str();

	 GLuint vShader  = glCreateShader(GL_VERTEX_SHADER);
	 GLuint tcShader = glCreateShader(GL_TESS_CONTROL_SHADER);
	 GLuint teShader = glCreateShader(GL_TESS_EVALUATION_SHADER);
	 GLuint fShader  = glCreateShader(GL_FRAGMENT_SHADER);

	 glShaderSource(vShader, 1, &vertShaderSrc, NULL);
	 glShaderSource(tcShader, 1, &tcShaderSrc, NULL);
	 glShaderSource(teShader, 1, &teShaderSrc, NULL);
	 glShaderSource(fShader, 1, &fragShaderSrc, NULL);

	 glCompileShader(vShader);
	 glCompileShader(tcShader);
	 glCompileShader(teShader);
	 glCompileShader(fShader);

	 GLuint vtfprogram = glCreateProgram();
	 glAttachShader(vtfprogram, vShader);
	 glAttachShader(vtfprogram, tcShader);
	 glAttachShader(vtfprogram, teShader);
	 glAttachShader(vtfprogram, fShader);
	 glLinkProgram(vtfprogram);
	 return vtfprogram;
}

void init(GLFWwindow* window) {
	 . . .
	 renderingProgram = createShaderProgram("vertShader.glsl",
		  "tessCShader.glsl", "tessEShader.glsl", "fragShader.glsl");
}
void display(GLFWwindow* window, double currentTime) {
	 . . .
	 glUseProgram(renderingProgram);
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	 . . .
	 glPatchParameteri(GL_PATCH_VERTICES, 1);
	 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
	 glDrawArrays(GL_PATCHES, 0, 1);
}

Vertex Shader
#version 430
uniform mat4 mvp_matrix;
void main(void)  {  }

Tessellation Control Shader
#version 430
uniform mat4 mvp_matrix;
layout (vertices = 1) out;

void main(void)
{	 gl_TessLevelOuter[0] = 6;
	 gl_TessLevelOuter[1] = 6;
	 gl_TessLevelOuter[2] = 6;
	 gl_TessLevelOuter[3] = 6;
	 gl_TessLevelInner[0] = 12;
	 gl_TessLevelInner[1] = 12;
}

Tessellation Evaluation Shader
#version 430
uniform mat4 mvp_matrix;
layout (quads, equal_spacing, ccw) in;

void main (void)
{	 float u = gl_TessCoord.x;
	 float v = gl_TessCoord.y;
	 gl_Position = mvp_matrix * vec4(u,0,v,1);
}

Fragment Shader
#version 430
out vec4 color;
uniform mat4 mvp_matrix;

void main(void)
{	 color = vec4(1.0, 1.0, 0.0, 1.0);	 // yellow
}
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The resulting output mesh is 
shown in Figure 12.1.

The tessellator produces a 
mesh of vertices defined by two 
parameters: inner level and outer 
level. In this case, the inner level is 
12 and the outer level is 6—the outer 
edges of the grid are divided into 6 
segments, while the lines spanning 
the interior are divided into 12 segments.

The specific relevant new constructs in Program 12.1 are highlighted. Let’s 
start by discussing the first portion—the C++/OpenGL code.

Compiling the two new shaders is done exactly the same as for the vertex and 
fragment shaders. They are then attached to the same rendering program, and the 
linking call is unchanged. The only new items are the constants for specifying the 
type of shader being instantiated—the new constants are as follows:

GL_TESS_CONTROL_SHADER
GL_TESS_EVALUATION_SHADER

Note the new items in the display() function. The glDrawArrays() call now speci-
fies GL_PATCHES. When using tessellation, vertices sent from the C++/OpenGL 
application into the pipeline (i.e., in a VBO) aren’t rendered, but are usually control 
points, such as those we saw for Bézier curves. A set of control points is called 
a “patch,” and in those sections of the code using tessellation, GL_PATCHES is 
the only allowable primitive. The number of vertices in a patch is specified in 
the call to glPatchParameteri(). In this particular example, there aren’t any control 
points being sent, but we are still required to specify at least one. Similarly, in 
the glDrawArrays() call we indicate a start value of 0 and a vertex count of 1, even 
though we aren’t actually sending any vertices from the C++ program.

The call to glPolygonMode() specifies how the mesh should be rasterized. The 
default is GL_FILL. Shown in the code is GL_LINE, which, as we saw in Figure 12.1, 
caused only connecting lines to be rasterized (so we could see the grid itself that 
was produced by the tessellator). If we change that line of code to GL_FILL (or com-
ment it out, resulting in the default behavior GL_FILL), we get the version shown 
in Figure 12.2.

Figure 12.1
Tessellator triangle mesh output.
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Now let’s work our way through 
the four shaders. As indicated earlier, 
the  vertex shader has little to do, 
since the C++/OpenGL application isn’t 
providing any vertices. All it contains is 
a uniform declaration, to match the other 
shaders, and an empty main(). In any 
case, it is a requirement that all shader 
programs include a vertex shader.

The Tessellation Control Shader specifies the topology of the triangle mesh that 
the tessellator is to produce. Six “level” parameters are set—two “inner” and four 
“outer” levels—by assigning values to the reserved words named gl_TessLevelxxx. 
This is for tessellating a large rectangular grid of triangles, called a quad.3 The 
levels tell the tessellator how to subdivide the grid when forming triangles, and 
they are arranged as shown in Figure 12.3.

Note the line in the control shader that says:

layout (vertices=1) out;

This is related to the prior 
GL_PATCHES discussion and specifies 
the number of vertices per “patch” 
being passed from the vertex shader 
to the control shader (and “out” to the 
evaluation shader). In this particular 
program there are none, but we still 
must specify at least one, because it 
also affects how many times the 
control shader executes. Later this 
value will reflect the number of 
control points and must match the 
value in the glPatchParameteri() call in 
the C++/OpenGL application.

3	 The tessellator is also capable of building a triangular grid of triangles, but that isn’t covered in 
this textbook.

Figure 12.2
Tessellated mesh rendered with GL_FILL.

Figure 12.3
Tessellation levels.
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Next let’s look at the Tessellation Evaluation Shader. It starts with a line of 
code that says:

layout (quads, equal_spacing, ccw) in;

This may at first appear to be related to the “out” layout statement in the control 
shader, but actually they are unrelated. Rather, this line is where we instruct the 
tessellator to generate vertices so they are arranged in a large rectangle (a “quad”). 
It also specifies the subdivisions (inner and outer) to be of equal length (later we 
will see a use for subdivisions of unequal length). The “ccw” parameter specifies 
the winding order in which the tessellated grid vertices are generated (in this case, 
counter-clockwise).

The vertices generated by the tessellator are then sent to the evaluation 
shader. Thus, the evaluation shader may receive vertices both from the control 
shader (typically as control points) and from the tessellator (the tessellated grid). 
In Program 12.1, vertices are only received from the tessellator.

The evaluation shader executes once for each vertex produced by the tessel-
lator. The vertex location is accessible using the built-in variable gl_TessCoord. 
The tessellated grid is oriented such that it lies in the X-Z plane, and therefore 
gl_TessCoord’s X and Y components are applied at the grid’s X and Z coordinates. 
The grid coordinates, and thus the values of gl_TessCoord, range from 0.0 to 1.0 
(this will be handy later when computing texture coordinates). The evaluation 
shader then uses the mvp matrix to orient each vertex (this was done in the vertex 
shader in examples from earlier chapters).

Finally, the fragment shader simply outputs a constant color yellow for each 
pixel. We can, of course, also use it to apply a texture or lighting to our scene as 
we saw in previous chapters.

	 12.2	 TESSELLATION FOR BÉZIER SURFACES
Let’s now extend our program so that it turns our simple rectangular grid into 

a Bézier surface. The tessellated grid should give us plenty of vertices for sam-
pling the surface (and we can increase the inner/outer subdivision levels if we want 
more). What we now need is to send control points through the pipeline, and then 
use those control points to perform the computations to convert the tessellated grid 
into the desired Bézier surface.
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Assuming that we wish to build a cubic 
Bézier surface, we will need sixteen control 
points. We could send them from the C++ 
side in a VBO, or we could hardcode them 
in the vertex shader. Figure 12.4 shows an 
overview of the process with the control 
points coming from the C++ side.

Now is a good time to explain a bit more 
precisely how the tessellation control shader 
(TCS) works. Similar to the vertex shader, 
the TCS executes once per incoming vertex. 
Also, recall from Chapter 2 that OpenGL 
provides a built-in variable called gl_VertexID 
which holds a counter that indicates which 
invocation of the vertex shader is currently 

executing. A similar built-in variable called gl_InvocationID exists for the tessella-
tion control shader.

A powerful feature of tessellation is that the TCS (and also the TES) shader 
has access to all of the control point vertices simultaneously, in arrays. At first, 
it  may seem confusing that the TCS executes once per vertex, when each 
invocation has access to all of the vertices. It is also counterintuitive that the tes-
sellation levels are specified in assignment statements which are redundantly set 
at each TCS invocation. Although all of this may seem odd, it is done this way 
because the tessellation architecture is designed so that TCS invocations can run 
in parallel.

OpenGL provides several built-in variables for use in the TCS and TES 
shaders. Ones that we have already mentioned are gl_InvocationID and of course 
gl_TessLevelInner and gl_TessLevelOuter. Here are some more details and descrip-
tions of some of the most useful built-in variables:

Tessellation Control Shader (TCS) built-in variables:

•	 gl_in [ ] – an array containing each of the incoming control point 
vertices—one array element per incoming vertex. Particular vertex 
attributes can be accessed as fields using the “.” notation. One built-
in attribute is gl_Position—thus, the position of incoming vertex “i” is 
accessed as gl_in[i].gl_Position.

Figure 12.4
Overview of tessellation for Bézier surfaces.
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•	 gl_out [ ] – an array for sending outgoing control point vertices to the 
TES—one array element per outgoing vertex. Particular vertex attributes 
can be accessed as fields using the “.” notation. One built-in attribute 
is gl_Position—thus, the position of outgoing vertex “i” is accessed as 
gl_out[i].gl_Position.

•	 gl_InvocationID – an integer ID counter indicating which invocation 
of the TCS is currently executing. One common use is for passing 
through vertex attributes; for example, passing the current invocation’s 
vertex position from the TCS to the TES would be done as follows: 
gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;

Tessellation Evaluation Shader (TES) built-in variables:
•	 gl_in [ ] – an array containing each of the incoming control point 

vertices—one element per incoming vertex. Particular vertex 
attributes can be accessed as fields using the “.” notation. One 
built-in attribute is gl_Position—thus, incoming vertex positions 
are accessed as gl_in[xxx].gl_Position.

•	 gl_Position –  output position of a tessellated grid vertex, possibly 
modified in the TES. It is important to note that gl_Position and gl_in[xxx].
gl_Position are different—gl_Position is the position of an output vertex 
that originated in the tessellator, while gl_in[xxx].gl_Position is a control 
point vertex position coming into the TES from the TCS.

It is important to note that input and output control point vertices and vertex 
attributes in the TCS are arrays. By contrast, input control point vertices and 
vertex attributes in the TES are arrays, but output vertices are scalars. Also, it is 
easy to become confused as to which vertices are for control points and which are 
tessellated and then moved to form the resulting surface. To summarize, all vertex 
inputs and outputs to the TCS are control points, whereas in the TES, gl_in[ ] holds 
incoming control points, gl_TessCoord holds incoming tessellated grid points, and 
gl_Position holds output surface vertices for rendering.

Our tessellation control shader now has two tasks: specifying the tessellation 
levels and passing the control points through from the vertex shader to the evalua-
tion shader. The evaluation shader can then modify the locations of the grid points 
(the gl_TessCoords) based on the Bézier control points.

Program 12.2 shows all four shaders—vertex, TCS, TES, and fragment—
for specifying a control point patch, generating a flat tessellated grid of vertices, 
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repositioning those vertices on the curved surface specified by the control points, 
and painting the resulting surface with a texture image. It also shows the relevant 
portion of the C++/OpenGL application, specifically in the display() function. In 
this example, the control points originate in the vertex shader (they are hardcoded 
there) rather than entering the OpenGL pipeline from the C++/OpenGL application. 
Additional details follow after the code listing.

Program 12.2 Tessellation for Bézier Surface
Vertex Shader
#version 430
out vec2  texCoord;
uniform mat4 mvp_matrix;
layout (binding = 0) uniform sampler2D tex_color;

void main(void)
{	 // this time the vertex shader defines and sends out control points:
	 const vec4 vertices[ ] =
	 vec4[ ] (vec4(-1.0, 0.5, -1.0, 1.0), vec4(-0.5, 0.5, -1.0, 1.0),
			   vec4( 0.5, 0.5, -1.0, 1.0), vec4( 1.0, 0.5, -1.0, 1.0),

			   vec4(-1.0, 0.0, -0.5, 1.0), vec4(-0.5, 0.0, -0.5, 1.0),
			   vec4( 0.5, 0.0, -0.5, 1.0), vec4( 1.0, 0.0, -0.5, 1.0),

			   vec4(-1.0, 0.0,  0.5, 1.0), vec4(-0.5, 0.0,  0.5, 1.0),
			   vec4( 0.5, 0.0,  0.5, 1.0), vec4( 1.0, 0.0,  0.5, 1.0),

			   vec4(-1.0, -0.5,  1.0, 1.0), vec4(-0.5, 0.3,  1.0, 1.0),
			   vec4( 0.5, 0.3,  1.0, 1.0), vec4( 1.0, 0.3,  1.0, 1.0) );

	 // compute an appropriate texture coordinate for the current vertex, shifted from [-1..+1] to [0..1]
	 texCoord = vec2((vertices[gl_VertexID].x + 1.0) / 2.0, (vertices[gl_VertexID].z + 1.0) / 2.0);
	 gl_Position = vertices[gl_VertexID];
}

Tessellation Control Shader
#version 430

in vec2 texCoord[ ];	 // The texture coords output from the vertex shader as scalars arrive
out vec2 texCoord_TCSout[ ];	 // in an array and are then passed through to the evaluation shader

uniform mat4 mvp_matrix;
layout (binding = 0) uniform sampler2D tex_color;
layout (vertices = 16) out;	 // there are 16 control points per patch
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void main(void)
{	 int TL = 32;	 // tessellation levels are all set to this value
	 if (gl_InvocationID == 0)
	 {	 gl_TessLevelOuter[0] = TL; gl_TessLevelOuter[2] = TL;
		  gl_TessLevelOuter[1] = TL; gl_TessLevelOuter[3] = TL;
		  gl_TessLevelInner[0] = TL; gl_TessLevelInner[1] = TL;
	 }
	 // forward the texture and control points to the TES
	 texCoord_TCSout[gl_InvocationID] = texCoord[gl_InvocationID];
	 gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
}

Tessellation Evaluation Shader
#version 430
layout (quads, equal_spacing,ccw) in;
uniform mat4 mvp_matrix;
layout (binding = 0) uniform sampler2D tex_color;
in vec2 texCoord_TCSout[ ];		  // texture coordinate array coming in
out vec2 texCoord_TESout;		  // scalars going out one at a time

void main (void)
{	 vec3 p00 = (gl_in[0].gl_Position).xyz;
	 vec3 p10 = (gl_in[1].gl_Position).xyz;
	 vec3 p20 = (gl_in[2].gl_Position).xyz;
	 vec3 p30 = (gl_in[3].gl_Position).xyz;
	 vec3 p01 = (gl_in[4].gl_Position).xyz;
	 vec3 p11 = (gl_in[5].gl_Position).xyz;
	 vec3 p21 = (gl_in[6].gl_Position).xyz;
	 vec3 p31 = (gl_in[7].gl_Position).xyz;
	 vec3 p02 = (gl_in[8].gl_Position).xyz;
	 vec3 p12 = (gl_in[9].gl_Position).xyz;
	 vec3 p22 = (gl_in[10].gl_Position).xyz;
	 vec3 p32 = (gl_in[11].gl_Position).xyz;
	 vec3 p03 = (gl_in[12].gl_Position).xyz;
	 vec3 p13 = (gl_in[13].gl_Position).xyz;
	 vec3 p23 = (gl_in[14].gl_Position).xyz;
	 vec3 p33 = (gl_in[15].gl_Position).xyz;

	 float u = gl_TessCoord.x;
	 float v = gl_TessCoord.y;

	 // cubic Bezier basis functions
	 float bu0 = (1.0-u) * (1.0-u) * (1.0-u);	 // (1-u)^3
	 float bu1 = 3.0 * u * (1.0-u) * (1.0-u);	 // 3u(1-u)^2 
	 float bu2 = 3.0 * u * u * (1.0-u);	 // 3u^2(1-u)
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	 float bu3 = u * u * u;	 // u^3
	 float bv0 = (1.0-v) * (1.0-v) * (1.0-v);	 // (1-v)^3
	 float bv1 = 3.0 * v * (1.0-v) * (1.0-v);	 // 3v(1-v)^2
	 float bv2 = 3.0 * v * v * (1.0-v);	 // 3v^2(1-v)
	 float bv3 = v * v * v;	 // v^3
	 // output the position of this vertex in the tessellated patch
	 vec3 outputPosition =
		     bu0 * ( bv0*p00 + bv1*p01 + bv2*p02 + bv3*p03 )
		  + bu1 * ( bv0*p10 + bv1*p11 + bv2*p12 + bv3*p13 )
		  + bu2 * ( bv0*p20 + bv1*p21 + bv2*p22 + bv3*p23 )
		  + bu3 * ( bv0*p30 + bv1*p31 + bv2*p32 + bv3*p33 );
	 gl_Position = mvp_matrix * vec4(outputPosition,1.0f);
	 // output the interpolated texture coordinates
	 vec2 tc1 = mix(texCoord_TCSout[0], texCoord_TCSout[3], gl_TessCoord.x);
	 vec2 tc2 = mix(texCoord_TCSout[12], texCoord_TCSout[15], gl_TessCoord.x);
	 vec2 tc = mix(tc2, tc1, gl_TessCoord.y);
	 texCoord_TESout = tc;
}

Fragment Shader
#version 430
in vec2 texCoord_TESout;
out vec4 color;
uniform mat4 mvp_matrix;
layout (binding = 0) uniform sampler2D tex_color;
void main(void)
{	 color = texture(tex_color, texCoord_TESout);
}

C++ / OpenGL application
// This time we also pass a texture to paint the surface.
// Load the texture in init() as usual, then enable it in display()
void display(GLFWwindow* window, double currentTime) {
	 . . .
	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_2D, textureID);
	 glFrontFace(GL_CCW);
	 glPatchParameteri(GL_PATCH_VERTICES, 16);	 // number of vertices per patch = 16
	 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
	 glDrawArrays(GL_PATCHES, 0, 16);		 // total number of patch vertices: 16 x 1 patch = 16
}
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The vertex shader now specifies sixteen control points (the “patch” vertices) 
representing a particular Bézier surface. In this example they are all normalized 
to the range [-1..+1]. The vertex shader also uses the control points to determine 
texture coordinates appropriate for the tessellated grid, with values in the range 
[0..1]. It is important to reiterate that the vertices output from the vertex shader are 
not vertices that will be rasterized, but instead are Bézier control points. When 
using tessellation, patch vertices are never rasterized—only tessellated vertices 
proceed to rasterization.

The control shader still specifies the inner and outer tessellation levels. It 
now has the additional responsibility of forwarding the control points and texture 
coordinates to the evaluation shader. Note that the tessellation levels only need to 
be specified once, and therefore that step is done only during the 0th invocation 
(recall that the TCS runs once per vertex—thus there are sixteen invocations in 
this example). For convenience, we have specified thirty-two subdivisions for each 
tessellation level.

Next, the evaluation shader performs all of the Bézier surface computations. The 
large block of assignment statements at the beginning of main() extracts the control 
points from the incoming gl_Position’s of each incoming gl_in (note that these corre-
spond to the control shader’s gl_out variable). The weights for the blending functions 
are then computed using the grid points coming in from the tessellator, resulting 
in a new outputPosition to which the model-view-projection matrix is then applied, 
producing an output gl_Position for each grid point and forming the Bézier surface.

It is also necessary to create texture coordinates. The vertex shader only 
provided one for each control point location. But it isn’t the control points that 
are being rendered—we ultimately need texture coordinates for the much larger 
number of tessellated grid points. There are various ways of doing this—here we 
linearly interpolate them using GLSL’s handy mix function. The mix() function 
expects three parameters: (a) starting point, (b) ending point, and (c) interpolation 
value, which ranges from 0 to 1. It returns the value between the starting and 
ending point corresponding to the interpolation value. Since the tessellated grid 
coordinates also range from 0 to 1, they can be used directly for this purpose.

This time in the fragment shader, rather than outputting a single color, stan-
dard texturing is applied. The texture coordinates in the attribute texCoord_TESout 
are those that were produced in the evaluation shader. The changes to the C++ pro-
gram are similarly straightforward—note that a patch size of 16 is now specified. 
The resulting output is shown in Figure 12.5 (a tile texture from [LU16] is applied).
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	 12.3	 TESSELLATION FOR TERRAIN / HEIGHT MAPS
Recall that performing height mapping in the vertex shader can suffer from 

an insufficient number of vertices to render the desired detail. Now that we have 
a way to generate lots of vertices, let’s go back to Hastings-Trew’s moon surface 
texture map (from [HT12]) and use it as a height map by raising tessellated vertices 
to produce moon surface detail. As we will see, this has the advantages of achiev-
ing vertex geometry that better matches the moon image, along with improved 
silhouette (edge) detail.

Our strategy is to modify Program 12.1, placing a tessellated grid in the 
X-Z  plane, and use height mapping to set the Y coordinate of each tessellated 
grid point. To do this a patch isn’t needed, because we can hardcode the location 
of the tessellated grid. So we will specify the required minimum of 1 vertex 
per patch in glDrawArrays() and glPatchParameteri(), as was done in Program 12.1. 
Hastings‑Trew’s moon texture image is used both for color and as the height map.

We generate vertex and texture coordinates in the evaluation shader by 
mapping the tessellated grid’s gl_TessCoord values to appropriate ranges for ver-
tices and textures.4 The evaluation shader also is where the height mapping is 
performed, by adding a fraction of the color component of the moon texture to 

4	 In some applications the texture coordinates are produced externally, such as when tessellation 
is being used to provide additional vertices for an imported model. In such cases, the provided 
texture coordinates would need to be interpolated.

Figure 12.5
Tessellated Bézier surface.
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the Y component of the output vertex. The changes to the shaders are shown in 
Program 12.3.

Program 12.3 Simple Tessellated Terrain
Vertex Shader
#version 430
uniform mat4 mvp_matrix;
layout (binding = 0) uniform sampler2D tex_color;
void main(void)  { }

Tessellation Control Shader
. . .
layout (vertices = 1) out;	 // no control points are necessary for this application
void main(void)
{	 int TL=32;
	 if (gl_InvocationID == 0)
	 {	 gl_TessLevelOuter[0] = TL;  gl_TessLevelOuter[2] = TL;
		  gl_TessLevelOuter[1] = TL;  gl_TessLevelOuter[3] = TL;
		  gl_TessLevelInner[0] = TL;  gl_TessLevelInner[1] = TL;
	 }
}

Tessellation Evaluation Shader
. . .
out vec2 tes_out;
uniform mat4 mvp_matrix;
layout (binding = 0) uniform sampler2D tex_color;
void main (void)
{	 // map the tessellated grid vertices from [0..1] onto the desired vertices [-0.5..+0.5]
	 vec4 tessellatedPoint  = vec4(gl_TessCoord.x - 0.5, 0.0, gl_TessCoord.y - 0.5, 1.0);
	 // map the tessellated grid vertices as texture coordinates by "flipping" the Y values vertically.
	 // Vertex coordinates have (0,0) at upper left, texture coordinates have (0,0) at the lower left.
	 vec2 tc = vec2(gl_TessCoord.x, 1.0 - gl_TessCoord.y);
	 // The image is grayscale, so either component (R, G, or B) can serve as height offset.
	 tessellatedPoint.y += (texture(tex_color, tc).r) / 40.0;	 // Scale down color values.

	 // convert the height-map raised point to eye space
	 gl_Position = mvp_matrix * tessellatedPoint;
	 tes_out = tc;
}
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Fragment Shader
. . .
in vec2 tes_out;
out vec4 color;
layout (binding = 0) uniform sampler2D tex_color;

void main(void)
{	 color = texture(tex_color, tes_out);
}

The fragment shader is similar to the one for Program 12.2, and simply outputs 
the color based on the texture image. The C++/OpenGL application is essentially 
unchanged—it loads the texture (serving as both the texture and height map) and 
enables a sampler for it. Figure 12.6 shows the texture image (on the left) and the 
final output of this first attempt, which unfortunately does not yet achieve proper 
height mapping.

The first results are severely flawed. Although we can now see silhouette 
detail on the far horizon, the bumps there don’t correspond to the actual detail in 
the texture map. Recall that in a height map, white is supposed to mean “high,” 
and black is supposed to mean “low.” The area at the upper right, in particular, 
shows large hills that bear no relation to the light and dark colors in the image.

Figure 12.6
Tessellated terrain – failed first attempt, with insufficent number of vertices.
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The cause of this problem is the resolution of the tessellated grid. The maxi-
mum number of vertices that can be generated by the tessellator is hardware 
dependent, and a maximum value of at least 64 for each tessellation level is all 
that is required for compliance with the OpenGL standard. Our program speci-
fied a single tessellated grid with inner and outer tessellation levels of 32, so we 
generated about 32*32, or just over 1000 vertices, which is insufficient to reflect 
the detail in the image accurately. This is especially apparent along the upper right 
(enlarged in the figure)—the edge detail is only sampled at 32 points along the 
horizon, producing large, random-looking hills. Even if we increased the tessel-
lation values to 64, the total of 64*64 or just over 4000 vertices would still be woe-
fully inadequate to do height-mapping using the moon image.

A good way to increase the number of vertices is by using instancing, which we 
saw in Chapter 4. Our strategy will be to have the tessellator generate grids and use 
instancing to repeat this many times. In the vertex shader we build a patch defined 
by four vertices, one for each corner of a tessellated grid. In our C++/OpenGL 
application we change the glDrawArrays() call to glDrawArraysInstanced(). There, we 
specify a grid of 64 by 64 patches, each of which contains a tessellated mesh with 
levels of size 32. This will give us a total of 64*64*32*32, or over four million 
vertices.

The vertex shader starts by specifying four texture coordinates (0,0), (1,0), 
(0,1), and (1,1). When using instancing, recall that the vertex shader has access 
to an integer variable gl_InstanceID, which holds a counter corresponding to the 
glDrawArraysInstanced() call that is currently being processed. We use this ID 
value to distribute the locations of the individual patches within the larger grid. 
The patches are positioned in rows and columns, the first patch at location (0,0), the 
second at (1,0), the next at (2,0), and so on, and the final patch in the first column at 
(63,0). The next column has patches at (0,1), (1,1), and so forth up to (63,1). The final 
column has patches at (0,63), (1,63), and so on up to (63,63). The X coordinate for a 
given patch is the instance ID modulo 64, and the Y coordinate is the instance ID 
divided by 64 (with integer division). The shader then scales the coordinates back 
down to the range [0..1].

The control shader is unchanged, except that it passes through the vertices and 
texture coordinates.

Next, the evaluation shader takes the incoming tessellated grid vertices (speci-
fied by gl_TessCoord) and moves them into the coordinate range specified by the 
incoming patch. It does the same for the texture coordinates. It also applies height 
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mapping in the same way as was done in Program 12.3. The fragment shader is 
unchanged.

The changes to each of the components are shown in Program 12.4. The result 
is shown in Figure 12.7. Note that the highs and lows now correspond much more 
closely to light and dark sections of the image.

Program 12.4 Instanced Tessellated Terrain
C++ / OpenGL application
// same as for Bezier surface example, with these changes:
glPatchParameteri(GL_PATCH_VERTICES, 4);
glDrawArraysInstanced(GL_PATCHES, 0, 4, 64*64);

Vertex Shader
. . .
out vec2 tc;

void main(void)
{	 vec2 patchTexCoords[ ] = vec2[ ] (vec2(0,0), vec2(1,0), vec2(0,1), vec2(1,1));

	 // compute an offset for coordinates based on which instance this is
	 int x = gl_InstanceID % 64;
	 int y = gl_InstanceID / 64;

	 // tex coords are distributed across 64 patches, normalized to [0..1]. Flip Y coordinates.
	 tc = vec2( (x+patchTexCoords[gl_VertexID].x) / 64.0,  (63 - y+patchTexCoords[gl_VertexID].y) / 64.0);

	 // vertex locations are the same as texture coordinates, except they range from -0.5 to +0.5.
	 gl_Position = vec4(tc.x - 0.5, 0.0, (1.0 - tc.y) - 0.5, 1.0);		  // Also un-flip the Y’s
}

Tessellation Control Shader
. . .
layout (vertices = 4) out;
in vec2 tc[ ];
out vec2 tcs_out[ ];

void main(void)
{	 // tessellation level specification the same as the previous example
	 . . .
	 tcs_out[gl_InvocationID] = tc[gl_InvocationID];
	 gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
}
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Tessellation Evaluation Shader
. . .
in vec2 tcs_out[ ];
out vec2 tes_out;
void main (void)
{	 // map the texture coordinates onto the sub-grid specified by the incoming control points
	 vec2 tc = vec2(tcs_out[0].x + (gl_TessCoord.x) / 64.0, tcs_out[0].y + (1.0 - gl_TessCoord.y) / 64.0);

	 // map the tessellated grid onto the sub-grid specified by the incoming control points
	 vec4 tessellatedPoint = vec4(gl_in[0].gl_Position.x + gl_TessCoord.x / 64.0, 0.0,
					       gl_in[0].gl_Position.z + gl_TessCoord.y / 64.0, 1.0);

	 // add the height from the height map to the vertex:
	 tessellatedPoint.y += (texture(tex_height, tc).r) / 40.0;
	 gl_Position = mvp_matrix * tessellatedPoint;
	 tes_out = tc;
}

Now that we have achieved height mapping, we can work on improving it and 
incorporating lighting. One challenge is that our vertices do not yet have normal 
vectors associated with them. Another challenge is that simply using the texture 
image as a height map has produced an overly “jagged” result—in this case because 
not all grayscale variation in the texture image is due to height. For this particular 
texture map, it so happens that Hastings-Trew has already produced an improved 
height map that we can use [HT12]. It is shown in Figure 12.8 (on the left).

To create normals, we could 
compute them on the fly by gen-
erating the heights of neighbor-
ing vertices (or neighboring texels 
in the height map), building vec-
tors connecting them, and using a 
cross product to find the normal. 
This requires some tuning, depend-
ing on the precision of the scene 
(and/or the height map image). Here 
we have instead used the GIMP 
“normalmap” plugin [GP16] to 
generate a normal map based on 
Hastings-Trew’s height map, shown 
in Figure 12.8 (on the right).

Figure 12.7
Tessellated terrain – second attempt, with instancing.
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Most of the changes to our code are now simply to implement the standard 
methods for Phong shading:

•	 C++/OpenGL application
	 We load and activate an additional texture to hold the normal map. We 

also add code to specify the lighting and materials as we have done in 
previous applications.

•	 Vertex shader
	 The only additions are declarations for lighting uniforms and the sampler 

for the normal map. Lighting code customarily done in the vertex shader 
is moved to the tessellation evaluation shader, because the vertices aren’t 
generated until the tessellation stage.

•	 Tessellation Control shader
	 The only additions are declarations for lighting uniforms and the sampler 

for the normal map.
•	 Tessellation Evaluation shader
	 The preparatory code for Phong lighting is now placed in the evaluation 

shader:
varyingVertPos = (mv_matrix * position).xyz;
varyingLightDir = light.position - varyingVertPos;

•	 Fragment shader
	 The typical code sections, described previously, for computing Phong 

(or Blinn-Phong) lighting are done here, as well as the code to extract 
normals from the normal map. The lighting result is then combined with 
the texture image with a weighted sum.

Figure 12.8
Moon surface: height map [HT12] and normal map.
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The final result, with height and normal mapping and Phong lighting, is shown 
in Figure 12.9. The terrain now responds to lighting. In this example, a positional 
light has been placed to the left of center in the image on the left, and to the right 
of center in the image on the right.

Although the response to the movement of the light is difficult to tell from 
a still picture, the reader should be able to discern the diffuse lighting changes 
and that specular highlights on the peaks are very different in the two images. 
This is of course more obvious when the camera or the light source is moving. 
The results are still imperfect, because the original texture that is incorporated 
in the output includes shadows that will appear on the rendered result, regardless 
of lighting.

	 12.4	 CONTROLLING LEVEL OF DETAIL (LOD)
Using instancing to generate millions of vertices in real time, as in Program 12.4, 

is likely to place a load on even a well-equipped modern computer. Fortunately, the 
strategy of dividing the terrain into separate patches, as we have done to increase 
the number of generated grid vertices, also affords us a nice mechanism for reduc-
ing that load.

Of the millions of vertices being generated, many aren’t necessary. Vertices 
in patches that are close to the camera are important because we expect to discern 

Figure 12.9
Tessellated terrain with normal map and lighting (light source positioned at left and at right respectively).
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detail in nearby objects. However, the further the patches are from the camera, 
the less likely there will even be enough pixels in the rasterization to warrant the 
number of vertices we are generating!

Changing the number of vertices in a patch based on the distance from the 
camera is a technique called level of detail, or LOD. Sellers et al. describe a way 
of controlling LOD in instanced tessellation [SW15], by modifying the control 
shader. Program 12.5 shows a simplified version of the approach by Sellers et al. 
The strategy is to use the patch’s perceived size to determine the values of its 
tessellation levels. Since the tessellated grid for a patch will eventually be placed 
within the square defined by the four control points entering the control shader, we 
can use the locations of the control points relative to the camera to determine how 
many vertices should be generated for the patch. The steps are as follows:

	 1.	 Calculate the screen locations of the four control points by applying the 
MVP matrix to them.

	 2.	 Calculate the lengths of the sides of the square (i.e., the width and height) 
defined by the control points (in screen space). Note that even though the 
four control points form a square, these side lengths can differ because the 
perspective matrix has been applied.

	 3.	 Scale the lengths’ values by a tunable constant, depending on the preci-
sion needed for the tessellation levels (based on the amount of detail in 
the height map).

	 4.	 Add 1 to the scaled length values, to avoid the possibility of specify-
ing  a  tessellation level of 0 (which would result in no vertices being 
generated).

	 5.	 Set the tessellation levels to the corresponding calculated width and 
height values.

Recall that in our instanced example we are not creating just one grid, but 
64*64 of them. So the five steps in the previous list are performed for each patch. 
Thus, the level of detail varies from patch to patch.

All of the changes are in the control shader and are shown in Program 12.5, 
with the generated output following in Figure 12.10. Note that the variable 
gl_InvocationID refers to which vertex in the patch is being processed (not which 
patch is being processed). Therefore, the LOD computation which tells the tessel-
lator how many vertices to generate occurs during the processing of the 0th vertex 
in each patch.
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Program 12.5 Tessellation Level of Detail (LOD)
Tessellation Control Shader
. . .
void main(void)
{	 float subdivisions = 16.0;		  // tunable constant based on density of detail in height map
	 if (gl_InvocationID == 0)
	 {	 vec4 p0 = mvp * gl_in[0].gl_Position;	 // control pt. positions in screen space
		  vec4 p1 = mvp * gl_in[1].gl_Position;
		  vec4 p2 = mvp * gl_in[2].gl_Position;
		  p0 = p0 / p0.w;
		  p1 = p1 / p1.w;
		  p2 = p2 / p2.w;
		  float width = length(p2.xy - p0.xy) * subdivisions + 1.0;	 // perceived "width" of tess grid
		  float height = length(p1.xy - p0.xy) * subdivisions + 1.0;	 // perceived "height" of tess grid
		  gl_TessLevelOuter[0] = height;	 // set tess levels based on perceived side lengths
		  gl_TessLevelOuter[1] = width;
		  gl_TessLevelOuter[2] = height;
		  gl_TessLevelOuter[3] = width;
		  gl_TessLevelInner[0] = width;
		  gl_TessLevelInner[1] = height;
	 }
	 // forward texture coordinates and control points to TES as before
	 tcs_out[gl_InvocationID] = tc[gl_InvocationID];
	 gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
}

Applying these control shader 
changes to the instanced (but not 
lighted) version of our scene from 
Figure 12.7, and replacing the 
height map with Hastings-Trew’s 
more finely tuned version shown in 
Figure 12.8 produces the improved 
scene, with more realistic horizon 
detail, shown in Figure 12.10.

In this example it is also useful 
to change the layout specifier in the 
evaluation shader from:

layout (quads, equal_spacing, ccw) in
Figure 12.10
Tessellated moon with controlled level of detail (LOD).
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to:

layout (quads, fractional_even_spacing, ccw) in

The reason for this modification is difficult to illustrate in still images. In an 
animated scene, as a tessellated object moves through 3D space, if LOD is used it is 
sometimes possible to see the changes in tessellation levels on the surface of the object 
as wiggling artifacts called “popping.” Changing from equal spacing to fractional 
spacing reduces this effect by making the grid geometry of adjacent patch instances 
more similar, even if they differ in level of detail. (See Exercises 12.2 and 12.3.)

Employing LOD can dramatically reduce the load on the system. For example, 
when animated, the scene might be less likely to appear jerky or to lag than could 
be the case without controlling LOD.

Applying this simple LOD technique to the version that includes Phong 
shading (i.e., Program 12.4) is a bit trickier. This is because the changes in LOD 
between adjacent patch instances can in turn cause sudden changes to the associ-
ated normal vectors, causing popping artifacts in the lighting! As always, there are 
tradeoffs and compromises to consider when constructing a complex 3D scene.

SUPPLEMENTAL NOTES

Combining tessellation with LOD is particularly useful in real-time virtual 
reality applications that require both complex detail for realism and frequent object 
movement and/or changes in camera position, such as in computer games. In this 
chapter we have illustrated the use of tessellation and LOD for real-time terrain 
generation, although it can also be applied in other areas such as in displacement 
mapping for 3D models (where tessellated vertices are added to the surface of a 
model and then moved so as to add detail). It is also useful in computer-aided-
design applications.

Sellers et al. extends the LOD technique (shown in Program 12.5) further 
than we have presented, by also eliminating vertices in patches that are behind the 
camera (they do this by setting their inner and outer levels to zero) [SW15]. This is 
an example of a culling technique, and it is a very useful one because of the load 
that instanced tessellation can still place on the system.

The four-parameter version of createShaderProgram() used in Program 12.1 is 
added to the Utils.cpp file. Later, we will add additional versions to accommodate 
the geometry shader stage.
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Exercises

	12.1	 Modify Program 12.1 to experiment with various values for inner and outer 
tessellation levels, and observe the resulting rendered mesh.

	12.2	 Test Program 12.5 with the layout specifier in the evaluation shader set to 
equal_spacing, and then to fractional_even_spacing, as described in Section 12.4. 
Observe the effects on the rendered surface as the camera moves. You should 
be able to observe popping artifacts in the first case, which are mostly 
alleviated in the second case.

	12.3	 (PROJECT) Modify Program 12.4 to utilize a height map of your own design 
(you could use the one you built previously in Exercise 10.2). Then add 
lighting and shadow-mapping so that your tessellated terrain casts shadows. 
This is a complex exercise, because some of the code in the first and second 
shadow-mapping passes will need to be moved to the evaluation shader.
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Immediately following tessellation in the OpenGL pipeline is the geometry 
stage. Here, the programmer has the option of including a geometry shader. This 
stage actually pre-dates tessellation; it became part of the OpenGL core at version 3.2 
(in 2009).

Like tessellation, geometry shaders enable the programmer to manipulate groups 
of vertices, in ways that are impossible to do in a vertex shader. In some cases, a task 
might be accomplished using either a tessellation shader or a geometry shader, as 
their capabilities overlap in some ways.

	 13.1	 PER-PRIMITIVE PROCESSING IN OPENGL
The geometry shader stage is situated between tessellation and rasterization, 

within the segment of the pipeline devoted to primitive processing (refer back to 
Figure 2.2). Whereas vertex shaders enable the manipulation of one vertex at a time, 
and fragment shaders enable the manipulation of one fragment (essentially one pixel) 
at a time, geometry shaders enable manipulation of one primitive at a time.

Recall that primitives are the basic building blocks in OpenGL for drawing 
objects. Only a few types of primitives are available; we will focus primarily on 
geometry shaders that manipulate triangles. Thus, when we say that a geometry 
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shader can manipulate one primitive at a time, we usually mean that the shader 
has access to all three vertices of a triangle at a time. Geometry shaders allow 
you to:

•	 access all vertices in a primitive at once, then
•	 output the same primitive unchanged, or
•	 output the same primitive with modified vertex locations, or
•	 output a different type of primitive, or
•	 output additional primitives, or
•	 delete the primitive (not output it at all).

Similar to the tessellation evaluation shader, incoming vertex attributes are 
accessible in a geometry shader as arrays. However, in a geometry shader, incom-
ing attribute arrays are indexed only up to the primitive size. For example, if the 
primitives are triangles, then the available indices are 0, 1, and 2. Accessing the 
vertices themselves is done using the predefined array gl_in, as follows:

gl_in[2].gl_Position  // position of the 3rd vertex

Also similar to the tessellation evaluation shader, the geometry shader’s out
put vertex attributes are all scalars. That is, the output is a stream of individual 
vertices (their positions and other attribute variables, if any) that form primitives.

There is a layout qualifier used to set the primitive input/output types and the 
output size.

The special GLSL command EmitVertex() specifies that a vertex is to be output. 
The special GLSL command EndPrimitive() indicates the completion of building a 
particular primitive.

The built-in variable gl_PrimitiveIDIn is available and holds the ID of the cur-
rent primitive. The ID numbers start at 0 and count up to the number of primitives 
minus 1.

We will explore four common categories of operations:

•	 altering primitives
•	 deleting primitives
•	 adding primitives
•	 changing primitive types
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	 13.2	 ALTERING PRIMITIVES
Geometry shaders are convenient for changing the shape of an object when 

that change can be effected through isolated changes to the primitives (typically 
triangles).

Consider, for example, the torus we rendered previously in Figure 7.12. 
Suppose that torus represented an inner tube (such as for a tire), and we want to 
“inflate” it. Simply applying a scale factor in the C++/OpenGL code won’t accom-
plish this, because its fundamental shape wouldn’t change. Giving it the appear-
ance of being “inflated” requires also making the inner hole smaller as the torus 
stretches into the empty center space.

One way of doing this would be to add the surface normal vector to each vertex. 
While it is true that this could be done in the vertex shader, let’s do it in the geom-
etry shader, for practice. Program 13.1 shows the GLSL geometry shader code. 
The other modules are the same as for Program 7.3, with a few minor changes: the 
fragment shader input names now need to reflect the geometry shader outputs (for 
example, varyingNormal becomes varyingNormalG), and the C++/OpenGL application 
needs to compile the geometry shader and attach it to the shader program prior to 
linking. The new shader is specified as being a geometry shader as follows:

GLuint gShader = glCreateShader(GL_GEOMETRY_SHADER);

Program 13.1 Geometry Shader: Altering Vertices
#version 430

layout (triangles) in;

in vec3 varyingNormal[ ];		  // inputs from the vertex shader
in vec3 varyingLightDir[ ];
in vec3 varyingHalfVector[ ];

out vec3 varyingNormalG;		  // outputs through the rasterizer to the fragment shader
out vec3 varyingLightDirG;
out vec3 varyingHalfVectorG;

layout (triangle_strip, max_vertices=3) out;

// matrices and lighting uniforms same as before
. . .
void main (void)
{	 // move vertices along the normal, and pass through the other vertex attributes unchanged
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	 for (int i=0; i<3; i++)
	 {	 gl_Position = proj_matrix *
			   gl_in[i].gl_Position + normalize(vec4(varyingNormal[i],1.0)) * 0.4;
		  varyingNormalG = varyingNormal[i];
		  varyingLightDirG = varyingLightDir[i];
		  varyingHalfVectorG = varyingHalfVector[i];
		  EmitVertex();
	 }
	 EndPrimitive();
}

Note in Program 13.1 that the input variables corresponding to the output 
variables from the vertex shader are declared as arrays. This provides the 
programmer a mechanism for accessing each of the vertices in the triangle 
primitive and their attributes using the indices 0, 1, and 2. We wish to move those 
vertices outward along their surface normals. Both the vertices and the normals 
have already been transformed to view space in the vertex shader. We add a fraction 
of the normal to each of the incoming vertex positions (gl_in[i].gl_Position) and then 
apply the projection matrix to the result, producing each output gl_Position.

Note the use of the GLSL call EmitVertex() 
that specifies when we have  finished com
puting the output gl_Position and its asso
ciated  vertex attributes and are ready to 
output a vertex. The EndPrimitive() call speci
fies that we have completed the definition 
of a set of vertices comprising a primitive (in 
this case, a triangle). The result is shown in 
Figure 13.1.

The geometry shader includes two lay
out qualifiers. The first specifies the input primitive type and must be compatible 
with the primitive type in the C++-side glDrawArrays() or glDrawElements() call. The 
options are as follows:

geometry shader 
input primitive

compatible OpenGL primitives sent 
from glDrawArrays()

#vertices per 
invocation

points GL_POINTS 1
lines GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP 2

Figure 13.1
“Inflated” torus with vertices altered by geometry shader.
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lines_adjacency GL_LINES_ADJACENCY, GL_LINE_STRIP_
ADJACENCY 4

triangles GL_TRIANGLES, GL_TRIANGLE_STRIP, 
GL_TRIANGLE_FAN 3

triangles_adjacency GL_TRIANGLES_ADJACENCY, GL_TRIANGLE_
STRIP_ADJACENCY 6

The various OpenGL primitive types (including “strip” and “fan” types) were 
described in Chapter 4. “Adjacency” types were introduced in OpenGL for use 
with geometry shaders, and they allow access to vertices adjacent to the primitive. 
We don’t use them in this book, but they are listed for completeness.

The output primitive type must be points, line_strip, or triangle_strip. Note that 
the output layout qualifier also specifies the maximum number of vertices the 
shader outputs in each invocation.

This particular alteration to the torus could have been done more easily in the 
vertex shader. However, suppose that instead of moving each vertex outward along 
its own surface normal, we wished instead to move each triangle outward along its 
surface normal, in effect “exploding” the torus triangles outward. The vertex shader 
cannot do that, because computing a normal for the triangle requires averaging the 
vertex normals of all three triangle vertices, and the vertex shader only has access to 
the vertex attributes of one vertex in the triangle at a time. We can, however, do this 
in the geometry shader, because the geometry shader does have access to all three 
vertices in each triangle. We average their normals to compute a surface normal for 
the triangle, then add that averaged normal to each of the vertices in the triangle 
primitive. Figures 13.2, 13.3, and 13.4 show the averaging of the surface normals, 
the modified geometry shader main() code, and the resulting output respectively.

Figure 13.2
Applying averaged triangle surface normal to triangle vertices.
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The appearance of the “exploded” 
torus can be improved by ensuring that the 
inside of the torus is also visible (normally 
those triangles are culled by OpenGL 
because they are “back-facing”). One way 
of doing this is to render the torus twice, 
once in the normal manner and once with 
winding order reversed (reversing the 
winding order effectively switches which 
faces are front-facing and which are back-
facing). We also send a flag to the shaders 

(in a uniform) to disable diffuse and specular lighting on the back-facing triangles 
to make them less prominent. The changes to the code are as follows.

changes to display() function:
. . .
// draw front-facing triangles – enable lighting
glUniform1i(lLoc, 1);    // location of uniform for enabling/disabling diffuse/specular light component
glFrontFace(GL_CCW);
glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

// draw back-facing triangles – disable lighting
glUniform1i(lLoc, 0);
glFrontFace(GL_CW);
glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

Figure 13.4
“Exploded” torus.

Figure 13.3
Modified geometry shader for “exploding” the torus.
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modification to fragment shader:
. . .
if (enableLighting == 1)
{	 fragColor = …   	 // when rendering front faces, use normal lighting computations
}
else		  // when rendering back faces, enable only the ambient lighting component
{	 fragColor = globalAmbient * material.ambient +  light.ambient * material.ambient;
}

The resulting “exploded” torus, 
including back faces, is shown in 
Figure 13.5.

	 13.3	� DELETING 
PRIMITIVES

A common use for geometry shaders 
is to build richly ornamental objects out 
of simple ones, by judiciously deleting 
some of the primitives. For example, 
removing some of the triangles from our torus can turn it into a sort of complex 
latticed structure that would be more difficult to model from scratch. A geometry 
shader that does this is shown in Program 13.2, and the output is shown in Figure 13.6.

Program 13.2 Geometry: Delete Primitives
// inputs, outputs, and uniforms as before

. . .
void main (void)
{	 if ( mod(gl_PrimitiveIDIn,3) != 0 )
	 {	 for (int i=0; i<3; i++)
		  {	 gl_Position = proj_matrix * gl_in[i].gl_Position;
			   varyingNormalG = varyingNormal[i];
			   varyingLightDirG = varyingLightDir[i];
			   varyingHalfVectorG = varyingHalfVector[i];
			   EmitVertex();
	 }	 }
	 EndPrimitive();
}

Figure 13.5
“Exploded” torus including back faces.
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No other changes to the code are necessary. Note the use of the mod function—
all vertices are passed through except those in the first of every three primitives, 
which is ignored. Here too, rendering the back-facing triangles can improve real-
ism, as shown in Figure 13.7.

	 13.4	 ADDING PRIMITIVES
Perhaps the most interesting and powerful use of geometry shaders is for 

adding additional vertices and/or primitives to a model being rendered. This 
makes it possible to do such things as increase the detail in an object to improve 
height mapping, or to change the shape of an object completely.

Consider the following example, where we change each triangle in the torus to 
a tiny triangular pyramid.

Our strategy, similar to our previous “exploded” torus example, is illustrated 
in Figure 13.8. The vertices of an incoming triangle primitive are used to define 
the base of a pyramid. The walls of the pyramid are constructed of those vertices 
and of a new point (called the “spike point”) computed by averaging the normals of 
the original vertices. New normal vectors are then computed for each of the three 
“sides” of the pyramid by taking the cross product of two vectors from the spike 
point to the base.

The geometry shader in Program 13.3 does this for each triangle primitive in 
the torus. For each incoming triangle, it outputs three triangle primitives, for a total 
of nine vertices. Each new triangle is built in the function makeNewTriangle(), which 

Figure 13.6
Geometry shader: primitive deletion.

Figure 13.7
Primitive deletion showing back faces.
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is called three times. It computes the normal for the specified triangle, then calls 
the function setOutputValues() to assign the appropriate output vertex attributes 
for each vertex emitted. After emitting all three vertices, it calls EndPrimitive(). To 
ensure that the lighting is performed accurately, new values of the light direction 
vector are computed for each newly created vertex.

Program 13.3 Geometry: Add Primitives
. . .
vec3 newPoints[9], lightDir[9];
float sLen = 0.01;	 // sLen is the "spike length", the height of the small pyramid

void setOutputValues(int p, vec3 norm)
{	 varyingNormal = norm;
	 varyingLightDir = lightDir[p];
	 varyingVertPos = newPoints[p];
	 gl_Position = proj_matrix * vec4(newPoints[p], 1.0);
}

void makeNewTriangle(int p1, int p2)
{	 // generate surface normal for this triangle
	 vec3 c1 = normalize(newPoints[p1] - newPoints[3]);

Figure 13.8
Converting triangles to pyramids.
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	 vec3 c2 = normalize(newPoints[p2] - newPoints[3]);
	 vec3 norm = cross(c1,c2);

	 // generate and emit the three vertices
	 setOutputValues(p1, norm); EmitVertex();
	 setOutputValues(p2, norm); EmitVertex();
	 setOutputValues(3, norm); EmitVertex();
	 EndPrimitive();
}

void main(void)
{	 // offset the three triangle vertices by the original surface normal
	 vec3 sp0 = gl_in[0].gl_Position.xyz + varyingOriginalNormal[0]*sLen;
	 vec3 sp1 = gl_in[1].gl_Position.xyz + varyingOriginalNormal[1]*sLen;
	 vec3 sp2 = gl_in[2].gl_Position.xyz + varyingOriginalNormal[2]*sLen;

	 // compute the new points comprising a small pyramid
	 newPoints[0] = gl_in[0].gl_Position.xyz;
	 newPoints[1] = gl_in[1].gl_Position.xyz;
	 newPoints[2] = gl_in[2].gl_Position.xyz;
	 newPoints[3] = (sp0 + sp1 + sp2)/3.0;	 // spike point

	 // compute the directions from the vertices to the light
	 lightDir[0] = light.position - newPoints[0];
	 lightDir[1] = light.position - newPoints[1];
	 lightDir[2] = light.position - newPoints[2];
	 lightDir[3] = light.position - newPoints[3];

	 // build three new triangles to form a small pyramid on the surface
	 makeNewTriangle(0,1);  // the third point is always the spike point
	 makeNewTriangle(1,2);
	 makeNewTriangle(2,0);
}

The resulting output is shown in 
Figure 13.9. If the spike length (sLen) 
variable is increased, the added surface 
“pyramids” would be taller. However, 
they could appear unrealistic in the 
absence of shadows. Adding shadow-
mapping to Program 13.3 is left as an 
exercise for the reader.

Careful application of this technique 
can enable the simulation of spikes, thorns, 

Figure 13.9
Geometry shader: primitive addition.
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and other fine surface protrusions, as well as the reverse, such as indentations and 
craters ([DV20], [KS16]).

	 13.5	 CHANGING PRIMITIVE TYPES
OpenGL allows for switching primitive types in a geometry shader. A common 

use for this feature is to convert input triangles into one or more output line segments, 
simulating fur or hair. Although hair remains one of the more difficult real-world 
items to generate convincingly, geometry shaders can help make real-time rendering 
achievable in many cases.

Program 13.4 shows a geometry 
shader that converts each incoming 
three-vertex triangle to an outward-
facing two-vertex line segment. It 
starts by computing a starting point 
for the strand of hair by averaging 
the triangle vertex locations, thus 
generating the centroid of the 
triangle. It then uses the same 
“spike point” from Program 13.3 as 
the hair’s ending point. The output 
primitive is specified as a line strip 
with two vertices, the first vertex being the start point, and the second vertex 
being the end point. The result is shown in Figure 13.10, for a torus instantiated 
with a dimensionality of seventy-two slices.

Of course, this is merely the starting point for generating fully realistic hair. 
Making the hair bend or move would require several modifications, such as 
generating more vertices for the line strip and computing their positions along 
curves and/or incorporating randomness. Lighting is complicated by the lack of 
an obvious surface normal for a line segment; in this example, we simply assigned 
the normal to be the same as the original triangle’s surface normal.

Program 13.4 Geometry: Changing Primitive Types
layout (line_strip, max_vertices=2) out;
…
void main(void)

Figure 13.10
Changing triangle primitives to line primitives.
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{	 vec3 op0 = gl_in[0].gl_Position.xyz;				    // original triangle vertices
	 vec3 op1 = gl_in[1].gl_Position.xyz;
	 vec3 op2 = gl_in[2].gl_Position.xyz;
	 vec3 ep0 = gl_in[0].gl_Position.xyz + varyingNormal[0]*sLen;	 // offset triangle vertices
	 vec3 ep1 = gl_in[1].gl_Position.xyz + varyingNormal[1]*sLen;
	 vec3 ep2 = gl_in[2].gl_Position.xyz + varyingNormal[2]*sLen;

	 // compute the new points comprising a small line segment
	 vec3 newPoint1 = (op0 + op1 + op2)/3.0;			   // original (start) point
	 vec3 newPoint2 = (ep0 + ep1 + ep2)/3.0;			   // end point

	 gl_Position = proj_matrix * vec4(newPoint1, 1.0);
	 varyingVertPosG = newPoint1;
	 varyingLightDirG = light.position - newPoint1;
	 varyingNormalG = varyingNormal[0];
	 EmitVertex();

	 gl_Position = proj_matrix * vec4(newPoint2, 1.0);
	 varyingVertPosG = newPoint2;
	 varyingLightDirG = light.position - newPoint2;
	 varyingNormalG = varyingNormal[1];
	 EmitVertex();

	 EndPrimitive();
}

SUPPLEMENTAL NOTES

One of the appeals of geometry shaders is that they are relatively easy to 
use. Although many applications for which geometry shaders are used could be 
achieved using tessellation, the mechanism of geometry shaders often makes 
them easier to implement and debug. Of course, the relative fit of geometry versus 
tessellation depends on the particular application.

Generating convincing hair or fur is challenging, and there is a wide range 
of techniques employed depending on the application. In some cases, simple 
texturing is adequate, and/or the use of tessellation or geometry shaders such as 
the basic technique shown in this chapter. When greater realism is required, move-
ment (animation) and lighting become tricky. Two dedicated tools for hair and fur 
generation are HairWorks, which is part of the NVIDIA GameWorks suite [GW20], 
and TressFX, which was developed by AMD [TR20]. The former works with both 
OpenGL and DirectX, whereas the latter works only with DirectX. Examples of 
using TressFX can be found in [GP14].
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Exercises

	13.1	 Modify Program 13.1 so that it moves each vertex slightly toward the center 
of its primitive triangle. The result should look similar to the exploded torus 
in Figure 13.5, but without the overall change in torus size.

	13.2	 Modify Program 13.2 so that it deletes every other primitive, or every 
fourth primitive (rather than every third primitive), and observe the effect 
on the resulting rendered torus. Also, try changing the dimensionality of the 
instantiated torus to a value that is not a multiple of three (such as 40), while 
still deleting every third primitive. There are many possible effects.

	13.3	 (PROJECT) Modify Program 13.4 to additionally render the original torus. 
That is, render both a lighted torus (as previously done in Chapter 7) and the 
outgoing line segments (using a geometry shader) so that the “hair” looks 
like it is coming out of the torus.

	13.4	 (RESEARCH & PROJECT) Modify Program 13.4 so that it produces 
outward-facing line segments with more than two vertices, arranged so as to 
make the line segments appear to bend slightly.
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■ ■ ■ ■ ■

In this chapter, we explore a variety of techniques utilizing the tools we have 
learned throughout the book. Some we will develop fully, while for others we will 
offer a more cursory description. Graphics programming is a huge field, and this 
chapter is by no means comprehensive, but rather an introduction to just a few of the 
creative effects that have been developed over the years.

	 14.1	 FOG
Usually when people think of fog, they think of early misty mornings with low vis-

ibility. In truth, atmospheric haze (such as fog) is more common than most of us think. 
The majority of the time, there is some degree of haze in the air, and although we have 
become accustomed to seeing it, we don’t usually realize it is there. So we can enhance 
the realism in our outdoor scenes by introducing fog—even if only a small amount.

Fog also can enhance the sense of depth. When close objects have better clarity 
than distant objects, it is one more visual cue that our brains can use to decipher the 
topography of a 3D scene.

CGP_C++_CH14_2E_2pp.indd   311 11/3/2020   3:00:22 PM



312  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

There are a variety of methods for simulating fog, from very simple ones to 
sophisticated models that include light scattering effects. However, even very sim-
ple approaches can be effective. One such method is to blend the actual pixel color 
with another color (the “fog” color, typically gray or bluish-gray—also used for 
the background color), based on the distance the object is from the eye.

Figure 14.1 illustrates the concept. The eye (camera) is shown at the left, and 
two red objects are placed in the view frustum. The cylinder is closer to the eye, so 
it is mostly its original color (red); the cube is further from the eye, so it is mostly 
fog color. For this simple implementation, virtually all of the computations can be 
performed in the fragment shader.

Program 14.1 shows the relevant code for a very simple fog algorithm that uses 
a linear blend from object color to fog color based on the distance from the camera 
to the pixel. Specifically, this example adds fog to the height mapping example 
from Program 10.4.

Program 14.1 Simple Fog Generation
Vertex shader
. . .
out vec3 vertEyeSpacePos;
. . .
// Compute vertex position in eye space, without perspective, and send it to the fragment shader.
// The variable "p" is the height-mapped vertex, as described earlier in Program 10.4.
vertEyeSpacePos = (mv_matrix * p).xyz;

Figure 14.1
Fog: blending based on distance.
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Fragment shader
. . .
in vec3 vertEyeSpacePos;
out vec4 fragColor;
. . .
void main(void)
{	 vec4 fogColor = vec4(0.7, 0.8, 0.9, 1.0);    // bluish gray
	 float fogStart = 0.2;
	 float fogEnd = 0.8;

	 // the distance from the camera to the vertex in eye space is simply the length of a
	 // vector to that vertex, because the camera is at (0,0,0) in eye space.
	 float dist = length(vertEyeSpace.xyz);
	 float fogFactor = clamp(((fogEnd - dist) / (fogEnd - fogStart)), 0.0, 1.0);
	 fragColor = mix(fogColor, (texture(t,tc), fogFactor);
}

The variable fogColor specifies a color for the fog. The variables fogStart and 
fogEnd specify the range (in eye space) over which the output color transitions 
from object color to fog color, and can be tuned to meet the needs of the scene. The 
percentage of fog mixed with the object color is calculated in the variable fogFac-
tor, which is the ratio of how close the vertex is to fogEnd to the total length of the 
transition region. The GLSL clamp() function is used to restrict this ratio to being 
between the values 0.0 and 1.0. The GLSL mix() function then returns a weighted 
average of fog color and object color, based on the value of fogFactor. Figure 14.2 
shows the addition of fog to a scene with height mapped terrain. (A rocky texture 
from [LU16] has also been applied.)

Figure 14.2
Fog example.
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	 14.2	 COMPOSITING / BLENDING / TRANSPARENCY
We have already seen a few examples of blending—in the supplementary 

notes for Chapter 7, and just previously in our implementation of fog. However, 
we haven’t yet seen how to utilize the blending (or compositing) capabilities 
that follow after the fragment shader during pixel operations (recall the pipeline 
sequence shown in Figure 2.2). It is there that transparency is handled, which we 
look at now.

Throughout this book we have made frequent use of the vec4 data type, to 
represent 3D points and vectors in a homogeneous coordinate system. You may 
have noticed that we also frequently use a vec4 to store color information, where the 
first three values consist of red, green, and blue, and the fourth element is—what?

The fourth element in a color is called the alpha channel, and specifies the 
opacity of the color. Opacity is a measure of how non-transparent the pixel color 
is. An alpha value of 0 means “no opacity,” or completely transparent. An alpha 
value of 1 means “fully opaque,” not at all transparent. In a sense, the “transpar-
ency” of a color is 1-α, where α is the value of the alpha channel.

Recall from Chapter 2 that pixel operations utilize the Z-buffer, which achieves 
hidden surface removal by replacing an existing pixel color when another object’s 
location at that pixel is found to be closer. We actually have more control over this 
process—we may choose to blend the two pixels.

When a pixel is being rendered, it is called the “source” pixel. The pixel 
already in the frame buffer (presumably rendered from a previous object) is called 
the “destination” pixel. OpenGL provides many options for deciding which of the 
two pixels, or what sort of combination of them, ultimately is placed in the frame 
buffer. Note that the pixel operations step is not a programmable stage—so the 
OpenGL tools for configuring the desired compositing are found in the C++ appli-
cation, rather than in a shader.

The two OpenGL functions for controlling compositing are  
glBlendEquation(mode) and glBlendFunc(srcFactor, destFactor). Figure 14.3 shows an 
overview of the compositing process.

The compositing process works as follows:

	 1.	 The source and destination pixels are multiplied by source factor and 
destination factor respectively. The source and destination factors are 
specified in the glBlendFunc() call.
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	 2.	 The specified blendEquation is then used to combine the modified source 
and destination pixels to produce a new destination color. The blend 
equation is specified in the glBlendEquation() call.

The most common options for glBlendFunc() parameters (i.e., srcFactor and 
destFactor) are shown in the following table:

glBlendFunc() parameter resulting srcFactor or destFactor
GL_ZERO (0,0,0,0)
GL_ONE (1,1,1,1)
GL_SRC_COLOR (Rsrc,Gsrc,Bsrc,Asrc)
GL_ONE_MINUS_SRC_COLOR (1,1,1,1) – (Rsrc,Gsrc,Bsrc,Asrc)
GL_DST_COLOR (Rdest,Gdest,Bdest,Adest)
GL_ONE_MINUS_DST_COLOR (1,1,1,1) – (Rdest,Gdest,Bdest,Adest)
GL_SRC_ALPHA (Asrc,Asrc,Asrc,Asrc)
GL_ONE_MINUS_SRC_ALPHA (1,1,1,1) – (Asrc,Asrc,Asrc,Asrc)
GL_DST_ALPHA (Adest,Adest,Adest,Adest)
GL_ONE_MINUS_DST_ALPHA (1,1,1,1) – (Adest,Adest,Adest,Adest)
GL_CONSTANT_COLOR (RblendColor,GblendColor,BblendColor,AblendColor)
GL_ONE_MINUS_CONSTANT_
COLOR

(1,1,1,1) – (RblendColor,GblendColor,BblendColor,AblendColor)

Figure 14.3
OpenGL compositing overview.
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GL_CONSTANT_ALPHA (AblendColor,AblendColor,AblendColor,AblendColor)
GL_ONE_MINUS_CONSTANT_ALPHA (1,1,1,1) – (AblendColor,AblendColor,AblendColor,AblendColor)
GL_ALPHA_SATURATE (f, f, f, 1) where f = min(Asrc, 1)

Those options that indicate a “blendColor” (GL_CONSTANT_COLOR, etc.) 
require an additional call to glBlendColor() to specify a constant color that will be 
used to compute the blend function result. There are a few additional blend func-
tions that aren’t shown in the previous list.

The possible options for the glBlendEquation() parameter (i.e., mode) are as follows:

mode blended color
GL_FUNC_ADD result = sourceRGBA + destinationRGBA

GL_FUNC_SUBTRACT result = sourceRGBA – destinationRGBA 

GL_FUNC_REVERSE_SUBTRACT result = destinationRGBA – sourceRGBA

GL_MIN result = min(sourceRGBA, destinationRGBA)
GL_MAX result = max(sourceRGBA, destinationRGBA)

The glBlendFunc() defaults are GL_ONE (1.0) for srcFactor and GL_ZERO 
(0.0) for destFactor. The default for glBlendEquation() is GL_FUNC_ADD. Thus, by 
default, the source pixel is unchanged (multiplied by 1), the destination pixel is 
scaled to 0, and the two are added—meaning that the source pixel becomes the 
frame buffer color.

There are also the commands glEnable(GL_BLEND) and glDisable(GL_BLEND), 
which can be used to tell OpenGL to apply the specified blending, or to ignore it.

We won’t illustrate the effects of all of the options here, but we will walk 
through some illustrative examples. Suppose we specify the following settings in 
the C++/OpenGL application:

•	 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
•	 glBlendEquation(GL_FUNC_ADD)

Compositing would proceed as follows:

	 1.	 The source pixel is scaled by its alpha value.
	 2.	 The destination pixel is scaled by 1-srcAlpha (the source transparency).
	 3.	 The pixel values are added together.
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For example, if the source pixel is red, with 75% opacity: [1, 0, 0, 0.75], and 
the destination pixel contains completely opaque green: [0, 1, 0, 1], then the result 
placed in the frame buffer would be:

srcPixel * srcAlpha = [0.75, 0, 0, 0.5625]
destPixel * (1-srcAlpha) = [0, 0.25, 0, 0.25]
resulting pixel = [0.75, 0.25, 0, 0.8125]

That is, predominantly red, with some green, and mostly solid. The overall 
effect of the settings is to let the destination show through by an amount corre-
sponding to the source pixel’s transparency. In this example, the pixel in the frame 
buffer is green, and the incoming pixel is red with 25% transparency (75% opacity). 
So some green is allowed to show through the red.

It turns out that these settings for blend function and blend equation work well 
in many cases. Let’s apply them to a practical example in a scene containing two 
3D models: a torus and a pyramid in front of the torus. Figure 14.4 shows such 
a scene, on the left with an opaque pyramid, and on the right with the pyramid’s 
alpha value set to 0.8. Lighting has been added.

For many applications—such as creating a flat “window” as part of a model of 
a house—this simple implementation of transparency may be sufficient. However, 
in the example shown in Figure 14.4, there is a fairly obvious inadequacy. Although 
the pyramid model is now effectively transparent, an actual transparent pyramid 
should reveal not only the objects behind it, but also its own back surfaces.

Figure 14.4
Pyramid with alpha=1.0 (left), and alpha=0.8 (right).
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Actually, the reason that the back faces of the pyramid did not appear is because 
we enabled back-face culling. A reasonable idea might be to disable back-face cull-
ing while drawing the pyramid. However, this often produces other artifacts, as 
shown in Figure 14.5 (on the left). The problem with simply disabling back-face 
culling is that the effects of blending depend on the order that surfaces are ren-
dered (because that determines the source and destination pixels), and we don’t 
always have control over the rendering order. It is generally advantageous to render 
opaque objects first, as well as objects that are in the back (such as the torus) before 
any transparent objects. This also holds true for the surfaces of the pyramid, and 
in this case the reason that the two triangles comprising the base of the pyramid 
appear different is that one of them was rendered before the front of the pyramid 
and one was rendered after. Artifacts such as this are sometimes called “ordering” 
artifacts, and they can manifest in transparent models because we cannot always 
predict the order in which its triangles will be rendered.

We can solve the problem in our pyramid example by rendering the front and 
back faces separately, ourselves, starting with the back faces. Program 14.2 shows 
the code for doing this. We specify the alpha value for the pyramid by passing it to 
the shader program in a uniform variable, then apply it in the fragment shader by 
substituting the specified alpha into the computed output color.

Note also that for lighting to work properly, we must flip the normal vector 
when rendering the back faces. We accomplish this by sending a flag to the vertex 
shader, where we then flip the normal vector.

Program 14.2 Two-Pass Blending for Transparency
C++ / OpenGL application - in display() for rendering pyramid:
. . .
glEnable(GL_CULL_FACE);
. . .
glEnable(GL_BLEND);	 // configure blend settings
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glBlendEquation(GL_FUNC_ADD);

glCullFace(GL_FRONT);	 // render pyramid back faces first
glProgramUniform1f(renderingProgram, aLoc, 0.3f);	 // back faces very transparent
glProgramUniform1f(renderingProgram, fLoc, -1.0f);	 // flip normals on back faces
glDrawArrays(GL_TRIANGLES, 0, numPyramidVertices);
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glCullFace(GL_BACK);	 // then render pyramid front faces
glProgramUniform1f(renderingProgram, aLoc, 0.7f);	 // front faces slighlty transparent
glProgramUniform1f(renderingProgram, fLoc, 1.0f);	 // don't flip normals on front faces
glDrawArrays(GL_TRIANGLES, 0, numPyramidVertices);

glDisable(GL_BLEND);

Vertex shader:
. . .
if (flipNormal < 0) varyingNormal = -varyingNormal;
. . .

Fragment shader:
. . .
fragColor = globalAmbient * material.ambient + ... etc. 	 // same as for Blinn-Phong lighting.
fragColor = vec4(fragColor.xyz, alpha);    // replace alpha value with one sent in uniform variable

The result of this “two-pass” solution is shown in Figure 14.5, on the right.

Although it works well here, the two-pass solution shown in Program 14.2 is 
not always adequate. For example, some more complex models may have hidden 
surfaces that are front-facing, and if such an object were made transparent, our 
algorithm would fail to render those hidden front-facing portions of the model. 
Alec Jacobson describes a five-pass sequence that works in a large number of 
cases [JA12].

Figure 14.5
Transparency and back faces: ordering artifacts (left) and two-pass correction (right).
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	 14.3	 USER-DEFINED CLIPPING PLANES
OpenGL includes the capability to specify clipping planes beyond those 

defined by the view frustum. One use for a user-defined clipping plane is to slice 
a model. This makes it possible to create complex shapes by starting with a simple 
model and slicing sections off of it.

A clipping plane is defined according to the standard mathematical definition 
of a plane:

ax + by + cz + d = 0

where a, b, c, and d are parameters defining a particular plane in 3D space with X, 
Y, and Z axes. The parameters represent a vector (a,b,c) normal to the plane, and a 
distance d from the origin to the plane. Such a plane can be specified in the vertex 
shader using a vec4, as follows:

vec4 clip_plane = vec4(0.0, 0.0, -1.0, 0.2);

This would correspond to the plane:

(0.0) x + (0.0) y + (-1.0) z + 0.2 = 0

The clipping can then be achieved, also in the vertex shader, by using the built-
in GLSL variable gl_ClipDistance[ ], as in the following example:

gl_ClipDistance[0] = dot(clip_plane.xyz, vertPos) + clip_plane.w;

In this example, vertPos refers to the vertex position coming into the vertex 
shader in a vertex attribute (such as from a VBO); clip_plane was defined above. 
We then compute the signed distance from the clipping plane to the incoming 
vertex (shown in Chapter 3), which is either 0 if the vertex is on the plane, or is 
negative or positive depending on which side of the plane the vertex lies. The sub-
script on the gl_ClipDistance array enables multiple clipping distances (i.e., multiple 
planes) to be defined. The maximum number of user clipping planes that can be 
defined depends on the graphics card’s OpenGL implementation.

User-defined clipping must then be enabled in the C++/OpenGL application. 
There are built-in OpenGL identifiers GL_CLIP_DISTANCE0, GL_CLIP_DISTANCE1, 
and so on, corresponding to each gl_ClipDistance[ ] array element. The 0th user-
defined clipping plane can be enabled, for example, as follows:

glEnable(GL_CLIP_DISTANCE0);
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Applying the previous steps to our lighted torus results in the output shown in 
Figure 14.6, in which the front half of the torus has been clipped. (A rotation has 
also been applied to provide a clearer view.)

It may appear that the bottom portion of the torus has also been clipped, but 
that is because the inside faces of the torus were not rendered. When clipping 
reveals the inside surfaces of a shape, it is necessary to render them as well, or the 
model will appear incomplete (as it does in Figure 14.6).

Rendering the inner surfaces requires making a second call to gl_DrawArrays(), 
with the winding order reversed. Additionally, it is necessary to reverse the surface 
normal vector when rendering the back-facing triangles (as was done in the pre-
vious section). The relevant modifications to the C++ application and the vertex 
shader are shown in Program 14.3, with the output shown in Figure 14.7.

Program 14.3 Clipping with Back Faces
C++ / OpenGL application:
void display(GLFWwindow* window, double currentTime) {
	 . . .
	 flipLoc = glGetUniformLocation(renderingProgram, "flipNormal");
	 . . .
	 glEnable(GL_CLIP_DISTANCE0);

	 // normal drawing of external faces
	 glUniform1i(flipLoc, 0);
	 glFrontFace(GL_CCW);
	 glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);

Figure 14.6
Clipping a torus.

Figure 14.7
Clipping with back faces.
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	 // rendering of back faces with normals reversed
	 glUniform1i(flipLoc, 1);
	 glFrontFace(GL_CW);
	 glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);
}

Vertex shader:
. . .
vec4 clip_plane = vec4(0.0, 0.0, -1.0, 0.5);
uniform int flipNormal;	 // flag for inverting normal
. . .
void main(void)
{	 . . .
	 if (flipNormal==1) varyingNormal = -varyingNormal;
	 . . .	
	 gl_ClipDistance[0] = dot(clip_plane.xyz, vertPos) - clip_plane.w;
	 . . .
}

	 14.4	 3D TEXTURES
Whereas 2D textures contain image data indexed by two variables, 3D tex-

tures contain the same type of image data, but in a 3D structure that is indexed 
by three variables. The first two dimensions still represent width and height in the 
texture map; the third dimension represents depth.

Because the data in a 3D texture is stored in a similar manner as for 2D tex-
tures, it is tempting to think of a 3D texture as a sort of 3D “image.” However, 
we generally don’t refer to 3D texture source data as a 3D image, because there 
are no commonly used image file formats for this sort of structure (i.e., there 
is nothing akin to a 3D JPEG, at least not one that is truly three-dimensional). 
Instead, we suggest thinking of a 3D texture as a sort of substance into which we 
will submerge (or “dip”) the object being textured, resulting in the object’s sur-
face points obtaining their colors from the corresponding locations in the texture. 
Alternatively, it can be useful to imagine that the object is being “carved” out of 
the 3D texture “cube,” much like a sculptor carves a figure out of a single solid 
block of marble.

OpenGL has support for 3D texture objects. In order to use them, we need to 
learn how to build the 3D texture and how to use it to texture an object.
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Unlike 2D textures, which can be built from standard image files, 3D textures are 
usually generated procedurally. As was done previously for 2D textures, we decide 
on a resolution—that is, the number of texels in each dimension. Depending on the 
colors in the texture, we may build a three-dimensional array containing those col-
ors. Alternatively, if the texture holds a “pattern” that could be utilized with various 
colors, we might instead build an array that holds the pattern, such as with 0s and 1s.

For example, we can build a 3D texture that represents horizontal stripes by 
filling an array with 0s and 1s corresponding to the desired stripe pattern. Suppose 
that the desired resolution of the texture is 200x200x200 texels, and the texture is 
comprised of alternating stripes that are each 10 texels high. A simple function 
that builds such a structure by filling an array with appropriate 0s and 1s in a 
nested loop (assuming in this case that width, height, and depth variables are each 
set to 200) would be as follows:

void generate3Dpattern() {
	 for (int x=0; x<texWidth; x++) {
	 	 for (int y=0; y<texHeight; y++) {
	 	   for (int z=0; z<texDepth; z++) {
	 	 	 	 if ((y/10) % 2 == 0)
					     tex3Dpattern[x][y][z] = 0.0;
				    else
					     tex3Dpattern[x][y][z] = 1.0;
			   }
		  }
	 }
}

The pattern stored in the tex3Dpattern array is 
illustrated in Figure 14.8 with the 0s rendered in 
blue and the 1s rendered in yellow.

Texturing an object with the striped pattern as 
shown in Figure 14.8 requires the following steps:

	 1.	 generating the pattern as already shown
	 2.	 using the pattern to fill a byte array of 

desired colors
	 3.	 loading the byte array into a texture 

object
Figure 14.8
Striped 3D texture pattern.
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	 4.	 deciding on appropriate 3D texture coordinates for the object vertices
	 5.	 texturing the object in the fragment shader using an appropriate sampler

Texture coordinates for 3D textures range from 0 to 1, in the same manner as 
for 2D textures.

Interestingly, step #4 (determining 3D texture coordinates) is usually a lot sim-
pler than one might initially suspect. In fact, it is usually simpler than for 2D textures! 
This is because (in the case of 2D textures) since a 3D object was being textured with 
a 2D image, we needed to decide how to “flatten” the 3D object’s vertices (such as by 
UV-mapping) to create texture coordinates. But when 3D texturing, both the object 
and the texture are of the same dimensionality (three). In most cases, we want the 
object to reflect the texture pattern, as if it were “carved” out of it (or dipped into it).  
So the vertex locations themselves serve as the texture coordinates! Usually all that 
is necessary is to apply some simple scaling to ensure that the object’s vertices’ loca-
tion coordinates map to the 3D texture coordinates’ range [0..1].

Since we are generating the 3D texture procedurally, we need a way of con-
structing an OpenGL texture map out of generated data. The process for loading 
data into a texture is similar to what we saw earlier in Section 5.12. In this case, we 
fill a 3D array with color values, then copy them into a texture object.

Program 14.4 shows the various components for achieving all of the previous 
steps in order to texture an object with blue and yellow horizontal stripes from a 
procedurally built 3D texture. The desired pattern is built in the generate3Dpattern() 
function, which stores the pattern in an array named “tex3Dpattern”. The “image” 
data is then built in the function fillDataArray(), which fills a 3D array with byte 
data corresponding to the RGB colors R, G, B, and A, each in the range [0..255], 
according to the pattern. Those values are then copied into a texture object in the 
load3DTexture() function.

Program 14.4 3D Texturing: Striped Pattern
C++ / OpenGL application:
. . .
const int texWidth = 200;
const int texHeight= 200;
const int texDepth = 200;
double tex3Dpattern[texWidth][texHeight][texDepth];
. . .
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// fill a byte array with RGB blue/yellow values corresponding to the pattern built by generate3Dpattern()
void fillDataArray(GLubyte data[ ]) {
	 for (int i=0; i<texWidth; i++) {
	 	 for (int j=0; j<texHeight; j++) {
	 	 	 for (int k=0; k<texDepth; k++) {
				    if (tex3Dpattern[i][j][k] == 1.0) {
					     // yellow color
	 	 	 	 	 data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+0] = (GLubyte) 255;	 // red
	 	 	 	 	 data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+1] = (GLubyte) 255;	 // green
	 	 	 	 	 data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+2] = (GLubyte) 0;	 // blue
	 	 	 	 	 data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+3] = (GLubyte) 255;	 // alpha
				    }
				    else {
					     // blue color
	 	 	 	 	 data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+0] = (GLubyte) 0;	 // red
	 	 	 	 	 data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+1] = (GLubyte) 0;	 // green
	 	 	 	 	 data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+2] = (GLubyte) 255;	 // blue
	 	 	 	 	 data[i*(texWidth*texHeight*4) + j*(texHeight*4)+ k*4+3] = (GLubyte) 255;	 // alpha
}	 }	 }	 }	 }

// build 3D pattern of stripes
void generate3Dpattern() {
	 for (int x=0; x<texWidth; x++) {
	 	 for (int y=0; y<texHeight; y++) {
	 	 	 for (int z=0; z<texDepth; z++) {
	 	 	 	 if ((y/10)%2 == 0)
					     tex3Dpattern[x][y][z] = 0.0;
				    else
					     tex3Dpattern[x][y][z] = 1.0;
}	 }	 }	 }
// load the sequential byte data array into a texture object
int load3DTexture() {
	 GLuint textureID;
	 GLubyte* data = new GLubyte[texWidth*texHeight*texDepth*4];
	 fillDataArray(data);
	 glGenTextures(1, &textureID);
	 glBindTexture(GL_TEXTURE_3D, textureID);
	 glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	 glTexStorage3D(GL_TEXTURE_3D, 1, GL_RGBA8, texWidth, texHeight, texDepth);
	 glTexSubImage3D(GL_TEXTURE_3D, 0, 0, 0, 0, texWidth, texHeight, texDepth, 
	 	 	 	   GL_RGBA, GL_UNSIGNED_INT_8_8_8_8_REV, data);
	 delete[ ] data; return textureID;
}
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void init(GLFWwindow* window) {
	 . . .
	 generate3Dpattern();		  // 3D pattern and texture only loaded once, so done from init()
	 stripeTexture = load3DTexture();	 // holds the integer texture ID for the 3D texture
}

void display(GLFWwindow* window, double currentTime) {
	 . . .
	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_3D, stripeTexture);
	 glDrawArrays(GL_TRIANGLES, 0, numObjVertices);
}

Vertex Shader:
. . .
out vec3 originalPosition;	 // the original model vertices will be used for texture coordinates
. . .
layout (binding=0) uniform sampler3D s;

void main(void)
{	 originalPosition = position;	 // pass original model coordinates for use as 3D texture coordinates
	 gl_Position = proj_matrix * mv_matrix * vec4(position,1.0);
}

Fragment Shader:
. . .
in vec3 originalPosition;	 // receive original model coordinates for use as 3D texture coordinates
out vec4 fragColor;
. . .
layout (binding=0) uniform sampler3D s;

void main(void)
{	
	 fragColor = texture(s, originalPosition/2.0 + 0.5);    // vertices are [-1..+1], tex coords are [0..1]
}

In the C++/OpenGL application, the load3Dtexture() function loads the gener-
ated data into a 3D texture. Rather than using SOIL2 to load the texture, it makes 
the relevant OpenGL calls directly, in a manner similar to that explained earlier in 
Section 5.12. The image data is expected to be formatted as a sequence of bytes 
corresponding to RGBA color components. The function fillDataArray() does this, 
applying the RGB values for yellow and blue corresponding to the striped pattern 
built by the generate3Dpattern() function and held in the tex3Dpattern array. Note 
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also the specification of texture 
type GL_TEXTURE_3D in the 
display() function.

Since we wish to use the 
object’s vertex locations as tex-
ture coordinates, we pass them 
through from the vertex shader 
to the fragment shader. The frag-
ment shader then scales them so 
that they are mapped into the 
range [0..1] as is standard for 
texture coordinates. Finally, 3D 
textures are accessed via a sam-
pler3D uniform, which takes three parameters instead of two. We use the vertex’s 
original X, Y, and Z coordinates, scaled to the correct range, to access the texture. 
The result is shown in Figure 14.9.

More complex patterns can be generated by modifying generate3Dpattern(). 
Figure 14.10 shows a simple change that converts the striped pattern to a 3D check-
erboard. The resulting effect is then shown in Figure 14.11. It is worth noting that 
the effect is very different from what the case would be if the dragon’s surface had 
been textured with a 2D checkerboard texture pattern. (See Exercise 14.3.)

Figure 14.10
Generating a checkerboard 3D texture pattern.

Figure 14.9
Dragon object with 3D striped texture.

CGP_C++_CH14_2E_2pp.indd   327 11/3/2020   3:00:24 PM



328  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

	 14.5	 NOISE
Many natural phenomena 

can be simulated using random-
ness, or noise. One common 
technique, Perlin Noise [PE85], 
is named after Ken Perlin, who 
in 1997 received an Academy 
Award1 for developing a prac-
tical way to generate and use 
2D and 3D noise. The proce-
dure described here is based on 
Perlin’s method.

There are many applications of noise in graphics scenes. A few common 
examples are clouds, terrain, wood grain, minerals (such as veins in marble), 
smoke, fire, flames, planetary surfaces, and random movements. In this section, 
we focus on generating 3D textures containing noise, and then subsequent sections 
illustrate using the noise data to generate complex materials such as marble and 
wood, and to simulate animated cloud textures for use with a cube map or sky-
dome. A collection of spatial data (e.g., 2D or 3D) that contains noise is sometimes 
referred to as a noise map.

We start by constructing a 3D texture map out of random data. This can be 
done using the functions shown in the previous section, with a few modifica-
tions. First, we replace the generate3Dpattern() function from Program 14.4 with the 
following simpler generateNoise() function:

#include <random>;
. . .
double noise[noiseWidth][noiseHeight][noiseDepth];
. . .
void generateNoise() {
	 for (int x=0; x<noiseWidth; x++) {
	 	 for (int y=0; y<noiseHeight; y++) {
	 	 	 for (int z=0; z<noiseDepth; z++) {
				    noise[x][y][z] = (double) rand() / (RAND_MAX + 1.0);	 // computes a double in [0..1]
}	 }	 }	 }

1	 The Technical Achievement Award, given by the Academy of Motion Picture Arts and Sciences.

Figure 14.11
Dragon with 3D checkerboard texture.
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Next, the fillDataArray() function from Program 14.4 is modified so that it cop-
ies the noise data into the byte array in preparation for loading into a texture 
object, as follows:

void fillDataArray(GLubyte data[ ]) {
	 for (int i=0; i<noiseWidth; i++) {
	 	 for (int j=0; j<noiseHeight; j++) {
	 	 	 for (int k=0; k<noiseDepth; k++) {
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] =
					     (GLubyte) (noise[i][j][k] * 255);
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] =
					     (GLubyte) (noise[i][j][k] * 255);
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] =
					     (GLubyte) (noise[i][j][k] * 255);
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] =
	 	 	 	 	 (GLubyte) 255;
}	 }	 }	 } 

The rest of Program 14.4 for loading data into a texture object and apply-
ing it to a model is unchanged. We can view this 3D noise map by applying it to 
our simple cube model, as shown in Figure 14.12. In this example, noiseHeight = 
noiseWidth = noiseDepth = 256.

This is a 3D noise map, although it isn’t a very useful one. As is, it is just too 
noisy to have very many practical applications. To make more practical, tunable noise 
patterns, we will replace the fillDataArray() function with different noise-producing 
procedures.

Suppose that we fill the data array by 
“zooming in” to a small subsection of the 
noise map illustrated in Figure 14.12, using 
indexes made smaller by integer division. 
The modification to the fillDataArray() 
function is shown below. The resulting 3D 
texture can be made more or less “blocky” 
depending on the “zooming” factor used 
to divide the index. In Figure 14.13, the 
textures show the result of zooming in by 
dividing the indices by zoom factors 8, 16, 
and 32 (left to right respectively).

Figure 14.12
Cube textured with 3D noise data.
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void fillDataArray(GLubyte data[ ]) {
	 int zoom = 8;	 // zoom factor
	 for (int i=0; i<noiseWidth; i++) {
	 	 for (int j=0; j<noiseHeight; j++) {
	 	 	 for (int k=0; k<noiseDepth; k++) {
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] =
					     (GLubyte) (noise [i/zoom] [j/zoom] [k/zoom] * 255);
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] =
					     (GLubyte) (noise [i/zoom] [j/zoom] [k/zoom] * 255);
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] =
					     (GLubyte) (noise [i/zoom] [j/zoom] [k/zoom] * 255);
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] = (GLubyte) 255;
}	 }	 }	 }

The “blockiness” within a given noise map can be smoothed by interpolating 
from each discrete  grayscale color value to the next one. That is, for each small 
“block” within a given 3D texture, we set each texel color within the block by 
interpolating from its color to its neighboring blocks’ colors. The interpolation 
code is shown as follows in the function smoothNoise(), along with the modified 
fillDataArray() function. The resulting “smoothed” textures (for zooming factors 2, 
4, 8, 16, 32, and 64—left to right, top to bottom) then follow in Figure 14.14. Note 
that the zoom factor is now a double, because we need the fractional component to 
determine the interpolated grayscale values for each texel.

void fillDataArray(GLubyte data[ ]) {
	 double zoom = 32.0;
	 for (int i=0; i<noiseWidth; i++) {
	 	 for (int j=0; j<noiseHeight; j++) {

Figure 14.13
“Blocky” 3D noise maps with various “zooming in” factors.
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	 	 	 for (int k=0; k<noiseDepth; k++) {
	 	 	 	 data[i*(noiseWidth*noiseHeight*4) + j*(noiseHeight*4) + k*4 +0] =
	 	 	 	 	 (GLubyte) (smoothNoise(i/zoom, j/zoom, k/zoom) * 255);
	 	 	 	 data[i*(noiseWidth*noiseHeight*4) + j*(noiseHeight*4) + k*4 +1] =
	 	 	 	 	 (GLubyte) (smoothNoise(i/zoom, j/zoom, k/zoom) * 255);
	 	 	 	 data[i*(noiseWidth*noiseHeight*4) + j*(noiseHeight*4) + k*4 +2] =
	 	 	 	 	 (GLubyte) (smoothNoise(i/zoom, j/zoom, k/zoom) * 255);
	 	 	 	 data[i*(noiseWidth*noiseHeight*4) + j*(noiseHeight*4) + k*4 +3] = (GLubyte) 255;
}	 }	 }	 }

double smoothNoise(double zoom, double x1, double y1, double z1) {
	 // fraction of x1, y1, and z1 (percentage from  current block to next block, for this texel)
	 double fractX = x1 - (int) x1;
	 double fractY = y1 - (int) y1;
	 double fractZ = z1 - (int) z1;
	 // indices for neighboring values with wrapping at the ends
	 double x2 = x1 - 1; if (x2<0) x2 = round(noiseWidth / zoom) - 1.0;
	 double y2 = y1 - 1; if (y2<0) y2 = round(noiseHeight / zoom) - 1.0;
	 double z2 = z1 - 1; if (z2<0) z2 = round(noiseDepth / zoom) - 1.0;

	 // smooth the noise by interpolating the greyscale intensity along all three axes
	 double value = 0.0;
	 value += fractX	 *  fractY	 *  fractZ	 *  noise[(int)x1][(int)y1][(int)z1];
	 value += (1-fractX)	 *  fractY	 *  fractZ	 *  noise[(int)x2][(int)y1][(int)z1];
	 value += fractX	 *  (1-fractY)	 *  fractZ	 *  noise[(int)x1][(int)y2][(int)z1];
	 value += (1-fractX)	 *  (1-fractY)	 *  fractZ	 *  noise[(int)x2][(int)y2][(int)z1];

	 value += fractX	 *  fractY	 *  (1-fractZ)	 *  noise[(int)x1][(int)y1][(int)z2];
	 value += (1-fractX)	 *  fractY	 *  (1-fractZ)	 *  noise[(int)x2][(int)y1][(int)z2];
	 value += fractX	 *  (1-fractY)	 *  (1-fractZ)	 *  noise[(int)x1][(int)y2][(int)z2];
	 value += (1-fractX)	 *  (1-fractY)	 *  (1-fractZ)	 *  noise[(int)x2][(int)y2][(int)z2];
	 return value;
}

The smoothNoise() function computes a grayscale value for each texel in 
the smoothed version of a given noise map by computing a weighted average 
of  the eight grayscale values surrounding the texel in the corresponding origi-
nal “blocky” noise map. That is, it averages the color values at the eight vertices 
of  the small “block” the texel is in. The weights for each of these “neighbor” 
colors are based on the texel’s distance to each of its neighbors, normalized to the 
range [0..1]. Values at the ends wrap smoothly to facilitate tiling.

Next, smoothed noise maps of various zooming factors are combined. A new 
noise map is created in which each of its texels is formed by another weighted 
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average, this time based on the sum of the texels at the same location in each 
of the “smoothed” noise maps, with the zoom factor serving as the weight. The 
effect was dubbed “turbulence” by Perlin [PE85], although it is really more closely 
related to the harmonics produced by summing various waveforms. A new turbu-
lence() function and a modified version of fillDataArray() that specifies a noise map 
that sums zoom levels 1 through 32 (the ones that are powers of two) are shown 
as follows, along with an image of a cube textured with the resulting noise map.

double turbulence(double x, double y, double z, double maxZoom) {
	 double sum = 0.0, zoom = maxZoom;
	 while (zoom >= 1.0) {	 	 // the last pass is when zoom=1.
		  // compute weighted sum of smoothed noise maps 
	 	 sum = sum + smoothNoise(zoom, x / zoom, y / zoom, z / zoom) * zoom;
	 	 zoom = zoom / 2.0;	 	 // for each zoom factor that is a power of two.
	 }
	 sum = 128.0 * sum / maxZoom;	 // guarantees RGB < 256 for maxZoom values up to 64
	 return sum;
}

Figure 14.14
Smoothing of 3D textures, at various zooming levels.
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void fillDataArray(GLubyte data[ ] ) {
	 double maxZoom = 32.0;
	 for (int i=0; i<noiseWidth; i++) {
	 	 for (int j=0; j<noiseHeight; j++) {
	 	 	 for (int k=0; k<noiseDepth; k++) {
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] =
					     (GLubyte) turbulence(i, j, k, maxZoom);
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] =
					     (GLubyte) turbulence(i, j, k, maxZoom);
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] =
					     (GLubyte) turbulence(i, j, k, maxZoom);
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] =
	 	 	 	 	 (GLubyte) 255;
}	 }	 }	 }

3D noise maps, such as the one shown  
in Figure 14.15, can be used for a wide 
 variety of imaginative applications. In the 
next sections, we will use them to generate 
marble, wood, and clouds. The distribution  
of the noise can be adjusted by various  
combinations of zoom-in levels.

	 14.6	� NOISE APPLICATION –  
MARBLE

By modifying the noise map and adding Phong lighting with an appropri-
ate ADS material as described previously in Figure 7.3, we can make the dragon 
model appear to be made of a marble-like stone.

We start by generating a striped pattern somewhat similar to the “stripes” exam-
ple from earlier in this chapter—the new stripes differ from the previous ones, first 
because they are diagonal, and also because they are produced by a sine wave and 
therefore have blurry edges. We then use the noise map to perturb those lines, storing 
them as grayscale values. The changes to the fillDataArray() function are as follows:
void fillDataArray(GLubyte data[ ]) {
	 double veinFrequency = 2.0;
	 double turbPower = 1.5;
	 double maxZoom = 64.0;

Figure 14.15
3D texture map with combined “turbulence” noise.
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	 for (int i=0; i<noiseWidth; i++) {
	 	 for (int j=0; j<noiseHeight; j++) {
	 	 	 for (int k=0; k<noiseDepth; k++) {
				    double xyzValue = (float)i / noiseWidth + (float)j / noiseHeight + (float)k / noiseDepth
							       + turbPower * turbulence(i,j,k,maxZoom) / 256.0;
				    double sineValue = abs(sin(xyzValue * 3.14159 * veinFrequency));

				    float redPortion = 255.0f * (float)sineValue;
				    float greenPortion = 255.0f * (float)sineValue;
				    float bluePortion = 255.0f * (float)sineValue;

	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] = (GLubyte) redPortion;
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] = (GLubyte) greenPortion;
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] = (GLubyte) bluePortion;
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] = (GLubyte) 255;
}	 }	 }	 }

The variable veinFrequency is used to adjust the number of stripes, turbSize 
adjusts the zoom factor used when generating the turbulence, and turbPower adjusts 
the amount of perturbation in the stripes (setting it to zero leaves the stripes unper-
turbed). Since the same sine wave value is used for all three (RGB) color com-
ponents, the final color stored in the image data array is grayscale. Figure 14.16 
shows the resulting texture map for various values of turbPower (0.0, 0.5, 1.0, and 
1.5, left to right).

We can further control the definition and thickness of the marble veins by 
modifying the turbulence() function so that it uses a logistic function. A logistic 
(or “sigmoid”) function has an S-shaped curve with asymptotes on both ends. 
Common examples are hyperbolic tangent and f(x) = 1/(1+e-x). They are also some-
times called “squashing” functions. Many noise applications utilize a logistic 
function to push the values in the noise map more towards 0.0 or 255.0, rather than 

Figure 14.16
Building 3D “marble” noise maps.
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values in between. Program 14.5 includes a logistic() function which implements 
1/(1+e-kx), where k is used to tune the degree to which the output is pushed towards 
0.0 or 255.0 – in this case, tuning the sharpness of the marble vein edges.

Since we expect marble to have a shiny appearance, we incorporate Phong 
shading to make a “marble” textured object look convincing. Program 14.5 sum-
marizes the code for generating a marble dragon. The vertex and fragment shad-
ers are the same as used for Phong shading, except that we also pass through the 
original vertex coordinates for use as 3D texture coordinates (as described earlier). 
ADS lighting values are the same as specified earlier in Section 7.1, and shininess 
is set to 0.75. The fragment shader combines the noise result with the lighting 
result, as described previously in Section 7.6.

Program 14.5 Building a Marble Dragon
C++ / OpenGL application:
. . .
void init(GLFWwindow* window) {
	 . . .
	 generateNoise();
	 noiseTexture = load3DTexture();	 // same as in Prog 14.4, and which in turn calls fillDataArray()
}

double logistic(double x) {
	 double k = 3.0;
	 return (1.0 / (1.0 + pow(2.718, -k*x)));
}

void fillDataArray(GLubyte data[ ]) {
	 double veinFrequency = 2.0;
	 double turbPower = 4.0;
	 double maxZoom = 32.0;
	 for (int i = 0; i<noiseWidth; i++) {
	 	 for (int j = 0; j<noiseHeight; j++) {
	 	 	 for (int k = 0; k<noiseDepth; k++) {
	 	 	 	 double xyzValue = (float)i / noiseWidth + (float)j / noiseHeight + (float)k / noiseDepth
	 	 	 	 	 + turbPower * turbulence(i, j, k, maxZoom) / 256.0;

	 	 	 	 double sineValue = logistic(abs(sin(xyzValue * 3.14159 * veinFrequency)));
				    sineValue = max(-1.0, min(sineValue*1.25 - 0.20, 1.0));  // adjust center to make veins thinner

	 	 	 	 float redPortion = 255.0f * (float)sineValue;
	 	 	 	 float greenPortion = 255.0f * (float)sineValue;
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	 	 	 	 float bluePortion = 255.0f * (float)sineValue;

	 	 	 	 data[i*(noiseWidth*noiseHeight * 4) + j*(noiseHeight * 4) + k * 4 + 0] = (GLubyte)redPortion;
	 	 	 	 data[i*(noiseWidth*noiseHeight * 4) + j*(noiseHeight * 4) + k * 4 + 1] = (GLubyte)greenPortion;
	 	 	 	 data[i*(noiseWidth*noiseHeight * 4) + j*(noiseHeight * 4) + k * 4 + 2] = (GLubyte)bluePortion;
	 	 	 	 data[i*(noiseWidth*noiseHeight * 4) + j*(noiseHeight * 4) + k * 4 + 3] = (GLubyte)255;
}	 }	 }	 }

void display(GLFWwindow* window, double currentTime) {
	 . . .
	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_3D, noiseTexture);

	 glEnable(GL_CULL_FACE);
	 glFrontFace(GL_CCW);
	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);
	 glDrawArrays(GL_TRIANGLES, 0, numDragonVertices);
}

Vertex Shader:
//	 unchanged from program 14-4

Fragment Shader:
. . .
void main(void)
{	 . . .
	 //  model vertices are [-1.5..+1.5], texture coordinates are [0..1]
	 vec4 texColor = texture(s, originalPosition / 3.0 + 0.5);

	 fragColor =
		  0.7 * texColor * (globalAmbient + light.ambient + light.diffuse * max(cosTheta,0.0))
	 	 + 0.5 * light.specular * pow(max(cosPhi, 0.0), material.shininess);
}

There are various ways of simulating different colors of marble (or other 
stones). One approach for changing the colors of the “veins” in the marble is by 
modifying the definition of the Color variable in the fillDataArray() function; for 
example, by increasing the green component:

	 float redPortion = 255.0f * (float)sineValue;
	 float greenPortion = 255.0f * (float)min(sineValue*1.5 - 0.25, 1.0);
	 float bluePortion = 255.0f * (float)sineValue;
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We can also introduce ADS material values (i.e., specified in init()) to simulate 
completely different types of stone, such as “jade.”

Figure 14.17 shows four examples, the first three using the settings shown in 
Program 14.5, and the fourth incorporating the “jade” ADS material values shown 
earlier in Figure 7.3.

	 14.7	 NOISE APPLICATION – WOOD
Creating a “wood” texture can be done in a similar way as was done in the 

previous “marble” example. Trees grow in rings, and it is these rings that produce 
the grain we see in objects made of wood. As trees grow, environmental stresses 
create variations in the rings, which we also see in the grain.

Figure 14.17
Dragon textured with 3D noise maps – three marble and one jade.
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We start by building a procedural “rings” 3D texture map, similar to the 
“checkerboard” from earlier in this chapter. We then use a noise map to perturb 
those rings, inserting dark and light brown colors into the ring texture map. By 
adjusting the number of rings, and the degree to which we perturb the rings, we 
can simulate wood with various types of grain. Shades of brown can be made by 
combining similar amounts of red and green, with less blue. We then apply Phong 
shading with a low level of “shininess.”

We can generate rings encircling the Z-axis in our 3D texture map by modi-
fying the fillDataArray() function, using trigonometry to specify values for X and 
Y that are equidistant from the Z axis. We use a sine wave to repeat this process 
cyclically, raising and lowering the red and green components equally based on 
this sine wave to produce the varying shades of brown. The variable sineValue 
holds the exact shade, which can be adjusted by slightly offsetting one or the other 
(in this case increasing the red by 80, and the green by 30). We can create more 
(or fewer) rings by adjusting the value of xyPeriod. The resulting texture is shown 
in Figure 14.18.
void fillDataArray(GLubyte data[ ]) {
	 double xyPeriod = 40.0;
	 for (int i=0; i<noiseWidth; i++) {
	 	 for (int j=0; j<noiseHeight; j++) {
	 	 	 for (int k=0; k<noiseDepth; k++) {
				   double xValue = (i - (double)noiseWidth/2.0) / (double)noiseWidth;
				   double yValue = (j - (double)noiseHeight/2.0) / (double)noiseHeight;
				   double distanceFromZ = sqrt(xValue * xValue + yValue * yValue);
				   double sineValue = 128.0 * abs(sin(2.0 * xyPeriod * distanceFromZ * 3.14159));

				   float redPortion = (float)(80 + (int)sineValue);
				   float greenPortion = (float)(30 + (int)sineValue);
				   float bluePortion = 0.0f;

	 	 	 	data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] = (GLubyte) redPortion;
	 	 	 	data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] = (GLubyte) greenPortion;
	 	 	 	data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] = (GLubyte) bluePortion;
	 	 	 	data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] = (GLubyte) 255;
}	 }	 }	 }

The wood rings in Figure 14.18 are a good start, but they don’t look very 
realistic—they are too perfect. To improve this, we use the noise map (more 
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specifically, turbulence) to perturb the distanceFromZ variable so that the rings 
have slight variations. The computation is modified as follows:
	 double distanceFromZ = sqrt(xValue * xValue + yValue * yValue)
	 + turbPower * turbulence(i, j, k, maxZoom) / 256.0;

Again, the variable turbPower adjusts 
how much turbulence is applied (setting 
it to 0.0 results in the unperturbed ver-
sion shown in Figure 14.18), and max-
Zoom specifies the zoom value (32, in this 
example). Figure 14.19 shows the result-
ing wood textures for turbPower values 
0.05, 1.0, and 2.0 (left to right).

We can now apply the 3D wood tex-
ture map to a model. The realism of the 
texture can be further enhanced by apply-
ing a rotation to the originalPosition vertex 
locations used for texture coordinates; 
this is because most items carved out of 
wood don’t perfectly align with the orien-

tation of the rings. To accomplish this, we send an additional rotation matrix to 
the shaders for rotating the texture coordinates. We also add Phong shading, with 
appropriate wood-color ADS values, and a modest level of shininess. The complete 
additions and changes for creating a “wood dolphin” are shown in Program 14.6.

Figure 14.18
Creating rings for 3D wood texture.

Figure 14.19
“Wood” 3D texture maps with rings perturbed by the noise map.
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Program 14.6 Creating a Wood Dolphin
C++ / OpenGL application:
glm::mat4 texRot;

//  wood material (brown)
float matAmbient[4] = {0.5f, 0.35f, 0.15f, 1.0f};
float matDiffuse[4] = {0.5f, 0.35f, 0.15f, 1.0f};
float matSpecular[4] = {0.5f, 0.35f, 0.15f, 1.0f};
float matShi = 15.0f;

void init(GLFWwindow* window) {
	 . . .
	 // rotation to be applied to texture coordinates – adds additional grain variation
	 texRot = glm::rotate(glm::mat4(1.0f), toRadians(20.0f), glm::vec3(0.0f, 1.0f, 0.0f));
}

void fillDataArray(GLubyte data[ ]) {
	 double xyPeriod = 40.0;
	 double turbPower = 0.1;
	 double maxZoom = 32.0;
	 for (int i=0; i<noiseWidth; i++) {
	 	 for (int j=0; j<noiseHeight; j++) {
	 	 	 for (int k=0; k<noiseDepth; k++) {
				    double xValue = (i - (double)noiseWidth/2.0) / (double)noiseWidth;
	 	 	 	 double yValue = (j - (double)noiseHeight/2.0) / (double)noiseHeight;
				    double distanceFromZ = sqrt(xValue * xValue + yValue * yValue)
		  + turbPower * turbulence(i, j, k, maxZoom) / 256.0;
	 	 	 	 double sineValue = 128.0 * abs(sin(2.0 * xyPeriod * distanceFromZ * Math.PI));

	 	 	 	 float redPortion = (float)(80 + (int)sineValue);
	 	 	 	 float greenPortion = (float)(30 + (int)sineValue);
	 	 	 	 float bluePortion = 0.0f;

	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] = (GLubyte) redPortion;
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] = (GLubyte) greenPortion;
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] = (GLubyte) bluePortion;
	 	 	 	 data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] = (GLubyte) 255;
}	 }	 }	 }

void display(GLFWwindow* window, double currentTime) {
	 . . .
	 tLoc = glGetUniformLocation(renderingProgram, "texRot");
	 glUniformMatrix4fv(tLoc, 1, false, glm::value_ptr(texRot));
	 . . .
}
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Vertex shader:
. . .
uniform mat4 texRot;

void main(void)
{	 . . .
	 originalPosition = vec3(texRot * vec4(position,1.0)).xyz;
	 . . . .
}

Fragment shader:
. . .
void main(void)
{	 . . .
	 uniform mat4 texRot;
	 . . .
	 //  combine lighting with 3D texturing
	 fragColor =
		  0.5 * ( . . . )
			   +
		  0.5 * texture(s,originalPosition / 2.0 + 0.5);
}

The resulting 3D textured 
wood dolphin is shown in Figure 
14.20.

There is one additional detail 
in the fragment shader worth 
noting. Since we are rotating 
the model within a 3D texture, 
it is sometimes possible for this 
to cause the vertex positions to 
move beyond the typical [0..1] 

range of texture coordinates as a result of the rotation. If this were to happen, we 
could adjust for this possibility by dividing the original vertex positions by a larger 
number (such as 4.0 rather than 2.0), and then adding a slightly larger number 
(such as 0.6) to center it in the texture space. Since our noise map wraps, vertex 
coordinates that move beyond the [0..1] range do not cause a problem.

Figure 14.20
Dolphin textured with “wood” 3D noise map.
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	 14.8	 NOISE APPLICATION – CLOUDS
The “turbulence” noise map built earlier in Figure 14.15 already looks a bit 

like clouds. Of course, it isn’t the right color, so we start by changing it from 
grayscale to an appropriate mix of light blue and white. A straightforward way 
of doing this is to assign a color with a maximum value of 1.0 for the blue com-
ponent and varying (but equal) values between 0.0 and 1.0 for the red and green 
components, depending on the values in the noise map. The new fillDataArray() 
function follows:
	 void fillDataArray(GLubyte data[ ]) {
	 	 double maxZoom = 32.0;
	 	 for (int i=0; i<noiseWidth; i++) {
	 	 	 for (int j=0; j<noiseHeight; j++) {
	 	 	 	 for (int k=0; k<noiseDepth; k++) {

					    float brightness = 1.0f - (float) turbulence(i, j, k, maxZoom) / 256.0f;

					    float redPortion = brightness*255.0f;
					    float greenPortion = brightness*255.0f;
					    float bluePortion = 1.0f * 255.0f;

	 	 	 	 	data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+0] = (GLubyte) redPortion;
	 	 	 	 	data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+1] = (GLubyte) greenPortion;
	 	 	 	 	data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+2] = (GLubyte) bluePortion;
	 	 	 	 	data[i*(noiseWidth*noiseHeight*4)+j*(noiseHeight*4)+k*4+3] = (GLubyte) 255;
  }  }  }  }

The resulting blue version of the noise map can now be used to texture a sky-
dome. Recall that a skydome is a sphere or half-sphere that is textured, rendered 
with depth-testing disabled, and placed so that it surrounds the camera (similar to 
a skybox).

One way of building the skydome would be to texture it in the same way as 
we have for other 3D textures, using the vertex coordinates as texture coordinates. 
However, in this case, it turns out that using the skydome’s 2D texture coordinates 
instead produces patterns that look more like clouds, because the spherical distor-
tion slightly stretches the texture map horizontally. We can grab a 2D slice from 
the noise map by setting the third dimension in the GLSL texture() call to a constant 
value. Assuming that the skydome’s texture coordinates have been sent to the 
OpenGL pipeline in a vertex attribute in the standard way, the following fragment 
shader textures it with a 2D slice of the noise map:
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#version 430
in vec2 tc;
out vec4 fragColor;
uniform mat4 mv_matrix;	  
uniform mat4 proj_matrix;
layout (binding=0) uniform sampler3D s;

void main(void)
{	 fragColor = texture(s,vec3(tc.x, tc.y, 0.5));	 // constant value in place of tc.z
}

The resulting textured skydome 
is shown in Figure 14.21. Although 
the camera is usually placed inside 
the skydome, we have rendered it 
here with the camera outside, so that 
the effect on the dome itself can be 
seen. The current noise map leads to 
“misty-looking” clouds.

Although our misty clouds look 
nice, we would like to be able to shape 
them—that is, make them more or 
less hazy. Here, again, we can utilize 

a logistic function, as we did for simulating marble. The modified turbulence() 
function is shown in Program 14.7, along with an associated logistic() function. The 
complete Program 14.7 also incorporates the smooth(), fillDataArray(), and generate-
Noise() functions described earlier.

Program 14.7 Cloud Texture Generation

C++ / OpenGL application:
double turbulence(double x, double y, double z, double maxZoom) {
	 double sum = 0.0, zoom = maxZoom, cloudQuant;
	 while (zoom >= 0.9) {
	 	 sum = sum + smoothNoise(zoom, x/zoom, y/zoom, z/zoom) * zoom;
	 	 zoom = zoom / 2.0;
	 }
	 sum = 128 * sum / maxZoom;
	 cloudQuant = 130.0;	 // tunable quantity of clouds

Figure 14.21
Skydome textured with misty clouds.
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	 sum = 256.0 * logistic(sum - cloudQuant);
	 return sum;
}

double logistic(double x) {
	 double k = 0.2;    	  // tunable haziness of clouds, smaller values are more hazy
	 return (1.0 / (1.0 + pow(2.718, -k*x)));
}

The logistic function causes the col-
ors to tend more toward white or blue, 
rather than values in between, produc-
ing the visual effect of there being more 
distinct cloud boundaries. The variable 
cloudQuant adjusts the relative amount 
of white (versus blue) in the noise map, 
which in turn leads to more (or fewer) 
generated white regions (i.e., distinct 
clouds) when the logistic function is 
applied. The resulting skydome, now 
with more distinct cloud formations, is 
shown in Figure 14.22.

Lastly, real clouds aren’t static. To enhance the realism of our clouds, we 
should animate them by (a) making them move or drift over time and (b) gradually 
changing their form as they drift.

One simple way of making the clouds drift is to slowly rotate the skydome. 
This isn’t a perfect solution, as real clouds tend to drift in a straight direction rather 
than rotating around the observer. However, if the rotation is slow and the clouds 
are simply for decorating a scene, the effect is likely to be adequate.

Having the clouds gradually change form as they drift may seem tricky. 
However, given the 3D noise map we have used to texture the clouds, there is 
actually a very simple and clever way of achieving the effect. Recall that although 
we constructed a 3D texture noise map for clouds, we have so far only used one 
“slice” of it, in conjunction with the skydome’s 2D texture coordinates (we set the 
“Z” coordinate of the texture lookup to a constant value). The rest of the 3D tex-
ture has so far gone unused.

Our trick will be to replace the texture lookup’s constant “Z” coordinate with 
a variable that changes gradually over time. That is, as we rotate the skydome, we 

Figure 14.22
Skydome with logistic cloud texture
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gradually increment the depth variable, causing the texture lookup to use a differ-
ent slice. Recall that when we built the 3D texture map, we applied smoothing to 
the color changes along all three axes. So, neighboring slices from the texture map 
are very similar, but slightly different. Thus, by gradually changing the “Z” value 
in the texture() call, the appearance of the clouds will gradually change.

The code changes to cause the clouds to slowly move and change over time are 
shown in Program 14.8.

Program 14.8 Animating the Cloud Texture

C++ / OpenGL application:
. . .
double prevTime = 0.0;
double rotAmt = 0.0;	 // Y-axis rotation amount to make clouds appear to drift
float depth = 0.01f;	 // depth lookup for 3D noise map, to make clouds gradually change
. . .
void display(GLFWwindow* window, double currentTime) {
	 . . .
	 //  gradually rotate the skydome
	 mMat = glm::translate(glm::mat4(1.0f), glm::vec3(domeLocX, domeLocY, domeLocZ);
	 rotAmt += (float) ((currentTime – prevTime) * 0.1);
	 mMat = glm::rotate(mMat, rotAmt, glm::vec3(0.0f, 1.0f, 0.0f));

	 . . .
	 //  gradually alter the third texture coordinate to make clouds change
	 dOffsetLoc = glGetUniformLocation(program, "d");
	 depth += (float) ((currentTime – prevTime) * 0.003f);
	 if (depth >= 0.99f) depth = 0.01f;	 // wrap-around when we get to the end of the texture map
	 glUniform1f(dOffsetLoc, depth);
	 . . .
}

Fragment Shader:
#version 430

in vec2 tc;
out vec4 fragColor;

uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
uniform float d;
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layout (binding=0) uniform sampler3D s;

void main(void)
{	 fragColor = texture(s, vec3(tc.x, tc.y, d));	 // gradually-changing "d" replaces previous constant
}

While we cannot show the effect of gradually changing drifting and animated 
clouds in a single still image, Figure 14.23 shows such changes in a series of snap-
shots of the 3D generated clouds as they drift across the skydome from right to left 
and slowly change shape while drifting.

Figure 14.23
3D clouds changing while drifting.
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	 14.9	 NOISE APPLICATION – SPECIAL EFFECTS
Noise textures can be used for a variety of special effects. In fact, there are so 

many possible uses that its applicability is limited only by one’s imagination.

One very simple special effect that we will demonstrate here is a dissolve 
effect. This is where we make an object appear to gradually dissolve into small 
particles, until it eventually disappears. Given a 3D noise texture, this effect can 
be achieved with very little additional code.

To facilitate the dissolve effect, we introduce the GLSL discard command. 
This command is only legal in the fragment shader, and when executed, it causes 
the fragment shader to discard the current fragment (meaning not render it).

Our strategy is a simple one. In the C++/OpenGL application, we create a fine-
grained noise texture map identical to the one shown back in Figure 14.12, and also 
a float variable counter that gradually increases over time. This variable is then sent 
down the shader pipeline in a uniform variable, and the noise map is also placed in a 
texture map with an associated sampler. The fragment shader then accesses the noise 
texture using the sampler—in this case, we use the returned noise value to determine 
whether or not to discard the fragment. We do this by comparing the grayscale noise 
value against the counter, which serves as a sort of “threshold” value. Because the 
threshold is gradually changing over time, we can set it up so that gradually more and 
more fragments are discarded. The result is that the object appears to gradually dis-
solve. Program 14.9 shows the relevant code sections, which are added to the earth-
rendered sphere from Program 6.1. The generated output is shown in Figure 14.24.

Program 14.9 Dissolve Effect Using discard Command
C++ / OpenGL application:
float threshold = 0.0f;	 //  gradually-increasing threshold for retaining/discarding fragment
. . .

in Display:
. . .
tLoc = glGetUniformLocation(renderingProgram, "t");
threshold = (float) currentTime * 0.1f;
glUniform1f(tLoc, threshold);
. . .
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_3D, noiseTexture);
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glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, earthTexture);
. . .
glDrawArrays(GL_TRIANGLES, 0, numSphereVertices);

Fragment Shader:
#version 430
in vec2 tc;	 // texture coordinates for this fragment
in vec3 origPos;	 // original vertex positions in the model, for accessing 3D texture
. . .
layout (binding=0) uniform sampler3D n;	 //  sampler for noise texture
layout (binding=1) uniform sampler2D e;	 //  sampler for earth texture
. . .
uniform float t;	 // threshold for retaining or discarding fragment

void main(void)
{	 float noise = texture(n, origPos).x;	 //  retrieve noise value for this fragment.
	 if (noise > t)	 //  if the noise value > current threshold value,
	 {	 fragColor = texture(e, tc);	 //     render the fragment using the earth texture.
	 } 
	 else
	 {	 discard;	 //  otherwise, discard the fragment (do not render it)
	 }
}

Figure 14.24
Dissolve effect with discard shader.

CGP_C++_CH14_2E_2pp.indd   348 11/3/2020   3:00:27 PM



Chapter  14 ·  Other  Techniques   ■ 349

The discard command should, if possible, be used sparingly, because it can 
incur a performance penalty. This is because its presence makes it more difficult 
for OpenGL to optimize Z-buffer depth testing.

SUPPLEMENTAL NOTES

When specifying a user-defined clipping plane for the plane ax by cz d� � � � 0,  
the plane should be “normalized” so that a b c2 2 2

1� � � . The plane that we used 
in the example shown in Section 14.3 was already normalized in this manner. 
Alternatively, the distance d can be divided by a b c2 2 2+ + . 

In this chapter, we used Perlin noise to generate clouds and to simulate both 
wood and a marble-like stone from which we rendered the dragon. People have 
found many other uses for Perlin noise. For example, it can be used to create fire 
and smoke [CC16, AF14] and build realistic bump maps [GR05]; it has been used to 
generate terrain in the video game Minecraft [PE11].

The noise maps generated in this chapter are based on procedures outlined by 
Lode Vandevenne [VA04]. There remain some deficiencies in our 3D cloud genera-
tion. Occasionally, small horizontal and vertical structures appear that don’t look 
very cloud-like. Another issue is that at the northern peak of the skydome spheri-
cal distortion can cause a pincushion effect.

The clouds we implemented in this chapter also fail to model some important 
aspects of real clouds, such as the way that real clouds scatter the sun’s light. Real 
clouds also tend to be more white on the top and grayer at the bottom. Our clouds 
also don’t achieve a 3D “fluffy” look that many actual clouds have.

Similarly, more comprehensive models exist for generating fog, such as the 
one described by Kilgard and Fernando [KF03].

While perusing the OpenGL documentation, the reader might notice that 
GLSL includes some noise functions named noise1(), noise2(), noise3(), and noise4(), 
which are described as taking an input seed and producing Gaussian-like stochas-
tic output. We didn’t use these functions in this chapter because, as of this writing, 
most vendors have not implemented them. For example, many NVIDIA cards cur-
rently return 0 for these functions, regardless of the input seed.
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Exercises

14.1	 Modify Program 14.2 to gradually decrease the alpha value of an object, 
causing it to progressively fade out and eventually disappear.

14.2	 Modify Program 14.3 to clip the torus along the horizontal, creating a circular 
“trough.”

14.3	 Modify Program 14.4 (the version including the modification in Figure 14.10 
that produces a 3D cubed texture) so that it instead textures the Studio 522 
dolphin. Then observe the results. Many people, when first observing the 
result (such as that shown on the dragon, but also even on simpler objects) 
believe that there is some error in the program. Unexpected surface patterns 
can result from “carving” an object out of 3D textures, even in simple cases.

14.4	 The simple sine wave used to define the wood “rings” (shown in Figure 
14.18) generate rings in which the light and dark areas are of an equal width. 
Experiment with modifications to the associated fillDataArray() function with 
the goal of making the dark rings narrower in width than the light rings. 
Then observe the effects on the resulting wood-textured object.

14.5	 (PROJECT) Incorporate the logistic function (from Program 14.7) into the 
marble dragon from Program 14.5, and experiment with the settings to create 
more distinct veins.

14.6	 Modify Program 14.9 to incorporate the zooming, smoothing, turbulence, 
and logistic steps described in prior sections. Observe the changes in the 
resulting dissolve effect.
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Chapter 15
Simulating Water

■ ■ ■ ■ ■

Simulating water is a complex topic, because water is found in so many different 
settings and takes so many different forms. The technique used depends on the appli-
cation. The water could be coming out of a kitchen faucet, or out of a lawn sprinkler, 
or it could be flowing in a river, or in large dark blue ocean waves, or swirling around 
in a drinking glass. There are too many possibilities to cover all of them here, so in 
this chapter, we focus on one common scenario: a swimming pool. Our setup will 
enable viewing the water downwards from above the surface, or upwards from below 
the surface, and we will tilt the camera accordingly. With minor modifications, it 
could be modified to instead simulate a lake surface (or an ocean with small waves).

	 15.1	� POOL SURFACE AND FLOOR GEOMETRY  
SETUP

We start by setting up a very simple scene that includes a flat (horizontal) plane 
segment and a skybox. The plane is made of two triangles comprising a rectangle, 
and is textured with a checkerboard procedural texture function similar to (but sim-
pler than) the 3D checkerboard texture described in Chapter 14. (Later, in Program 
15.2, we will change the appearance of this plane to instead look like water, and we 
will move the checkerboard pattern to a second plane at the bottom of the swimming 
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pool. The checkerboard pattern will be used to simulate tiles – if we were instead 
modeling a lake, then we would of course use a different texture for the bottom.)

Program 15.1 shows the organization of the code. Explanations describing 
code already presented in previous chapters are not repeated here. Figure 15.1 
shows the result when executed.

Program 15.1 – Horizontal Plane Geometry (setup)
C++/OpenGL Application
// includes #defines, variables for camera, rendering programs, matrices, and skybox texture as before.
. . .
float cameraHeight = 2.0f, cameraPitch = 15.0f;
float planeHeight = 0.0f;

void setupVertices(void) {
	 float PLANE_POSITIONS[18] = {
		  −128.0f, 0.0f, −128.0f,  −128.0f, 0.0f, 128.0f,  128.0f, 0.0f, −128.0f,
		  128.0f, 0.0f, -128.0f,  −128.0f, 0.0f, 128.0f,  128.0f, 0.0f, 128.0f
	 };
	 float PLANE_TEXCOORDS[12] = {
		  0.0f, 0.0f,  0.0f, 1.0f,  1.0f, 0.0f, 1.0f, 0.0f,  0.0f, 1.0f,  1.0f, 1.0f
	 };
	 //  cube map vertices, building VAO, VBOs, and loading buffers as before
	 . . .
}

void display(GLFWwindow* window, double currentTime) {
	 // code for clearing color buffer, perspective matrix, and rendering skybox as before
	 // code for drawing the scene is the same as for Program 4.1, but this time for the plane
	 vMat = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, -cameraHeight, 0.0f))
		  * glm::rotate(glm::mat4(1.0f), toRadians(cameraPitch), glm::vec3(1.0f, 0.0f, 0.0f));
	 . . .
	 // code for rendering skybox as before
	 . . .
	 // render the scene – in this case it is just a plane
	 mMat = glm::translate(glm::mat4(1.0f), glm::vec3(0, planeHeight, 0));
	 . . .
	 glDrawArrays(GL_TRIANGLES, 0, 6);     // plane is 2 triangles, total of 6 vertices
}
. . .  // main() and other components as before

Vertex Shader (for plane segment)
// same as Program 5.1
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Fragment Shader (for plane segment)
//  Similar to previous fragment shaders, except that a checkerboard texture has been added.
//  Incoming texture coordinates are scaled up here to facilitate repeating texture.
#version 430

in vec2 tc;
out vec4 color;

uniform mat4 mv_matrix;
uniform mat4 proj_matrix;

vec3 checkerboard(vec2 tc)
{	 float tileScale = 64.0;
	 float tile = mod(floor(tc.x * tileScale) + floor(tc.y * tileScale), 2.0);
	 return tile * vec3(1,1,1);
}

void main(void)
{	 color = vec4(checkerboard(tc), 1.0);
}

The C++/OpenGL appli-
cation specifies that the plane 
is at a height of 0.0, meaning 
it is level with the XZ plane. 
The camera is 2.0 units above 
the plane, and pitched ˗15° 
looking downwards towards 
the plane. Specifying the 
plane requires 18 floating 
point values (2 triangles x 3 
vertices/triangle x 3 coordi-
nates/vertex). Computing its 
procedural “checkerboard” 
pattern is accomplished in 
a similar manner as for the 
3D example shown pre-
viously in Section 14.4. 
The desired number of 
squares per side is specified in the variable tileScale, and the pattern is then pro-
duced by scaling the texture coordinates up by tileScale and taking that result 
modulo 2. The result of 0 or 1 is then returned as either color (0,0,0) or (1,1,1) –  
i.e., black or white – respectively.

Figure 15.1
Geometry setup for the plane segment surface
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We now add a second plane to our scene and build a swimming pool, using 
the same plane model (PLANE_POSITIONS and PLANE_TEXCOORDS) for both 
the top surface and bottom floor of the pool. We put the checkerboard pattern 
on lower plane (the floor), and for the top surface plane, we start with a solid 
blue color. We also add ADS Phong lighting (covered earlier in Chapter 7). The 
organization of the C++/OpenGL application for these additions is shown in 
Program 15.2.

Program 15.2 – Water Geometry (top surface and bottom floor)
C++/OpenGL Application
// modifications to Program 15.1 shown here. Code for lighting not shown (see Chapter 7)
. . .
float surfacePlaneHeight = 0.0f;
float floorPlaneHeight = -10.0f;
GLuint renderingProgramSURFACE, renderingProgramFLOOR, renderingProgramCubeMap;
. . .
void setupVertices(void) {
	 . . .
	 // add normal vectors for top surface and floor lighting (all of them point upwards)
	 float PLANE_NORMALS[18] = {
		  0.0f, 1.0f, 0.0f,  0.0f, 1.0f, 0.0f,  0.0f, 1.0f, 0.0f,
		  0.0f, 1.0f, 0.0f,  0.0f, 1.0f, 0.0f,  0.0f, 1.0f, 0.0f
	 };
	 . . .
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[3]);
	� glBufferData(GL_ARRAY_BUFFER, sizeof(PLANE_NORMALS), PLANE_NORMALS, GL_

� STATIC_DRAW);
}

void init(GLFWwindow* window) {
	� renderingProgramSURFACE = Utils::createShaderProgram("vertShaderSURFACE.glsl", 

� "fragShaderSURFACE.glsl");
	� renderingProgramFLOOR = Utils::createShaderProgram("vertShaderFLOOR.glsl", 

� "fragShaderFLOOR.glsl");
	� renderingProgramCubeMap = Utils::createShaderProgram("vertCShader.glsl", "fragCShader.glsl");
	 . . .
}

void display(GLFWwindow* window, double currentTime) {
	� // Code for drawing skybox unchanged. Code for surface geometry now done twice, for top surface and floor
	 . . .
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	 // draw water top (surface)
	 glUseProgram(renderingProgramSURFACE);
	� mMat.translation(0.0f, surfacePlaneHeight, 0.0f);  �// positions the top plane at the specified height
	 . . .
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[3]);	 // also send normals for lighting
	 glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(2);
	 . . .
	 //  render the top surface twice, so that it can be viewed from both above and below the surface
	 if (cameraHeight >= surfacePlaneHeight)
		  glFrontFace(GL_CCW);
	 else
		  glFrontFace(GL_CW);
	 glDrawArrays(GL_TRIANGLES, 0, 6);

	 // draw water bottom (floor) 
	 glUseProgram(renderingProgramFLOOR);
	 mMat.translation(0.0f, floorPlaneHeight, 0.0f);  // positions the bottom plane at the specified height
	 . . .
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[3]);	 // also send normals for lighting
	 glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(2);
	 . . .
	� glFrontFace(GL_CCW);	 // since the previous setting might have been CW, we set it to CCW here
	 glDrawArrays(GL_TRIANGLES, 0, 6);
}
. . .  // main() and other components as before

We have now expanded the previous program to include two plane segments, 
one for the top surface and one for the bottom surface. We have included nor-
mals so that we can use ADS lighting on both surfaces. We have two rendering 
programs because in this version the top surface is rendered without a texture, 
and the bottom surface is rendered with the checkerboard texture. Also, the 
winding order setting for the top surface is based on whether the camera is above 
or below the water surface (since one or the other side of that plane would then 
need to be rendered). Figure 15.2 shows the result with the camera both above 
and below the water surface. A specular highlight is apparent in both cases. In 
the underwater case, the light-colored band in the distance is the skybox visible 
beyond the top surface plane. This issue will be resolved later when we add a 
“fog” effect.
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Figure 15.2
Geometry for water top surface and bottom floor, camera above surface (left) and below surface (right)

	 15.2	� ADDING SURFACE REFLECTION 
AND REFRACTION

Water is complex, and making a completely realistic simulation would require 
adding the many reflections and refractions that are usually visible in a body of 
water. A further complication is that different effects are needed depending on 
whether the camera is above or below the water surface.

We will start by focusing on the first case: the camera above the water surface. 
In Figure 15.2 (the left figure), we can see that so far we have (1) a solid blue sur-
face, (2) a skybox above the water, and (3) lighting on the surface. To start making 
this look more like water, Program 15.3 adds the following two items:

•	 reflection, so that objects above the water (such as the skybox) are 
reflected on the water’s surface

•	 refraction of the view through the top surface to the bottom floor, so that 
items under the water (such as the checkerboard floor) are visible when 
looking down from above the surface of the water

We will accomplish these by rendering the scene to multiple frame buffers, from 
various vantage points, and then use the resulting frame buffers as textures to apply 
to the ADS-lighted blue water surface. This is fairly complicated, so we present 
Program 15.3 in three parts. In part one, we start by reorganizing the code in display() 
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into separate functions: (1) one that prepares for rendering the skybox, (2) one that 
prepares for rendering the top surface, and (3) one that prepares for rendering the 
floor. We then render each of those as before. Later, in part two, we render these 
items to textures called reflection and refraction textures, and apply them both to the 
top surface – but for now we just reorganize the code to help facilitate this future step.

(These same functions will be useful when the camera is below the water sur-
face. But for now, we will concentrate just on the case of the camera being above 
the water surface.)

The division of the display() function, and the creation of (but not yet filling) 
the reflection and refraction frame buffers, is shown in Program 15.3. Note that the 
two framebuffers also include depth attachments (which we saw earlier in Chapter 
8 when we studied shadow mapping), which will be useful later.

Program 15.3 – Reflection and Refraction (Part 1: preparation)
C++/OpenGL Application
. . .
void createReflectRefractBuffers(GLFWwindow* window) {	 // called once from init()
	 GLuint bufferId[1];
	 glGenBuffers(1, bufferId);
	 glfwGetFramebufferSize(window, &width, &height);

	 //  initialize refraction framebuffer
	 glGenFramebuffers(1, bufferId);
	 refractFrameBuffer = bufferId[0];
	 glBindFramebuffer(GL_FRAMEBUFFER, refractFrameBuffer);
	 glGenTextures(1, bufferId);	 // this is for the color buffer
	 refractTextureId = bufferId[0];
	 glBindTexture(GL_TEXTURE_2D, refractTextureId);
	� glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_

� BYTE, NULL);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	� glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_

� TEXTURE_2D, refractTextureId, 0);
	 glDrawBuffer(GL_COLOR_ATTACHMENT0);
	 glGenTextures(1, bufferId);	 // this is for the depth buffer
	 glBindTexture(GL_TEXTURE_2D, bufferId[0]);
	� glTexImage2D(GL_TEXTURE_2D,0,GL_DEPTH_COMPONENT24, width, height, 0, GL_

� DEPTH_COMPONENT, GL_FLOAT, NULL);
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	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	� glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_ 

� TEXTURE_2D, bufferId[0], 0);

	 //  initialize reflection framebuffer
	 glGenFramebuffers(1, bufferId);
	 reflectFrameBuffer = bufferId[0];
	 glBindFramebuffer(GL_FRAMEBUFFER, reflectFrameBuffer);
	� (the remainder of this section is identical to the code above for the refraction buffer, but with "reflectTextureID")
	 . . .
}

void prepForSkyBoxRender() {
	 glUseProgram(renderingProgramCubeMap);

	 vLoc = glGetUniformLocation(renderingProgramCubeMap, "v_matrix");
	 projLoc = glGetUniformLocation(renderingProgramCubeMap, "p_matrix");

	 glUniformMatrix4fv(vLoc, 1, GL_FALSE, glm::value_ptr(vMat));
	 glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));

	 //  vbo[0] holds the skybox vertices
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);

	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_CUBE_MAP, skyboxTexture);
}

void prepForTopSurfaceRender() {
	 glUseProgram(renderingProgramSURFACE);

	 mvLoc = glGetUniformLocation(renderingProgramSURFACE, "mv_matrix");
	 projLoc = glGetUniformLocation(renderingProgramSURFACE, "proj_matrix");
	 nLoc = glGetUniformLocation(renderingProgramSURFACE, "norm_matrix");

	 mMat = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, surfacePlaneHeight, 0.0f));
	 mvMat = vMat * mMat;
	 invTrMat = glm::transpose(glm::inverse(mvMat));

	 currentLightPos = glm::vec3(lightLoc.x, lightLoc.y, lightLoc.z);
	 installLights(vMat, renderingProgramSURFACE);

	 //  get references to uniform variables
	 glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvMat));
	 glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));
	 glUniformMatrix4fv(nLoc, 1, GL_FALSE, glm::value_ptr(invTrMat));
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	 //  VBOs 1, 2, and 3 contain the plane vertices, texcoords, and normals 
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(0);

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
	 glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(1);

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[3]);
	 glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 0, 0);
	 glEnableVertexAttribArray(2);
}

void prepForFloorRender() {
	 glUseProgram(renderingProgramFLOOR);

	 mvLoc = glGetUniformLocation(renderingProgramFLOOR, "mv_matrix");
	 projLoc = glGetUniformLocation(renderingProgramFLOOR, "proj_matrix");
	 nLoc = glGetUniformLocation(renderingProgramFLOOR, "norm_matrix");

	 mMat = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, floorPlaneHeight, 0.0f));
	 mvMat = vMat * mMat;
	 invTrMat = glm::transpose(glm::inverse(mvMat));

	 currentLightPos = glm::vec3(lightLoc.x, lightLoc.y, lightLoc.z);
	 installLights(vMat, renderingProgramFLOOR);

	� // getting the uniform references and preparing plane VBOs – same as prepForTopSurfaceRender()
	 . . .
}

void display(GLFWwindow* window, double currentTime) {
	 glBindFramebuffer(GL_FRAMEBUFFER, 0);	 // enable the default framebuffer to render scene
	 . . .
	 // draw cube map – most of the code moved to the "prepForSkyBoxRender()" function
	 prepForSkyBoxRender();
	 glEnable(GL_CULL_FACE);
	 glFrontFace(GL_CCW);
	 glDisable(GL_DEPTH_TEST);
	 glDrawArrays(GL_TRIANGLES, 0, 36);
	 glEnable(GL_DEPTH_TEST);

	 // draw water top (surface) – most of the code moved to "prepForTopSurfaceRender()" function
	 prepForTopSurfaceRender();
	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);
	 if (cameraHeight >= surfacePlaneHeight)
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		  glFrontFace(GL_CCW);
	 else
		  glFrontFace(GL_CW);
	 glDrawArrays(GL_TRIANGLES, 0, 6);

	 // draw water bottom (floor) – most of the code moved to "prepForFloorRender()" function
	 prepForFloorRender();
	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);
	 glFrontFace(GL_CCW);
	 glDrawArrays(GL_TRIANGLES, 0, 6);
}

As previously mentioned, the code for Program 15.3 is spread over three 
parts, starting with part one, which is listed above. So far, Program 15.3 doesn’t 
actually produce any rendered output different from that produced by Program 
15.2. However, it reorganizes the code in a way that will be useful as we proceed, 
because we have (1) created two custom framebuffers for holding reflection and 
refraction information, and (2) isolated those sections of display() that prepare par-
ticular portions of the scene for rendering (skybox, floor, and surface), facilitating 
multiple renders.

Now in part two (of Program 15.3), we build the reflection and refraction tex-
tures. We do this by repeating some of the actions in display(), but with different 
view matrices. The strategy is illustrated in Figure 15.3. The camera is above 
the water’s surface looking slightly downwards. Directly below the camera and 
under the surface is a second camera pointing slightly upwards, which is dubbed 
the “reflection camera.” It is used to render objects above the surface (such as the 
skybox) to build the reflection texture. It is positioned at a depth equal to the height 
of the camera above the water, which would be surfacePlaneHeight - cameraHeight. 
Our camera rotation implementation only includes the pitch (rotation around the X 
axis), so for the reflection camera, we simply negate the pitch value.

Since the purpose of the reflection camera is to generate a texture containing 
items reflecting off of the surface, we only render those objects that are above 
the surface of the water when rendering from the point of view of the reflection 
camera. Therefore, in this example, we would render the skybox, but we wouldn’t 
render the floor, the top surface, or any objects in the water (such as fish).

The refraction texture is generated from a third camera, dubbed the “refraction 
camera.” It utilizes the same view matrix as the camera’s view matrix. Refraction 
should render everything seen through the water. That is, when the main camera is 

CGP_C++_CH15_2E_2pp.indd   362 11/3/2020   3:05:34 PM



Chapter  15 ·  Simulat ing Water   ■ 363

above the surface looking down at the water, refraction should reveal those objects 
below the surface (such as fish, and in this example, the checkerboard floor object).

Figure 15.3
Positions for reflection and refraction cameras

Program 15.3 (in part two) adds code for rendering the scene to the reflec-
tion and refraction buffers. There are two calls to display() here, one for filling the 
reflection buffer and one for filling the refraction buffers. (Later, in part three, 
we add a third call to display() that renders the final scene from the actual camera 
for building the completed scene. Note that the two display() functions shown here 
in part two render portions of the scene to the reflection and refraction scenes in 
preparation for assembling the final scene in part three.) In each case, we bind the 
respective buffers before rendering the associated relevant elements in the scene. 
Note that we have now added code to build the appropriate view matrix code in 
each case, adjusting the pitch as described above for the reflection camera. We 
have included the subsequent binding of the default framebuffer before assembling 
the complete scene (those steps are given in part three).

Program 15.3 – Part 2: Filling the Reflection and  
Refraction Buffers
C++/OpenGL Application
. . .
void display(GLFWwindow* window, double currentTime) {

	 // compute perspective matrix as before
	 . . .
	 //  render reflection scene to reflection buffer (if camera above surface)
	 if (cameraY >= surfaceLocY) {
		  // the reflection view matrix negates the camera Y position and pitch
		�  vMat = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, -(surfacePlaneHeight - cameraHeight), 0.0f))
			   * glm::rotate(glm::mat4(1.0f), toRadians(-cameraPitch), glm::vec3(1.0f, 0.0f, 0.0f));
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		  glBindBuffer(GL_FRAMEBUFFER, reflectFrameBuffer);
		  glClear(GL_DEPTH_BUFFER_BIT);
		  glClear(GL_COLOR_BUFFER_BIT);
		  prepForSkyBoxRender();
		  glEnable(GL_CULL_FACE);
		  glFrontFace(GL_CCW);
		  glDisable(GL_DEPTH_TEST);
		  glDrawArrays(GL_TRIANGLES, 0, 36);
		  glEnable(GL_DEPTH_TEST);
	 }

	 // render refraction scene to refraction buffer
	 // the refraction view matrix is the same as for the regular camera
	 vMat = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, -cameraHeight, 0.0f))
		  * glm::rotate(glm::mat4(1.0f), toRadians(cameraPitch), glm::vec3(1.0f, 0.0f, 0.0f));

	 glBindBuffer(GL_FRAMEBUFFER, refractFrameBuffer);
	 glClear(GL_DEPTH_BUFFER_BIT);
	 glClear(GL_COLOR_BUFFER_BIT);

	 // now render the checkerboard floor (and other items below the surface) to the refraction buffer
	 prepForFloorRender();
	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);
	 glDrawArrays(GL_TRIANGLES, 0, 6);

	 // now switch back to the standard buffer in preparation for assembling the entire completed scene
	 glBindFramebuffer(GL_FRAMEBUFFER, 0);
	 . . .
}

Finally, in part three, we complete Program 15.3 by incorporating the reflec-
tion and refraction textures (that were built in part two) into the top surface of the 
water. However, we have a slight problem...

When we rendered the reflection and refraction textures, we did so in the stan-
dard manner with 3D perspective, as though they were going to be displayed to a 
viewer. For example, the checkerboard pattern is rendered in a horizontal plane, 
making squares nearer the camera larger and those in the distance smaller. But 
we are used to applying texture images that are “flat” 2D images (i.e., that don’t 
have perspective). So we can’t use these reflection and refraction textures in the 
standard manner using the texture coordinates for the top surface.

Fortunately, correcting for this is surprisingly easy. Consider the case of the 
camera above the water’s surface. Figure 15.4 shows the scene rendered into the 
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refraction buffer (on the left), which contains only the objects below the water’s 
surface (and which is black everywhere else), the reflection buffer (on the right) 
which contains only the objects above the water’s surface (and black everywhere 
else), and the original scene from Figure 15.2 (repeated in the center of Figure 
15.4), which contains the untextured top surface on which we wish to assemble the 
final rendered scene.

Figure 15.4
Refraction and reflection buffers (left / right) and render scene (center)

Figure 15.4 illustrates that the textures in the reflection and refraction buffers 
are already in the desired screen position. Therefore, all we need to do is use the 
screen coordinates of the object being textured (in this case, the top water sur-
face), as the coordinates which are used to access the textures in the reflection and 
refraction buffers. The screen coordinates have already been computed in the ver-
tex shader and are found in the (x,y) portion of the variable gl_Position. We merely 
need to pass a copy of gl_Position from the vertex shader to the fragment shader (as 
a varying vertex attribute) and use the .xy portion of that as the texture coordinates.

This technique is a simple case of projective texture mapping [E01], which can 
be used in cases where some portion of the scene appears on an object. A common 
example is building a mirror (which, in a sense, we are doing here in the case of 
the reflection buffer). It is called “projective” because it is similar to projecting a 
scene onto an object like a projection screen.

We are now ready to complete Program 15.3. In part three, the reflection and 
refraction textures are incorporated onto the water’s top surface. To do this, the 
C++/OpenGL application needs to make the reflection and refraction buffers avail-
able to the shaders for rendering the top surface. The fragment shader for the top 
surface of the water is where the reflection and refraction textures are applied. The 
vertex shader copies gl_Position into the new vertex attribute named glp and passes 
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it to the fragment shader, which then uses it as texture coordinates for applying the 
reflection and refraction textures. Note that the coordinates are converted from the 
range of screen coordinates to the appropriate [0..1] range for texture coordinates. 
Notice also that in the case of reflection, the Y texture coordinate is subtracted 
from 1, because in this case, the reflection off the surface of the water needs to be 
flipped vertically.

Part three also includes the code that handles the case of the main camera 
being positioned below the surface of the water (i.e., the scene being viewed 
underwater), and we can now discuss that case. It turns out to only require a few 
minor additions and modifications:

•	 If the camera is below the water surface, we can ignore the reflection.
•	 When the camera is below the surface looking up through the top 

surface, the refraction buffer (and texture) should include the skybox (as 
well as objects such as birds and airplanes). 

•	 Code is added to the prepForTopSurfaceRender() and prepForFloorRender() 
functions that informs the shaders whether the camera is above or below 
the surface. This is necessary because the fragment shader needs to 
know whether to include the reflection texture in the top surface.

Thus, in part three, we only compute the reflection if the camera is above the 
water’s surface.

In the fragment shader for the water’s top surface, the mixture of the reflection 
and refraction depends on whether the camera is above or below the water surface. 
If the camera is above the surface, then both textures are included. If the camera 
is underwater, then the refraction texture is mixed with the blue water color. The 
output, both for the camera above and below the water surface, is shown immedi-
ately after the code, in Figure 15.5.

Program 15.3 – Part 3: Applying the Reflection/Refraction Textures
C++/OpenGL Application
. . .
// added to prepForTopSurfaceRender() and prepForFloorRender():
	 aboveLoc = glGetUniformLocation(renderingProgramSURFACE, "isAbove");
	 if (cameraHeight >= surfacePlaneHeight)
		  glUniform1i(aboveLoc, 1);
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	 else
		  glUniform1i(aboveLoc, 0);
. . .
void display(GLFWwindow* window, double currentTime) {
	 . . .
	 // now render the appropriate items to the refraction buffer
	 if (cameraHeight >= surfacePlaneHeight) {
		  prepForSkyBoxRender();
		  glEnable(GL_CULL_FACE);
		  glFrontFace(GL_CCW);
		  glDisable(GL_DEPTH_TEST);
		  glDrawArrays(GL_TRIANGLES, 0, 36);
		  glEnable(GL_DEPTH_TEST);
	 }
	 else {
		  prepForFloorRender();
		  glEnable(GL_DEPTH_TEST);
		  glDepthFunc(GL_LEQUAL);
		  glDrawArrays(GL_TRIANGLES, 0, 6);
	 }
	 . . .
	 // now switch back to the standard buffer in preparation for assembling the entire completed scene
	 glBindFramebuffer(GL_FRAMEBUFFER, 0);
	 glClear(GL_DEPTH_BUFFER_BIT);
	 glClear(GL_COLOR_BUFFER_BIT);
	 . . .
	 // draw water top (surface)
	 prepForTopSurfaceRender();
	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_2D, reflectTextureId);
	 glActiveTexture(GL_TEXTURE1);
	 glBindTexture(GL_TEXTURE_2D, refractTextureId);

	 // the remainder of display() is identical to that shown in part one
	 . . .
}

Vertex Shader (for top surface)
. . . 
out vec4 glp;
. . .
void main(void)
{	 . . .
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	 glp = proj_matrix * mv_matrix * vec4(position,1.0);
	 gl_Position = glp;
}

Fragment Shader (for top surface)
. . .
in vec4 glp;
uniform int isAbove;

void main(void)
{	 . . . // lighting computations are unchanged from before
	 vec4 mixColor, reflectColor, refractColor, blueColor;
	 if (isAbove == 1)
	 {	 refractColor = texture(refractTex, (vec2(glp.x,glp.y))/(2.0*glp.w)+0.5);
		  reflectColor = texture(reflectTex, (vec2(glp.x,-glp.y))/(2.0*glp.w)+0.5);
		  mixColor = (0.2 * refractColor) + (1.0 * reflectColor);
	 }
	 else
	 {	 refractColor = texture(refractTex, (vec2(glp.x,glp.y))/(2.0*glp.w)+0.5);
		  blueColor = vec4(0.0, 0.25, 1.0, 1.0);
		  mixColor = (0.5 * blueColor) + (0.6 * refractColor);
	 }
	 color = vec4((mixColor.xyz * (ambient + diffuse) + 0.75*specular), 1.0);
}

Figure 15.5
Reflection and Refraction - camera above the water’s surface (left), and below the water’s surface (right) 
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	 15.3	 ADDING SURFACE WAVES
So far, our simulated water has been perfectly still. We now add movement to 

the water’s surface. There are many ways to do this, depending on whether we wish 
to simulate tiny ripples, random effects from wind, current flow, or ocean waves. In 
our example, we simulate modest waves such as might appear if there were a slight 
breeze, by combining the normal mapping technique previously covered in Chapter 
10, with a noise map. Since waves are not entirely random, the noise map we build 
for our water’s surface will be a combination of the noise that we generated previ-
ously in Chapter 14, with the regularity of a sine wave. The noise map will then 
serve as a sort of height map, but note that we are not going to actually modify 
the water surface geometry as is typically done in height mapping; rather, we will 
modify the normal vectors (in a manner similar to normal mapping) to make it 
appear that way. (Techniques exist for actually modifying surface geometry; for 
example, a geometry shader could be used, as we studied previously in Chapter 13.)

The noise map is built using the code from Section 14.5, with a slight modi-
fication to the turbulence() function. Specifically, we add a sine wave that runs 
diagonally across the XZ plane:

	 double turbulence(double x, double y, double z, double maxZoom) {
		  double sum = 0.0, zoom = maxZoom;

		  sum = (sin((1.0/512.0)*(8*PI)*(x+z)) + 1) * 8.0;
		  while (zoom >= 0.9) {
			   sum = sum + smoothNoise(zoom, x/zoom, y/zoom, z/zoom) * zoom;
			   zoom = zoom / 2.0;
		  }
		  sum = 128.0 * sum / maxZoom;
		  return sum;
	 }

The diagonal sine wave is accomplished via sin(x+z), with additional factors 
for scaling (1/512 assuming that the size of the noise map is 256 along the X and Z 
dimensions), ensuring that the range of values for x+y span a multiple of PI so that 
the sine wave wraps smoothly at edge boundaries, adding 1 to convert the sine 
wave from -1..+1 to 0..2, and then scaling the height to the desired amount (in this 
case, by a factor of 8). Note that since we have been making heavy use of tiling, it 
is especially important in this application to use a noise map dimension that is a 
power of 2, so that the noise also wraps smoothly at edge boundaries.
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We then pass the noise map to the fragment shader, where we use it to alter the 
normals by a very small offset. The additions to the code are shown in Program 
15.4. The resulting output is shown in Figure 15.6.

Program 15.4 – Adding Surface Waves
C++/OpenGL Application
. . .
GLuint noiseTexture;
const int noiseHeight = 256;
const int noiseWidth = 256;
const int noiseDepth = 256;
double noise[noiseHeight][noiseWidth][noiseDepth];
. . .
// generateNoise(), buildNoiseTexture(), fillDataArray(), smoothNoise() same as in Chapter 14
// turbulence() function as described above
. . .
void init(GLFWwindow* window) {
	 . . .
	 generateNoise();
	 noiseTexture = buildNoiseTexture();
}

void display(GLFWwindow* window, double currentTime) {
	 . . .
	 // draw water top (surface)
	 . . .
	 glActiveTexture(GL_TEXTURE2);
	 glBindTexture(GL_TEXTURE_3D, noiseTexture);
	 . . .
}

Fragment Shader (for top surface)
. . .
layout (binding=2) uniform sampler3D noiseTex;
. . .
vec3 estimateWaveNormal(float offset, float mapScale, float hScale)
{	 // estimate the normal using the wave height values stored in the noise texture.
	 // Do this by looking up three height values at the specified offset distance around this fragment.
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	� // incoming parameters are scale factors for nearness of neighbors, size of noise map relative to 
� scene, and height

	 float h1 = (texture(noiseTex, vec3(((tc.s))*mapScale, 0.5, ((tc.t)+offset)*wScale))).r * hScale;
	 float h2 = (texture(noiseTex, vec3(((tc.s)-offset)*mapScale, 0.5, ((tc.t)-offset)*mapScale))).r * hScale;
	 float h3 = (texture(noiseTex, vec3(((tc.s)+offset)*mapScale, 0.5, ((tc.t)-offset)*mapScale))).r * hScale;

	� // build two vectors using the three neighboring height values. The cross product is the estimated normal.
	 vec3 v1 = vec3(0, h1, -1);	 // neighboring height value #1
	 vec3 v2 = vec3(-1, h2, 1);	 // neighboring height value #2
	 vec3 v3 = vec3(1, h3, 1);	 // neighboring height value #3
	 vec3 v4 = v2-v1;	 // first vector orthogonal to desired normal
	 vec3 v5 = v3-v1;	 // second vector orthogonal to desired normal
	 vec3 normEst = normalize(cross(v4,v5));
	 return normEst;
}

void main(void)
{	 vec3 L = normalize(varyingLightDir);
	 vec3 V = normalize(-varyingVertPos);
	 vec3 N = normalize(varyingNormal);
	 vec3 N = estimateWaveNormal(.0002, 32.0, 16.0);
	 . . .
}

Figure 15.6
Adding surface waves by combining a sine wave and noise map – camera above water surface (left) and below water surface (right)
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	 15.4	 ADDITIONAL CORRECTIONS
Take a look at the images in Figure 15.6 and observe the following “flaws” 

in them:

•	 When the camera is above the water (left image), we would expect the 
visible “checkerboard” lines on the floor to be distorted based on the 
distortions on the water surface – but they are straight.

•	 When the camera is below the surface (right image), we expect the 
lighting on the floor to be similarly distorted, but the specular highlight is 
perfectly round.

•	 Light is attenuated more rapidly under water, but the floor is equally 
bright both up close and far away.

•	 The Fresnel effect is missing. This is a phenomenon in which viewing 
straight down through a transparent medium (such as water) favors 
the refraction contribution, while looking across the surface favors the 
reflection [B01]. Instead, in the image at the left, reflection and refraction 
are equally apparent across the entire top surface.

Distorting the checkerboard lines when the camera is above the water surface 
can be done in the portion of the fragment shader that renders the checkerboard. The 
shader needs the noise map, so we add the following code to the section of the C++/
OpenGL application that builds the refraction buffer, to send it the noise texture:

	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_3D, noiseTexture);

The revised fragment shader for rendering the floor is shown in Program 15.5.

Program 15.5 – Distorting Objects Under the Water’s Surface
Fragment Shader (for floor plane)
. . .
layout (binding=0) uniform sampler3D noiseTex;

vec3 checkerboard(vec2 tc)
{	 // we use the estimated normals derived from the noise map, as before, but with much less height
	 vec3 estN = estimateWaveNormal(.05, 32.0, 0.05);  // this function was described in Section 15.3

	 //  Compute the amount to distort the color location lookup.
	 //  The amount of distortion is tunable using the variable distortStrength.
	 float distortStrength = 0.1;
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	 if (isAbove != 1) distortStrength = 0.0;
	 vec2 distorted = tc + estN.xz * distortStrength;

	 // adjust the lookup for the color by modifying the axes by the distortion amount 
	 float tileScale = 64.0;
	 float tile = mod(floor(distorted.x * tileScale) + floor(distorted.y * tileScale), 2.0);
	 return tile * vec3(1,1,1);
}

In Program 15.5, we perturb the normals on the checkerboard floor using 
small scale factors for height and distortion strength. Experimenting with various 
distortionStrength values shows that it only takes a very small amount of distortion 
in the checkerboard color lookup to generate a large visible distortion effect in the 
lines of the checkerboard. Also note that the test (isAbove!=1) ensures that we only 
include a distortion factor if the camera is above the surface.

Distorting the underwater lighting when the camera is below the water’s sur-
face can also be done in the fragment shader that renders the checkerboard. We 
simply modify the normal vectors for the floor based on the estimated normals 
from the noise map. In this case, experimentation reveals that larger values for 
height and distortion strength are needed than were used previously for distorting 
the lines of the checkerboard itself. The revised fragment shader for rendering the 
floor is shown in the continuation of Program 15.5.

The output incorporating all of the changes shown in Program 15.5 is shown 
in Figure 15.7.

Program 15.5 (continued) – Distorting Lighting Under the  
Water’s Surface
Fragment Shader (for floor plane)
. . .
void main(void)
{	 . . .
	 vec3 N = normalize(varyingNormal);
	 vec3 estN = estimateWaveNormal(.05, 32.0, 0.5);
	 float distortStrength = 0.5;
	 vec2 distort = estN.xz * distortStrength;
	 N = normalize(N + vec3(distort.x, 0.0, distort.y));
	 . . .
	 // the rest of the main() is unchanged
}
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Figure 15.7
Adding distortion to the floor pattern and its lighting – camera above water surface (left, floor pattern distorted), and below water surface 
(right, lighting distorted)

Making items that are further away become less visible was covered previ-
ously in Section 14.1 (“fog”). The code given there works almost verbatim here, 
and it is only used when the camera is below the water’s surface.

A simple Fresnel effect can dramatically enhance realism when the camera is 
above the top surface, and can be implemented in the fragment shader by comput-
ing the angle between the water’s surface normal and the view direction, and then 
mixing the reflection and refraction components based on the magnitude of the 
angle. We experimented with various offsets and scaling factors and found that, 
for this scene, shifting the Fresnel factor to smaller values (to increase the refrac-
tive contribution), clamping the range to [0..1] (for subsequent use in the mix() func-
tion) and raising it to a power of 3 (making the effect nonlinear and sharpening 
the transition between refractive and reflective dominance) produced a pleasing 
result. Other scenes may require different adjustments We also observed that the 
effect is clearest if the original surface normal is used, i.e., without the normals 
having been perturbed by noise and waves.

The additions for both effects are given in Program 15.6, and the results are 
shown in Figure 15.8.

CGP_C++_CH15_2E_2pp.indd   374 11/3/2020   3:05:35 PM



Chapter  15 ·  Simulat ing Water   ■ 375

Program 15.6 – Adding “fog” and “Fresnel” effects
Fragment Shader (for top surface)
. . .
void main(void)
{	 //  code for determining amount of fog to add – very similar to Section 14.1
	 vec4 fogColor = vec4(0.0, 0.0, 0.2, 1.0);
	 float fogStart = 10.0;
	 float fogEnd = 300.0;
	 float dist = length(varyingVertPos.xyz);
	 float fogFactor = clamp(((fogEnd-dist) / (fogEnd-fogStart)), 0.0, 1.0);
	 . . .
	 // angle between normal vector and view vector (for Fresnel effect)
	 vec3 Nfres = normalize(varyingNormal);
	 float cosFres = dot(V,Nfres);
	 float fresnel = acos(cosFres);
	 fresnel = pow(clamp(fresnel-0.3, 0.0, 1.0), 3);	 // tuning for this particular application
	 . . .
	 if (isAbove == 1)
	 {	 //  if above the surface, compute reflection and refraction contributions separately, then mix
		  refractColor = texture(refractTex, (vec2(glp.x,glp.y))/(2.0*glp.w)+0.5);
		  reflectColor = texture(reflectTex, (vec2(glp.x,-glp.y))/(2.0*glp.w)+0.5);
		  reflectColor = vec4((reflectColor.xyz * (ambient + diffuse) + 0.75*specular), 1.0);
		  color = mix(refractColor, reflectColor, fresnel);
	 }
	 else
	 {	 //  if below the surface, compute only the refractive contribution, and add fog
		  refractColor = texture(refractTex, (vec2(glp.x,glp.y))/(2.0*glp.w)+0.5);
		  mixColor = (0.5 * blueColor) + (0.6 * refractColor);
		  color = vec4((mixColor.xyz * (ambient + diffuse) + 0.75*specular), 1.0);
		  color = mix(fogColor, color, pow(fogFactor,5));
	 }
}

Fragment Shader (for floor plane)
. . .
void main(void)
{	 //  code for determining amount of fog to add – very similar to Section 14.1
	 vec4 fogColor = vec4(0.0, 0.0, 0.2, 1.0);
	 float fogStart = 10.0;
	 float fogEnd = 300.0;
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	 float dist = length(varyingVertPos.xyz);
	 float fogFactor = clamp(((fogEnd-dist) / (fogEnd-fogStart)), 0.0, 1.0);
	 . . .
	 if (isAbove != 1) color = mix(fogColor, color, pow(fogFactor,5.0));
}

Figure 15.8
Fresnel effect (left, above the water’s surface) and fog effect (right, below the water’s surface)

	 15.5	 ANIMATING THE WATER MOVEMENT
Animating the water’s surface can be done in a similar manner as was done for 

clouds by taking advantage of the third dimension in the noise map (as yet unused). 
Recall from Section 14.8 the trick of replacing the texture lookup constant in the 
third dimension with a variable that changes over time. As the retrieved “slice” of 
the noise map changes, the noise details change. We can use that same trick here to 
move the sine wave by adjusting the position along the third axis over time when 
we look up which “slice” of the noise map to apply.

This modification is given in Program 15.7. Although we cannot ade-
quately show the animation here, some frames showing the changes to the surface 
and lighting over time are given in Figure 15.9, viewed from both above and below 
the water’s surface. (Or, to see the actual movement, run the code on the accompa-
nying files.)
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Program 15.7 – Animating the Water’s Surface
C++/OpenGL Application
. . .
float depthLookup = 0.0f;
GLuint dOffsetLoc;

double turbulence(double x, double y, double z, double maxZoom) {
	 double sum = 0.0, zoom = maxZoom;
	 sum = (sin((1.0/512.0)*(8*PI)*(x+z-4*y)) + 1) * 8.0;  // this change moves the sine wave through the noise map
	 . . .
}

void prepForTopSurfaceRender() {
	 . . .
	 dOffsetLoc = glGetUniformLocation(renderingProgramSURFACE, "depthOffset");
	 glUniform1f(dOffsetLoc, depthLookup);
	 . . .
}

void prepForFloorRender() {
	 . . .
	 dOffsetLoc = glGetUniformLocation(renderingProgramFLOOR, "depthOffset");
	 glUniform1f(dOffsetLoc, depthLookup);
	 . . .
}

void display(GLFWwindow* window, double currentTime) {
	 depthLookup += (currentTime – prevTime) * .05f;
	 prevTime = currentTime;    // prevTime is a global variable initialized to glfwGetTime() in init()
	 . . .
}

Vertex Shaders (for top surface, and for floor)
. . .
uniform float depthOffset;
. . .

Fragment Shaders (for top surface, and for floor)
. . .
uniform float depthOffset;
vec3 estimateWaveNormal(float offset, float mapScale, float hScale)
{	 . . .
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	 float h1 = (texture(noiseTex, vec3(tc.s*mapScale, depthOffset, (tc.t + offset)*mapScale))).r * hScale;
	� float h2 = (texture(noiseTex, vec3((tc.s-offset)*mapScale, depthOffset, (tc.t - offset)*mapScale))).r * hScale;
	� float h3 = (texture(noiseTex, vec3((tc.s+offset)*mapScale, depthOffset, (tc.t - offset)*mapScale))).r * hScale;
	 . . .
}

In Figure 15.9, when the camera is above the top surface, note the changes in 
each frame over time, seen in the waves on the surface of the water, the changing 
light reflections off the surface, and the changing distortions in the lines of the 
checkerboard. When the camera is below the surface, note the changes in the light-
ing on the floor, and the changes in the waves and their specular highlights when 
looking up at the top surface.

Figure 15.9
Animating water effects, both above and below the water’s surface. In the top three images, the camera is above the top surface, and in 
the bottom three images, the camera is below the surface

	 15.6	 UNDERWATER CAUSTICS
It is common to observe curved bands of light on an underwater floor, as light 

from above the water is transmitted to the floor from the various undulations on 
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the wavy surface. These bands are sometimes called water caustics [W19], and add-
ing them can make an underwater scene more clearly appear underwater. In this 
section, we only add them to our scene whenever the camera is below the water 
surface (see Exercise 15.4 for the case where the camera is above the water surface).

Simulating water caustics can be done in a variety of ways. They can be done 
fairly accurately using ray tracing, although this can be complex and computation-
ally expensive [G07]. However, in most cases, it isn’t necessary for the caustics to 
be perfectly accurate, and even a rough simulation is adequate to convey an under-
water effect. In most cases, generating white lines that bend in a manner consistent 
with the waves on the water surface is sufficient.

We can generate a sort of caustic pattern in the fragment shader, directly from 
the noise map, as follows. We start by computing the sine of the noise value; the 
noise value (which ranges between 0 and 1) is first multiplied by 2π so that the sine 
values cycle smoothly. This results in a value that cycles between -1.0 and 1.0. The 
absolute value of this cycles between 0.0 and 1.0, but with steep slopes around 0.0 
and shallower slopes around 1.0. Subtracting this absolute value from 1.0 then inverts 
this, resulting in long flat regions around 0.0 and sharp peaks around 1.0. This can 
be amplified by raising it to an adjustable exponent, using a tunable variable named 
strength. The result is a function that usually outputs values near 0, but has occasional 
small regions of output values near 1.0. When applied to the top surface color value 
at a given world coordinate, it generates periodic patterns that follow the top surface 
waves, which we can then incorporate into the bottom surface color. Program 15.8 
shows this code added to the fragment shader and the resulting computed values 
added to the color rendered to the floor. The output is shown in Figure 15.10.

Note that the floor color elements after adding the caustic are clamped to the 
range [0..1] to ensure that they are within the valid range for RGB values.

Program 15.8 – Adding Underwater Caustics
Fragment Shader (for floor)
. . .
float getCausticValue(float x, float y, float z)
{	 float w = 8;	 // frequency of caustic curved bands
	 float strength = 4.0;
	 float PI = 3.14159;
	 float noise = texture(noiseTex, vec3(x*w,  y, z*w)).r;
	 return pow((1.0-abs(sin(noise*2*PI))), strength);
}
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void main(void)
{	 . . .
	 color = vec4((mixColor * (ambient + diffuse) + specular), 1.0);

	 // add caustics
	 if (isAbove != 1)
	 {	 float causticColor = getCausticValue(tc.s, depthOffset, tc.t);
		  float colorR = clamp(color.x + causticColor, 0.0, 1.0);
		  float colorG = clamp(color.y + causticColor, 0.0, 1.0);
		  float colorB = clamp(color.z + causticColor, 0.0, 1.0);
		  color = vec4(colorR, colorG, colorB, 1.0);
	 }

	 // add fog
	 if (isAbove != 1) color = mix(fogColor, color, pow(fogFactor,5.0));
}

Figure 15.10
Caustics added when the camera is below the water’s surface

SUPPLEMENTAL NOTES

Methods for simulating water in a real-time graphics application is a complex 
topic, and we have only scratched the surface. We also have only focused on one 
type of water. Completely different techniques are needed to simulate water spray-
ing from a garden hose or wine splashing in a wine glass.

Even our simulation of a swimming pool or lake surface is limited. For 
example, only small ripples on the water’s surface are possible using the method 
described. Larger waves would require modifying the surface geometry. One way 
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of doing this would be to use the tessellation stage to increase the number of ver-
tices, and then use height mapping to move them according to the values in the 
noise map.

Our simulation of the visible distortions on the floor have a fundamental inac-
curacy, in that they are based on the noise values for the surface locations directly 
above the corresponding floor locations. Actually, the distortion for a given floor 
location should be based on the noise value for the surface location in between 
the camera and the floor location. However, it is unlikely to make a difference in 
the perceived realism. There are many simplifications such as this throughout our 
implementation.

“Fresnel” is pronounced “Fre-nel” – the “s” is silent.

There are numerous papers and resources for readers interested in diving more 
deeply into the topic of simulating water and other fluids. There are even entire 
books on the topic [B15].

The technique described in this chapter was patterned closely after an imple-
mentation by Chris Swenson as part of a special project when he was a student at 
California State University, Sacramento. His contributions greatly facilitated our 
explanations and we appreciate the excellent work that he did generating a nicely 
coherent step-by-step approach.

Exercises

15.1	 Add a flying object such as a bird or airplane (or even the NASA space 
shuttle model) flying overhead, above the top surface of the water. Then 
include it in the reflection off the top surface of the water when the camera is 
above the water’s surface and in the refraction through the top surface when 
the camera is below the water surface.

15.2	 Add an object moving underwater, such as a fish or submarine (or even the 
Studio 522 dolphin) below the top surface of the water. Then include it in the 
scene when the camera is below the top surface and in the refraction when 
the camera is above the top surface.

15.3	 In exercise 15.2 (above), if you haven’t done so already, add water caustics to 
the underwater object.
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15.4	 Modify the fragment shader in Program 15.8 so that the water caustics are 
also rendered when the camera is above the top surface as well. Do you 
think that the scene appears more realistic or less realistic with the caustics 
included in this case? If the latter, try to find a way to tune the caustics so 
that they increase realism rather than detracting from it.
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In this chapter, we study a method for creating highly realistic lighting effects 
called ray tracing. We studied lighting previously in Chapter 7, and then in Chapter 
9 we saw a simple method for simulating reflection called environment mapping. 
However, all of these methods only partially simulate lighting effects. For example, 
the ADS lighting model only considers the effect that a light source has on a sur-
face, without regard to the effects of light reflected between objects in the scene. 
Similarly, environment mapping is limited to modeling the reflection of a cube map, 
but not neighboring objects. By contrast, ray tracing more closely models the actual 
paths of light through a scene, considering reflections between objects, shadows, 
and even refraction through transparent objects. Ray tracing is capable of generating 
highly detailed and photo-realistic effects, although it requires significant computing 
resources and cannot always be done in real time.

Ray tracing is motivated by a simple idea: if we can follow the paths of light 
rays from their source to our eyes, we can faithfully reproduce what we would see. 
However, in practice this would be infeasible – there are simply too many light rays, 
most of which don’t even end up reaching our eyes (or have only a marginal effect on 
what we perceive).

A very clever alternative is to reverse this idea. Instead of tracing rays from 
their source to our eye, we instead trace rays starting from the eye, “bouncing” them 
some number of times off of the objects in the scene, accumulating and combining 
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whatever lighting effects are noted along the way. In between the eye and the 
scene, we place a grid of pixels (at the desired resolution) in which we store the 
rendering of the scene. For each pixel in the grid, we generate one ray, as shown in 
Figure 16.1. An algorithm for rendering a scene in this manner was first described 
in 1968 by Arthur Appel, who dubbed it ray casting [A68]. The idea was extended 
in 1979 by Foley and Whitted to include bouncing each ray recursively to simulate 
reflection, shadows, and refraction [FW79], and this process is called “ray tracing.” 
Today, ray tracing tools and hardware are being introduced into the consumer 
market (such as Nvidia RTX [RTX19])

Figure 16.1
Ray Casting

Implementing ray tracing using OpenGL shaders is challenging. The large 
number of computations that must be done can tax even modern GPUs. Also, as 
we shall see, a generalized ray tracing algorithm uses recursion, which is not sup-
ported in OpenGL (GLSL) shaders. While some simple cases can be done without 
recursion, implementing a reasonably complete ray tracing algorithm will require 
us to implement the recursion stack ourselves. Our overall approach will involve 
a two-phase process:

(phase 1)	� Implement the ray-tracing algorithm that builds the pixel grid as 
an image

(phase 2)	 Render the resulting image
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Phase 2 will be extremely easy, as we already know how to render an image as 
a texture. All of the hard work is done in phase 1, and so to help achieve reasonable 
performance, we will use a compute shader for this step.

	 16.1	 COMPUTE SHADERS
GPUs offer extraordinary parallel computing power. Whereas modern CPUs 

may have 4 or 8 cores, GPUs can have thousands. Therefore, they are often used 
for computationally-intensive non-graphics tasks. One way of doing this is to use a 
special-purpose language such as CUDA [NV20], or OpenCL [KR20]. Another way 
is to use a compute shader, which is a variant of the graphics pipeline shaders that 
we already know. OpenGL compute shaders are programmed in GLSL, so most 
of the same programming techniques that we have learned so far in the preceding 
chapters are immediately applicable.

There are many uses for compute shaders. The OpenGL SuperBible describes 
a few, including parallelizing matrix computations, building special-purpose 
image filters (such as adding depth-of-field), and simulating flocks or particle sys-
tems [SW15]. The topic of compute shaders is vast, and we focus only on using 
them for ray tracing. So, this chapter serves both as an introduction to ray tracing, 
and to compute shaders.

	16.1.1	 Compiling and Using Compute Shaders
Compute shaders are just like the other shaders we’ve seen, except that they 

are not a part of the graphics pipeline. They run independently; that is, they do 
not interact with, say, vertex or fragment shaders, and have no predefined inputs 
or outputs. However, they can accept data passed to them, such as in uniform 
variables, and can generate or modify data in memory. Compute shaders are com-
piled with glCompileShader(), linked with glLinkProgram(), and made active with 
glUseProgram() just like any other shader, except that the predefined constant  
GL_COMPUTE_SHADER is used to specify the shader type. We extend the Utils.cpp 
file to include a function for compiling a compute shader and building a render-
ing program from it. The header for this function matches the format of the other 
functions for compiling shaders, and is:
		  GLuint Utils::createShaderProgram(const char *cS)
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That is, it accepts one string specifying the name of the file containing the 
compute shader. For example:
		  computeShaderProgram = Utils::createShaderProgram("computeShader.glsl");

Setting a particular compute shader program as the current one for execution 
is then the same as before:
		  glUseProgram(computeShaderProgram);

Launching the compute shader invocations is then done using the glDis-
patch() command, for example:
		  glDispatch(250, 1, 1);

The three parameters on the glDispatch() command will be described as we 
proceed.

	16.1.2	 Parallel Computing in Compute Shaders
Recall that the exact number of times that a vertex shader runs (is “invoked”) is 

typically once per vertex, and is stated explicitly by the programmer as a parameter 
in the glDrawArrays() command. Similarly, the number of times that a compute shader 
is invoked is specified explicitly in the parameters to the glDispatch() command.

Let’s look at an example of a compute shader to perform a simple parallel 
computing task. In Program 16.1, we present an application that sums the corre-
sponding elements of two one-dimensional matrices. We choose that task because 
each of the additions are independent, and therefore can be done in parallel. To 
keep things simple, we will consider only matrices of size six. The strategy is to 
write a compute shader that simply adds two numbers together, and we run that 
shader six times, once for each matrix element. This will allow the six executions 
of the shader to be run in parallel. It is sufficiently simple that we can use it to 
easily illustrate how to: (1) pass data to a compute shader, (2) perform a simple 
parallel computation, and (3) pass the result back to the C++/OpenGL application. 
Details of the code follow the listing. 

There are multiple ways of passing data to a compute shader, including many 
of the normal methods we have already learned such as uniforms, buffers, etc. 
However, there are only two ways of getting computed data out of a compute 
shader. The first way is to use a special kind of buffer called a Shader Storage 
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Buffer Object (SSBO), which was introduced at OpenGL version 4.3 and is con-
venient for mathematical applications, such as matrix operations. The second 
way is to use an image load/store, which is more convenient for image processing 
or graphics applications. For this simple application of summing two matrices, 
we will use SSBOs. Later, we will use the second method (image load/store) in 
Section 16.2 when we study ray tracing.

Program 16.1 – Simple Compute Shader example
C++/OpenGL Application
// library declarations for stdio, GLEW, GLFW, and Utils are the same as in previous examples
. . .

GLuint buffer[3];
GLuint simpleComputeShader;
int v1[ ] = { 10, 12, 16, 18, 50, 17 };	 // these are the two matrices we are adding together
int v2[ ] = { 30, 14, 80, 20, 51, 12 };
int res[6];    // this is the array in which the result will be placed

void init() {
	 simpleComputeShader = Utils::createShaderProgram("matrixAdditionComputeShader.glsl");

	 glGenBuffers(3, buffer);	 // note that each buffer is an SSBO (Shader Storage Buffer) of size 6
	 glBindBuffer(GL_SHADER_STORAGE_BUFFER, buffer[0]);
	 glBufferData(GL_SHADER_STORAGE_BUFFER, 6, v1, GL_STATIC_DRAW);
	 glBindBuffer(GL_SHADER_STORAGE_BUFFER, buffer[1]);
	 glBufferData(GL_SHADER_STORAGE_BUFFER, 6, v2, GL_STATIC_DRAW);
	 glBindBuffer(GL_SHADER_STORAGE_BUFFER, buffer[2]);
	 glBufferData(GL_SHADER_STORAGE_BUFFER, 6, NULL, GL_STATIC_READ);
}

void computeSum() {
	 glUseProgram(simpleComputeShader);
	 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, buffer[0]); // first input matrix
	 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, buffer[1]); // second input matrix
	� glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2, buffer[2]); // buffer to hold output matrix

	 glDispatchCompute(6, 1, 1); // invokes the compute shader 6 times – the invocations can run in parallel
	 glMemoryBarrier(GL_ALL_BARRIER_BITS); // ensure the compute shader finishes before proceeding
	 glBindBuffer(GL_SHADER_STORAGE_BUFFER, buffer[2]); // retrieve the result buffer into array 'res'
	 glGetBufferSubData(GL_SHADER_STORAGE_BUFFER, 0, sizeof(res), res);
}
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int main(void) {
	 . . . // the start of main() is the same as in other examples
	 if (glewInit() != GLEW_OK) { exit(EXIT_FAILURE); }

	 init();
	 computeSum();	 // since we don't use the GL window, we call this "computeSum" instead of "display"

	 // display the input matrices, and the computed output matrix retrieved from the output SSBO
	 std::cout << v1[0] << " " << v1[1] << " " << v1[2] << " " << v1[3] << " " v1[4] << " " v1[5] << std::endl;
	 std::cout << v2[0] << " " << v2[1] << " " << v2[2] << " " << v2[3] << " " v2[4] << " " v2[5] << std::endl;
	 std::cout << res[0] << " " << res[1] << " " << res[2] << " " << res[3] << " " res[4] << " " << res[5]  
� << std::endl;

	 . . . // the end of main() is the same as in other examples
}

Compute Shader
#version 430
layout (local_size_x=1) in;		 // sets the number of invocations per work group to 1
layout(binding=0) buffer inputBuffer1 { int inVals1[ ]; };
layout(binding=1) buffer inputBuffer2 { int inVals2[ ]; };
layout(binding=2) buffer outputBuffer { int outVals[ ]; };

void main()
{	 uint thisRun = gl_GlobalInvocationID.x;
	 outVals[thisRun] = inVals1[thisRun] + inVals2[thisRun];
}

Start by looking at the compute shader. Three buffers are declared, two for the 
input matrices, and one for the output matrix. Next let’s consider the preceeding 
line that says:

layout (local_size_x=1) in;  

Compute shader invocations are organized into structures called work groups. 
In this simple example, we don’t really utilize work groups, and instead we simply 
want the shader to run six times. So, this layout command sets the work group size 
to 1. We will learn more about work groups shortly.

The actual number of times that the compute shader runs is specified in the 
C++/OpenGL application, specifically in the glDispatchCompute(6,1,1) call. Here we 
are specifying that the shader will run six times. Note here that the number of 
compute shader invocations was specified using three parameters comprising a 
vec3, in this case (6,1,1), and therefore the invocations will be numbered (0,0,0), 
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(1,0,0), (2,0,0), (3,0,0), (4,0,0), and (5,0,0). (We will see shortly how the other two 
dimensions of the shader invocation numbering – here both set to zero – can be 
used in more complex situations.)

Now let’s look at the main() function in the compute shader. Each time the 
shader runs, it first retrieves its invocation number by accessing the built-in GLSL 
variable gl_GlobalInvocationID (which is a vec3). In this case the “x” component of 
gl_GlobalInvocationID will be either 0, 1, 2, 3, 4, or 5, depending on which of the six 
invocations it is. It then uses this value as an index into the input SSBOs. Next, 
the compute shader adds one element from each of the input SSBOs, depending on 
which invocation ID it has, storing the result in the corresponding element of the 
output SSBO. In this manner, each invocation of the shader handles one of the six 
additions, and therefore the six additions can run in parallel.

The code in the C++/OpenGL application is primarily concerned with get-
ting the data in and out of the compute shader. The input matrices v1 and v2 are 
declared as arrays and initialized to some test values at the top of the code. The 
output matrix is declared as array res. The buffers themselves are set up in the init() 
function, very similar to how we created VBOs, except that we specify type GL_
SHADER_STORAGE_BUFFER. The three buffers are associated with v1, v2, and res, 
respectively. Note that in the case of the third buffer, we specify GL_STATIC_READ 
(instead of GL_STATIC_DRAW), because the C++ program will be retrieving data 
from that buffer rather than sending data into it. The init() function also compiles 
and links the shader.

Next, the computeSum() function is called. After making the shader program 
active, it associates each of the SSBOs with an integer index in a manner similar 
to what we have been doing with VBOs. In that case, we used the glBindBuffer() 
command, but since SSBOs aren’t inherently indexed, we must use glBindBuffer-
Base() to specify both the buffer and an associated index. Observe that the com-
pute shader uses this same index in the binding qualifier to associate each buffer 
with an array variable (inVals1, inVals2, and outVals). 

The computeSum() function next initiates the compute shader invocations by call-
ing glDispatchCompute(). The result will then have been accumulated in the third buffer 
(i.e., buffer[2]), which can then be extracted into the res array by calling glGetBuffer-
SubData(). The reader has probably also noticed the rather cryptic call to glMemory-
Barrier() – this is required by OpenGL to ensure that the compute shader invocations 
fully complete before the code that follows is executed. That is, it ensures that the 
items produced by the glDispatchCompute() call are all fully available after the call.
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The main() simply invokes init() and computeSum(), then prints all three 
arrays. Note that even though we are not using an OpenGL window, our use of 
GLFW mandates that a window be created. When run, the output is:

		 10 12 16 18 50 17
		 30 14 80 20 51 12
		 40 26 96 38 101 29

As expected, the third line contains the sum of the values in the first two lines.

	16.1.3	 Work Groups
In the previous simple example, we parallelized the matrix addition into six 

separate integer additions. We did this by specifying that the compute shader run 
six times, with the glDispatchCompute(6,1,1) call. The shader was written in such a 
way that each of the six invocations processed a different element of the matrix.

However, the glDispatchCompute() function is more flexible than that. Its three 
parameters make it possible to spread the computations over a 1D, 2D or 3D grid. 
In the matrix example, the matrices had dimension 4x1, so it was logical to spread 
the invocations across a 1D matrix of dimension 4x1x1 (which is what we did). 
However, soon we will write a compute shader that uses ray tracing to produce a 
display image, and in that application we will process each pixel in parallel. Since 
the display is a 2D grid of pixels, it will make more sense to specify the set of 
computations in a 2D grid. For example, if the GL window was 800x600 pixels, 
then we could initiate the compute shaders with glDispatchCompute(800, 600, 1), and 
then each gl_GlobalInvocationID value would correspond directly to the value of a 
particular pixel’s 2D coordinates. The total number of invocations would then be 
800x600 = 480,000. OpenGL will assign these 480,000 invocations to as many 
different processors (running in parallel) as it can.

The setup for compute shader invocations is even more flexible than that! In this 
last example, the total number 800x600 = 480,000 specified in the glDispatchCom-
pute() call is actually not strictly the number of invocations, but the number of work 
groups. Since in our simple matrix example, the compute shader specified:

layout (local_size_x=1) in;

the work group size was set to 1, meaning that there was one invocation per work-
group. Therefore, in this case, the number of work groups equals the number of 
invocations. This is how we set the work group size in the matrix example, and 
could also be used in the additional 800x600 example that we just described. It is 
also how we will set the work group size when we do ray tracing.
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If you just want to learn about implementing ray tracing, and don’t care to learn 
more about work groups, you may now bypass the next section and skip ahead to 
Section 16.2.

	16.1.4	 Work Group Details
A more complete description of work groups would start by stating that the 

glDispatchCompute() call distributes the desired computations that are to be done in 
parallel into work groups, where a work group is a set of invocations that have a 
need to share some local data. If, for a particular application, all of the invocations 
can be done completely independently of each other, such as is the case in our 
matrix or ray tracing applications (i.e., without any of them needing to share any 
local data), then the work group size may be set to 1, and in that case, the number 
of invocations is equal to the number of work groups.

The set of all work groups is organized in an abstract 3D grid (if the pro-
grammer wishes, one or more of the dimensions may be set to 1, reducing the 
dimensionality of the grid of workgroups to 2D or 1D). Thus, the numbering 
scheme used to identify a particular work group is not a single integer, but a 
tuple of three values. Furthermore, the invocations within a work group (i.e., in 
those cases where the work group size is specified to be greater than one) are 
also organized in a 3D grid. Thus, the programmer must specify (1) the size and 
dimensionality of the grid of work groups and (2) the size and dimensionality of 
each work group (also organized as a grid). This gives the programmer a huge 
degree of flexibility in organizing a potentially large set of parallel computa-
tions. The entire set of invocations are then initiated in the C++/OpenGL appli-
cation by calling

glDispatchCompute(x,y,z)

where the x, y, and z parameters specify the size and dimensionality of the abstract 
grid of the set of work groups. The number of compute shader invocations then 
executed within each work group (and the dimensionality in which they are orga-
nized) is specified in the compute shader with the GLSL command

layout (local_size_x = X, local_size_y = Y, local_size_z = Z)

where X, Y, and Z are the dimensions of each work group. The dimensionalities of 
the set of work groups, and the work groups themselves, need not be the same, and 
may be 1D, 2D, or 3D. The resulting compute shader invocations can then run in 
parallel on the GPU.
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During execution, a compute shader can determine how many work groups 
had been dispatched, and in which work group and invocation it is running by 
querying one or more of the following built-in GLSL variables:

	 gl_NumWorkGroups	 the number of work groups dispatched by the C++ program
	 gl_WorkGroupID	 which work group the current invocation belongs to
	 gl_LocalInvocationID	 which invocation within the current work group this execution represents
	 gl_GlobalInvocationID	 which invocation within the total invocations this execution represents

Let’s walk through an example. Suppose the C++ program made the call glDis-
patchCompute(16,16,4). This would cause the active compute shader to be executed 
with a total of 16x16x4=1024 work groups. If the compute shader specified the 
work  group size as layout(local_size_x=5, local_size_y=5, local_size_z=1), then the 
total size of each workgroup is 5x5x1=25, and therefore the total number of times 
that the compute shader would execute would be 1024x25=5120.

It is then possible to reference a particular work group and invocation being 
processed via its abstract grid indices. For example, the 1024 work groups dis-
patched in the previous example would be numbered (0,0,0), (0,0,1), (0,0,2), (0,0,3), 
(0,1,0), (0,1,1), and so forth, counting up to (15,15,3), and each execution of the 
compute shader can determine which of these work groups it belongs to by que-
rying the built-in variable gl_WorkGroupID, which will return that value in a vec3. 
Similarly, in the same example (above), the 25 invocations done within each work 
group are numbered (0,0,0), (0,1,0), (0,2,0), (0,3,0), (0,4,0), (1,0,0), (1,1,0), (1,2,0), 
and so forth, counting up to (4,4,0), and each execution of the compute shader can 
determine which of these invocations it belongs to by querying the built-in vari-
able gl_LocalInvocationID, which also returns a vec3. Note the contrast between how 
invocations are organized and “counted” in a vertex shader using the simple built-
in int variable gl_VertexID (or gl_InstanceID in the case of instancing) versus the mul-
tidimensional organization (and numbering) of invocations in a compute shader.

The reason that compute shader invocations are organized into grids (actually, 
grids within grids!) is because many parallel computing tasks lend themselves 
to being conceptually subdivided into one or more grid structures. If a 3D grid 
structure is not needed, the programmer can simply set the Z dimensionality in the 
glDispatchCompute() command to one, reducing the grid to 2D on the remaining X 
and Y dimensions. And, if the application really only requires a simple series of 
computations without a grid organization at all, both the Y and Z dimensions can 
be set to one, producing a one-dimensional numbering of the invocations along 
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the remaining X dimension. Similarly, in the compute shader, the dimensionality 
of the work group size can be reduced by leaving off the Y and/or Z terms (which 
is what we did for the matrix example, and what we will do for the ray tracing 
application).

The reader may still wonder why it can be advantageous to subdivide a solu-
tion among work groups, rather than simply making each work group be of size 
1 and dispatching a large number of them (or, conversely, one very large work 
group). The answer depends on the application. Some problems lend themselves 
to being decomposed into chunks, such as an image blurring filter (described in 
[SW15]) in which the colors of groups of neighboring pixels are averaged together. 
In such cases, the need for shared data within a group arises and is supported by 
OpenGL’s shared local memory construct (which is not covered in this book). In 
some cases, there can be performance benefits to selecting a work group size that 
best utilizes a particular GPU’s architecture [Y10].

Our ray tracing application builds a two-dimensional texture image. So, it 
makes sense to utilize abstract grids that are of 2D dimensionality. For simplicity, 
we set the work group size to 1 and generate a workgroup for each pixel. For exam-
ple, if our ray traced texture image is of size 512×512, we would call glDispatchCom-
pute(512, 512, 1), and in the compute shader use layout (local_size_x=1) in; to denote a 
work group size of (1,1,1). This will generate a compute shader invocation for each 
pixel. Alternatively, we could subdivide the problem into work groups of size 8×8 
by calling glDispatchCompute(64,64,1) and in the compute shader use layout (local_
size_x=8, local_size_y=8) in; to denote a workgroup size of (8,8,1). This would also 
generate a compute shader invocation for each pixel, and result in the same number 
of total invocations. For this simple application, there are no dependencies between 
pixel computations, and it doesn’t matter in what order the GPU does them (as long 
as all of them are completed before we try to display the resulting texture image), so 
either approach would work fine. For simplicity, we will choose the former.

	16.1.5	 Work Group Limitations
There are limitations on the number and sizes of work groups, and on the num-

ber of invocations allowed for each work group, depending on the graphics card. In 
some cases, these limitations may impact the selection of size and dimensionality 
of work groups. Those limitations can be determined by querying the built-in vari-
ables GL_MAX_COMPUTE_WORK_GROUP_COUNT, GL_MAX_COMPUTE_WORK_
GROUP_SIZE, and GL_MAX_COMPUTE_WORK_GROUP_INVOCATIONS. Since 
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these variables are of type vec3, the glGetIntegeri_v command can be used to 
access the values in each of the X, Y, and Z dimensions. An OpenGL/C++ func-
tion for doing this is shown in Figure 16.2 (and added to our Utils.cpp file).

Figure 16.2
Querying work group limitations

	 16.2	 RAY CASTING
We start our study of ray tracing by first implementing a very basic ray 

casting algorithm as illustrated previously in Figure 16.1. In ray casting, we 
initialize a rectangular 2D texture (a grid of pixels), then create a series of rays, 
one for each pixel, starting from the camera (eye) through the pixel into the 
scene. Whichever closest object the ray hits, we assign that object’s color to the 
pixel.

Ray casting (and ray tracing, which we will study later) is easiest when 
the scene contains simple shapes such as spheres, planes, etc., but can also 
be done on more complex objects comprised of triangle meshes. In this brief 
introduction, we limit our scene to spheres, planes, and boxes. Later, we will 
also incorporate textures and ADS lighting, as well as reflection, refraction, 
and shadows.

	16.2.1	 Defining the 2D Texture Image
The ray cast image is generated on a 2D texture that is initially defined in the 

OpenGL/C++ application. The C++ code is shown in Program 16.2. It starts by 
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defining the width and height of the texture on which the ray cast image is built 
(and ultimately displayed). As explained earlier, there is one work group per pixel, 
so the X and Y dimensions for the work group abstract grid are set equal to the 
texture dimensions.

The init() function allocates memory for the texture, and sets each of the entries 
to color values corresponding to the color pink. Since our algorithm is intended 
to send a ray through each pixel (and thus calculate the color for each and every 
one of them), the presence of any remaining pink in the resulting image indicates 
a likely bug in our implementation. The init() function then creates an OpenGL 
texture object and associates it with the allocated memory. Next, a rectangle (or 
“quad”) consisting of two triangles is defined that is used for displaying the ray 
cast texture image; its vertices and corresponding texture coordinates are each 
loaded into their own buffers. Finally, the two shader programs are generated: 
(1) the ray casting compute shader program and (2) a simple shader program that 
displays the ray cast texture image on the rectangular quad.

	16.2.2	 Building and Displaying the Ray Cast Image
The display() function is broken down into “phase 1” and “phase 2”, as outlined 

earlier. Phase 1 uses the ray casting compute shader program, binds the texture 
image, and then initiates the shader with glDispatchCompute() as described earlier. 
Rather than binding the texture image to a sampler, as we did in previous chapters, 
we used glBindImageTexture() to bind the texture image to an OpenGL image unit. 
Image units are distinct from samplers, and in this case, make accessing the indi-
vidual pixels from within the shader more convenient. The call to glMemoryBarrier() 
is there to ensure that, as described previously, we don’t try to draw the ray cast 
image until it is entirely built. Then, phase 2 simply draws that image on the two-
triangle quad using the basic techniques described in Chapter 5.

Program 16.2 – Ray Casting
C++/OpenGL Application
#define RAYTRACE_RENDER_WIDTH  512	 // also set window width & height to these values
#define RAYTRACE_RENDER_HEIGHT   512
int workGroupsX = RAYTRACE_RENDER_WIDTH;
int workGroupsY = RAYTRACE_RENDER_HEIGHT;
int workGroupsZ = 1;
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GLuint screenTextureID;				   // The texture ID of the full screen texture
unsigned char *screenTexture;	 // The screen texture RGBA8888 color data

GLuint raytraceComputeShader, screenQuadShader;

//  other variable declarations for VAOs, VBOs, etc., as before
. . .

void init(GLFWwindow* window)  {
	 //  allocate the memory for the screen texture
	 screenTexture = (unsigned char*)malloc(
		  sizeof(unsigned char) * 4 * RAYTRACE_RENDER_WIDTH * RAYTRACE_RENDER_HEIGHT);
	 memset(screenTexture, 0, sizeof(char) * 4 * RAYTRACE_RENDER_WIDTH *  
� RAYTRACE_RENDER_HEIGHT);

	 //  set the initial texture pixel colors to pink – if pink appears, there might be an error at that pixel
	 for (int i = 0; i < RAYTRACE_RENDER_HEIGHT; i++) {
		  for (int j = 0; j < RAYTRACE_RENDER_WIDTH; j++) {
			   screenTexture[i * RAYTRACE_RENDER_WIDTH * 4 + j * 4 + 0] = 250;
			   screenTexture[i * RAYTRACE_RENDER_WIDTH * 4 + j * 4 + 1] = 128;
			   screenTexture[i * RAYTRACE_RENDER_WIDTH * 4 + j * 4 + 2] = 255;
			   screenTexture[i * RAYTRACE_RENDER_WIDTH * 4 + j * 4 + 3] = 255;
	 }	 }

	 //  create the OpenGL Texture on which to ray cast the scene
	 glGenTextures(1, &screenTextureID);
	 glBindTexture(GL_TEXTURE_2D, screenTextureID);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
	 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, RAYTRACE_RENDER_WIDTH,  
		  RAYTRACE_RENDER_HEIGHT, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void *)screenTexture);
	 // create quad vertices and texture coordinates for rendering the finished texture to the window
	 const float windowQuadVerts[ ] = {
		  -1.0f, 1.0f, 0.3f,  -1.0f,-1.0f, 0.3f,  1.0f, -1.0f, 0.3f,
		  1.0f, -1.0f, 0.3f,  1.0f,  1.0f, 0.3f,  -1.0f,  1.0f, 0.3f
	 };

	 const float windowQuadUVs[ ] = {
		  0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
		  1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f
	 };

	 glGenVertexArrays(1, vao);
	 glBindVertexArray(vao[0]);
	 glGenBuffers(numVBOs, vbo);
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	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);  // vertex positions
	 glBufferData(GL_ARRAY_BUFFER, sizeof(windowQuadVerts), windowQuadVerts,  
� GL_STATIC_DRAW);

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);  // texture coordinates
	 glBufferData(GL_ARRAY_BUFFER, sizeof(windowQuadUVs), windowQuadUVs,  
	�  GL_STATIC_DRAW);

	 raytraceComputeShader = Utils::createShaderProgram("raytraceComputeShader.glsl");
	 screenQuadShader = Utils::createShaderProgram("vertShader.glsl", "fragShader.glsl");
}

void display(GLFWwindow* window, double currentTime)  {

	 //  ========= Phase 1  invoke the ray tracing compute shader  =============
	 glUseProgram(raytraceComputeShader);

	 //  bind the screenTextureID texture to an OpenGL image unit as the compute shader's output
	 glBindImageTexture(0, screenTextureID, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RGBA8);

	 //  start the compute shader with the specified number of work groups
	 glDispatchCompute(workGroupsX, workGroupsY, workGroupsZ);
	 glMemoryBarrier(GL_ALL_BARRIER_BITS);

	 //  ========= Phase 2  draw the resulting texture  =============
	 glUseProgram(screenQuadShader);

	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_2D, screenTextureID);

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
	 glEnableVertexAttribArray(0);

	 glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	 glVertexAttribPointer(1, 2, GL_FLOAT, false, 0, 0);
	 glEnableVertexAttribArray(1);

	 glDrawArrays(GL_TRIANGLES, 0, 6);
}

// main() as before

The phase 2 shaders then fetch the pixels that were put into the texture object 
by the phase 1 shaders (and subsequently bound to texture unit 0 in the C++/
OpenGL application) and use them to display the ray cast image.
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Program 16.2 – Ray Casting (continued)
Vertex Shader
#version 430
layout (location=0) in vec3 vert_pos;
layout (location=1) in vec2 vert_uv;
out vec2 uv;

void main(void)
{	 gl_Position = vec4(vert_pos, 1.0);
	 uv = vert_uv;
}

Fragment Shader
#version 430
layout (binding=0) uniform sampler2D tex;
in vec2 uv;

void main()
{	 gl_FragColor = vec4( texture2D( tex, uv).rgb, 1.0);
}

The phase 1 ray cast compute shader completes Program 16.2. This shader is 
the heart of the ray casting program. We give the code first, then follow it with 
detailed explanation of the algorithm and implementation.

Program 16.2 – Ray Casting (continued)
Compute Shader
#version 430
layout (local_size_x=1) in;
layout (binding=0, rgba8) uniform image2D output_texture;
float camera_pos_z = 5.0;

struct Ray
{	 vec3 start;	 // origin of the ray
	 vec3 dir;		  // normalized direction of the ray
};

struct Collision
{	 float t;					    // distance along ray at which this collision occurs
	 vec3 p;				    // world position of the collision
	 vec3 n;				    // surface normal at the collision point
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	 bool inside;			   // whether the ray started inside of the object and collided while exiting
	 int object_index	;	 // index of the object this collision hit
};

float sphere_radius = 2.5;
vec3 sphere_position = vec3(1.0, 0.0, -3.0);
vec3 sphere_color = vec3(0.0, 0.0, 1.0);	 // sphere color is blue

vec3 box_mins = vec3(-2.0,-2.0, 0.0);
vec3 box_maxs = vec3(-0.5, 1.0, 2.0);
vec3 box_color = vec3(1.0, 0.0, 0.0);	 // box color is red

// ------------------------------------------------------------------------------
// Checks if Ray r intersects the box
// ------------------------------------------------------------------------------
Collision intersect_box_object(Ray r)
{	 // Calculate the box's world mins and maxs:
	 vec3 t_min = (box_mins - r.start) / r.dir;
	 vec3 t_max = (box_maxs - r.start) / r.dir;
	 vec3 t_minDist = min(t_min, t_max);
	 vec3 t_maxDist = max(t_min, t_max);
	 float t_near = max(max(t_minDist.x, t_minDist.y), t_minDist.z);
	 float t_far = min(min(t_maxDist.x, t_maxDist.y), t_maxDist.z);

	 Collision c;
	 c.t = t_near;
	 c.inside = false;

	 // If the ray didn't intersect the box, return a negative t value
	 if (t_near >= t_far || t_far <= 0.0)
	 {	 c.t = -1.0;
		  return c;
	 }

	 float intersect_distance = t_near;
	 vec3 plane_intersect_distances = t_minDist;

	 // if t_near < 0, then the ray started inside the box and left the box
	 if (t_near < 0.0)
	 {	 c.t = t_far;
		  intersect_distance = t_far;
		  plane_intersect_distances = t_maxDist;
		  c.inside = true;
	 }

	 // Checking which boundary the intersection lies on
	 int face_index = 0;
	 if (intersect_distance == plane_intersect_distances.y)  face_index = 1;
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	 else if (intersect_distance == plane_intersect_distances.z)  face_index = 2;

	 // Create the collision normal
	 c.n = vec3(0.0);
	 c.n[face_index] = 1.0;

	 // If we hit the box from the negative axis, invert the normal
	 if (r.dir[face_index] > 0.0) c.n *= -1.0;

	 // Calculate the world-position of the intersection:
	 c.p = r.start + c.t * r.dir;
	 return c;
}

// ------------------------------------------------------------------------------
// Checks if Ray r intersects the sphere
// ------------------------------------------------------------------------------
Collision intersect_sphere_object(Ray r)
{	 float qa = dot(r.dir, r.dir);
	 float qb = dot(2*r.dir, r.start-sphere_position);
	 float qc = dot(r.start-sphere_position, r.start-sphere_position) - sphere_radius*sphere_radius;

	 // Solving for qa * t^2 + qb * t + qc = 0
	 float qd = qb * qb - 4 * qa * qc;

	 Collision c;
	 c.inside = false;

	 if (qd < 0.0)	 // no solution in this case
	 {	 c.t = -1.0;
		  return c;
	 }

	 float t1 = (-qb + sqrt(qd)) / (2.0 * qa);
	 float t2 = (-qb - sqrt(qd)) / (2.0 * qa);
	 float t_near = min(t1, t2);
	 float t_far = max(t1, t2);
	 c.t = t_near;

	 if (t_far < 0.0)	 // sphere is behind the ray, no intersection
	 {	 c.t = -1.0;
		  return c;
	 }
	 if (t_near < 0.0)	 // the ray started inside the sphere
	 {	 c.t = t_far;
		  c.inside = true;
	 }
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	 c.p = r.start + c.t * r.dir;	// world position of the collision
	 c.n = normalize(c.p - sphere_position);    // use the world position to compute the surface normal

	 if (c.inside)	 // if collision is leaving the sphere, flip the normal
	 {	 c.n *= -1.0;
	 }
	 return c;
}

//------------------------------------------------------------------------------
// Returns the closest collision of a ray
// object_index == -1 if no collision
// object_index == 1 if collision with sphere
// object_index == 2 if collision with box
//------------------------------------------------------------------------------
Collision get_closest_collision(Ray r)
{	 Collision closest_collision, cSph, cBox;
	 closest_collision.object_index = -1;

	 cSph = intersect_sphere_object(r);
	 cBox = intersect_box_object(r);

	 if ((cSph.t > 0) && ((cSph.t < cBox.t) || (cBox.t < 0)))
	 {	 closest_collision = cSph;
		  closest_collision.object_index = 1;
	 }
	 if ((cBox.t > 0) && ((cBox.t < cSph.t) || (cSph.t < 0)))
	 {	 closest_collision = cBox;
		  closest_collision.object_index = 2;
	 }
	 return closest_collision;
}

// ------------------------------------------------------------------------------
// This function casts a ray into the scene and returns the final color for a pixel
// ------------------------------------------------------------------------------
vec3 raytrace(Ray r)
{	 Collision c = get_closest_collision(r);
	 if (c.object_index == -1) return vec3(0.0);	 // if no collision, return black
	 if (c.object_index == 1) return sphere_color;
	 if (c.object_index == 2) return box_color;
}

void main()
{	 int width = int(gl_NumWorkGroups.x);	 // one workgroup = one invocation = one pixel
	 int height = int(gl_NumWorkGroups.y);
	 ivec2 pixel = ivec2(gl_GlobalInvocationID.xy);
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	 // convert this pixel's screen space location to world space
	 float x_pixel = 2.0 * pixel.x / width – 1.0;
	 float y_pixel = 2.0 * pixel.y / height – 1.0;

	 // Get this pixel's world-space ray
	 Ray world_ray;
	 world_ray.start = vec3(0.0, 0.0, camera_pos_z);
	 vec4 world_ray_end = vec4(x_pixel, y_pixel, camera_pos_z - 1.0, 1.0);
	 world_ray.dir = normalize(world_ray_end.xyz - world_ray.start);

	 // Cast the ray out into the world and intersect the ray with objects
	 vec3 color = raytrace(world_ray);
	 imageStore(output_texture, pixel, vec4(color, 1.0));
}

The declarations at the top of the compute shader start by setting the workgroup 
size to 1, as described earlier. A uniform variable for the output texture image is 
then defined, as well as the camera position (in this example we limit the camera 
to being positioned along the Z axis, facing in the negative Z direction). Then, 
structs are declared for defining rays (their origins and directions) and collisions. 
Collisions include information about a ray intersecting an object, e.g., the distance 
along the ray, collision location in world coordinates, which object is hit, and the 
normal at the surface point of the collision, which will be used later when we add 
lighting. The declarations conclude by creating variables for the location and color 
of the objects we intend to draw (in this case, a box and a sphere).

The main() function, shown at the bottom of the code listing, starts by using 
the work group’s invocationID to determine the pixel’s X/Y location in the screen-
space grid, then converts that from the range [0..width] to the range [-1..+1] corre-
sponding to where the pixel is positioned in the scene’s world coordinate system. 
A ray starting at the camera position and passing through this point is then cre-
ated, assuming that the render grid is placed a distance of 1.0 (along the Z axis) 
in front of the camera. main() then calls raytrace(), which accepts a ray and returns 
the color of the nearest object hit by that ray. main() then stores that color in the 
image.

The raytrace() function calls get_closest_collision(), which returns a Collision 
object containing the index of the first object with which the ray collides; ray-
trace() then returns the color of that object. If the ray doesn’t collide with any 
object in the scene, raytrace() returns the default color (set to black in this example). 
The get_closest_collision() function works by finding the collision point(s) with the 
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sphere object and the box object (via the functions intersect_sphere_object() and 
intersect_box_object(), respectively), and returning the collision that has the shortest 
ray. If there is no colliding object, a special value of -1 is returned.

	16.2.3	 Ray-Sphere Intersection
Computing the intersection(s) of a ray with a sphere is derived using geometry 

and is well-documented [S16]. Although the derivation is relatively simple, here we 
describe only the solution. There are either 0, 1, or 2 intersection points, depending 
on if the ray misses the sphere, skims the surface, or enters on one side and exits 
out the other. Given the ray’s origin rs and direction rd, and the sphere’s position sp 
and radius sr, then finding the distance t along the ray at which the intersection(s) 
occur requires solving the following quadratic equation:

	 (rd • rd)t2 + (2rd • |rs − sp|)t + |rs − sp|2 − sr
2 = 0� [1]

First, we compute its discriminant1:

∆ = (2rd • |rs − sp|) 2 − 4|rd|2 (|rs − sp|2 − sr
2)

If ∆ < 0, we can stop because the ray misses the sphere (and to avoid attempt-
ing to take the square root of a negative number). When Δ is not less than zero, 
there are then two solutions to equation [1]:

t = 
(−2rd • |rs − sp|) ± √⸺∆

2(rd • rd)2 
The smaller and larger of the two resulting values of t are denoted t_near and 

t_far, respectively.

•	 When both t_near and t_far are negative, the entire sphere is behind the 
ray and there is no intersection.

•	 When t_near is negative and t_far is positive, then the ray started inside 
the sphere and the first intersection point is at t_far.

•	 When both are positive, the first intersection point is at t_near. Note that 
this also handles the case of the ray skimming the surface of the sphere, 
when both t_near and t_far are positive and equal to each other (which 
occurs when the discriminant Δ is zero).

1	 In the code, we sometimes compute the square of the length of a vector v→ by computing v→ • v→, 
for performance reasons.
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Finally, once the value of t has been determined, the corresponding point is 
easily calculated:

collision point = rs + t * rd

Later, we will need the surface normal at the collision point, hereafter called 
the collision normal, which is a vector from the center of the sphere to the intersec-
tion point:

collision normal = normalize(collision point − sp)

noting that if the ray started inside the sphere, then the collision normal would 
need to be negated.

	16.2.4	 Axis-Aligned Ray-Box Intersection
Computing the intersection(s) of a ray with a box is similarly well-documented 

and derived using geometry, the most common approach having been derived by Kay 
and Kajiya [KK86]. Again we describe only the solution, as adapted for GPU vector 
operations [H89]. And as for the sphere, a ray will intersect a box at 0, 1, or 2 points.

Program 16.2 assumes the box is aligned with the world axes (we handle other 
orientations later). We define the box using two points at diagonally-opposite 
corners; i.e., (xmin, ymin, zmin) and (xmax, ymax, zmax). In Program 16.2, those are  
box_mins and box_maxs at (-2, -2, 0) and (-0.5, 1, 2), respectively. These two points are 
then used to identify the six X/Y/Z planes that comprise the box. For example, the 
two “X” planes are specified as the X values for the two box sides parallel to the 
YZ plane. Finding the distance t at which the ray intersects each of the six planes 
can be done efficiently with GLSL vec3 operations (see [S11] for a derivation):

tmins = (boxmins − rs)/rd

tmaxs = (boxmaxs − rs)/rd

The resulting tmins and tmaxs vectors contain minimum and maximum dis-
tances to planes defined by the X, Y, and Z-aligned box sides. The smaller 
and larger of each of those can then be found efficiently as follows:

tminDist = min(tmins, tmaxs)

tmaxDist = max(tmins, tmaxs)
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(In GLSL, the “min” of two vec3s is a vec3 containing the smaller of each pair 
of X, Y, and Z elements.)

The vector tminDist then contains (distance rs to xmin, distance rs to ymin, distance rs 
to zmin).

The vector tmaxDist then contains (distance rs to xmax, distance rs to ymax, distance rs 
to zmax).

Some of the plane collision points are actually outside of the box. The dis-
tance from the ray origin to the nearest collision point that is actually on a box 
surface is the largest of the tminDist values, and the distance from the ray origin 
to the furthest collision point that is on a box surface is the smallest of the tmax-
Dist values:

t_near = max(tminDistx, tminDisty, tminDistz)

t_ far = min(tmaxDistx, tmaxDisty, tmaxDistz)

There are then three cases:

•	 The ray doesn’t intersect the box at all, which is the case when t_near > 
t_far or if t_far ≤ 0.

•	 There is one collision point when the ray starts inside the box and exits 
the box, which is the case when t_near < 0 and t_far > 0.

•	 Otherwise, there are two collision points which occur at distances t_near 
and t_far.

Computing the world coordinates of the nearest collision is then done the same 
as for the sphere. Computing the normal at this point is then either (±1,0,0), (0,±1,0) 
or (0,0,±1), depending on which surface the collision occurs.

	16.2.5	 Output of Simple Ray Casting Without Lighting
Figure 16.3 shows the output of Program 16.2. The scene contains a red sphere 

on the right, and a green box on the left. The box is axis-aligned, and is placed 
slightly closer to the camera than the sphere. Note that lighting has not been 
applied, so the surfaces appear flat and the sphere just looks like a disk.
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Figure 16.3
Output of Program 16.2, showing simple ray casting without lighting

	16.2.6	 Adding ADS Lighting
ADS (“ambient-diffuse-specular”) lighting was covered in Chapter 7. Here 

we implement it in the ray casting compute shader by adding code that specifies 
the global ambient light, the position and ADS characteristics of a positional light, 
ADS material characteristics of the objects in the scene, and a function to compute 
the ADS lighting in the same manner as was done in Chapter 7.

Program 16.3 shows the additions and changes to the ray casting compute 
shader. There are declarations added at the top of the shader, and a new function 
ads_phong_lighting(). Changes to the raytrace() function are shown in red, in which 
the lighting result is multiplied by the color of the object. In this simple example, 
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both the sphere and the box have the same material characteristics. The output is 
shown in Figure 16.4.

Program 16.3 – Adding Lighting
Compute Shader
. . .
vec4 global_ambient = vec4(0.3, 0.3, 0.3, 1.0);

vec4 objMat_ambient = vec4(0.2, 0.2, 0.2, 1.0);
vec4 objMat_diffuse = vec4(0.7, 0.7, 0.7, 1.0);
vec4 objMat_specular = vec4(1.0, 1.0, 1.0, 1.0);
float objMat_shininess = 50.0;

vec3 pointLight_position = vec3(-3.0, 2.0, 4.0);
vec4 pointLight_ambient = vec4(0.2, 0.2, 0.2, 1.0);
vec4 pointLight_diffuse = vec4(0.7, 0.7, 0.7, 1.0);
vec4 pointLight_specular = vec4(1.0, 1.0, 1.0, 1.0);
. . .
vec3 ads_phong_lighting(Ray r, Collision c)
{	 // Compute the ambient contribution from the ambient and positional lights
	 vec4 ambient = global_ambient + pointLight_ambient * objMat_ambient;

	 // Compute the light's reflection on the surface
	 vec3 light_dir = normalize(pointLight_position - c.p);
	 vec3 light_ref = normalize( reflect(-light_dir, c.n));
	 float cos_theta = dot(light_dir, c.n);
	 float cos_phi = dot( normalize(-r.dir), light_ref);

	 // Compute the diffuse and specular contributions
	 vec4 diffuse = pointLight_diffuse * objMat_diffuse * max(cos_theta, 0.0);
	 vec4 specular = pointLight_specular * objMat_specular * pow( max( cos_phi, 0.0),  
	�  objMat_shininess);

	 vec4 phong_color = ambient + diffuse + specular;
	 return phong_color.rgb;
}

vec3 raytrace(Ray r)
{	 Collision c = get_closest_collision(r);
	 if (c.object_index == -1) return vec3(0.0);	 // if no collision, return black
	 if (c.object_index == 1) return ads_phong_lighting(r,c) * sphere_color;
	 if (c.object_index == 2) return ads_phong_lighting(r,c) * box_color;
}
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Figure 16.4
Output of Program 16.3, showing simple ray casting with lighting

	16.2.7	 Adding Shadows
Ray casting provides a remarkably elegant method for detecting whether some-

thing is in shadow by leveraging some of the functions we have already written. 
We do this by defining a “shadow feeler ray” starting at the collision point being 
rendered, towards the position of the light. We then use our already-developed 
get_closest_collision() function to determine the closest collider for that ray. If it 
is closer than the positional light, then there must be an object in between the light 
and the collision point, and the point must be in shadow. 

Recall from Chapter 8 that the way we render the portion of an object that is in 
shadow is by rendering only the ambient contribution. Therefore, in our compute 
shader, a convenient place to put our shadow-detecting code is in the ads_phong_
lighting() function that we developed in the previous section. Here, the diffuse and 
specular contributions are initialized to zero, and only computed if the collision 
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point is determined to not be in shadow. Note also that the shadow feeler ray starts 
at a slight offset away from the object (along the normal) to avoid shadow acne 
(this is because without this offset, some of the feeler rays will immediately bump 
into the object itself). The additions are shown in Program 16.4 and highlighted in 
red. The algorithm is considerably simpler than the shadow mapping we learned 
in Chapter 8! Figure 16.5 shows the program’s output. The box is now casting a 
shadow on the sphere.

Program 16.4 – Adding Shadows
Compute Shader
. . .
vec3 ads_phong_lighting(Ray r, Collision c)
{	 // Compute the ambient contribution from the ambient and positional lights
	 vec4 ambient = worldAmb_ambient + pointLight_ambient * objMat_ambient;

	 // initialize diffuse and specular contributions
	 vec4 diffuse = vec4(0.0);
	 vec4 specular = vec4(0.0);

	 // Check to see if any object is casting a shadow on this surface
	 Ray light_ray;
	 light_ray.start = c.p + c.n * 0.01;
	 light_ray.dir = normalize(pointLight_position - c.p);
	 bool in_shadow = false;

	 // Cast the ray against the scene
	 Collision c_shadow = get_closest_collision(light_ray);

	 // If the ray hit an object and if the hit occurred between the surface and the light
	 if (c_shadow.object_index != -1 && c_shadow.t < length(pointLight_position – c.p))
	 {	 in_shadow = true;
	 }

	 // If this surface is in shadow, don't add diffuse and specular components
	 if (in_shadow == false)
	 {	 // Compute the light's reflection on the surface
		  vec3 light_dir = normalize(pointLight_position - c.p);
		  vec3 light_ref = normalize( reflect(-light_dir, c.n));
		  float cos_theta = dot(light_dir, c.n);
		  float cos_phi = dot( normalize(-r.dir), light_ref);

		  // Compute the diffuse and specular contributions
		  diffuse = pointLight_diffuse * objMat_diffuse * max(cos_theta, 0.0);
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		  specular = pointLight_specular * objMat_specular * pow( max( cos_phi, 0.0), objMat_shininess);
	 }
	 vec4 phong_color = ambient + diffuse + specular;
	 return phong_color.rgb;
}

Figure 16.5
Output of Program 16.4, showing simple ray casting with lighting and shadows

	16.2.8	 Non-Axis-Aligned Ray-Box Intersection
So far, our box has been limited to an orientation where its X, Y, and Z axes 

are parallel with the world axes. We now show how to include translation and 
rotation, so that we can orient the box however we wish. Applying translation and 
rotation on the box is conceptually similar to building a view matrix, as we did in 
Chapter 4, although the details are slightly different.

We start by making sure that our box_mins and box_maxs variables define a 
box shape that is centered at the origin. We also specify

•	 the position where we wish to move the box, as a vec3

•	 X, Y, and Z rotations around the box origin, as floats 
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Next, we build translation and rotation transform matrices using the buildTrans-
late() and buildRotate() functions described back in Section 3.10. The trick is then 
to use the inverses of these matrices to modify the start point and direction of the 
ray; specifically, we rotate the ray’s direction and rotate/translate the ray’s starting 
point. The computations then proceed as before to generate the collision distance 
(and of course determining whether the ray collides with the box at all). Once the 
collision distance is determined, it is then used to compute the world collision 
point as before, based on the actual ray start point and direction. Note that the 
surface normal also needs to be rotated based on the rotation matrix (actually the 
inverse-transpose of the rotation matrix, as we learned in Chapter 7).

The changes to intersect_box_object() are shown in Program 16.5 (in red), along 
with an example set of box parameters for its shape, position, and orientation. The 
output is shown in Figure 16.6.

Program 16.5 – Non-Axis-Aligned Box Intersection
Compute Shader
. . .
vec3 box_mins = vec3(-0.5, -0.5, -1.0);
vec3 box_maxs = vec3( 0.5,  0.5,  1.0);
vec3 box_pos = vec3(-1, -0.5, 1.0);

const float DEG_TO_RAD = 3.1415926535 / 180.0;
float box_xrot = 10.0;
float box_yrot = 70.0;
float box_zrot = 55.0;

Collision intersect_box_object(Ray r)
{	 // Compute the box's local-space to world-space transform matrices and their inverses
	 mat4 local_to_worldT = buildTranslate(box_pos.x, box_pos.y, box_pos.z);
	 mat4 local_to_worldR =
			   buildRotateY(DEG_TO_RAD * box_yrot)
			   * buildRotateX(DEG_TO_RAD * box_xrot)
			   * buildRotateZ(DEG_TO_RAD * box_zrot);
	 mat4 local_to_worldTR = local_to_worldT * local_to_worldR;
	 mat4 world_to_localTR = inverse(local_to_worldTR);
	 mat4 world_to_localR = inverse(local_to_worldR);

	 // Convert the world-space ray to the box's local space:
	 vec3 ray_start = (world_to_localTR * vec4(r.start,1.0)).xyz;
	 vec3 ray_dir = (world_to_localR * vec4(r.dir,1.0)).xyz;
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	 // Calculate the box's world mins and maxs:
	 vec3 t_min = (box_mins - ray_start) / ray_dir;
	 vec3 t_max = (box_maxs - ray_start) / ray_dir;
	 vec3 t1 = min(t_min, t_max);
	 vec3 t2 = max(t_min, t_max);
	 float t_near = max(max(t1.x,t1.y),t1.z);
	 float t_far = min(min(t2.x, t2.y), t2.z);
	 . . .
	 //  The computations for determining the collision, which surface of the box
	 //  is intersected, and the normal at the collision are unchanged from before.
	 //  There is one addition to the normal vector computation, shown next in red.
	 . . .
	 // If we hit the box from the negative axis, invert the normal
	 if(ray_dir[face_index] > 0.0) c.n *= -1.0;

	 // now convert the normal back into world space
	 c.n = transpose(inverse(mat3(local_to_worldR))) * c.n;

	 // Calculate the world-position of the intersection:
	 c.p = r.start + c.t * r.dir;

	 return c;
}

Figure 16.6
Output of Program 16.5 showing simple ray casting with a non-axis-aligned box
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	16.2.9	 Determining Texture Coordinates
If we wish to apply a texture image to the objects in the scene, we need 

to compute texture coordinates. In previous examples, each texture coordinate 
corresponded to a vertex in the model, and they were loaded into a VBO either 
procedurally or by reading them in from an .OBJ file. We cannot do that here, 
because we aren’t using models – we aren’t even using vertices! Our shapes are 
the result of computing ray intersections on mathematically-defined shapes, so 
we need to extend our computations to determine texture coordinates.

This can be complicated, because the desired layout of the texture coordinates 
can vary depending on the application. For example, the box might represent a 
brick wall or it might be a skybox, each of which would require different texture 
coordinate assignments. In the case of the sphere, it is a bit easier because the 
layout of the texture images that we have been using (such as for the earth or the 
moon) is by far the most common.

For the sphere, a clever trick is to use the computed surface normal to spec-
ify a point on the surface, along with standard spherical coordinate methods, to 
find the corresponding point in flattened 2D space. The derivations from clas-
sical geometry are well-known [S16] and not repeated here. Given the normal 
vector N,

texCoordX = 0.5 +
(arcTan(− NZ,NX)

2π

texCoordY = 0.5 −
(arcSin(− NY)

π

For the box, our first example assumes the need is to simply apply a texture 
image evenly over all surfaces, so we will scale it based on the longest box side. 
One set of steps for doing this is:

1.	Compute the collision point, using the world_to_local matrix previously devel-
oped.

2.	Determine the largest box side length.
3.	Convert the X, Y, and Z collision point coordinates to the range [0..1], based on 

the largest box side.
4.	Divide each coordinate by the largest box dimension, so that the image isn’t 

compressed along box sides.
5.	Select (X,Y), (X,Z), or (Y,Z) as the texture coordinates, depending on which 

surface the collision occurred. 
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Program 16.6 shows the additions and changes to the C++ program and the 
compute shader. It textures the sphere with the earth image and the box with the 
brick image. The output is shown in Figure 16.7.

Program 16.6 – Adding Texture Coordinates
C++/OpenGL Application
. . .
GLuint earthTexture, brickTexture;	 // added to the top-level declarations
. . .
void init(GLFWwindow* window) {
	 . . .
	 earthTexture = Utils::loadTexture("earthmap1k.jpg");
	 brickTexture = Utils::loadTexture("brick1.jpg");
}

void display(GLFWwindow* window, double currentTime) {
	 . . .
	 glBindImageTexture(0, screenTextureID, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RGBA8);

	 glActiveTexture(GL_TEXTURE1);
	 glBindTexture(GL_TEXTURE_2D, earthTexture);
	 glActiveTexture(GL_TEXTURE2);
	 glBindTexture(GL_TEXTURE_2D, brickTexture);

	 glActiveTexture(GL_TEXTURE0);	 // reset of active texture is required when using
									        // both image store and texture

	 glDispatchCompute(workGroupsX, workGroupsY, workGroupsZ);
	 . . .
}

Compute Shader
. . .
layout (binding=1) uniform sampler2D sampEarth;
layout (binding=2) uniform sampler2D sampBrick;
. . .
struct Collision
{	 float t;					    // value at which this collision occurs for a ray
	 vec3 p;				    // world position of the collision
	 vec3 n;				    // normal of the collision
	 bool inside;			   // whether the collision occurs inside of the object
	 int object_index;		 // index of the object this collision hit
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	 vec2 tc;				    // texture coordinates for the object at the collision point
};

. . .

Collision intersect_sphere_object(Ray r)
{	 . . .
	 c.tc.x = 0.5 + atan(-c.n.z, c.n.x) / (2.0*PI);
	 c.tc.y = 0.5 - asin(-c.n.y) / PI;
	 return c;
}

. . .

Collision intersect_box_object(Ray r)
{	 . . .
	 // Compute texture coordinates.
	 // Start by computing the position in the box space that the ray collides with
	 vec3 cp = (world_to_localTR * vec4(c.p,1.0)).xyz;

	 // now compute largest box dimension
	 float totalWidth = box_maxs.x - box_mins.x;
	 float totalHeight = box_maxs.y - box_mins.y;
	 float totalDepth = box_maxs.z - box_mins.z;
	 float maxDimension = max(totalWidth, max(totalHeight, totalDepth));

	 // convert X/Y/Z coordinates to range [0..1], and divide by largest box dimension
	 float rayStrikeX = (cp.x + totalWidth/2.0) / maxDimension;
	 float rayStrikeY = (cp.y + totalHeight/2.0) / maxDimension;
	 float rayStrikeZ = (cp.z + totalDepth/2.0) / maxDimension;

	 // finally, select (X,Y), (X,Z), or (Y,Z) as tex coordinates depending on box face
	 if (face_index == 0)
		  c.tc = vec2(rayStrikeZ, rayStrikeY);
	 else if (face_index == 1)
		  c.tc = vec2(rayStrikeZ, rayStrikeX);
	 else
		  c.tc = vec2(rayStrikeY, rayStrikeX);
	 return c;
}
. . .
vec3 raytrace(Ray r)
{	 Collision c = get_closest_collision(r);
	 if (c.object_index == -1) return vec3(0.0);	 // no collision
	 if (c.object_index == 1) return ads_phong_lighting(r,c) * (texture(sampEarth, c.tc)).xyz;
	 if (c.object_index == 2) return ads_phong_lighting(r,c) * (texture(sampBrick, c.tc)).xyz;
}
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Figure 16.7
Example textures and output of Program 16.6, where texture coordinates are added

If the box is to serve as a room box or skybox, the texture coordinates will 
need to be computed slightly differently, so as to match the texturing methods we 
saw in Chapter 9. We can start by adding a second box to the scene, specifically 
an axis-aligned box as described back in Program 16.2, with a solid color. Figure 
16.8 shows such a box of size 20x20x20 added to the scene. Because the camera 
is positioned inside the box, only the inside faces of the box are visible. Note also 
that in this example the objects in the scene cast shadows on the box, as would be 
the case for a room box.

Figure 16.8
Adding a simple axis-aligned room box with solid color2

2	 Note the seam on the lower right. The .01 offset of light_ray.start (to combat shadow acne) in 
Program 16.4 is ineffective at the corners because the normal is tangential to an adjoining box 
side. This isn’t an issue for skyboxes because shadows aren’t used.

CGP_C++_CH16_2E_3pp.indd   416 11/13/2020   4:38:47 PM



Chapter  16 ·  Ray Tracing and Compute Shaders   ■ 417

Computing texture coordinates so that we can apply a room box or skybox 
texture depends on if we wish to use a single texture (such as the one in Figure 9.1) 
or six separate textures (one for each face of the box). Program 16.7 implements the 
latter approach, with an additional intersection method specifically to handle room 
or sky boxes. The changes to both the C++ application and the compute shader are 
shown. The six textures are loaded and assigned to texture units in the C++ pro-
gram, sampled in the compute shader, and selected depending on which face the ray 
collides with. Which of the six faces this is can be easily determined from the nor-
mal vector, since each box face has a different normal vector. Texture coordinates 
are then computed in a manner similar to what was shown in Program 16.6. Finally, 
note that as we add more and more objects to our scene, the number of tests needed 
for determining which collision is the closest quickly becomes more complex.

Program 16.7 – Adding Textures to the Skybox
C++/OpenGL Application
. . .
GLuint xpTex, xnTex, ypTex, ynTex, zpTex, znTex;	 // added to the top-level declarations

void init(GLFWwindow* window) {
	 . . .
	 xpTex = Utils::loadTexture("cubeMap/xp.jpg");
	 xnTex = Utils::loadTexture("cubeMap/xn.jpg");
	 ypTex = Utils::loadTexture("cubeMap/yp.jpg");
	 ynTex = Utils::loadTexture("cubeMap/yn.jpg");
	 zpTex = Utils::loadTexture("cubeMap/zp.jpg");
	 znTex = Utils::loadTexture("cubeMap/zn.jpg");
}

void display(GLFWwindow* window, double currentTime) {
	 . . .
	 glBindImageTexture(0, screenTextureID, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RGBA8);
	 glActiveTexture(GL_TEXTURE3);
	 glBindTexture(GL_TEXTURE_2D, xpTex);
	 glActiveTexture(GL_TEXTURE4);
	 glBindTexture(GL_TEXTURE_2D, xnTex);
	 glActiveTexture(GL_TEXTURE5);
	 glBindTexture(GL_TEXTURE_2D, ypTex);
	 glActiveTexture(GL_TEXTURE6);
	 glBindTexture(GL_TEXTURE_2D, ynTex);
	 glActiveTexture(GL_TEXTURE7);
	 glBindTexture(GL_TEXTURE_2D, zpTex);
	 glActiveTexture(GL_TEXTURE8);
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	 glBindTexture(GL_TEXTURE_2D, znTex);
	 glActiveTexture(GL_TEXTURE0);
	 glDispatchCompute(workGroupsX, workGroupsY, workGroupsZ);
	 . . .
}

Compute Shader
. . .
layout (binding=3) uniform sampler2D xpTex;
layout (binding=4) uniform sampler2D xnTex;
layout (binding=5) uniform sampler2D ypTex;
layout (binding=6) uniform sampler2D ynTex;
layout (binding=7) uniform sampler2D zpTex;
layout (binding=8) uniform sampler2D znTex;
. . .
struct Collision
{	 float t;					    // value at which this collision occurs for a ray
	 vec3 p;				    // world position of the collision
	 vec3 n;				    // normal of the collision
	 bool inside;			   // whether the collision occurs inside of the object
	 int object_index;		 // index of the object this collision hit
	 vec2 tc;				    // texture coordinates for the object at the collision point
	 int face_index;		  // which box face collides (for textured skybox)
};
. . .
Collision intersect_sky_box_object(Ray r)
{	 . . .
	 // Calculate face index for collision object (assumes that the normal vectors are of length 1)
	 if (c.n == vec3(1,0,0)) c.face_index = 0;
	 else if (c.n == vec3(-1,0,0)) c.face_index = 1;
	 else if (c.n == vec3(0,1,0)) c.face_index = 2;
	 else if (c.n == vec3(0,-1,0)) c.face_index = 3;
	 else if (c.n == vec3(0,0,1)) c.face_index = 4;
	 else if (c.n == vec3(0,0,-1)) c.face_index = 5;

	 // Compute texture coordinates
	 float totalWidth = skybox_maxs.x - skybox_mins.x;
	 float totalHeight = skybox_maxs.y - skybox_mins.y;
	 float totalDepth = skybox_maxs.z - skybox_mins.z;
	 float maxDimension = max(totalWidth, max(totalHeight, totalDepth));

	 // select tex coordinates depending on box face
	 float rayStrikeX = ((c.p).x + totalWidth/2.0)/maxDimension;
	 float rayStrikeY = ((c.p).y + totalHeight/2.0)/maxDimension;
	 float rayStrikeZ = ((c.p).z + totalDepth/2.0)/maxDimension;
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	 if (c.face_index == 0) c.tc = vec2(rayStrikeZ, rayStrikeY);
	 else if (c.face_index == 1) c.tc = vec2(1.0-rayStrikeZ, rayStrikeY);
	 else if (c.face_index == 2) c.tc = vec2(rayStrikeX, rayStrikeZ);
	 else if (c.face_index == 3) c.tc = vec2(rayStrikeX, 1.0-rayStrikeZ);
	 else if (c.face_index == 4) c.tc = vec2(1.0-rayStrikeX, rayStrikeY);
	 else if (c.face_index == 5) c.tc = vec2(rayStrikeX, rayStrikeY);
	 return c;
}
. . .
Collision get_closest_collision(Ray r)
{	 . . .
	 Collision closest_collision, cSph, cBox, cSBox;
	 . . .
	 cSBox = intersect_sky_box_object(r);
	 . . .
	 //  determine which collision is the closest
	 if ((cSBox.t > 0) && ((cSBox.t < cSph.t) || (cSph.t < 0)) && ((cSBox.t < cBox.t) || (cBox.t < 0)))
	 {	 closest_collision = cSBox;
		  closest_collision.object_index = 3;
	 }
	 return closest_collision;
}

vec3 raytrace(Ray r)
{	 Collision c = get_closest_collision(r);
	 if (c.object_index == -1) return vec3(0.0);	 // no collision
	 if (c.object_index == 1) return ads_phong_lighting(r,c) * (texture(sampEarth, c.tc)).xyz;
	 if (c.object_index == 2) return ads_phong_lighting(r,c) * (texture(sampBrick, c.tc)).xyz;

	 if (c.object_index == 3)	 // this example is a skybox, so we return only the texture, without lighting
	 {	 if (c.face_index == 0) return texture(xnTex, c.tc).xyz;	 // sample -X face texture image
		  else if (c.face_index == 1) return texture(xpTex, c.tc).xyz;	 // sample +X face texture image
		  else if (c.face_index == 2) return texture(ynTex, c.tc).xyz;	 // sample -Y face texture image
		  else if (c.face_index == 3) return texture(ypTex, c.tc).xyz;	 // sample +Y face texture image
		  else if (c.face_index == 4) return texture(znTex, c.tc).xyz;	 // sample -Z face texture image
		  else if (c.face_index == 5) return texture(zpTex, c.tc).xyz;	 // sample +Z face texture image
	 }
}
. . .

Notice that in Program 16.7, we did not include ADS lighting when the ray’s 
closest collision is the skybox (this can be seen in the raytrace() function in the 
compute shader), because a skybox should not respond to lighting. In the case of 
a room box, we would include ADS lighting, but only if the images of the cube 
faces strictly correspond to the walls of a room. Figure 16.9 shows the output of 
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Program 16.7, with and without ADS lighting applied to the skybox (ADS lighting 
is applied to the other objects). Comparing figures 16.8 and 16.9 illustrates why 
lighting effects are generally appropriate for room boxes, but not for skyboxes.

Figure 16.9
Output of Program 16.7 with and without ADS lighting applied to a skybox

	16.2.10	Plane Intersection and Procedural Textures
In the previous examples, textures were provided in the form of texture image 

files. In some cases, a surface texture is sufficiently simple that it can be cre-
ated procedurally, with the advantage that such textures are less likely to exhibit 
image-related artifacts.

In Program 16.8, we add a plane object (more precisely, a plane segment) to the 
scene, serving as a sort of table-top surface below the objects. Shadows are cast 
onto the plane object, but not onto the skybox. The plane has been textured with a 
checkerboard pattern, generated procedurally.

Computing the intersection point of a ray with a plane is significantly easier 
than it was for the sphere and the box because a plane has no “inside” that needs 
to be considered, so there is always at most one intersection point to consider. 
The derivation is well documented [S16]. Using standard geometry, the distance t 
along a ray starting at position with direction when it intersects a horizontal plane 
centered at the origin with normal np=(0,1,0) is:
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t = (−rs • np) / (rd • np)

The intersect point is then, as before,

collision point = rs + t * rd

Given the plane’s width w (i.e., on the x-axis) and depth d (i.e., on the z-axis), the 
ray misses the plane segment when

|collisionPointx| > 
w
2

    or    |collisionPointz| > 
d
2

These can be generalized to planes at an arbitrary location and rotation using 
the non-axis-aligned methods described previously in Section 16.2.8. Similarly, 
the surface normal at the collision point, which so far has been fixed as (0,1,0), 
may be rotated if the plane is not aligned with the XZ-axes. Texture coordinates 
are just the collisionPoint x and z coordinates, normalized to the range [0..1].

Computing the procedural checkerboard pattern of white and black colors can 
be done by scaling the texture coordinates up by the desired number of squares in 
the checkerboard, and then taking that result modulo 2. The result of 0 or 1 is then 
returned as either color (0,0,0) or (1,1,1) – i.e., black or white – respectively.

Note that as we increase the number of objects, the test for which collision is 
the closest (done in the get_closest_collision() function) is becoming increasingly 
complicated; we improve this design later. The added code for both the plane inter-
section and the procedural texture are given in Program 16.8, with the resulting 
output shown in Figure 16.10. All of the changes are in the compute shader.

Program 16.8 – Plane Intersection and Procedural Texturing
Compute Shader
. . .
vec3 plane_pos = vec3(0, -2.5, -2.0);	 // position of the plane
float plane_width = 12.0;
float plane_depth = 8.0;
float plane_xrot = 0.0;		  // rotation of the plane
float plane_yrot = 0.0;
float plane_zrot = 0.0;
. . .
Collision intersect_plane_object(Ray r)
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{	 // Compute the plane's local-space to world-space transform matrices and their inverses
	 mat4 local_to_worldT = buildTranslate(plane_pos.x, plane_pos.y, plane_pos.z);
	 mat4 local_to_worldR = buildRotateY(plane_yrot) * buildRotateX(plane_xrot) *  
� buildRotateZ(plane_zrot);
	 mat4 local_to_worldTR = local_to_worldT * local_to_worldR;
	 mat4 world_to_localTR = inverse(local_to_worldTR);
	 mat4 world_to_localR = inverse(local_to_worldR);

	 // Convert the world-space ray to the plane's local space:
	 vec3 ray_start = (world_to_localTR * vec4(r.start,1.0)).xyz;
	 vec3 ray_dir = (world_to_localR * vec4(r.dir,1.0)).xyz;

	 Collision c;
	 c.inside = false;  // there is no "inside" of a plane

	 // compute intersection point of ray with plane
	 c.t = dot((vec3(0,0,0) - ray_start),vec3(0,1,0)) / dot(ray_dir, vec3(0,1,0));

	 // Calculate the world-position and plane-space positions of the intersection:
	 c.p = r.start + c.t * r.dir;
	 vec3 intersectPoint = ray_start + c.t * ray_dir;

	 // If the ray didn't intersect the plane object, return a negative t value
	 if ((abs(intersectPoint.x) > (plane_width/2.0)) || (abs(intersectPoint.z) > (plane_depth/2.0)))
	 {	 c.t = -1.0;
		  return c;
	 }

	 // Create the collision normal, invert it if the ray hits the plane from underneath,
	 // and convert to world space
	 c.n = vec3(0, 1, 0);
	 if(ray_dir.y > 0.0) c.n *= -1.0;
	 c.n = transpose(inverse(mat3(local_to_worldR))) * c.n;

	 // Compute texture coordinates
	 float maxDimension = max(plane_width, plane_depth);
	 c.tc = (intersectPoint.xz + plane_width/2.0)/maxDimension;
	 return c;
}

Collision get_closest_collision(Ray r)
{	 Collision cPlane;
	 cPlane = intersect_plane_object(r);
	 . . .
	 if ((cPlane.t > 0) &&
		  ((cPlane.t < cSph.t) || (cSph.t < 0))&&((cPlane.t < cBox.t) || (cBox.t < 0))&&((cPlane.t <  
� cRBox.t) || (cRBox.t < 0)))
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	 {	 closest_collision = cPlane;
		  closest_collision.object_index = 4;    // object_index of 4 designates collision with the plane
	 }
	 . . .
}

vec3 checkerboard(vec2 tc)
{	 float tileScale = 24.0;
	 float tile = mod(floor(tc.x * tileScale) + floor(tc.y * tileScale), 2.0);
	 return tile * vec3(1,1,1);
}

vec3 raytrace(Ray r)
{	 . . .
	 if (c.object_index == 4) return ads_phong_lighting(r,c) * (checkerboard(c.tc)).xyz;
	 . . .
}

Figure 16.10
Output of Program 16.8, showing the addition of a plane with a procedural checkerboard texture
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	 16.3	 RAY TRACING
So far, all of the results we have seen from Programs 16.2 through 16.8 could 

have been accomplished with the methods described earlier in the book using 
models and buffers (and probably more efficiently). We now extend our ray cast-
ing program to do full ray tracing, which extends the capabilities for lighting and 
reflection beyond what we have been able to perform up to now.

The ray casting algorithm described in Section 16.2 involved sending out a 
single ray per pixel, identifying whether (and where) it first encounters an object 
in the scene, and then painting the pixel accordingly. However, we have the option 
of generating a new ray from the intersection point (such as a ray that simulates a 
reflection off of the surface, which we can use the surface normal to generate) and 
then seeing where that new ray leads. These bounced rays are called secondary 
rays, and these can be used to generate reflections, refractions, and other effects. 
We have actually already seen one example of a secondary ray: in Program 16.4, 
when we tested to see if an object was in shadow, we did so by generating a sec-
ondary ray from the collision point to the light source and checked to see if that 
secondary ray collided with an intervening object.

	16.3.1	 Reflection
Perhaps the most obvious use for secondary rays is to generate reflections 

of objects off of each other. If we color an object based solely on a secondary 
reflected ray, it will behave like a pure mirror. Or, we might choose to blend an 
object’s color with the color obtained by a reflected ray, depending on the material 
qualities we are trying to simulate. We have already seen GLSL’s reflect() function, 
which is useful here. Recall that the reflect() function takes an incident vector and 
a surface normal and returns the direction of a reflection vector.

In Program 16.9, we extend Program 16.8 so as to generate a single secondary 
reflection ray when the initial ray collides with the sphere. The sphere color is then 
set to the color encountered by the secondary ray (also incorporating ADS light-
ing). The result is shown in Figure 16.11.

Program 16.9 – Adding a Single Secondary Reflection Ray
Compute Shader
. . .
vec3 raytrace2(Ray r)
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{	 // this function is identical to raytrace() from Program 16.7 (see text for explanation)
	 . . .
}

vec3 raytrace(Ray r)
{	 Collision c = get_closest_collision(r);
	 if (c.object_index == -1) return vec3(0.0);	 // no collision
	 if (c.object_index == 1)
	 {	 // in the case of the sphere, determine the color by generating a secondary ray
		  Ray reflected_ray;
		  // compute start point of secondary ray, offset slightly to avoid colliding with the same object
		  reflected_ray.start = c.p + c.n * 0.001;

		  reflected_ray.dir = reflect(r.dir, c.n);
		  vec3 reflected_color = raytrace2(reflected_ray);
		  return ads_phong_lighting(r,c) * reflected_color;
	 }
	 . . .
}

Figure 16.11
Output of Program 16.9 showing a single reflected ray at the sphere object
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Note that the sphere is now acting as a mirror, reflecting the surrounding 
skybox and the neighboring brick box and checkerboard plane. Recall that back 
in Chapter 8, we simulated a reflective object using environment mapping. The 
drawback there was that the environment-mapped objects were able to reflect 
the skybox, but not neighboring objects. By contrast, here ray tracing enables the 
reflective object to reflect all neighboring objects, in addition to the skybox. Also 
note that the front of the skybox (otherwise unseen because it is behind the cam-
era) is now reflected in the sphere.

Figure 16.12 shows the result when we make the box object reflective and use 
the earth texture for the sphere. We have moved the box object behind the sphere 
so that its reflections are visible.

Figure 16.12
Single reflected ray at the box object

In the code shown in Program 16.9, it would have been preferable to eliminate 
the raytrace2() function altogether and replace the call to raytrace2() with a recursive 
call to raytrace(). Unfortunately, GLSL doesn’t support recursion, so we duplicated 
the function. Later, as we increase the number of secondary rays, we will build an 
iterative version of raytrace() that keeps track of recursive ray generation.
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It is also worth pointing out one important detail in the code for Program 16.9. 
The collision point of the initial ray becomes the starting point of the secondary 
ray, so one would naturally expect the following:

reflected_ray.start = c.p;

However, the code instead contains the following line:

reflected_ray.start = c.p + c.n * 0.001;

This causes the secondary ray to start at a very small distance away, in the 
direction of the surface normal at the collision point, from the object that was 
just collided. The purpose of this adjustment is to avoid an artifact very similar to 
shadow acne (which we saw in Chapter 8). If we were to actually start the reflec-
tion ray exactly at c.p, then when the reflection ray is built, rounding errors will 
sometimes cause it to immediately collide again with the same object (at nearly 
the exact same point). Figure 16.13 shows the same scene as previously shown in 
Figure 16.12, except without the correction. Surface acne is now evident on the 
reflective box object.

Figure 16.13
Surface acne
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	16.3.2	 Refraction
What happens when an object is transparent? Of course, we expect to see what 

lies behind it (at least partially). As we saw in Chapter 14, OpenGL has support 
for rendering with transparency, and there are commands for blending colors to 
simulate transparency. However, ray tracing can give us the tools to generate some 
of the more complex aspects of transparency and improve realism. For example, 
ray tracing allows us to simulate refraction.

Refraction happens when light rays are bent when passing through a transpar-
ent object, causing an object’s position to appear to shift when it is placed behind 
another transparent object. The amount that the light rays are bent depends on the 
shape of the transparent object and the material of which it is made. A transparent 
object is sometimes referred to as the medium that the light is passing through, 
and different transparent media (such as water, glass, or a diamond) bend light to 
different degrees. Anyone who has peered through a fishbowl knows how com-
plex refraction can be. We will only scratch the surface and see some very simple 
examples.

The amount that a given medium bends light is called its index of refraction or 
IOR. We usually indicate index of refraction with η. IOR is a factor that indicates 
the degree to which a ray’s angle when it hits a medium is altered when the ray 
continues through the medium (actually, the sines of those angles). The IOR of a 
vacuum is 1, and the IOR of glass is about 1.5. The IOR of air is so close to 1 that 
it is usually ignored.

In the case of an object that has thickness (such as our sphere or box, if trans-
parent), refraction may occur both when the ray enters the object, and then again 
when it exits, and both would need to be considered to properly render an object 
behind a transparent one. Thus, adding refraction to our scene (e.g., making the 
sphere or the box transparent) requires a sequence of two successive secondary 
rays, one that refracts from the initial ray into the object and a second one that 
refracts as the ray exits the object. An example is shown in Figure 16.14, where the 
current initial ray being processed is labeled I, the normal at the initial collision 
point is N1, the first secondary ray is S1, the normal at the second collision point is 
N2, and the second secondary ray is S2. In a purely transparent object, the color at 
the final collision point C is the color that would be ultimately be rendered at the 
collision point of the initial ray I.
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Figure 16.14
Refraction with two secondary rays, through a transparent sphere 
(the angles have been exaggerated for clarity) 

The derivation for computing a refraction angle is well-documented [F96]:

S N I dot N,I N Ir r r� � � � � � � �� ��
�
�

�
�
� �� � �• 1  2 2

1

where ηr is the ratio of the IORs of the source and destination media. Rather than 
code this formula, we simply use the GLSL refract() function that implements it. 
refract() takes three parameters as input: the incoming vector I, the normal vector 
N, and the IOR ratio ηr. It then produces the refracted secondary ray S as output.

For a transparent solid glass sphere, the IOR at the point of entry is IORair/
IORglass = 1.0/1.5 ≈ 0.66, and at the point of exit, it is IORglass/IORair = 1.5/1.0 = 1.5.

Program 16.10 converts the sphere to solid transparent glass, this time using 
a sequence of two secondary rays so as to generate the refraction of the brick box 
and skybox behind it. We have also built yet a third copy of the raytrace() function, 
so that the two secondary rays can be generated and traced in succession, one 
entering the sphere (with IOR=0.66) and one leaving it (with IOR=1.5). Lighting is 
included in both the entry and exit points. Since the color and lighting values are 
all fractions in the range [0..1], and we are multiplying them together, it is common 
to also need to scale the resulting color values up or the final result will be too 
dark; here we have scaled the refrated colors up by a factor of 2.0.

Note also that the trick we used to avoid surface acne is modified slightly in 
both functions; instead of adding a small offset along the normal, we subtract the 
offset. This is because the secondary rays now continue through the collision point 
rather than rebounding. So, for refracted rays, we must add a small offset along the 
negative of the normal.
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Program 16.10 – Refraction Through a Sphere – Two Secondary Rays
Compute Shader

. . .
vec3 raytrace3(Ray r)
{	 // this function is identical to raytrace() from Program 16.7
	 . . .
}

vec3 raytrace2(Ray r)
{	 . . .
	 if (c.object_index == 1)		 // recall that index==1 indicates collision with the sphere
	 {	 // generate a second secondary ray for the intersection with the back of the sphere
		  Ray refracted_ray;
		  refracted_ray.start = c.p – c.n * 0.001;
		  refracted_ray.dir = refract(r.dir, c.n, 1.5);	 // index of refraction from glass to air: IOR = 1.5
		  vec3 refracted_color = raytrace3(refracted_ray);
		  return 2.0*ads_phong_lighting(r, c) * refracted_color;
	 }
	 . . .
}

vec3 raytrace(Ray r)
{	 . . .
	 if (c.object_index == 1)
	 {	 // generate a secondary ray for the intersection with the front of the sphere
		  Ray refracted_ray;
		  refracted_ray.start = c.p – c.n * 0.001;
		  refracted_ray.dir = refract(r.dir, c.n, .66667);  // index of refraction from air to glass: IOR = 1.0/1.5
		  vec3 refracted_color = raytrace2(refracted_ray);
		  return 2.0*ads_phong_lighting(r, c) * refracted_color;
	 }
	 . . .
}

Figure 16.15 shows the result. Notice that the view of the scene through the 
transparent sphere has been flipped and appears upside down. A flipped (and 
severely curved) version of the brick box is also visible in the sphere, as is the 
checkerboard plane. Also, although not easily seen in Figure 16.15, it is the back 
of the skybox that is visible in the sphere, whereas in Figure 16.11, the sphere 
reflected the front portion of the skybox.
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Figure 16.15
Output of Program 16.10, showing refraction through a solid transparent sphere

	16.3.3	 Combining Reflection, Refraction, and Textures
Transparent objects are also usually slightly reflective. Combining reflection 

and refraction (as well as textures) can be done in a similar manner as combin-
ing lighting and textures, as we did in Chapter 7. That is, we can simply build a 
weighted sum of whichever elements our objects incorporate.

In Program 16.11, the raytrace() function generates both reflection and refrac-
tion rays, combining them using a weighted sum. The degree to which the object 
is reflective rather than transparent can be tuned by adjusting the weights to 
get various effects. In this example, we have also replaced the skybox with a 
blue room box to make the specific effects of reflection and refraction more 
clearly visible. We replaced the brick box with a marble-textured slightly reflec-
tive box to show an example of combining texturing with reflection. The results 
are shown in Figure 16.16. Note also the interesting propagation of the specular 
highlights!
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Program 16.11 – Combining Reflection and Refraction
Compute Shader
. . .
vec3 raytrace(Ray r)
{	 . . .
	 if (c.object_index == 1)
	 {	 // generate a refraction ray
		  Ray refracted_ray;
		  refracted_ray.start = c.p - c.n * 0.001;
		  refracted_ray.dir = refract(r.dir, c.n, .66667);
		  vec3 refracted_color = raytrace2(refracted_ray);  // refraction requires two rays, entry and exit

		  // generate a reflection ray
		  Ray reflected_ray;
		  reflected_ray.start = c.p + c.n * 0.001;
		  reflected_ray.dir = reflect(r.dir, c.n);
		  vec3 reflected_color = raytrace3(reflected_ray);  // reflection only requires a single ray

		  return clamp(ads_phong_lighting(r,c) *
			   ((0.3 * reflected_color) + (2.0 * refracted_color)), 0, 1);  // weighted sum of raytrace collisions
	 }
	 . . .
}

Figure 16.16
Output of Program 16.11, showing the combination of the reflection, refraction, and textures: sphere with reflection only (left), sphere with 
refraction only (center), and sphere with both reflection and refraction (right)

	16.3.4	 Increasing the Number of Rays
What if we have a transparent object and behind it is another transparent 

object? Ideally, the ray tracer should generate a series rays for the first and second 
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transparent objects. Then, whichever surface is encountered behind the 2nd object 
is what we would see. If the transparent objects were boxes (or spheres), how many 
rays would be required for the final object to appear? An example is shown in 
Figure 16.17, in which a green star is viewed through two transparent boxes. Since 
each transparent object would generally require two secondary rays (one entering 
the object and one leaving the object), we would need a total of five rays.

Figure 16.17
Returning an object’s color through a sequence of transparent objects

However, that is not what the code we have built so far will do. Rather, we have 
hard-coded functions raytrace(), raytrace2(), and raytrace3() that result in a maxi-
mum sequence of three rays (ignoring the shadow ray). So, in the example shown 
in Figure 16.17, the sequence of rays would stop at the second transparent object, 
and we wouldn’t see the star at all. As the need for longer and longer sequences of 
rays increases, we cannot keep making more copies of the raytrace() function, as 
such a solution would not be scalable.

Another similar situation occurs if we have two highly reflective objects fac-
ing each other. Anyone who has done this with two mirrors knows the effect as 
they reflect back and forth between each other. Figure 16.18 shows such an exam-
ple generated by one of the authors at his home. Our code could only do two 
reflections, but no subsequent reflections. 
A much longer sequence of rays is needed 
to achieve this effect.

We actually faced this situation in the 
previous example from Program 16.11 
(Figure 16.16) because both the box and the 
sphere were reflective. The effects of any 
additional rays in that particular example 
would be negligible, and in such cases, 
a depth of one or two rays is sufficient. 
However, in those cases where the additional 
rays are needed to achieve realistic results, 
we need a way of generating more rays.

Figure 16.18
Two mirrors facing each other
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The general solution to this problem is to recursively call raytrace(), with the 
condition that terminates the recursion (the so-called “base case”) being when-
ever a ray encounters a non-reflective or non-transparent surface (or whenever 
a pre-determined maximum depth has been reached) or if the ray collides with 
no object. Unfortunately, GLSL does not support recursion. So, to achieve any 
reasonable simulation of the above effects, we need to keep track of the recursion 
ourselves.

Building a recursive version of raytrace() in the absence of native support for 
recursion is not trivial. Our solution requires a stack, defining a structure for items 
to be pushed onto the stack, building the appropriate push and pop operations, a 
driver that contains the main loop for processing the rays (using stack operations), 
and a function to process a stack element (which contains the information for an 
individual ray).

Program 16.12 shows these as additions (and replacements) to elements of 
the previous Program 16.11. There is a struct called Stack_Element that defines the 
items stored in the stack and functions for raytrace() (which is the driver), push(), 
pop(), and process_stack_element(). The stack itself is stored as an array of Stack_
Elements. After presenting the code, more detailed explanations follow.

Program 16.12 – Recursive Ray Generation
Compute Shader
. . .
struct Stack_Element
{	 int type;		  //  type of ray ( 1 = reflected, 2 = refracted. Shadow rays are never pushed on stack)
	 int depth;		 //  depth of the recursive raytrace
	 int phase;		 //  which of the five phases of a recursive call is currently being processed
	 vec3 phong_color;		  //  holds the computed ADS color
	 vec3 reflected_color;	 //  holds the reflected color
	 vec3 refracted_color;	 //  holds the refracted color
	 vec3 final_color;			  //  final mixture of all colors (plus texture) for this invocation
	 Ray ray;					     //  the ray for this raytrace invocation
	 Collision collision;		  //  the collision for this raytrace invocation. Starts with null_collision value.
};
const int RAY_TYPE_REFLECTION = 1;
const int RAY_TYPE_REFRACTION = 2;

//  "NULL" values for structs are defined to make it easier to tell when a value hasn't been assigned
Ray null_ray = {vec3(0.0), vec3(0.0)};
Collision null_collision = { -1.0, vec3(0.0), vec3(0.0), false, -1, vec2(0.0, 0.0), -1 };
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Stack_Element null_stack_element = { 0,-1,-1,vec3(0),vec3(0),vec3(0),vec3(0), null_ray, null_collision };

const int stack_size = 100;
Stack_Element stack[stack_size];	 //  holds the "recursive" stack of raytrace invocations
const int max_depth = 6;	 //  max sequence of rays, which equals max recursion depth
int stack_pointer = -1;		  //  Points to the top of the stack (-1 if empty)
Stack_Element popped_stack_element;		  // Holds the last popped element from the stack

//  The "push" function, which schedules a new raytrace by adding it to the top of the stack
void push(Ray r, int depth, int type)
{	 if (stack_pointer >= stack_size-1)  return;	 // if there is no more room on the stack, exit

	 Stack_Element element; 	 //  initialize those fields that we already know, and set others to zero or null
	 element = null_stack_element;
	 element.type = type;
	 element.depth = depth;
	 element.phase = 0;
	 element.ray = r;

	 stack_pointer++;
	 stack[stack_pointer] = element;	 // add this element to the stack
}

//  The "pop" function, which removes a raytrace operation that has been completed
Stack_Element pop()
{	 //  removes and returns the top stack element
	 Stack_Element top_stack_element = stack[stack_pointer];
	 stack[stack_pointer] = null_stack_element;
	 stack_pointer--;
	 return top_stack_element;
}

//  5-phase processing of a ray: (1) collision, (2) lighting, (3) reflection, (4) refraction, (5) mixing
void process_stack_element(int index)
{	 //  If there is a popped_stack_element that was previously processed, it holds reflection/refraction
	 //  information for the current stack element. Store that info, then clear the popped element reference.

	 if (popped_stack_element != null_stack_element)    // GLSL element-wise comparison of structs
	 {	 if (popped_stack_element.type == RAY_TYPE_REFLECTION)
			   stack[index].reflected_color = popped_stack_element.final_color;
		  else if (popped_stack_element.type == RAY_TYPE_REFRACTION)
			   stack[index].refracted_color = popped_stack_element.final_color;
		  popped_stack_element = null_stack_element;
	 }
	 Ray r = stack[index].ray;			  // initialized by the initial call
	 Collision c = stack[index].collision;	 // starts null, gets set in phase 1

	 switch (stack[index].phase)
	 {	 // ========== PHASE 1 - raytrace collision detection
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		  case 1:
			   c = get_closest_collision(r);		  // Cast ray into the scene, store collision result
			   if (c.object_index != -1)		  // If the ray didn't hit anything, stop.
				    stack[index].collision = c;		  // otherwise, store the collision result
			   break;
		  // ========== PHASE 2 – Phong ADS lighting computation
		  case 2:
			   stack[index].phong_color = ads_phong_lighting(r, c);
			   break;
		  // ========== PHASE 3 – generate a reflection ray
		  case 3:
			   if (stack[index].depth < max_depth)	 // stop if at max depth
			   {	 if ((c.object_index == 1) || (c.object_index == 2))  // only sphere and box are reflective
				    {	 Ray reflected_ray;
					     reflected_ray.start = c.p + c.n * 0.001;
					     reflected_ray.dir = reflect(r.dir, c.n);
					     //  add a raytrace for that ray to the stack, and set its type to reflection
					     push(reflected_ray, stack[index].depth+1, RAY_TYPE_REFLECTION);
			   }	 }
			   break;
		  // ========== PHASE 4 – generate a refraction ray
		  case 4:
			   if (stack[index].depth < max_depth)	 // stop if at max depth
			   {	 if (c.object_index == 1)		  // only the sphere is transparent
				    {	 Ray refracted_ray;
					     refracted_ray.start = c.p - c.n * 0.001;
					     float refraction_ratio = 0.66667;
					     if (c.inside) refraction_ratio = 1.5; // 1.0 / refraction_ratio, when ray exits the sphere
					     refracted_ray.dir = refract(r.dir, c.n, refraction_ratio);

					     // Add a raytrace for that ray to the stack
					     push(refracted_ray, stack[index].depth+1, RAY_TYPE_REFRACTION);
			   }	 }
			   break;
		  // ========== PHASE 5 – mixing
		  case 5:
			   if (c.object_index == 1)	 //  for the sphere, blend refraction, refraction, and lighting
			   {	 stack[index].final_color = stack[index].phong_color *
					     (0.3 * stack[index].reflected_color) + (2.0 * (stack[index].refracted_color));
			   }
			   if (c.object_index == 2)	 //  for the box, blend reflection, lighting, and texture
			   {	 stack[index].final_color = stack[index].phong_color *
					     ((0.5 * stack[index].reflected_color) + (1.0 * (texture(sampMarble, c.tc)).xyz));
			   }
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			   if (c.object_index == 3) stack[index].final_color = stack[index].phong_color * rbox_color;
			   if (c.object_index == 4) stack[index].final_color = stack[index].phong_color *  
� (checkerboard(c.tc)).xyz;
			   break;
		  // ========== when all five phases are complete, end the recursion
		  case 6:
			   popped_stack_element = pop();
			   return;
	 }
	 stack[index].phase++;
	 return;		 // only process one phase per process_stack_element() invocation
}

//  This is the "driver" function that sends out the first ray,
//  and then processes secondary rays until all have completed
vec3 raytrace(Ray r)
{	 push(r, 0, RAY_TYPE_REFLECTION);
	 while (stack_pointer >= 0)    // process the stack until it is empty
	 {	 int element_index = stack_pointer;	 // peek at the topmost stack element
		  process_stack_element(element_index);	 // process next phase of the current stack element
	 }
	 return popped_stack_element.final_color;	 // final color of the last-popped stack element
}

In Program 16.12, the stack is an array of structs of type StackElement, such that 
an instance of StackElement contains all of the information necessary to process 
any given ray. The functions that do the stack pushing and popping – push() and 
pop() – should be straightforward. The size of the stack must be chosen carefully; 
if there are many objects that are both reflective and refractive, the number of rays 
can grow exponentially. However, in practice, many rays terminate due to collid-
ing with the skybox before the maximum recursion depth is reached.

Ray tracing begins in raytrace(). Although all rays require their type to be set 
(reflection or refraction), the type of the initial ray isn’t used – we set it to reflec-
tion arbitrarily. We then start processing all of the rays in the stack (by repeatedly 
calling process_stack_element()), and in so doing, secondary (and subsequent) rays 
may be generated and added to the stack as well. When all processing for a ray has 
been completed, its final computed color is then made available to its “parent” ray, 
which in turn may utilize it to compute its own color.

All of this - the “meat” of the raytrace processing - is done in process_stack_ele-
ment(), which is organized as a five-phase series of operations. Each of the phases is 
basically identical to the steps we saw in earlier programs in this chapter. Some of the 
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phases don’t require the generation of additional rays (collision detection, lighting/
shadows, and texturing). However, the reflection and refraction phases both require 
generating a new ray and running process_stack_element() on the new ray(s). Since 
there is no way in GLSL to make such a call recursively, we adjust the contents of the 
current stack element to keep track of where we left off, push a new stack element 
containing the new ray to be processed, and then exit process_stack_element(). The 
driver function – the new version of raytrace() – then continues iteratively calling pro-
cess_stack_element() until every stack element (every ray) has had a chance to com-
plete all five phases. The end result is the same as if recursion had been available.

The code in Program 16.12 (the declarations, and the push(), pop(), process_
stack_element(), and raytrace() functions) replaces the previous raytrace() function 
(and its “children” raytrace2() and raytrace3()) from Program 16.11. The remainder 
of Program 16.12 is unchanged from Program 16.11.

The output of Program 16.12 depends on the max_depth setting. The larger the 
value, the longer the sequence of rays that can be generated. Figure 16.19 shows 
the outputs for max_depth values of 0, 1, 2, 3, and 4.

Figure 16.19
Output of Program 16.12, showing recursive depth values of 0, 1, 2, 3, and 4 (left-to-right, top-to-bottom)
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At depth zero, only direct textures and lighting are visible (and since the sphere 
isn’t textured, it has no color). At depth one, immediate reflections are visible, and 
the very first refraction of the sphere has occurred but had little effect because its 
ray terminates inside of the sphere. At depth two, the results are essentially equiva-
lent to our previous hard-coded output of Program 16.11 (shown in Figure 16.16). At 
depths three and four, additional reflections are evident in the sphere, and a second 
reflection of the box can be seen faintly against the inside back of the sphere. Any 
differences between depth 3 and depth 4 are negligible for this particular scene.

	16.3.5	 Generalizing the Solution
Our solution works well, but it is hardcoded for a particular set of four objects: 

one transparent and partially reflective sphere, one textured and partially reflec-
tive box, a procedurally textured plane, and a solid-colored room box. If we wish 
to alter the set of objects in the scene, say by adding another box, or making the 
sphere textured, we would have to not only change the declarations at the top of 
the compute shader, we would also need to make significant changes in the pro-
cess_stack_element() and get_closest_collision() functions. What we really need is 
a more general solution that allows us to define an arbitrary set of these objects.

To achieve this, we introduce another struct definition for specifying an object 
in the scene, and then build an array of these objects. The get_closest_collision() func-
tion iterates through them, taking into account the type of each object. The room box 
is handled separately as the 0th object, and we assume there is exactly one of those.

Our “more general” solution still has limitations; for example, there are many 
ways of defining texture coordinates even for simple shapes. So, our solution is 
still limited to spheres, planes, and boxes with texture coordinates as specified so 
far, a single room box, global ambient light plus a single positional light (although 
adding more lights is not difficult), and a fixed camera facing down the negative Z 
axis. Program 16.13 shows the additions to program 16.12, along with an example 
configuration that matches the previous example.

Program 16.13 – More Generalized Object Definition
Compute Shader
. . .
struct Object
{	 float	 type;				    // 0=skybox, 1=sphere, 2=box, 3=plane
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	 float	 radius;			   // sphere radius (only relevant if type=sphere)
	 vec3	 mins;				    // box corner (if type=box).  If type=plane, X and Z values are width and depth
	 vec3	 maxs;				   // opposite box corner (if type=box)
	 float	 xrot;				    // X component of object rotation (only relevant if type=box or plane)
	 float	 yrot;				    // Y component of object rotation (only relevant if type=box or plane)
	 float	 zrot;				    // Z component of object rotation (only relevant if type=box or plane)
	 vec3	 position;			   // location of center of object
	 bool	 hasColor;			  // whether or not the object has a particular color specified
	 bool	 hasTexture;		  // whether or not the object includes a texture image in computing its color
	 bool	 isReflective;		  // whether or not the object is reflective (generates a secondary ray)
								        // (if the object is a room box, this field is used to enable or disable lighting)
	 bool	 isTransparent;	 // whether or not the object is refractive (generates a secondary ray)
	 vec3	 color;				    // the RGB color specified for the object (only relevant if hasColor is true)
	 float	 reflectivity;		  // percentage of reflective color to include (only relevant if isReflective is true)
	 float	 refractivity;		  // percentage of refractive color to include (only relevant if isTransparent)
	 float	 IOR;				    // Index of Refraction (only relevant if isTransparent is true)
	 vec4	 ambient;			   // ADS ambient material characteristic
	 vec4	 diffuse;			   // ADS diffuse material characteristic
	 vec4	 specular;			  // ADS specular material characteristic
	 float	 shininess;		  // ADS shininess material characteristic
};

Object[ ] objects =
{	 // object #0 is the room box
	 { 0, 0.0, vec3(-20, -20, -20), vec3( 20, 20, 20), 0, 0, 0, vec3(0), true, false, true, false, vec3(0.25, 
	   1.0, 1.0), 0, 0, 0, vec4(0.2, 0.2, 0.2, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 50.0
	 },
	 // object #1 is the checkerboard ground plane
	 { 3, 0.0, vec3(12, 0, 16), vec3(0), 0.0, 0.0, 0.0, vec3(0.0, -1.0, -2.0), false, true, false, false, vec3(0),
	   0.0, 0.0, 0.0, vec4(0.2, 0.2, 0.2, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0 ,1.0), 50.0
	 },
	 // object #2 is the transparent sphere with slight reflection and no texture
	 { 1, 1.2, vec3(0), vec3(0), 0, 0, 0, vec3(0.7, 0.2, 2.0), false, false, true, true, vec3(0),
	    0.8, 0.8, 1.5, vec4(0.5, 0.5, 0.5, 1.0), vec4(1.0,1.0,1.0,1.0), vec4(1.0, 1.0, 1.0, 1.0), 50.0
	 },
	 // object #3 is the slightly reflective box with texture
	 { 2, 0.0, vec3(-0.25, -0.8, -0.25), vec3(0.25, 0.8, 0.25), 0.0, 70.0, 0.0, vec3(-0.75, -0.2, 3.4), 
	   �false, true, true, false, vec3(0), 0.5, 0.0, 0.0, vec4(0.5, 0.5, 0.5, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 

vec4(1.0, 1.0, 1.0, 1.0), 50.0
}	 };
int numObjects = 4;
. . .
vec3 getTextureColor(int index, vec2 tc)
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{	 // customized for this scene
	 if (index==1) return (checkerboard(tc)).xyz;
	 else if (index==3) return texture(sampMarble, tc).xyz;
	 else return vec3(1,.7,.7);	 // return pink if index is for an object other than the plane or box 
}
. . .
Collision intersect_plane_object(Ray r, Object o)
{	 . . .
	 mat4 local_to_worldT = buildTranslate((o.position).x, (o.position).y, (o.position).z);
	 mat4 local_to_worldR =
		  buildRotateY(DEG_TO_RAD*o.yrot) * buildRotateX(DEG_TO_RAD*o.xrot) *  
� buildRotateZ(DEG_TO_RAD*o.zrot);
. . .
}	 // similar object references in other intersection functions also changed to "o.position", "o.mins", etc.

// ------------------------------------------------------------------------------
// Returns the closest collision of a ray
// object_index == -1 if no collision
// object_index == 0 if collision with room box
// object_index > 0 if collision with another object
// ------------------------------------------------------------------------------
Collision get_closest_collision(Ray r)
{	 float closest = 3.402823466e+38;	 // initialize to a very large number (max value of a float)
	 Collision closest_collision;
	 closest_collision.object_index = -1;

	 for (int i=0; i<numObjects; i++)
	 {	 Collision c;
		  if (objects[i].type == 0)
		  {	 c = intersect_room_box_object(r);
			   if (c.t <= 0) continue;	 // ray didn't collide with this skybox object
		  }
		  else if (objects[i].type == 1)
		  {	 c = intersect_sphere_object(r, objects[i]);
			   if (c.t <= 0) continue;	 // ray didn't collide with this sphere object
		  }
		  else if (objects[i].type == 2)
		  {	 c = intersect_box_object(r, objects[i]);
			   if (c.t <= 0) continue;	 // ray didn't collide with this box object
		  }
		  else if (objects[i].type == 3)
		  {	 c = intersect_plane_object(r, objects[i]);
			   if (c.t <= 0) continue;	 // ray didn't collide with this plane object
		  }
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		  else continue;	 // in case we have any non-collidable object types

		  if (c.t < closest)			   // we found a collision, now check if it is closer than the current closest
		  {	 closest = c.t;
			   closest_collision = c;
			   closest_collision.object_index = i;
	 }	 }
	 return closest_collision;	
}
. . .
void process_stack_element(int index)
{		  . . .  //  phases 1-4 remain unchanged
		  // PHASE 5 - Mixing to produce the final color – generalized for any combination of these objects
		  if(stack[index].phase == 5)
		  {	 if (c.object_index > 0)  // we collided with something, and it is not a room box
			   {	 // first get texture color if applicable
				    vec3 texColor = vec3(0.0);
				    if (objects[c.object_index].hasTexture)
					     texColor = getTextureColor(c.object_index, c.tc);

				    // next, get object color if applicable
				    vec3 objColor = vec3(0.0);
				    if (objects[c.object_index].hasColor)
					     objColor = objects[c.object_index].color;

				    // then get reflected and refractive colors, if they are needed later
				    vec3 reflected_color = stack[index].reflected_color;
				    vec3 refracted_color = stack[index].refracted_color;

				    // Now build the mix of colors – if it is the last color, just return it without blending 
				    vec3 mixed_color = objColor + texColor;
				    if ((objects[c.object_index].isReflective) && (stack[index].depth<max_depth))
					     mixed_color = mix(mixed_color, reflected_color, objects[c.object_index].reflectivity);
				    if ((objects[c.object_index].isTransparent) && (stack[index].depth<max_depth))
					     mixed_color = mix(mixed_color, refracted_color, objects[c.object_index].refractivity);
				    stack[index].final_color = mixed_color * stack[index].phong_color;
			   }

			   if (c.object_index == 0)    // room box object is unique because it might have six textures
			   {	 vec3 lightFactor = vec3(1.0);    // holds the lighting value if isReflective is true
				    if (objects[c.object_index].isReflective) lightFactor = stack[index].phong_color;

				    if (objects[c.object_index].hasColor)	 // here, roomboxes have color or texture (not both)
					     stack[index].final_color = lightFactor * objects[c.object_index].color;
				    else
				    {	 if (c.face_index == 0) stack[index].final_color = lightFactor * getTextureColor(5, c.tc);
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					     else if (c.face_index == 1) stack[index].final_color = lightFactor * getTextureColor(6, c.tc);
					     else if (c.face_index == 2) stack[index].final_color = lightFactor * getTextureColor(7, c.tc);
					     else if (c.face_index == 3) stack[index].final_color = lightFactor * getTextureColor(8, c.tc);
					     else if (c.face_index == 4) stack[index].final_color = lightFactor * getTextureColor(9, c.tc);
					     else if (c.face_index == 5) stack[index].final_color = lightFactor * getTextureColor(10, c.tc);
		  }	 }	 }
		  . . . // other parts of this function are unchanged
}

The definition of the objects array in Program 16.13 corresponds to the exam-
ple built previously in Programs 16.10 and 16.11, and the output matches that 
shown in Figure 16.18. Note that there are still spots in the program (in addition to 
the definition of the objects array) that might need to be tailored slightly depend-
ing on the scene: the camera position, the light position, the texture sampler used 
for each textured object (or the function to use if procedurally textured – these 
are all specified in getTextureColor()), recursion depth, and whether shadows are 
desired (disabling shadows simply requires commenting out the relevant test in the 
ads_phong_lighting() function). Of course, the program could be generalized further 
by encapsulating tasks such as ray intersection and texturing into object subtypes, 
which would also make it more easily extended.

	16.3.6	 Additional Examples
Now that the ray tracing program is complete and can be used for various 

combinations of our basic objects, let’s try some of the interesting cases discussed 
at the beginning of Section 16.3.4. For each configuration, we need to set the fol-
lowing variables appropriate for the particular scene: 

•	 the objects that comprise the scene (by filling the objects array)
•	 the number of objects (by setting the variable numObjects)
•	 the camera position along the Z axis (by setting the variable camera_pos)
•	 the maximum recursion depth (by setting the variable max_depth)
•	 the maximum size of the recursion stack (by setting the variable stack_size)
•	 the location of the positional light (by setting the variable pointLight_

position)

For example, can our ray tracer now see an object sitting behind two transpar-
ent other objects? We can test this by defining the objects array to include two thin 
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refractive boxes and a solid red ball placed behind them, as shown in Program 
16.14. The red sphere and transparent boxes are all centered on the positive Z axis 
at distances 2.0, 3.0, 4.0, and 5.0, respectively, and the camera is also positioned on 
the positive Z axis at a distance of 5.0.

Program 16.14 – Viewing Through Multiple Transparent Objects
Compute Shader
. . .
Object[ ] objects =
{	 // object #0 is the room box – this time the room box is white (or grey depending on the lighting)
	 { �0, 0.0, vec3(-20, -20, -20), vec3( 20, 20, 20), 0, 0, 0, vec3(0), true, false, true, false, vec3(1.0,  

1.0, 1.0), 0, 0, 0, vec4(0.2, 0.2, 0.2, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 50.0
	 },
	 // red sphere
	 { �1, 0.25, vec3(0), vec3(0), 0, 0, 0, vec3(0, 0, 2), true, false, false, false, vec3(1.0, 0.0, 0.0), 0.0,  

0.0, 0.0, vec4(0.3, 0.3, 0.3, 1.0), vec4(0.7, 0.7, 0.7, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 50.0
	 },
	 // transparent box with no texture
	 { 2, 0, vec3(-0.5, -0.5, -0.1), vec3(0.5, 0.5, 0.01), 0, 0, 0, vec3(0.0, 0.0, 4.0), true, false, false, true,
		  vec3(0.9, 0.9, 0.9), 0.0, 0.95, 1.1, vec4(0.8, 0.8, 0.8, 1.0), vec4(1.0, 1.0, 1.0, 1.0), vec4(1.0,  
� 1.0, 1.0, 1.0), 50.0
	 },
	 // transparent box with no texture
	 { 2, 0, vec3(-0.5, -0.5, -0.1), vec3(0.5, 0.5, 0.01), 0, 0, 0, vec3(0.0, 0.0, 3.0), true, false, false, true,
		  vec3(0.9, 0.9, 0.9), 0.0, 0.95, 1.1, vec4(0.8, 0.8, 0.8, 1.0), vec4(1.0, 1.0, 1.0, 1.0), vec4(1.0,  
� 1.0, 1.0, 1.0), 50.0
}	 };
int numObjects = 4;
float camera_pos = 5.0;
const int max_depth = 5;
const int stack_size = 100;
vec3 pointLight_position = vec3(-1,1,3);
. . .

The output of Program 16.14 is shown in Figure 16.20. Note that at a recur-
sion depth of 3, the red sphere is not visible, because the sequence of rays is not 
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sufficient to go through both sides of both boxes and reach the sphere. However, at 
recursion depth of 5, the sphere becomes visible.

Another example discussed in Section 16.3.4 was the case of two mirrors 
facing each other. As illustrated in Figure 16.18, at just the right relative angles 
between the two mirrors and the viewer, a sort of “recursive tunnel” appears. Can 
our ray tracer replicate that effect?

Figure 16.20
Output of Program 16, showing a red ball through two thin transparent boxes. The recursion depth is 3 in the left image and 5 in the right image

We test this by creating two reflective planes (to serve as mirrors) with a red 
sphere and the camera in between. Figure 16.21 shows the layout of the objects, 
all of which are placed along the Z axis (slightly offset in some cases), with the 
camera looking down the negative-Z direction. Although the camera (shown in 
green) would not be able to see the plane that is behind it, it should be able to see 
the mirror in front of it and the red sphere, as well as additional images of the red 
sphere as the reflection bounces back and forth between the two mirrors. Program 
16.15 sets up a scene with these objects so oriented.
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Figure 16.21
Building two mirrors facing each other

Configuring a scene that reveals a “recursive tunnel” takes a bit of trial-and-
error (this can be true with real mirrors in the real world as well!). The settings 
that we arrived at in Program 16.15 represent one such set of object positions and 
angles that produce a clear example of the desired effect.

Program 16.15 – Two Mirrors Facing Each Other
Compute Shader
. . .
Object[ ] objects =
{	 // object #0 is the room box
	 { �0, 0.0, vec3(-20, -20, -20), vec3(20, 20, 20), 0, 0, 0, vec3(0), true, false, true, false, vec3(0.25,  

1.0, 1.0), 0, 0, 0, vec4(0.2, 0.2, 0.2, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 50.0
	 },
	 // red sphere
	 { �1, 0.25, vec3(0), vec3(0), 0, 0, 0, vec3(0, -0.33, 3.3), true, false, false, false, vec3(1.0, 0.0, 

0.0), 0.0, 0.0, 0.0, vec4(0.5, 0.5, 0.5, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 50.0
	 },
	 // first mirror - reflective plane behind camera
	 { 3, 0, vec3(4, 0, 4), vec3(0), 90.0, -1.0, 0.0, vec3(0, 0, 3.8), true, false, true, false, vec3(1.0, 1.0, 1.0),
		  0.9, 0.0, 0.0, vec4(0.5, 0.5, 0.5, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 100.0
	 },
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	 // second mirror - reflective plane, behind red sphere
	 { 3, 0, vec3(.8, 0, .8), vec3(0), 92.0, 0.0, 0.0, vec3(0, 0, 3.1), true, false, true, false, vec3(1.0, 1.0, 1.0),
		  0.9, 0.0, 0.0, vec4(0.5, 0.5, 0.5, 1.0), vec4(0.9, 0.9, 0.9, 1.0), vec4(1.0, 1.0, 1.0, 1.0), 100.0
}	 };
int numObjects = 4;
float camera_pos = 3.7;
const int max_depth = 14;
const int stack_size = 100;
vec3 pointLight_position = vec3(-2, 2, 3);
. . .

The red sphere, camera, and two mirrors are sitting at various spots along the 
Z axis, at positions 3.3, 3.7, 3.1, and 3.8, respectively. The red sphere is lowered 
slightly along the Y axis so that the camera can peer over it. A very light grey 
color has been specified for the mirrors, so that they don’t overly darken what 
they reflect. Since the light has typical ADS characteristics, the darkening of the 
off-axis areas slightly increases with each reflection (as was the case in the real-
world photo in Figure 16.18). The light has been positioned near the sphere so that 
shadows cast by the mirrors don’t darken it further. The mirror behind the sphere 
has been tilted down very slightly (by 2.0 degrees on the X axis, to be exact), to 
make the reflections of the sphere more visible.

Figure 16.22 shows the resulting output for a series of recursion depths. At a 
recursion depth of 0, only the sphere and one mirror are visible in the scene. At 
depth=1, the reflection of the sphere in the plane is visible. At depth=2, the reflec-
tion of the sphere in the opposite plane has also appeared, and the “tunnel” effect 
is starting to take shape. Moving forward to a depth of 14, the expected long series 
of red spheres shows, and the tunnel effect has fully materialized. (The sphere 
nearest the camera is slightly oblong due to perspective distortion.)
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Figure 16.22
Output of Program 16.15, showing two mirrors facing each other. Recursion depth equals 0, 1, 2, and then 14 in the final image

	16.3.7	 Blending Colors for Transparent Objects
So far, all of our transparent objects (which we have been modeling with 

refracted secondary rays) have had no color (or have been colored white). It is 
natural to want to make colored transparent objects, such as a tinted window. Even 
though we have the tools for doing this, there are some rather surprising difficul-
ties that can occur in many cases.

CGP_C++_CH16_2E_3pp.indd   448 11/13/2020   4:38:58 PM



Chapter  16 ·  Ray Tracing and Compute Shaders   ■ 449

It is a simple matter to declare an object to be transparent, and also having a 
color, by simply assigning an RGB value for whatever color we want (such as [1,0,0] 
for red), and then combining this color with the incoming refracted color as we did 
in previous examples. However, the results are not always as one would expect! For 
example, suppose that we declare three planes colored red, yellow, and blue, and 
stack them in our scene so that we can see the result of mixing the colors as we have 
been doing, with equal weights where they overlap. The result is shown in Figure 
16.23. Is this what you would expect to see if these were real colored panes of glass?

Figure 16.23
A scene with three overlapping colored panes, colors mixed equally

Figure 16.23 was created by defining three overlapping transparent colored 
panes (red, yellow, and blue) and mixing their colors with a weighted sum as we 
have done before, such as

mixed_color = mix(pane_color, refracted_color, 0.5);

Where the red and yellow overlap, we see orange, and where the red and 
blue overlap we see purple, both of which are likely to match our expectations. 
However, where yellow and blue overlap we probably expected green, but a sort of 
grey color appears there instead.

Welcome to the complex world of color models! If those were real glass panes, 
we should indeed see green where the yellow and blue panes overlap. That is 
because as white light passes through a yellow pane, and then a blue pane, some 
of the spectrum from the original white light is removed, leaving only the green 
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portion. This is called a subtractive color effect, and is how colors blend when, for 
example, mixing paint or ink.

However, suppose that these panes were actually emitting colors, rather than fil-
tering them – such as if a yellow light source was combined (added) to a blue light 
source. In that case, the yellow and blue panes would not combine to form green. 
Thus, depending on what we wish to model, we need to blend colors in different ways.

So far, all of our colors have been expressed using the RGB color model. RGB 
is an example of an additive color model, and it is designed for blending light 
sources – most specifically the red, green, and blue elements of an RGB computer 
monitor – by adding them together. That is, it is designed not to “mix” its colors 
like paint, but ideally to add them. When mixing paint, we expect each successive 
combined color to darken the mix (because each successive color subtracts some 
portion of the light). However, in an additive model which blends light sources, 
each successive color brightens the mix, moving it closer and closer to white light.

Another thing about the RGB model that is a common source of confusion is that 
it is designed with primary colors red, green, and blue, rather than the familiar red, 
yellow, and blue primary colors for paints or crayons that most of us learned in ele-
mentary school. The RGB primary colors work very well if our three panes are light 
sources. Suppose for example that we replaced the red/yellow/blue panes with red/
green/blue panes, and simply added their colors, without weights, as in the following:

mixed_color = pane_color + refracted_color;

The result is shown in Figure 16.24.

Figure 16.24
A scene with three overlapping colored light sources, colors added together
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To most people new to color models, Figure 16.24 looks very strange (it looks 
even stranger with red/yellow/blue panes – try it!). The red and blue planes com-
bine to form a sort of light purple called magenta, which probably seems fairly 
reasonable – but few people expect red and green would combine to make yellow. 
And yet, if these panes were light sources, believe it or not, this is much closer to 
what would actually happen in the real world. Note, for example, that at the very 
center, all three red/green/blue primary light colors have been added together, 
resulting in full spectrum white light. So the RGB additive color model, when 
used to blend colors by adding them, is accurate when we use it to blend colored 
light sources.

But what if we want to model colored objects that aren’t light sources, but are 
instead passive colored objects responding to white light sources, such as a colored 
window pane or a pair of orange sunglasses? It turns out that the additive RGB 
model is quite clumsy for this task.

If colored transparent objects are desired, rather than light sources, one option 
is to switch to a subtractive color model, such as CMY (cyan/magenta/yellow). 
Whereas RGB is designed for computer monitors composed of tiny red, blue, and 
green light emitters, CMY is commonly used for printers that mix ink to build 
colors. In RGB, [0,0,0] is black and [1,1,1] is white, whereas in CMY, [0,0,0] is 
white and [1,1,1] is black. Thus adding colors together in CMY makes them darker. 
This models the real-world observation that when two pigments (such as paint) 
are mixed together, the resulting substance subtracts out more of the surrounding 
light and becomes darker. That’s why the model is called subtractive: the values 
indicate the amount of light removed from surrounding light sources, even though 
we still combine colors by adding them together.

It is easy to convert back and forth between RGB and CMY by inverting the 
colors (subtracting them from [1,1,1] or white). One way of blending colors using 
CMY is to invert the RGB colors to generate CMY versions, add them, and then 
convert back to RGB:

color1CMY = vec3(1,1,1) − color1RGB

color2CMY = vec3(1,1,1) − color2RGB

blendCMY = color1CMY + color2CMY

resultRGB = vec3(1,1,1) − blendCMY
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This works quite well if the colors of our panes are magenta (RGB=[1,0,1]), 
yellow (RGB=[1,1,0]), and cyan (RGB=[0,1,1]). Note that it is often necessary to 
scale the results down so that the final RGB color values don’t exceed 1.0. Figure 
16.25 shows the resulting blends of colors produced by adding their CMY values.

Figure 16.25
Adding cyan, magenta, and yellow panes in CMY color space

It turns out that the results are rather similar if we start with these same 
magenta, yellow, and cyan panes, and blend their RGBs with a weighted sum as 
we have been doing earlier in this chapter, as shown in Figure 16.26.

Figure 16.26
Blending cyan, magenta, and yellow panes in RGB color space
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To summarize, we have learned thus far that blending RGB colors for light 
sources works very well by simply adding the RGB colors, but blending RGB 
colors for transparent planes (as if we are mixing paint) is more problematic. 
Depending on the colors being used, some applications may suffice by using one 
of the two methods just described, that is, either converting the colors to CMY, 
adding them, and converting back to RGB, or simply blending the two colors in 
RGB with a weighted sum. Figure 16.27 shows both methods in three scenarios: 
red/yellow/blue, red/green/blue, and magenta/yellow/cyan panes.

Figure 16.27
Adding in CMY color space (top row), and blending in RGB color space (bottom row)

In each of the methods shown in Figure 16.27, there is at least one color com-
bination that would appear incorrect for mixing paint (or stacking glass panes). 
Therefore, if an application requires correct subtractive blending across the color 
spectrum, none of the above methods will be adequate, and another method is 
needed.

CGP_C++_CH16_2E_3pp.indd   453 11/13/2020   4:38:58 PM



454  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

A third approach for handling colored planes is to convert the colors from an 
RGB color model to an RYB subtractive model based on primary colors red/yellow/
blue. Precise algorithms for doing this tend to be complex. Sugita and Takahashi 
[ST15] described a surprisingly simple algorithm for converting between RGB and 
RYB that isn’t perfect but works pretty well across the color spectrum. Program 
16.16 shows GLSL implementations of their conversion functions, which may be 
practical for many cases.

Program 16.16 – Blending via Conversion to RYB
Compute Shader
. . .
void process_stack_element(int index)
{	 . . .
		  // during phase 4 blending:
			   if ((objects[c.object_index].isTransparent)
			   {	 vec3 mixedRYB = rgb2ryb(mixed_color);
				    vec3 refractedRYB = rgb2ryb(refracted_color);
				    mixed_color = ryb2rgb(mixedRYB + refractedRYB);
			   }
	 . . .
}

vec3 rgb2ryb(vec3 rgb)
{	 float white = min(rgb.r, min(rgb.g, rgb.b)); // compute white and black contributions for input color
	 float black = min((1-rgb.r), min((1-rgb.g), (1-rgb.b))); // assumes colors are clamped to the range [0..1]
	 vec3 rgbWhiteRemoved = rgb - white; // remove white from input color before converting to RYB

	 //  build initial RYB values for the output color
	 vec3 buildRYB = vec3(
		  rgbWhiteRemoved.r - min(rgbWhiteRemoved.r, rgbWhiteRemoved.g),
		  (rgbWhiteRemoved.g + min(rgbWhiteRemoved.r, rgbWhiteRemoved.g)) / 2.0,
		  (rgbWhiteRemoved.b + rgbWhiteRemoved.g - min(rgbWhiteRemoved.r,  
� rgbWhiteRemoved.g)) / 2.0);

	 float normalizeFactor = max(buildRYB.x, max(buildRYB.y, buildRYB.z))
		  / max(rgbWhiteRemoved.r, max(rgbWhiteRemoved.g, rgbWhiteRemoved.b));

	 buildRYB /= normalizeFactor;	 // normalize for similar white level
	 buildRYB += black;					   // normalize for similar black level
	 return buildRYB;
}
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vec3 ryb2rgb(vec3 ryb)
{	 float white = min(ryb.x, min(ryb.y, ryb.z)); // compute white and black contributions for input color
	 float black = min((1-ryb.x),min((1-ryb.y),(1-ryb.z)));
	 vec3 rybWhiteRemoved = ryb - white; // remove white from input color before converting to RGB

	 //  build initial RGB values for the output color
	 vec3 buildRGB = vec3(
		  rybWhiteRemoved.x + rybWhiteRemoved.y - min(rybWhiteRemoved.y, rybWhiteRemoved.z),
		  rybWhiteRemoved.y + 2.0 * min(rybWhiteRemoved.y, rybWhiteRemoved.z),
		  2.0 * rybWhiteRemoved.z - min(rybWhiteRemoved.y, rybWhiteRemoved.z));

	 float normalizeFactor = max(buildRGB.r, max(buildRGB.g, buildRGB.b))
		  / max(rybWhiteRemoved.x, max(rybWhiteRemoved.y, rybWhiteRemoved.z));

	 buildRGB /= normalizeFactor;	 // normalize for similar white level
	 buildRGB += black;					   // normalize for similar black level
	 return buildRGB;
}
. . .

The functions that convert between RGB and RYB are named rgb2ryb() and 
ryb2rgb(). They both start by computing the amount of white and black in the input 
color, as minimum distance from [0,0,0] and [1,1,1] for any of the three color chan-
nels (R, G, B, or R, Y, B). They then remove the white portion in all three channels. 
They each then build equivalent values for each of the three channels of the other 
color model. The approach is based on a proposed subtractive RYB color model 
where white = [0,0,0], black = [1,1,1], red = [1,0,0], yellow = [0,1,0], blue = [0,0,1], 
green = [0,1,1], purple = [1,0, .5], and aqua = [0, .5, 1]. The code for constructing 
the vectors buildRGB and buildRYB utilizing these proposed colors is based on the 
equations derived by Sugita and Takahashi and not detailed here. Finally, the result 
is normalized to generate similar white and black levels as the original input color.

The color palette proposed by Sugita and Takahashi is designed to be subtrac-
tive, and like CMY, its white and black definitions are reversed from the RGB 
model. Blending colors is again done by simply adding them together, as shown in 
the changes to the process_stack_element() function in Program 16.16.

The results are shown in Figure 16.28 for the same three scenarios as shown in 
Figure 16.27 (that is, the red/yellow/blue, red/green/blue, and magenta/yellow/cyan 
panes). In each case, the colors of the panes were defined in RGB as described in 
Program 16.13, converted to RYB using the rgb2ryb() function from Program 16.16, 
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added together (also as shown in Program 16.16), and then the result was converted 
back to RGB using the ryb2rgb() function before displaying the result. We think 
that, with slight adjustments, the results in every case are quite close to what one 
would expect to see when stacking colored transparent planes (or mixing paint) in 
the real world.

Figure 16.28
Output of Program 16.16 showing blending using the Sugita/Takehashi RYB color conversion

SUPPLEMENTAL NOTES

Even the simple examples given in this chapter require significant computing 
cycles, and the later ones (Programs 16.13, 16.14, and 16.15) run very slowly. On 
a standard laptop, the reader can expect them to take several seconds or more to 
render, especially for large depth of recursion settings. On some machines, the 
default settings for the graphics card may cause OpenGL to time out, crashing the 
program before it has a chance to complete. On a Windows machine, the time limit 
is typically set to 2 seconds, but can be increased by increasing the TdrDelay reg-
istry setting. Instructions for doing this are widely available on the Web [A19]. The 
author set his timeout to 8 seconds. An appropriate value depends on the machine 
and the application. Be warned that making this change can also make it a bit more 
difficult to stop a runaway graphics process.

We have tried to write our compute shader code for readability rather than per-
formance; e.g., our heavy use of conditionals (“if” statements) can slow execution. 
Tricks for removing conditionals can be found elsewhere [H13].

There are a few rather obvious things that we have not implemented in our 
ray tracer. One is the ability to rotate the sphere. Of course, if the sphere is a solid 
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color or transparent, this is not an issue. However, if it is textured, such as in the 
examples utilizing the earth texture, it would be desirable to be able to rotate it to 
different orientations. Such a rotation can be incorporated in the same manner as 
was done for the box and the plane.

Another deficiency is that we have only implemented hard shadows. Soft 
shadows for ray tracing are widely used, we just didn’t cover them here. Many 
resources are available for those interested ([K16], for example).

Probably the most significant technique that we didn’t cover in this chap-
ter is how to perform ray tracing on 3D models constructed as a triangle mesh. 
Computing intersections on triangles is similar to plane intersection, and can be 
performed on all of the triangles that comprise a model. This requires some setup 
that goes beyond what we have covered here, so that the triangles from, say, an .obj 
file, can be sent to the compute shader and then iterated as objects in the scene. 
This topic is beyond the scope of our introductory chapter. Scratchapixel [S16] is 
a nice place to start for those who wish to explore this topic.

Ray tracing is a very rich topic, and there is a wealth of techniques for enhanc-
ing realism that we didn’t describe in this brief introduction. The reader is encour-
aged to explore the myriad of textbooks and online resources on ray tracing ([S16] 
is a particularly nice online overview).

As we saw in Section 16.2, OpenGL has support for blending, including a 
wide variety of ways to blend colors. However, in this chapter, we didn’t utilize the 
rendering pipeline, so we had to blend the colors ourselves.

Much of the code in this chapter was developed by Luis Gutierrez as part of a 
special project when he was a student at California State University, Sacramento. 
His contributions greatly facilitated our explanations and we appreciate the excel-
lent work that he did distilling these topics into manageable-sized code, especially 
his code organization for managing the recursion in the non-recursive language 
of GLSL.

Exercises

16.1	 In Program 16.4, shadows can be very easily disabled by commenting out 
one particular line of code. Identify that line of code.
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16.2	 Make the following simple changes to Program 16.5: (i) move the box so that 
it is behind the sphere, but still visible, (ii) change the background color from 
black to light blue, and (iii) modify the properties and position of the light 
source.

16.3	 Make the following changes to Program 16.10: (i) move the box so that it is 
in front of the sphere, (ii) make the box transparent/refractive, and the sphere 
reflective, and (iii) move the checkerboard plane so that it is placed vertically 
behind the box and sphere. Try to place the objects so that both the sphere 
and the checkerboard plane are visible through the transparent box.

16.4	 In Program 16.12, replace the blue roombox with the lake scene skybox. 
Don’t forget to disable lighting on the skybox.

16.5	 Modify Program 16.13 to build a scene with a transparent sphere and a 
transparent box, both of different colors. Include the vertical checkerboard plane 
behind them as a backdrop. Experiment with the color blending approaches 
described in Section 16.3.6. Which approach worked best in your scene?

16.6	 In Figure 16.28 (the center image), the Sugita/Takehashi blending of red and 
green produces black. Is this a reasonable result? If not, can you devise a 
workaround that doesn’t compromise other color blends?
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Chapter 17
Stereoscopy for 3D Glasses 

and VR Headsets

■ ■ ■ ■ ■

This entire textbook is about 3D rendering. However, “3D” is a rather overloaded 
term. We have been using it to mean displaying scenes using 3D perspective so that 
we can realistically perceive their objects at their locations and at their relative sizes. 
However, “3D” can also mean viewing a scene through a binocular mechanism that 
creates a fuller illusion of depth, often called stereoscopy. For example, many read-
ers have seen such techniques in action at a movie cinema, where viewers are given 
special glasses to see a movie in “3D.” In this chapter, we explore the basics of how 
to generate stereoscopic renderings using OpenGL.

In the real world, we experience a sensation of depth because our two eyes physically 
exist in slightly different locations. Our brain is able to combine our two eyes’ slightly 
different viewpoints into a single 3D experience. To replicate this experience mechani-
cally requires providing each eye with a similarly slightly different view of the scene we 
are rendering. Many approaches for doing this have been invented over the years.

One of the first such devices was produced in the 1800s, and it consisted of a 
simple bracket called a “stereoscope” [WST]. This allowed one to view specially-
produced photographs – more specifically, image pairs – so that each eye viewed 
the same subject but from very slightly different vantage points. These early stereo-
scopes were the inspiration for the widely popular View-Master® toys that emerged 
in the mid-1900s, and more recently for virtual reality headsets (see Figure 17.1). 
Devices of this sort are often called “side-by-side” viewers.

17.1	 View and Projection Matrices for Two Eyes�������������������������������������������������������������463
17.2	 Anaglyph Rendering���������������������������������������������������������������������������������������������������465
17.3	 Side-by-Side Rendering ���������������������������������������������������������������������������������������������468
17.4	 Correcting Lens Distortion in Headsets�������������������������������������������������������������������469
17.5	 A Simple Testing Hardware Configuration���������������������������������������������������������������477
	 Supplemental Notes�����������������������������������������������������������������������������������������������������478

CGP_C++_CH17_2E_2pp.indd   461 11/3/2020   3:37:01 PM



462  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

Figure 17.1
Side-by-side viewers, from left to right: 1800’s stereoscope, 1960’s View-Master®, and 2016 Oculus Quest® VR headset.
Photo of 1800’s Holmes stereoscope image by Dave Pape.
https://commons.wikimedia.org/wiki/File:Holmes_stereoscope.jpg
Photo of Oculus Quest by Bryan Clevenger, used with permission.

Side-by-side viewing produces excellent results, however, it has one primary 
disadvantage: it is only feasible for small images, such as on a personal headset.

Achieving stereoscopy on a larger scale, such as on a cinema movie screen, 
requires a different approach. The usual method is to project an image that 
contains both left and right images simultaneously, and then provide a special 
pair of glasses that only allows the left and right eyes to see their respective 
images. There are several technologies for achieving this; three currently popular 
ones are:

•	 Anaglyph – the glasses’ lenses are two different colors, typically red and 
cyan; the left eye sees the red component of the image, and the right eye 
sees the cyan component. The image is projected such that the left eye’s 
view is rendered in red, and the right eye’s view is rendered in cyan.

•	 Polarized – the glasses are split such that one side is polarized vertically 
and the other side is polarized horizontally. The image is projected such 
that each eye’s view is polarized in one or the other manner. 

•	 Shutter – the projected image alternates displaying the left and right 
images. The glasses alternate allowing the left and right sides to allow 
the image to pass through.

Each of these technologies has its advantages and disadvantages. Anaglyph is 
the simplest and least expensive; early 3D movies used this method. However, the 
resulting color is often compromised. Polarized doesn’t suffer from color issues, 
and the glasses are also inexpensive, but projecting a specially-polarized image 
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requires special technology.1 Shutter offers the best quality, but the technology is 
the most expensive, including the glasses. Figure 17.2 shows an inexpensive card-
board pair of anaglyph glasses.

Figure 17.2
Red/cyan anaglyph 3D glasses for cinematic projection

In this chapter, we introduce the basics of generating 3D stereoscopic images 
in OpenGL using two techniques: (1) anaglyph and (2) side-by-side. In both cases, 
we will first need to learn a few basics regarding the view and projection matrices 
we need to properly generate the separate images for each eye.

	 17.1	� VIEW AND PROJECTION MATRICES  
FOR TWO EYES

The science of how our pair of eyes converge on a particular object and allow 
us to perceive its distance from us (stereopsis or depth perception) is complex 
[WSS], and a complete discussion is outside the scope of this book. Our implemen-
tations are limited to incorporating only the most basic elements.

Let’s consider the vantage point of each eye. Although our eyes are very close 
together, they are at different points in space. A common approach is to decide 

1	 Anaglyph and polarized techniques are called passive because the glasses don’t need to physically 
do anything other than filter colors. By contrast, shutter glasses need to dynamically open and 
close in sync with the projected image, and are therefore referred to as an active technology.
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on an appropriate interocular distance (IOD), which is the distance between the 
pupils of our two eyes. While it is a simple matter to measure this distance, say in 
millimeters or inches, the relationship between that real-world distance measure 
(e.g., millimeters) and the axes units used in our rendered scene (i.e., the meaning 
of “1”, “2”, etc. along our X, Y, and Z axes) is entirely application-dependent. A 
commercial application, such as a videogame or movie, needs to ensure that the 
IOD value chosen for the application domain correctly corresponds to the average 
human’s IOD (about 65 mm), and may even need to provide for the user to adjust 
for his/her own IOD. In our application, we define a variable called IOD and simply 
decide by trial and error on a value that produces decent results.

We determine the location of each eye as the location of the camera offset by 
half of the interocular distance. The offset computation also includes any rotation 
applied to the camera. In the examples in this chapter, the camera is fixed at loca-
tion (cameraX, cameraY, cameraZ) and faces down the negative Z axis. Therefore, 
in those cases, ignoring rotation, the eye locations are simply (cameraX ± IOD/2.0, 
cameraY, cameraZ), and the remainder of the computations for computing each 
eye’s respective view matrix are unchanged.

Deriving accurate perspective projection matrices is complex [N10], although 
implementing them is fairly simple. While it is possible to get decent results sim-
ply using the standard perspective matrix used for the camera, this can lead to 
undesirable effects at the periphery, namely distant regions that only one eye can 
see. Figure 17.3 shows frustums applied to both eyes, the first using standard per-
spective transforms, and then with slightly modified perspective transforms that 
allow both eyes the same distance view while still facing forward. The second 
approach produces better results, but requires the creation of perspective matrices 
for asymmetric frustums. GLM provides a function called glm::frustum() that builds 
such a matrix given the top, bottom, left, and right boundaries of the projection 
plane. Derivations for various such matrices can be found elsewhere [S16].

Figure 17.3
Standard and asymmetric frustums for stereoscopic perspective matrices
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Finding the boundaries of the projection plane in the asymmetric case can be 
accomplished using a bit of geometry, given the field of view, aspect ratio, and 
near and far clipping planes that we have already been using. Figure 17.4 defines 
an OpenGL/C++ function computePerspectiveMatrix() that does this. The parameter 
leftRight is set to −1 for the left eye and +1 for the right eye. All other variables are 
allocated globally (as before), for reasons of efficiency. The result is placed in the 
variable pMat.

Figure 17.4
C++/OpenGL function for computing an asymmetric perspective matrix

	 17.2	 ANAGLYPH RENDERING
Rendering an anaglyph 3D version of a scene for viewing with red-blue or 

red-cyan glasses is basically the same as we have been doing, except that we need 
to render the scene twice, once for the left eye and once for the right eye. One of 
these renderings uses only the red portion of RGB color palette (the red channel), 
and the other renders the green and blue channels (combining green and blue in 
RGB color spaces produces cyan). The two renderings also each employ their 
own view and perspective matrices. When viewed through red-cyan glasses, the 
brain fuses the two images into a single 3D scene. An overview of the steps is as 
follows:

	 1.	 Clear the depth and color buffers.
	 2.	� Set the OpenGL color mask to enable only the red channel.
	 3.	 Call display() to render the scene, using the view and perspective matrices 

for the left eye.
	 4.	 Clear the depth buffer (but not the color buffer).
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	 5.	 Set the OpenGL color mask to enable only the green and blue channels.
	 6.	 Call display() to render the scene, using the view and perspective matrices 

for the right eye.

The above steps occur in the render loop in main() in a similar manner as we 
have been doing throughout the book. Note steps #2 and #5 – it is convenient that 
OpenGL offers the command glColorMask(), which can be used to restrict the color 
channels that are written to the color buffer.

We illustrate anaglyph rendering using the fog example from Section 14.1 (the 
scene continually rotates, and this particular image is captured at a different time 
point than the one shown earlier in Figure 14.2). While we could use almost any 
example from the preceding chapters, we chose to use a scene that includes fog 
because incorporating methods that slightly obscure distant objects can further 
enhance the 3D experience.

Program 17.1 shows the changes and additions to Program 14.1. Explanations 
follow the code.

Program 17.1 – Anaglyph Rendering of the Fog Example
C++/OpenGL Application
// includes, #defines, variables for display, rendering programs, init(), matrices, as before.
. . .
float IOD = 0.01f;	 // tunable interocular distance – we arrived at 0.01 for this scene by trial-and-error
. . .
void computePerspectiveMatrix(float leftRight) {
	 // as shown previously in Figures 17.3 and 17.4
}

void display(GLFWwindow* window, double currentTime, int leftRight) {
	 . . .
	 computePerspectiveMatrix(leftRight);
	 vMat = glm::translate(glm::mat4(1.0f), glm::vec3(-(cameraX + (leftRight * IOD / 2.0f)), -cameraY, 
� -cameraZ));
	 . . .
}

int main(void) {
	 . . .
	 //  window setup same as before – all changes are in the render loop as follows:
	 while (!glfwWindowShouldClose(window)) {
		  glColorMask(true, true, true, true);	 // all color channels enabled for background color
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		  glClear(GL_DEPTH_BUFFER_BIT);
		  glClearColor(0.7f, 0.8f, 0.9f, 1.0f);	 // the fog color is bluish-grey
		  glClear(GL_COLOR_BUFFER_BIT);

		  glColorMask(true, false, false, false);	 // enables only the red channel
		  display(window, glfwGetTime(), -1);	 // render left eye's view

		  glClear(GL_DEPTH_BUFFER_BIT);

		  glColorMask(false, true, true, false);	 // enables only the green and blue channels
		  display(window, glfwGetTime(), 1);	 // render right eye's view

		  glfwSwapBuffers(window);
		  glfwPollEvents();
	 }
	 . . .
	 // other components same as before. Shaders are also unchanged.
}

There are very few changes made to the original program 14.1. The interocular 
distance is set to 0.01, which was arrived at by trial-and-error as described in Section 
17.1. Note that the render loop in the main() now calls display() twice, with an additional 
parameter leftRight, which is set to −1 and then +1, corresponding to the left and right 
eyes. The display() function then uses this value to offset the camera location used to 
build the view matrix, to either the left or the right, by half of the interocular distance.

The output of Program 17.1 is shown in Figure 17.5. Note that the output com-
prises two renderings of the fog example, with one in red and the other in cyan, 
slightly offset horizontally. View this figure through red/cyan glasses to see the 
resulting 3D stereoscopic effect.

Figure 17.5
Anaglyph rendering of Program 17.1, the fog example (best viewed through red/cyan 3D glasses)
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	 17.3	 SIDE-BY-SIDE RENDERING
Now that we have seen how to render appropriate left and right eye images 

using asymmetric perspective matrices, let’s adapt these techniques to generating 
a side-by-side stereoscopic pair for our fog example.

If all we desire is a pair of rectangular images for use in a device such as the 
stereoscope or View-Master®, then the solution is straightforward. We simply use 
the OpenGL glViewport() function to specify separate halves of the screen (view-
ports) for each image, then call display() twice, once for each viewport. Program 
17.2 shows the changes to Program 14.1. Explanations follow the code.

Program 17.2 – Side-by-Side Rendering of Fog Example
C++/OpenGL Application
//  includes, #defines, variables for display, rendering programs, init(), matrices, and IOD as before.
//  Addition of the computePerspectiveMatrix() function, and changes to display(), the same as Program 17.1
. . .
int sizeX = 1920, sizeY = 1080;
. . .
int main(void) {
	 . . .
	 //  window setup same as before – all changes are in the render loop as follows:
	 while (!glfwWindowShouldClose(window)) {
		  glViewport(0, 0, sizeX, sizeY);
		  glClear(GL_DEPTH_BUFFER_BIT);
		  glClear(GL_COLOR_BUFFER_BIT);

		  glViewport(0, 0, sizeX/2, sizeY);
		  display(window, glfwGetTime(), -1);

		  glViewport(sizeX/2, 0, sizeX/2, sizeY);
		  display(window, glfwGetTime(), 1);

		  glfwSwapBuffers(window);
		  glfwPollEvents();
	 }
	 . . .  // remaining code same as before. Shaders are also unchanged.
}

The glViewport() function is used to specify a portion of the screen (or viewport) 
for rendering. It takes four parameters; the first two specify the X and Y screen 
coordinates of the lower left corner of the viewport, and the next two specify the 
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width and height of the viewport region (in pixels). We have defined the variables 
sizeX and sizeY to common dimensions for a modern laptop screen; they should 
be set to match the machine being used. We then use these values to divide the 
screen in half, one side for each eye. The resulting output is shown in Figure 17.6. 
In this example, we have also set the clear color to the fog color, as we did in 
Program 17.1.

Figure 17.6
Side-by-side rendering of Program 17.2, the fog example.
(best viewed through a stereo headset)

By comparing Figures 17.5 and 17.6, we can see that the images in 17.6 have 
clearly been compressed horizontally. With only half of the screen width available 
for rendering each image, an application would need to take this into account by 
changing either the field of view or the aspect ratio. We have ignored that in this 
simple example.

	 17.4	� CORRECTING LENS DISTORTION 
IN HEADSETS

Headsets for viewing side-by-side images utilize high field-of-view lenses 
that often suffer from lens distortion. Two important types of distortion in lenses 
are pincushion distortion, where objects on the periphery bow outward, and bar-
rel distortion, where objects on the periphery bow inwards. Figure 17.7 shows a 
simple grid, and then the same grid having been distorted with both pincushion 
and barrel distortions.
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Figure 17.7
Simple grid (left), and the same grid with pincushion (center) and barrel (right) distortions

Most headsets utilize high field-of-view lenses that suffer from pincushion 
distortion. For example, consider the popular stereoscopic headset, the Google 
Cardboard® [GC20], in which the user places a cell phone inside of a cardboard 
frame that incorporates a pair of lenses. If the cell phone displays a side-by-
side stereoscopic image, it can be viewed in 3D through the Google Cardboard. 
Figure 17.8 shows a Google Cardboard headset, along with the leftmost grid from 
Figure 17.7, but actually photographed through one of the Google Cardboard 
lenses. A pincushion distortion can clearly be observed.

Figure 17.8
Google Cardboard® headset (left) and a simple grid viewed through one of its lenses (right), exhibiting pincushion distortion

Because headsets tend to use lenses that produce pincushion distortion, appli-
cations that target virtual reality headsets usually try to anticipate the pincushion 
distortion and correct for it by applying a reverse distortion, specifically barrel 
distortion. Since different headset lenses can have different properties, this distor-
tion correction would ideally be tunable for different headsets.
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Measuring and correcting lens distortion is complex, and a full study is beyond 
the scope of this book. Instead we walk through the steps for a typical example. 
Specifically, we apply a barrel distortion correction to our fog example, roughly tuned 
for the Google Cardboard headset. We also point out some of the tunable parameters 
along the way. More thorough coverage can be found on the Internet [BS16].

Applying a distortion correction to a rendered scene can be done in a variety of 
ways. One of the most efficient methods is called vertex displacement, in which the 
elements in the scene are each rendered with the desired distortion correction applied 
to the vertices [BS16]. For purposes of simplicity, in this chapter we use an easier, 
albeit less efficient, fragment-shader-based approach. The steps are as follows:

	 1.	 Render the entire scene to a framebuffer texture, from the left eye point of 
view.

	 2.	 Use the texture to render a rectangular region to the left half of the screen 
(the fragment shader applies barrel distortion in this step).

	 3.	 Repeat the process for the right eye, to the right half of the screen.

We have already studied how to render a scene to a framebuffer texture, for 
example, when we studied shadows. We have just learned how to render to the left 
and right halves of the screen using glViewport(). Now we need to learn how to take 
a framebuffer texture and render it while distorting the image it contains.

Rendering (and texturing) a rectangular object should by now be a simple mat-
ter, using six vertices comprising two triangles. Applying a corresponding texture 
would then typically be done in the fragment shader using the texture() function, 
which expects parameters for the X and Y texture coordinates. Since our rectangle 
fills the entire viewport, an undistorted rendering would be achieved by simply 
scaling the texture coordinates to the viewport dimensions, such as

fragColor = texture(gl_FragCoord.x / (sizeX/2), gl_FragCoord.y / sizeY);

Instead, we need to modify the X and Y texture lookup values so that they 
access a different texel, specifically the one that would be at that location (X,Y) if 
the texture were barrel-distorted. The mathematical derivation of barrel distortion 
dates back more than 100 years, by Conrady [C19], further refined by Brown [B66]. 
A simplified model (from [W20]) commonly used in VR systems is as follows:

x x K r K ru d� � �� �/ 1 1
2

2
4

y y K r K ru d� � �� �/ 1 1
2

2
4
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where (xd, yd) is the original (distorted) texture coordinate location, (xu, yu) is the 
corresponding texture coordinate in an undistorted (corrected) version of the 
scene, r is the straight-line distance from (xd, yd) to the center of the image, and K1 
and K2 are tunable constants. Even in this simple model, the values for r, K1, and 
K2 require tuning depending on the viewing device, and sometimes even for the 
person doing the viewing. Commonly-used values for Google Cardboard are -0.55 
for K1, and 0.34 for K2. For r, we simply use the Pythagorean Theorem to compute 
a distance, and then scale that distance by trial-and-error to come up with a rea-
sonably effective result. From here on, we refer to this barrel distortion as lens 
distortion correction.

Program 17.3 shows the changes made to Program 17.2 to render each half 
screen with lens distortion correction, roughly tuned for Google Cardboard. Note 
that the existing shaders (unchanged) now render to framebuffer textures, and a 
new second set of shaders is added to do the final lens distortion correction of 
these framebuffer textures to their respective half screens. Additional discussion 
follows the code. The resulting output is shown in Figure 17.9.

Program 17.3 – Side-by-Side Rendering with Lens  
Distortion Correction
C++/OpenGL Application
//  only the changes to Program 17.2 are shown here
. . .
// the 4th VBO (vbo[3]) is the rectangular region for drawing the texture buffer to half of the screen
#define numVBOs 4

GLuint renderingProgram, distCorrectionProgram;
GLuint leftRightBuffer, leftRightTexture;

void setupVertices(void) {
	 . . .
	 //  rectangular region for drawing half of the screen (these vertices are placed in vbo[3])
	 float lensQuad[18] = {
		  -1.0, 1.0, 0.0,  -1.0, -1.0, 0.0,  1.0, 1.0, 0.0,
		   1.0, 1.0, 0.0,  -1.0, -1.0, 0.0,  1.0, -1.0, 0.0
	 };
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[3]);
	 glBufferData(GL_ARRAY_BUFFER, sizeof(lensQuad), &lensQuad[0], GL_STATIC_DRAW);
}

void setupLeftRightBuffer(GLFWwindow* window) {
	 GLuint bufferId[1];
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	 glGenBuffers(1, bufferId);
	 glfwGetFramebufferSize(window, &width, &height);

	 // Initialize Framebuffer for rendering a screen half
	 glGenFramebuffers(1, bufferId);
	 leftRightBuffer = bufferId[0];
	 glBindFramebuffer(GL_FRAMEBUFFER, leftRightBuffer);
	 glGenTextures(1, bufferId); 	 // this is for the color buffer
	 leftRightTexture = bufferId[0];
	 glBindTexture(GL_TEXTURE_2D, leftRightTexture);
	 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width / 2, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, 
� NULL);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
	 float blackColor[4] = { 0.0f, 0.0f, 0.0f, 1.0f };
	 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, *blackColor);
	 glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,  
� GL_TEXTURE_2D, leftRightTexture, 0);
	 glDrawBuffer(GL_COLOR_ATTACHMENT0);
	 glGenTextures(1, bufferId); 	 // this is for the depth buffer
	 glBindTexture(GL_TEXTURE_2D, bufferId[0]);
	 glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, width/2, height, 0,
		  GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	 glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 
	 GL_TEXTURE_2D, bufferId[0], 0);
}

void init(GLFWwindow* window) {
	 . . .
	 distCorrectionProgram = Utils::createShaderProgram("vertDistCorrShader.glsl", "fragDistCorrShader.glsl");
}

void copyFrameBufferToViewport(GLFWwindow* window, int leftRight) {
	 glUseProgram(distCorrectionProgram);

	 // the "leftRight" uniform is which side is being rendered, winSizeX and winSizeY are window dimensions
	 leftRightLoc = glGetUniformLocation(distCorrectionProgram, "leftRight");
	 sizeXLoc = glGetUniformLocation(distCorrectionProgram, "winSizeX");
	 sizeYLoc = glGetUniformLocation(distCorrectionProgram, "winSizeY");
	 glUniform1i(leftRightLoc, leftRight);
	 glUniform1f(sizeXLoc, (float)sizeX/2.0f);
	 glUniform1f(sizeYLoc, (float)sizeY);
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	 // vbo[3] contains the vertices for the rectangular region (two triangles)
	 glBindBuffer(GL_ARRAY_BUFFER, vbo[3]);
	 glVertexAttribPointer(0, 3, GL_FLOAT, false, 0, 0);
	 glEnableVertexAttribArray(0);

	 // the texture containing the rendered scene is sent to the shaders,
	 // which will apply lens distortion correction
	 glActiveTexture(GL_TEXTURE0);
	 glBindTexture(GL_TEXTURE_2D, leftRightTexture);

	 glEnable(GL_DEPTH_TEST);
	 glDepthFunc(GL_LEQUAL);
	 glDrawArrays(GL_TRIANGLES, 0, 6);
}

void clearDisplay() {
	 // this is for clearing the actual screen display buffer
	 glClearColor(0, 0, 0, 1);
	 glBindFramebuffer(GL_FRAMEBUFFER, 0);
	 glClear(GL_DEPTH_BUFFER_BIT);
	 glClear(GL_COLOR_BUFFER_BIT);
}

void clearBuffer() {
	 // this is for clearing the framebuffer texture where the scene is initially rendered
	 glClearColor(0.7f, 0.8f, 0.9f, 1.0f);
	 glBindFramebuffer(GL_FRAMEBUFFER, leftRightBuffer);
	 glClear(GL_DEPTH_BUFFER_BIT);
	 glClear(GL_COLOR_BUFFER_BIT);
}

int main(void) {
	 . . .
	 setupLeftRightBuffer(window);

	 while (!glfwWindowShouldClose(window)) {
		  clearDisplay();

	 	 // draw left viewport to framebuffer texture
		  clearBuffer();
		  glBindFramebuffer(GL_FRAMEBUFFER, leftRightBuffer);
		  glViewport(0, 0, sizeX/2, sizeY);
		  display(window, glfwGetTime(), -1);

		  // transfer left viewport framebuffer to the screen
		  glBindFramebuffer(GL_FRAMEBUFFER, 0);
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		  glViewport(0, 0, sizeX/2, sizeY);
		  copyFrameBufferToViewport(window, 0.0f);

		  // draw right viewport to framebuffer texture
		  clearBuffer();
		  glBindFramebuffer(GL_FRAMEBUFFER, leftRightBuffer);
		  glViewport(0, 0, sizeX/2, sizeY);
		  display(window, glfwGetTime(), 1);

		  // transfer right viewport framebuffer to the screen
		  glBindFramebuffer(GL_FRAMEBUFFER, 0);
		  glViewport(sizeX/2, 0, sizeX/2, sizeY);
		  copyFrameBufferToViewport(window, 1.0f);

		  glViewport(0, 0, sizeX, sizeY);
		  glfwSwapBuffers(window);
		  glfwPollEvents();
	 }
	 glfwDestroyWindow(window);
	 glfwTerminate();
	 exit(EXIT_SUCCESS);
}

Vertex Shader ("vertDistCorrShader.glsl")
//  these shaders are for the final rendering of the completed framebuffer texture
//  the vertex shader is just a simple pass-through to the fragment shader
#version 430
layout (location=0) in vec3 position;
uniform int leftRight;
uniform float winSizeX;
uniform float winSizeY;
layout (binding=0) uniform sampler2D lensTex;

void main(void)
{	 gl_Position = vec4(position, 1.0);
}

Fragment Shader ("fragDistCorrShader.glsl")
//  The fragment shader does all of the lens distortion correction computations
#version 430
out vec4 fragColor;
uniform int leftRight;	 // -1 for left, +1 for right
uniform float winSizeX;
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uniform float winSizeY;
layout (binding=0) uniform sampler2D lensTex;	 // this is the previously rendered framebuffer texture

void main(void)
{	 float K1 = -0.55;	// distortion parameters for Google Cardboard
	 float K2 = 0.34;

	 //  compute the location in the half window scaled to (-0.5..+0.5) with (0,0) center
	 float xd = (gl_FragCoord.x - winSizeX*leftRight) / winSizeX - 0.5;
	 float yd = gl_FragCoord.y / winSizeY - 0.5;

	 //  compute the distance to the center of the half window
	 float ru = sqrt(pow(xd,2.0) + pow(yd,2.0));

	 //  tune conversion from screen units to physical millimeters
	 float mmRatio = 1.3;  // ratio of ru/d, where d is the distance to the lens
	 float rn = ru * mmRatio;

	 //  compute the undistorted corresponding location
	 float distortionFactor = 1+ K1 * pow(rn,2.0f) + K2 * pow(rn,4.0f);
	 float xu = xd / distortionFactor;
	 float yu = yd / distortionFactor;

	 //  move the resulting point by (+0.5, +0.5) to convert to texture space
	 fragColor = texture(lensTex, vec2(xu+0.5, yu+0.5));
}

In Program 17.3, specifically the C++/OpenGL application, setup of the 
framebuffer texture (i.e., setting up leftRightBuffer and its associated texture named 
leftRightTexture) is identical to the water example from Program 15.3. There, the 
buffer was used to store a reflection (later, a second one was used to store a refrac-
tion). Here, it is used to store the entire scene, at the same dimensions as the 
one-half screen window viewport. A second rendering program (called distCor-
rectionProgram) is created for displaying this buffer to the screen, which happens in 
the function copyFrameBufferToViewport(), which is called once for the left eye, and 
then again for the right eye. Most of the remaining C++ code is unchanged, includ-
ing the display() function that renders the scene. The main() function is expanded to 
manage enabling which of the two framebuffers (the screen buffer, or the leftRight-
Buffer) is active.

The actual distortion correction happens in distCorrectionProgram’s fragment 
shader. The GLSL shader code implements (1) the computation of the distance 
from the location being rendered to the center of the half-screen viewport, (2) 
the lens distortion correction computations, and (3) the resulting texel lookup in 
leftRightTexture.
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Figure 17.9
Side-by-side rendering of Program 17.3 with lens distortion correction (best viewed through a stereo headset)

	 17.5	� A SIMPLE TESTING HARDWARE 
CONFIGURATION

There are many ways available today for viewing side-by-side scenes such as 
the one rendered by Program 17.3. While modern headsets can be pricey, a simple 
method that the authors have used for preparing the examples in this chapter is to 
utilize the following set of technologies:

•	 a reasonably modern cell phone (such as Android or iPhone) connected 
to a computer

•	 WiredXDisplay [WX20] (cell phone app), which duplicates the computer 
screen to the cell phone

•	 Google Cardboard [GC20] for viewing the cell phone display in split 
screen format

For readers who already own a smart phone, the total cost for the above solu-
tion is under $20. The phone can be connected to a computer using a USB cable. 
The WiredXDisplay application then transmits the contents of the computer screen 
to the cell phone, essentially turning the phone into a computer monitor. The phone 
is then placed inside the Google Cardboard headset, which assumes the left half of 
the display screen is for the left eye, and the right half is for the right eye. Figure 
17.10 shows this configuration being deployed for Program 17.3.
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Figure 17.10
Side-by-side output of Program 17.3 using Google Cardboard

Hardware for testing anaglyph examples, such as the one in Program 17.1, is 
considerably simpler. We use an inexpensive set of cardboard red/cyan glasses, 
which can be purchased online.

SUPPLEMENTAL NOTES

The stereoscopic techniques described in this chapter constitute only a very 
basic introduction. Professional systems for movie theaters and VR games and 
applications typically utilize more sophisticated models and are more carefully 
tuned for the hardware being used. We have also ignored important related top-
ics, such as retinal blur for depth of field rendering, which would be incorporated 
in a fully professional deployment. That said, it is fun to use the simple methods 
shown here to experience the various examples throughout the textbook with full 
3D depth perception.

In just a few cases, there are some stumbling blocks. Some of the examples in 
the textbook utilize user-defined framebuffers for various purposes or render to 
textures, such as for building shadows, generating water effects, or doing ray trac-
ing. In those cases, the C++ code would need to be further modified to manage the 
buffers. This is especially tricky in the water examples from Chapter 15, where the 
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reflection and refraction buffers are largely estimated and won’t lend themselves 
to accurate splitting between the two eyes without modification.

We chose the fog example for rendering because the fog further helps the ste-
reoscopic effect and because that example was not overly hampered by the color 
limitations of red/cyan anaglyph viewing. The colors of some of the other exam-
ples in the textbook will not fare as well when viewed in red/cyan anaglyph.

The reader no doubt has noticed that our side-by-side rendering was hori-
zontally squished. We didn’t correct for this to keep the code as simple as pos-
sible. A more complete solution would also correct the view frustums so that the 
aspect ratio isn’t so radically changed. One drawback of side-by-side viewing is 
the resulting loss of half of the screen real estate when rendering a scene.

Details on the vertex displacement method for correcting lens distortion, 
which has better performance than the simple fragment-shader-based method pre-
sented in this chapter, can be found elsewhere [K16].

Although we have presented basic approaches to stereoscopic rendering (and 
viewing) such as are applied for virtual reality systems, there is quite a large set of 
VR topics that we haven’t discussed at all. A full VR system not only displays in 
stereoscopic 3D, it also includes sensors that enable the user to move and interact 
more naturally, such as by turning one’s head or reaching with the hands. We have 
focused solely on the graphics.

This chapter also doesn’t cover how to render for polarized or shutter tech-
nologies (although they are mentioned briefly in the beginning of the chapter). 
Those require more specialized hardware and their solutions are beyond the scope 
of this introduction.

Exercises

	17.1 � Modify Program 17.1 to try a variety of different values for the IOD. What 
range of values do you think works the best for this scene? What happens if 
the IOD is set too small? What do you observe as the IOD increases, and then 
what happens when the IOD is set too large?

	17.2	 Convert Program 4.2, specifically the modified version with 100,000 cubes, 
to both anaglyph and side-by-side stereoscopy.
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	17.3	 Convert Program 12.5, the tessellated moon surface, to both anaglyph and 
side-by-side stereoscopic rendering. Animate the camera movement so that 
it skims along and close to the moon surface.
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■ ■ ■ ■ ■

As described in Chapter 1, there are a number of installation and setup steps that 
must be accomplished in order to use OpenGL and C++ on your machine. These 
steps vary depending on which platform you wish to use. The code samples in this 
book are designed to be run as-given on a PC (Windows); this Appendix provides 
setup instructions for the Windows platform. Libraries and tools change frequently, 
so these steps may become outdated. We maintain updated installation and setup 
instructions at: http://ecs.csus.edu/~gordonvs/textC2E.html.

	 A.1	� INSTALLING THE LIBRARIES AND 
DEVELOPMENT ENVIRONMENT

	A.1.1	 Installing the Development Environment
Since we implement several projects throughout the course of the book, and 

because there are so many libraries to coordinate in OpenGL, it will be useful to set 
up our C++ development environment in such a way as to minimize the number of 
configuration steps needed for each new project we create. Here, we will assume that 
Visual Studio 2019 [VS20] is being used; similar steps may be possible for other IDEs.

The first step is to download and install Visual Studio 2019 on your machine. 
Once this is done, our approach will be to install as many libraries as possible in a 
single shared location, and then create a Visual Studio custom template so that each 
new project we create will already have the necessary libraries and dependencies 
in place without having to be redefined. We describe creating such a template in 
Section A.2.1.
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	A.1.2	 Installing OpenGL / GLSL
It is not necessary to “install” OpenGL or GLSL, but it is necessary to ensure 

that your graphics card supports at least version 4.3 of OpenGL. If you do not 
know what version of OpenGL your machine supports, you can use one of the 
various free applications (such as GLView [GV20]) to find out.

	A.1.3	 Preparing GLFW
An overview of the window management library GLFW was given in 

Chapter 1. As indicated there, GLFW needs to be compiled for the machine on 
which it will run. (Note that although the GLFW website includes the option of 
downloading pre-compiled binaries, these frequently do not work adequately.) 
Compiling GLFW requires first downloading and installing CMAKE (avail-
able at https://cmake.org [CM20]). The steps for compiling GLFW are relatively 
straightforward:

	 1.	 Download the GLFW source code (www.glfw.org) [GF20].
	 2.	 Download and install CMAKE (https://cmake.org) [CM20].
	 3.	 Run CMAKE and enter the GLFW source location and the desired build 

destination folder.
	 4.	 Click “configure”—if some of the options highlight in red, click 

“configure” again.
	 5.	 Click “generate.”

CMAKE produces several files in the “build” folder specified previously. One 
of the files in that folder is named “GLFW.sln”. This is a Visual Studio project file. 
Open it (using Visual Studio, of course), and compile (build) GLFW as a 64-bit 
application.

The resulting build produces two items that we need:

•	 the glfw3.lib file produced by the previous compilation steps
•	 the “GLFW” folder in the original GLFW downloaded source code (it 

is found in the “include” folder, and it contains two header files that we 
will use)
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	A.1.4	 Preparing GLEW
An overview of the GLEW “extension wrangler” library was given in Chapter 1. 

Download the 64-bit binaries from glew.sourceforge.net [GE17]. The items in particu-
lar we will need to obtain are:

•	 glew32.lib (found in the “lib” folder) - yes the name includes “32”, but 
currently these are still the correct files for 64-bit installation

•	 glew32.dll (found in the “release” folder)
•	 the GL folder, which includes several header files (found in the “include” 

folder”)

	A.1.5	 Preparing GLM
An overview of the math library GLM was given in Chapter 1. Visit glm.g-

truc.net/0.9.9/index.html [GM20] and download the latest version that includes release 
notes. The download folder, after being unzipped, contains a folder named “glm”. 
That folder (and its contents) is the item that we will need to use.

	A.1.6	 Preparing SOIL2
An overview of the image loading library SOIL2 was given in Chapter 1. 

Installing SOIL2 [SO20] requires utilizing a tool called “premake” [PM20]. Although 
the process involves several steps, they are relatively straightforward:

	 1.	 Download and uncompress “premake.” The only file in it is “premake4.exe.”
	 2.	 Download SOIL2 (use the “downloads” link at the bottom of the left 

panel), and uncompress it.
	 3.	 Copy the “premake4.exe” file into the soil2 folder.
	 4.	 Open a command window, navigate to the soil2 folder, and enter:

		  premake --platform=x64 vs2012
		  It should display a number of files that are then created.
	 5.	 In the soil2 folder, open the “make” folder, then the “windows” folder. 

Double-click SOIL2.sln.
	 6.	 If prompted by VisualStudio to upgrade libraries, do it by clicking “ok.”
	 7.	 Switch from x86 to x64 using the dropdown box near the top, then in the 

panel on the right, right-click on “soil2-static-lib” and select “build.”
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	 8.	 Close VisualStudio and navigate back to the soil2 folder. You should no-
tice some new items.

	A.1.7	 Preparing Shared “lib” and “include” Folders
Choose a location where you would like to house the library files. It could 

be a folder anywhere you prefer; for example, you could create a folder “C:\
OpenGLtemplate”. Inside that folder, create subfolders named “lib” and “include”.

•	 In the “lib” folder, place glew32.lib and glfw3.lib.
•	 In the “include” folder, place the GL, GLFW, and glm folders described 

previously.
•	 Navigate back to the soil2 folder, and go into the “lib” folder inside it. 

Copy the “soil2-debug.lib” file into the “lib” folder (where glew32.lib 
and glfw3.lib are).

•	 Navigate back to the soil2 folder, then into “src”. Copy the “SOIL2” 
folder into the “include” folder (where GL, GLFW, and GLM are). This 
SOIL2 folder contains .c and .h files for soil2.

•	 You might find it handy to also place the “glew32.dll” file in this 
“OpenGLtemplate” folder as well, so that you’ll know where to find  
it—although that isn’t strictly necessary.

The folder structure should now look something like this:

Figure A.1
Suggested library folder structure.
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	 A.2	� DEVELOPING AND DEPLOYING OPENGL 
PROJECTS IN MS VISUAL STUDIO

	A.2.1	 Creating a Visual Studio Custom Project Template
Because we are using so many special-purpose libraries in our C++/OpenGL 

programs, creating a Visual Studio template will make it significantly easier to 
start new OpenGL projects. This section describes the steps for creating and using 
this template.

Start Visual Studio (we will assume the 2019 version). Create a new, empty 
C++ project. At the top center, under the menu bar, there are two pull-down menus 
next to each other:

•	 The one on the right allows you do specify “x86” or “x64”—choose “x64”.
•	 The one on the left allows you to specify whether compilation is to be 

done in “debug” mode or “release” mode. Several steps need to be done 
for BOTH modes. That is, they should be done in “debug” mode, and 
then repeated in “release” mode.

In “debug” mode (and then afterward in “release” mode), go into “project 
properties” and make the following changes:

•	 Under “VC++” (it may alternatively say “C/C++”), click on “General”, 
then under “Include Directories” add the “include” folder you created 
previously.

•	 Under “linker”, there are two changes to make:
•	 Click on “General”, then under “Additional Library Directories”, 

add the “lib” folder you created previously.
•	 Click on “Input”, then under “Additional Dependencies”, add the 

following four filenames:  glfw3.lib, glew32.lib, soil2-debug.lib, 
and opengl32.lib (this last one should already be available as part of 
the standard Windows SDK).

After making the previous changes to the project properties, for both the 
“debug” and “release” modes, you are ready to create the template. This is done by 
going into the “Project” menu and selecting “Export template”. Choose that this 
is a “project” template, and give the template a useful name, such as “OpenGL 
project”.
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Once the libraries are installed and the custom template is in place, creating a 
new OpenGL C++ project is straightforward:

	 1.	 Start Visual Studio, and click “Create a new project”.
	 2.	 Choose your OpenGL template on the upper left, then click “Next”.
	 3.	 Give your project a name, then click “Create”.
	 4.	 Switch from “x86” to “x64” using the dropdown box at the top.
	 5.	 Back in Windows, navigate to the folder that VS created that matches 

the name of your newly-created project. Inside there should be another 
subfolder of the same name.

	 6.	 Copy any files that comprise your application into the subfolder. This 
includes any .cpp source files, .h header files, .glsl shader files, texture 
image files, and .obj 3D model files that your application uses. It isn’t 
necessary to specify any header files that were already built into the 
template.

	 7.	 Also put the “glew32.dll” file into the same subfolder.
	 8.	 In the solution explorer on the right, right click on “Source Files” and 

choose Add►Existing Item to load your main.cpp file. Repeat the pro-
cess for other .cpp files.

	 9.	 Also in the solution explorer on the right, right click on “Header Files” 
and choose Add►Existing Item to load any header (.h) files in your 
application.

	 10.	 You are now ready to build and execute your program.
After developing, testing, and debugging your application, it can be deployed 

as a stand-alone executable by building the project in “Release” mode and then 
placing the following files in a single folder:

•	 the .exe file generated from building your project
•	 all shader files used by your application
•	 all texture images and model files used by your application
•	 glew32.dll
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■ ■ ■ ■ ■

As described in Chapter 1, there are a number of installation and setup steps that 
must be accomplished in order to use OpenGL and C++ on your machine. These 
steps vary depending on which platform you wish to use. This Appendix provides 
setup instructions for the Macintosh platform. Libraries and tools change frequently, 
so these steps may become outdated. We maintain updated installation and setup 
instructions at: http://ecs.csus.edu/~gordonvs/textC2E.html.

Apple support for OpenGL on the Macintosh has languished in the past few years. 
For example, modern Macs as of this writing still only support up to OpenGL version 
4.1. Still, it is possible to run the examples in this book with minor modifications. As for 
preparing the necessary libraries, all of the libraries described in Chapter 1 are cross-
platform and available for the Apple Macintosh. We first describe how to install these 
libraries, and then we cover the setup for an appropriate development environment.

In addition, since the code samples in this book are designed to be run (as-given) 
on a Windows platform with OpenGL 4.3, this Appendix provides details on convert-
ing the code samples so that they run correctly on the Macintosh.

	 B.1	� INSTALLING THE LIBRARIES AND 
DEVELOPMENT ENVIRONMENT 

	B.1.1	 Preparing and Installing the Libraries
An overview of the purpose and selection of each library was given in Chapter 1. 

We won’t repeat that information here; instead, we focus on how to install each 
library.
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We start by installing GLEW and GLFW. Probably the easiest way to install 
these libraries is by using the “Homebrew” tool. Homebrew is a package manager 
designed to make the installation of commonly needed utilities on the Mac as easy 
as possible. The steps for installing Homebrew are as follows:

	 1.	 Open the Safari browser, and visit the Homebrew website (https://brew.sh).
	 2.	 Follow the installation instructions on the homebrew page. Specifically, 

copy the line of code given in the center of the page, open a terminal win-
dow on the Mac, paste the copied command into it, and hit return. You 
may need to enter your Mac password.

	 3.	 Leave the terminal window open; we will use it again in the next steps.

Next, use the newly installed Homebrew utility to install GLEW and GLFW, 
as follows:

	 1.	 Still at the terminal prompt, enter the command:  brew install glfw3
	 2.	 Still at the terminal prompt, enter the command:  brew install glew
	 3.	 Note that two folders have been added to /usr/local/include, named GL 

and GLFW.

Next we install the math library GLM. Of the four libraries, this is the sim-
plest. Since GLM is a header-only library, simply: (a) download and uncompress 
the library as described earlier in section A.1.5, then (b) copy the resulting “glm” 
folder and its contents to /usr/local/include.

Installing SOIL2 is probably the trickiest of the four libraries to install. The 
steps we have used successfully are as follows:

	 1.	 Download the Mac versions of SOIL2 and premake (version 5).
	 2.	 Uncompress premake. The only file in it is a premake executable.
	 3.	 Copy the premake executable into the SOIL2 folder.
	 4.	 In a terminal window, navigate to the SOIL2 folder and enter:
		  ./premake5 gmake
	 5.	 Still in the SOIL2 folder, enter cd make/macosx to navigate into the make 

folder, then type:
		  make
	 6.	 SOIL2 should build successfully—the test files might not (it’s ok, they 

aren’t important to us). The build should produce a “src/SOIL2” folder 
that includes several .h files, and a “lib” folder that includes a library file 
named “libsoil2-debug.a”.
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	 7.	 Copy the SOIL2 folder that contains the .h files into /usr/local/include.
	 8.	 Place the “libsoil2-debug.a” file wherever you would like it to be perma-

nently located.

	B.1.2	 Preparing the Development Environment
As of this writing, the Mac version of Visual Studio 2019 (the develop-

ment environment used in the instructions for running the book’s programs on 
a Windows platform) doesn’t support C++. A related product is available called 
Visual Studio Code that does include C++, but we had better luck using a more 
widely used IDE for the Mac called Xcode. If your Mac doesn’t already include 
Xcode, installing it is a common and straightforward (albeit rather slow) operation 
[XC20]. You may be required to update your operating system in order to install the 
latest version of Xcode.

After installing Xcode, you’ll need to configure it to work with OpenGL and 
with the libraries we are using. Here are the steps we used to successfully set up 
Xcode for our C++/OpenGL applications:

	 1.	 Run Xcode, and have it create a project of type “macOS command line 
tool”. Set the language to C++.

	 2.	 A default main.cpp is created that contains a simple “hello world” pro-
gram. In the Xcode editor, overwrite that code with the desired main.cpp 
code from one of our C++/OpenGL applications.

	 3.	 Set up the header search path as follows:
	 a.	 Click on the project name (at the top of the leftmost panel).
	b.	 Choose the “Build Settings” tab at the top center of the main panel.
	 c.	 Scroll down to the “Search Paths” section.
	d.	 Under “Header Search Paths”, add the following path: /usr/local/include

	 4.	 Add the path to the folder containing your “libsoil2-debug.a” file to the 
library search path. This is also under “Build Settings”, near the header 
search path section used in the previous step. You may need to add this to 
both the “release” and “debug” categories.

	 5.	 Set up the binaries for the linking phase as follows:
	 a.	 Click on the project name (at the top of the leftmost panel, in blue), if 

necessary.
	 b.	 Choose the “Build Phases” tab at the top center of the main panel.
	 c.	 Click the little triangle next to “Link Binary with Libraries” to open 

that section.
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	 d.	 There should be a “+” next to where it says “drag to reorder frame-
works”. Click the “+”.

	 e.	 A search box should open. Search for “opengl”. “OpenGL Frame-
work” should appear. Select it and click “Add” (note: this OpenGL 
framework already exists in the Mac).

	 f.	 Click the “+” again, and this time search for “core”. “CoreFounda-
tion Framework” should appear. Select it and click “Add” (this li-
brary also already exists in the Mac).

	 g.	 Click the “+” again, and this time click the “Add Other” box in the 
lower left.

	 h.	 When the browser window opens, enter CMD-SHIFT-G. A go-to folder 
box should open; enter /usr/local and click “go”.

	 i.	 In the folder structure shown, navigate to “Cellar”, then “glew”, then 
to whatever version number displays, then “lib”. Some library files 
should appear with the “.dylib” extension.

	 j.	 Select the appropriate “.dylib” library file. It should be named some-
thing like: libGLEW.2.1.0.dylib (without an “mx” in it, and without a 
shortcut arrow). After selecting it, insert it by clicking “open”.

	 k.	 Repeat steps [g] through [j] for the appropriate glfw library. It will 
also be in /usr/local, in Cellar, and then in “glfw”, its version number, 
and “lib”. It should be named something like libglfw.3.3.dylib (without a 
shortcut arrow). Insert it by clicking “open”.

	 l.	 Repeat the process for the SOIL2 library file (the one we created back 
in section B.1.1). That is, click the “+”, click “Add Other”, then navi-
gate to the folder where you placed the libsoil2-debug.a file. Select that 
file, and insert it by clicking “open”.

	 6.	 Set the working directory, as follows: In the “Product” menu, under 
“Scheme” - “Edit Scheme”, then under “options”, check the box labeled 
“use custom directory”. In the adjoining field, copy the path to the project 
source code folder (the one containing the “main.cpp” file).

	 7.	 Copy your supporting files (texture images, shader files, and other sup-
port files such as the Utils.cpp and Utils.h files that we generate over the 
course of the book) into this same working directory where the “main.cpp”  
file is located.

	 8.	 In the leftmost panel, add any additional “.cpp” and “.h” files that are part 
of your C++/OpenGL application (such as Utils.cpp, Utils.h, Sphere.cpp,  
etc.) to the project, so that they appear in the left panel alongside  
“main.cpp”.
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	 B.2	� MODIFYING THE C++/OPENGL/GLSL 
APPLICATION CODE FOR THE MAC

For the most part, the C++ programs themselves, as described in this textbook, 
will run as-is. There are, however, a small number of changes that must be made. 
Most of the changes are to the “main()” function inside of “main.cpp”; you can 
build it once and duplicate that modified version of main() into each of the other 
projects. The remaining changes are small, and can be done as needed.

Some of these changes won’t make much sense until one has studied the cor-
responding programming sections in the text. The reader may choose to skip parts 
of this section and return to it later as he/she learns the material in question. While 
acknowledging the possible risk of introducing confusion, we have decided to place 
all of the code changes for the Macintosh here, so that they are assembled in one place.

	B.2.1	 Modifying the C++ Code
Let’s start with the changes that must be made to the “main.cpp” file:

•	 Xcode sometimes generates a huge number of “documentation” warning 
messages. These can make it inconvenient to find more substantive error 
messages. There are several ways to stop these messages; one of the 
simplest is the add the following two lines to the top of “main.cpp”:

	 #pragma clang diagnostic push 
#pragma clang diagnostic ignored "-Wdocumentation"

•	 Homebrew installs GLEW as a static library on the Mac, so you’ll need 
to add:

	 #define GLEW_STATIC
	 at the top of your program, immediately above the #include <GL/glew.h> 

command.
•	 In the glfwWindowHint commands, set the “major” context version to 4, 

and the “minor” to 1.
	 You will need to add two additional glfwWindowHint commands 

immediately after the two that are already there. They are:
	 glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); 

glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
	 These lines are necessary because many Macs default to much earlier 

versions of OpenGL. They force the Mac to use the latest version of 
OpenGL available on the hardware.
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•	 Some Macs, such as those with a Retina display, are slightly trickier 
when it comes to setting up the GLFW rendering window resolution. 
After creating the window with glfwCreateWindow(), you will need to 
retrieve the actual screen dimensions from the frame buffer, as follows:

	 int actualScreenWidth, actualScreenHeight; 
glfwGetFramebufferSize(window, &actualScreenWidth, &actualScreenHeight);

	 Then, after the glfwMakeContextCurrent(window) command, add the 
following line:

	 glViewport(0,0,actualScreenWidth,actualScreenHeight);
	 This will insure that what is drawn to the framebuffer matches what 

appears in the GLFW window.
•	 Finally, immediately before initializing GLEW with glewInit(), add the 

following line:
	 glewExperimental = GL_TRUE;

	B.2.2	 Modifying the GLSL Code
Some changes will need to be made at various locations in our GLSL shader 

code (and some of the associated C++/OpenGL code) because of the slightly ear-
lier version of OpenGL (specifically, 4.1) present in Macs:

•	 The specified version number in the shaders must be changed. Presuming 
that your Mac supports version 4.1, at the top of each shader locate the 
line that says:

	 #version 430
	 this must be changed to:
	 #version 410
•	 Version 4.1 doesn’t support layout binding qualifiers for texture sampler 

variables. This affects material starting from Chapter 5. You’ll need 
to remove the layout binding qualifiers, and replace them with another 
command that accomplishes the same thing. Specifically, look for lines 
in the shaders that have the following format:

	 layout (binding=0) uniform sampler2D samp; 
	 The texture unit number specified in the binding clause might be 

different (it is “0” here), and the name of the sampler variable might 
be different (it is “samp” here). In any case, you’ll need to remove the 
layout clause, and simplify the command so that it just says:

	 uniform sampler2D samp; 
	 Then, you’ll need to add the following command to the C++ program for 

each texture enabled:
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	 glUniformli(glGetUniformLocation(renderingProgram, “samp”), 0);
	 immediately after the glBindTexture() command in the C++ display() 

function, where “samp” is the name of the uniform sampler variable, 
and the “0” in the previous example is the texture unit specified in the 
binding command that was removed earlier.

	B.2.3	 Additional Notes

•	 Your Macintosh must support version 4.1 of OpenGL to be able to run 
the programs in this book.  If you do not know what version of OpenGL 
your machine supports, a list is available on the Apple website [AP20].

•	 The ray tracing programs shown in Chapter 16 wonʼt run on the 
Macintosh, because they utilize compute shaders, which werenʼt 
introduced until version 4.3 of OpenGL.

•	 On some Macs that utilize a Retina Display, the pixel count can be 
inconsistent. For example, in the code described in Section 2.1.6 (with result 
shown in Figure 2.13), gl_FragCoord.x returns a value twice as big as would 
be expected based on the window dimensions specified in main(). In that 
example, change the test value 295 to 590, to produce the desired result.
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Appendix C
Using the Nsight Graphics 

Debugger
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■ ■ ■ ■ ■

Debugging GLSL shader code is notoriously difficult. Unlike programming in 
typical languages such as C++ or Java, it is often unclear exactly where a shader pro-
gram failed. Often, a shader error manifests as a blank screen, offering no clues as to 
the nature of the error. Even more frustrating is that there is no way to print out the 
values of shader variables during run time, as one would commonly do when track-
ing down an elusive bug.

We listed some techniques for detecting OpenGL and GLSL errors in Section 
2.2. Despite the help that these techniques provide, the lack of a simple ability to 
display shader variables is a serious handicap.

For this reason, graphics card manufacturers have sometimes provided capabili-
ties in hardware for extracting information from shaders at run time and have built 
tools for accessing the information in the form of a graphics debugger. Each manu-
facturer’s debugging tools work only in the presence of that manufacturer’s graphics 
card. NVIDIA’s graphics debugger is part of a larger suite of tools called Nsight, and 
AMD has a similar suite of tools called CodeXL. This appendix describes how to get 
started using Nsight.

	 C.1	 ABOUT NVIDIA NSIGHT
Nsight is an NVIDIA suite of tools that includes a graphics debugger which 

makes it possible to look inside the stages of the OpenGL graphics pipeline, includ-
ing shaders, while a program is running. It isn’t necessary to change or add any code. 

CGP_C++_CH20-AppC_2E_2pp.indd   497 11/2/2020   12:26:41 PM



498  ■  Computer  Graphics  Programming in  OpenGL with C++,  2/E

Simply run an existing program with Nsight enabled. Nsight allows examining 
shaders at runtime, such as seeing the current contents of a shader’s uniform vari-
ables. Some versions even allow for changing the shader code at runtime.

There are versions of Nsight for Windows and for Linux/MacOS that can inter-
act with Microsoft’s Visual Studio (VS) and the Eclipse IDE. We restrict our dis-
cussion to Windows and Visual Studio. (In our “sister” book Computer Graphics 
Programming in OpenGL with Java, we describe using Nsight with Java-based 
programs.)

Nsight works only with compatible NVIDIA graphics cards; it won’t work 
with Intel or AMD graphics cards. A complete list of supported cards is available 
on the NVIDIA website [NS20].

Nsight is changing quickly, and the description in our previous (first) edition 
of this textbook is already outdated. The reader should consider this brief intro-
duction just a starting point, as there are likely to be many more exciting changes 
and developments in Nsight in the near future. 

	 C.2	 SETTING UP NSIGHT
There are various ways of setting up Nsight and incorporating it into Visual 

Studio. Depending on the version that you install, an Nsight menu will either be 
added to the topmost VS menu or as a sub-menu to the “Extensions” menu. We 
installed Nsight as follows:

	 1.	 Install NVIDIA Nsight Graphics, available at https://developer.nvidia.com/
nsight-graphics. We installed version 2020.4.

	 2.	 In Visual Studio, use Extensions ►Manage Extensions to search for and 
install Nsight Integration. The “Nsight” menu should appear, either in 
the top menu bar or as a submenu under Extensions.

	 C.3	� RUNNING A C++/OPENGL APPLICATION  
IN NSIGHT

	 1.	 Load the program that you wish to run, if you haven’t done so already. In 
the “Nsight” menu, run your program by choosing “Frame Debugger” or 
“Start Graphics Debugging” (depending on your version and installation), 
as shown here:
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	 2.	 A window may pop up asking if you want to “connect without security?” 
If so, then click on “Connect unsecurely.”  A window may also appear 
showing the connection to Nsight, and asking you to confirm if you wish 
to launch the frame debugger. If so, then click on “Launch Frame Debug-
ger,” as shown here:

	 3.	 Your C++/OpenGL graphics program should then execute. Depending 
on your installation, various windows may appear alongside your running 
program. Nsight may also superimpose some information over your run-
ning program, as shown here:
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	 4.	 Once your program is running, interact with it in whatever area you wish to 
examine. At that point, you will need to pause the execution. In some instal-
lations, this is done from the Nsight menu by selecting “Pause and Capture 
Frame,” while in other versions, it is done from the run window itself by 
pressing CTRL-Z, then clicking on the “Pause for Live Analysis” button.
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	 5.	 The Frame debugger screen should appear, along with a HUD toolbar and 
a horizontal selection tool called a “scrubber.” Your program will likely 
freeze at this point. In the center of the debugger screen is a left bar with 
buttons for each shader stage. For example, you can highlight “VS” for 
“Vertex Shader,” and in the larger center box to its right, you can scroll 
down and look at the contents of the uniform variables (presuming you 
have “API inspector” selected above it). In the following figure, the small 
box to the right of “proj_matrix” has been opened, revealing the contents 
of the 4x4 projection matrix.

	 6.	 Another interesting window that appears is one that looks similar to your 
running program. This window has a timeline along the bottom, which 
allows you to click and see the sequence of items drawn on the frame. 
Here is an example. Note the cursor has been clicked on the left area of 
the timeline, and it shows those items that have been drawn up to that 
point.
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Consult Nsight documentation for details on how to get the most out of the 
Nsight tool.

Reference
[NS20]	� Nsight Visual Studio Edition Supported GPUs (Full List) 

https://developer.nvidia.com/nsight-visual-studio-edition-supported-
gpus-full-list, accessed July 2020.
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A
Additive color model, 450
ADS lighting model

computations
ambient contribution, 160, 162, 

166–167
diffuse contribution, 160, 

167–168
specular contribution, 160, 

168–169, 177, 183
implementing

faceted shading, 170, 184
smooth shading. see Smooth 

Shading
Aliasing, 114–116, 125, 251
Alpha channel, 164, 314
Ambient reflection, 160
AMD

CodeXL, 497
TressFX, 308

Anaglyph stereoscopy, 462, 463, 
465–467, 479

Animation, 11, 28–30, 33, 73, 77, 95, 
146, 217, 238, 308, 376–378

Anisotropic filtering (AF), 119–120, 
125, 151, 251
normal mapping, use in, 251, 252

Appel, Arthur, 384
Application Programming Interfaces 

(APIs), 2, 3, 7, 111, 498
Aspect ratio, 52, 69, 108, 114
Assimp, 5
Asymmetric frustum, 464, 465
Attenuation factors, 162, 163

B
Back-face culling. see Culling
Barrel distortion, 469–477
Bernstein, Sergei, 261
Bézier curve, 138, 259–266, 268, 275
Bézier, Pierre, 259
Bézier surfaces

cubic, 266–268, 278
quadratic, 264–266
tessellation, 277–284

Bilinear filtering, 118
Bitangent vectors, 141, 245, 246
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Blender, 64, 108, 145–147, 150, 156, 
168, 222

Blending. see Transparency
Blending function, 261, 264–266, 

268, 283
Blinn, James, 180, 242
Blinn-Phong shading, 181–182, 

197, 255
Bronze, 165, 171, 201, 204
Bump mapping

perturbed normal vectors for, 242
procedural bump mapping, 

242, 243

C
C++

installation and configuration, 2
languages and libraries, 489, 497

Camera, 48–56, 58
Camera space. see Eye space
Clipping plane, 52, 53, 69, 93,  

320–322
Clouds, 219, 328, 333, 342–346, 349
CMY (cyan/magenta/yellow),  

451–456
CodeXL, 497
Color buffer, 10–12, 22, 30, 31, 77, 

191, 466
Color models, 449–456
Compositing. see Transparency
Computer aided design, 54, 294
Compute shader, 385–394
Concatenation, 39, 50, 51, 56, 74, 77
CPW, 3
Cross product, 44–47, 55, 141, 245, 

246, 289, 304
Crow, Frank, 191
Cube map

camera placed inside, 220

six-faced skybox texture, 220
texture coordinates, 221
using OpenGL, 224, 227–231

CUDA, 385
Culling

back-face culling, 98–100, 318
level of detail (LOD), in, 294
winding order, 99, 100, 302

D
de Casteljau, Paul, 259, 262, 264
de Casteljau’s algorithm, 259, 

262, 263
Debugging

error-detecting modules
checkOpenGLError(), 23, 24, 68
printProgramLog, 23, 24, 68
printShaderLog, 23, 24, 68

Nsight, with, 26, 497–502
Depth buffer. see Z-buffer
Depth-fighting. see Z-fighting
DevIL, 5
Diffuse reflection, 160
Digital Content Creation (DCC), 145, 

146, 155
Directional light, 161, 162
DirectX, 8, 308
discard (GLSL command), 347–349
Dissolve effect, 347–349
Distant light. see Directional light
Dot product, 44–46, 168, 177, 180

E
Eigen, 4
Emissiveness, 164
Enhancing surface detail, 241–257
Environment mapping

overview, 232
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reflection vector, 231, 232, 235, 
236

shaders, 232, 235, 236
texture cube maps, 231, 232, 

235, 237
Erroneous self-shadowing. see 

Shadow acne
Error-detecting modules

checkOpenGLError(), 23, 24, 68
printProgramLog, 23, 24, 68
printShaderLog, 23, 24, 68

Euler angles, 42, 43, 49
Euler’s Theorem, 42
Eye space, 48–51, 313

F
Faceted shading, 170
Far clipping plane, 52, 53, 69, 93, 465
Field of view, 52, 69, 469
Flat shading. see Faceted shading
Fog, 311–314, 349, 374–376,  

466–469, 471, 479
Fragment shader, 12–18, 20–22, 26, 

31, 32
Frame, 28–30
Frame buffer, 3, 195, 471–476
Frame rate, 28, 73
FreeImage, 5
Fresnel effect, 372–376
Frustum, 52, 67, 68, 93, 312, 320, 

464, 465
Full-scene anti-aliasing (FSAA), 125

G
GameWorks (NVIDIA), 308
Geometry shaders

adding primitives, 298, 304–307
altering primitives, 298–303

changing primitive types, 298, 
307–308

deleting primitives, 298, 303–304
OpenGL, per-primitive processing 

in, 297–298
GL3W, 4
GLAD, 4
Glee, 4
GLEW, 4, 9, 11, 483, 484, 490, 492

installing, 4, 483, 484, 490, 492
GLFW, 3, 9, 11, 12, 97, 482, 484, 

490, 492
installing, 482, 484, 490, 492

glfwWindow, 9
GLI, 5
GLLoader, 4
GLM, 4, 5, 9, 36–39, 41, 42, 44, 45, 

53, 56, 65, 69, 73, 77, 79, 96, 134, 
151, 483, 484, 490
installing, 5

Global ambient light, 161, 162
GLOW, 3
glRAW, 5
GLSL

error-detecting modules
checkOpenGLError(), 23, 24, 68
printProgramLog, 23, 24, 68
printShaderLog, 23, 24, 68

GLSL shader code, files, 8, 9, 26, 
493–495

matrix transforms, functions for, 
56–57

shader languages, 1, 8
GLUI, 3
GLUT, 3, 138
GLView, 3, 482
GNU Image Manipulation Program 

(GIMP), 126, 244, 247, 289
Gold, 160, 166, 182, 183
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Google Cardboard, 470–472, 477, 478
Gouraud, Henri, 170, 186
Gouraud shading, 170–180, 186
Graphics card (GPU), 1, 3, 7, 26, 79, 

103, 105, 108, 111, 12, 125, 170, 
191, 271, 320, 482, 497, 498

Graphics pipeline. see OpenGL 
pipeline

Graphics programming
installation and configuration

GLEW, 4, 483, 490
GLFW, 3, 482, 490
GLM, 3, 482, 490
OpenGL/GLSL, 482, 492
SOIL2, 5, 483, 490

languages and libraries
GLEW, 4, 9, 11, 483, 484, 

490, 492
GLFW, 3, 9, 11, 12, 97, 482, 

484, 490, 492
GLM, 9, 36, 37, 53, 77, 96, 

483, 490
OpenGL/GLSL, 2, 3, 482, 492
SOIL2, 224, 228, 483, 490

graphicslib3D, 44

H
Hair

GameWorks (NVIDIA), 308
geometry shader, in, 308
TressFX, 308

Hard shadows, 208, 209
Height mapping

defining, 252
interpretation, 253
terrain, 252, 254, 255
vertex manipulation, 252, 253
vertex-shader-based, 256

Hidden surface removal algorithm 
(HSR), 192

Hierarchical model, 85
Homebrew (package manager), 490
Homogeneous notation, 36, 38, 40
HSR. see Hidden surface removal 

algorithm

I
Identity matrix, 37, 39–41, 73
Image load/store, 387
Immediate mode (fixed function 

pipeline), 3, 86
Indexing, 132, 137–145, 150
Index of refraction (IOR), 428, 429
Instancing, 79–82, 95, 287, 289, 291
Interocular distance (IOD), 464, 

466, 468

J
Jade, 164, 337
Java, 1, 5, 7, 33, 44, 96, 497, 498
JOGL, 33
JOML, 96

L
Layout qualifier, 63, 64, 74, 298, 

300, 301
Level of detail (LOD), 252, 256, 

291–294
Lens distortion, 469–472
Libraries

GLEW, 4, 9, 11, 483, 484, 490, 492
GLFW, 3, 9, 11, 12, 97, 482, 484, 

490, 492
GLM, 4, 5, 9, 36–39, 41, 42, 44, 

45, 53, 56, 65, 69, 73, 77, 79, 96, 
134, 151, 483, 490
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SOIL2, 5, 9, 105, 124, 224, 228, 
236, 326, 483, 490

Lighting
ADS lighting computations

ambient contribution, 160, 162, 
166

diffuse contribution, 160, 167, 
168

specular contribution, 160, 168, 
169, 177, 183

ADS model, 160, 183, 189
combining lighting and textures, 

183–185
directional/distant light, 161–164, 

216
global ambient, 161–163
implementing ADS lighting

faceted shading, 170, 184
smooth shading, 170, 178, 186

materials, 164–166
positional, 160–164, 171–177, 179, 

199, 205, 216, 291
for ray tracing, 406–408
reflection model, 160
shading models, 160
shadows, 190
spotlights, 161–164
types of, 161

Linear filtering, 118, 119
Local space. see Model space
LOD. see Level of detail
Logistic function, 343–344
Look-at matrix, 5, 40, 54–56, 194, 205
Luxo Jr., 163
LWJGL, 33

M
Macintosh, 2–4, 6, 489–495

Xcode, 2, 491–495

Managing 3D graphics data
back-face culling, 98–100
buffers, types of, 62
combating Z-fighting artifacts, 

92–93
instancing, 79–82
matrix stack

hierarchical models, 85
planetary system, 85, 87
stack class (C++ STL), use of, 86
view matrices, 87

model matrix, 67, 68, 76–78, 80, 
82, 87, 91

model-view matrix, 50, 65, 67–68, 
82, 85–87

perspective matrix, 67–69, 73, 93, 
97–98, 100

primitives
line, 94–95
patch, 95
point, 95
triangle, 93–94
triangle fan, 94
triangle strip, 94

rendering multiple different models, 
82–85

rendering multiple objects, 78–82
3D cube

3D cube program, 69
display() function, 73, 74, 77
fragment shader, 72, 74–76
frame rate, 73
rotate() function, 77
translate() function, 73, 77
vertex positions, 72

uniform variables, 65
vertex attributes

interpolation of, 66–67
vertex shader, 62, 63, 66, 76

view matrix, 65, 67, 68, 82, 85, 87
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Marble, 322, 328, 333–337, 349
Marble noise maps, 334
Materials, 164–169, 182–184,  

333–341
Mathematical foundations

building matrix transforms, GLSL 
functions for, 56–57

eye space, 48–51
local and world space, 47–48
look-at matrix, 54–56
matrices

addition, 38
identity matrix, 37
inverse, 39
multiplication, 38, 39
transformation, 39–43
transpose, 37

points, 36
projection matrix

orthographic projection, 53–54
perspective projection, 51–53

synthetic camera, 48–51
3D coordinate systems, 36
vectors

cross product, 46–47
dot product, 45–46

Matrices
addition, 38
identity matrix, 37
inverse, 39
look-at matrix, 54–56
multiplication, 38, 39, 51, 57
projection matrix

orthographic projection, 53–54
perspective projection, 51–53

transformation
rotation, 42–43
scale, 41
translation, 40–41

transpose, 37

Matrix multiplication, 38, 39, 51,  
77

Matrix stack
hierarchical models, 85
planetary system, 85, 87
stack class (C++ STL), use of, 86
view matrices, 87

Maya, 64, 108, 145, 156, 168
Mipmapping

aliasing artifacts, 114, 125, 251
anisotropic filtering (AF), 119–120
minification, 117, 119
OpenGL support for, 119
trilinear filtering, 118, 119

mix() function, 283, 313, 374
Modeling. see 3D models
Model matrix, 47, 50, 67, 68, 76–78, 

80, 82, 87, 91, 112, 194
Model space, 47, 48, 51, 197
Model-view matrix, 50, 65, 67–68, 82, 

85–87

N
NASA, 151, 184, 247
Near clipping plane. see Projection 

plane
Newell, Martin, 138
Noise

clouds, 342–346
cube textured with, 329–334
marble, 333–337
noise maps, 328
Perlin, Ken, 328
smoothed noise map, 330–332
special effects, 347–349
3D noise data, 329
water, 369–371
wood, 337–341
zooming factor, 329–331
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Normal mapping
anisotropic filtering, 251, 252
Blinn-Phong lighting, 245
fragment shader, 246–248
image file, 244, 245
mipmapping, 251
moon surface, 247, 249, 250
object normal, 245
tangent and bitangent vectors, 245
TBN matrix, 246, 247
texture units, application of, 244
water, 369–371

Normal vector, 46, 131, 132, 137–139, 
141, 148–151, 167, 168, 170, 174, 
177, 178, 184, 196, 231, 235, 242, 
244–246, 289, 294, 299, 304, 318, 
321, 369
estimating, 370–373, 377

Nsight, 26, 497–502
NVIDIA

GameWorks, 308
Nsight, 26, 497–502
RTX, 384

O
OBJ. see Wavefront OBJ
Oculus Quest, 462
Opacity, 10, 16, 164, 314, 317
OpenCL, 385
OpenGL

history, 2
immediate mode (fixed function 

pipeline), 3, 86
shader programming, 3
versions, 2–3

OpenGL Architecture Review Board 
(ARB), 3

OpenGL camera, 49, 67, 98, 99, 195
OpenGL context, 11

OpenGL extension, 120
OpenGL pipeline

C++/OpenGL application
color buffer, 11, 12
glfwWindow, 9

error-detecting modules, 31, 32
fragment shader, 20–21
geometry shader, 18–19
hardware side, 7
overview of, 9
pixel operations, 21–22
rasterization, 19–20
shader stages, 8
software side, 7
tessellation, 268
vertex and fragment shaders

glUseProgram(), 15
primitives, 12
RGB color, 16

OpenGL Shading Language. see 
GLSL

Orthographic projection, 53–54, 216

P
Parallel computing, 385–387, 389–

392
Parametric surfaces

cubic Bézier curve
analytic definition for, 261
de Casteljau’s algorithm, 262, 

263
recursive subdivision algorithm, 

262, 264
cubic Bézier surface, 266–268
quadratic Bézier curve, 259–261
quadratic Bézier surface, 264–266

Patch, 93, 95, 266, 275, 276, 279, 283, 
284, 287, 291, 292, 294

PCF. see Percentage Closer Filtering

CGP_C++_CH21_Index_2E.indd   509 11/28/2020   10:05:34 AM



510  ■  Index

Pearl, 164
Percentage Closer Filtering (PCF), 

209–217
Perlin, Ken, 328, 332
Perlin Noise. see Noise
Perspective correction, 123
Perspective distortion, 122–123
Perspective matrix, 52, 53, 67–69, 73, 

93, 97–98, 100, 194, 292, 464
Perspective projection, 51–54, 122, 

216, 464
Perspective transform, 52, 53, 93,  

464
Peter Panning, 207
Pewter, 164
Phong, Bui Tuong, 178, 186
Phong shading

Blinn-Phong shading, 181–182, 
197, 255

external models with, 182
implementing Phong shading, 178
Stanford dragon, 182

Photoshop, 222, 247
Pincushion distortion, 469, 470
Pipeline. see OpenGL pipeline
Pixar, 163
Point, 12–17, 21, 33, 36, 38–41, 95
Popping, 87, 294
Positional light, 160, 162–164, 

171–177, 179, 199, 205, 216, 291
Primitive(s), 12, 13, 15, 16, 18, 19, 21, 

66, 82, 93–95, 119, 170, 272, 275, 
297–308

Primitive assembly, 18
Procedural bump mapping, 242, 243
Procedural texture, 327, 353–355, 

420–423
Projection matrices, 464

orthographic projection, 53–54
perspective projection, 51–53

Projection plane, 48, 52–54, 464–465
Projective shadows, 190–191
Projective texture mapping, 365

Q
Quaternion, 4, 43, 58

R
Rasterization, 16, 19–20, 27, 66, 

123, 166, 171, 177, 178, 255, 283, 
292, 297

Ray-box intersection, 404, 405,  
410–412

Ray casting, 383, 384, 394–423
Ray-plane intersection, 420–423
Ray-sphere intersection, 403, 404
Ray tracing, 383, 384, 424–456
Reflection, 358–367, 424–427, 433
Reflection mapping. see Environment 

mapping
Reflection ray, 424–427, 446–448
Refraction, 358–367, 428–431, 433, 

444
Refraction ray, 428–431, 433
RGB (red/green/blue), 449–456
Room box, 416–420

S
samplerCube, 228, 232
sampler2D, 11, 193, 196, 198, 216, 494
sampler3D, 327
Sampler variable, 104, 108, 111, 115, 

125, 193, 196, 247, 494, 495
Scale matrix, 41, 86
Secondary ray, 424
Self-shadowing. see Shadow acne 
Shader programming, 1, 3, 160
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Shader storage buffer object (SSBO), 
387–389

Shading models, 160
Shadow(s)

importance of, 189–190
Percentage Closer Filtering (PCF), 

209–217
projective shadows, 190–191
ray tracing and, 408–410
shadow mapping

artifacts, 205–208
framebuffer, custom, 195
HSR algorithm, and, 192
C++/OpenGL implementation, 

196, 198, 200–205
light position, drawing objects 

from, 193–194
sampler2Dshadow, 193, 196, 198
shadow buffer, 192, 193,  

207, 208
shadow texture, 193, 194, 

196–198
shadowMVP matrix, 194, 195

shadow volumes, 191, 192
soft shadows

Percentage Closer Filtering 
(PCF), 209–217

real world, 208–209
Shadow acne, 205–207
Shadow buffering, 193
Shadow feeler ray, 408–409
Shadow mapping artifacts

jagged shadow edges, 208
Peter Panning, 207
shadow acne, 205–207
shadow bars, 207

Shadow texture, 193–198, 205, 207, 
209, 215, 216

Shadow volumes, 191, 192
Shininess, 160, 164, 169, 231, 338

Side-by-side stereoscopy, 468–477
Silver, 183
Skybox

concept, 219
implementing

texture coordinates, 224
texture images, 223, 226, 237
using OpenGL cube maps, 

227–231
ray tracing and, 416–420
texture cube map, 220–222, 227, 

228
Skydome

advantages and disadvantages, 223, 
224

using Sphere, 223, 342
Smooth Shading

Blinn-Phong shading, 181–182, 
197, 255

Gouraud shading, 170–177
Phong shading, 178–182

Soft Shadows
Percentage Closer Filtering (PCF), 

209–217
real world, 208–209

SOIL. see SOIL2
SOIL2, 5, 9, 105, 124, 224, 228, 236, 

326, 483–484, 490–491
installing, 483–484, 490–491

Specular highlight, 164, 168, 169, 
177, 183, 184, 186, 199, 231, 236, 
249, 291, 357

Specular reflection, 160, 166
Spotlights, 161–164
Stanford dragon, 182
Starfield, 223
Stencil buffer, 191, 237
Stereoscopy, 463–478
Studio 522 dolphin, 182, 184
Subtractive color model, 449
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Surface acne, 427
Synthetic camera, 48–51, 229, 238

T
Tangent vector, 139, 141, 245, 246
Teapot, Utah, 138
Terragen, 222, 223, 237, 238
Terrain, 17, 93, 125, 223, 241, 252, 

254, 255, 284–291, 294, 313, 
328, 349

Tessellation
Bézier surfaces, for

C++/OpenGL application, 
288–289

control shader (TCS), 278–281, 
283

evaluation shader (TES), 277–
279, 281–282

overview of, 278
vertex shader, 278–280

Level of Detail (LOD), controlling, 
291–294

OpenGL
inner and outer levels, 

specifying, 283, 287
patch, 275, 276
pipeline stages, 271
triangle mesh output, 275

terrain/height maps, for
C++/OpenGL application, 286, 

288
control shader (TCS), 285, 288, 

290
evaluation shader (TES), 285, 

289, 290, 298
Phong shading, with, 290
vertex shader, 284, 285, 287, 

288, 290

Tessellation control shader (TCS), 95, 
271, 272, 276, 278–279, 283, 290

Tessellation evaluation shader (TES), 
271, 272, 277–279, 290, 298

Tessellation levels, 276, 278, 279, 
283, 287, 292–294

Tessellation primitive generator 
(TPG), 272

Texels, 106, 107, 111, 115, 117, 118, 
121, 131, 183, 210–213, 228, 231, 
232, 289, 323, 330–332, 471, 476

Texture coordinates
constructing, 109–110
cube model, 107
curved geometric shapes, in, 108
interpolation by rasterizer, 246
ray tracing and, 413–416
3D model, 324, 327, 335

Texture cube map. see Cube map
Texture image, 5, 100, 104–108, 112, 

114–117, 120–122, 124, 125, 131, 
139, 151, 183, 184, 223, 226, 228, 
231, 237, 249, 251, 252, 280, 284, 
286, 289, 290, 486, 492

Texture mapping
anisotropic filtering (AF), 119–120, 

125
C++ functions, using, 124
creating texture object, 108–109
mipmapping

aliasing artifacts, 114, 125, 251
anisotropic filtering (AF), 

119–120
minification, 117, 119
OpenGL support for, 119
trilinear filtering, 118, 119

OpenGL texture object, 105–107
perspective distortion, 122–123
procedural texture, 327, 353–355, 

420–423
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pyramid model, 108, 109
sampler variables, 111
SOIL2, using, 105
texture coordinates

constructing, 109–110
cube model, 107
curved geometric shapes, in, 108
interpolation by rasterizer, 246
ray tracing and, 413–416
3D model, 324, 327, 335

texture units, 103, 105, 108, 111, 
125

wrapping and tiling, 120–122
Texture object, 104–109, 111, 119, 

120, 124, 125, 193, 322–324, 329, 
397

Texture units, 103, 105, 108, 111, 125, 
193, 194, 216, 219, 220, 244, 247, 
494, 495

3D models
loading externally produced models

Assimp, 5
Blender, 145–147, 150, 156
DCC-created model, 145, 146, 

155
ImportedModel class, 151–154 
ModelImporter class, 150–154
OBJ files, 146–148, 150, 151, 

154, 156
tinyobjloader, 5

OpenGL indexing
inner and outer variables, 140
torus, 138–145
VBO, 140, 145

procedural models
objects, types of, 129
sphere, 129–138

3D movies, 462, 463
3D Textures

checkerboard pattern, 327, 328

C++/OpenGL application, 324–326
striped pattern, 323–327

Tiling. see Wrapping
tinyobjloader, 5
Translation matrix, 40, 50, 56, 73, 86
Transparency

alpha channel, 164, 314
C++/OpenGL application, 318–319
compositing process, 314
glBlendEquation() parameter,  

314–316
glBlendFunc() parameter, 314–316
opacity, 314
ray tracing and, 428–429, 433, 444, 

445, 448–456
Z-buffer, and, 314

TressFX, 308
Triangle strip, 94, 99, 301
Trilinear filtering, 118, 119
Turberville, Jay, 182, 184
Turbulence, 332–335, 339, 340,  

342, 343

U
Uniform sampler variable, 104, 108, 

111, 115, 494, 495
Uniform variable, 29, 61, 65–67, 

73–75, 92, 100, 174, 177, 196, 235, 
318, 347, 498, 501

User-defined clipping planes. see 
Clipping plane

UV-mapping, 108, 151, 184, 324

V
VAO. see Vertex Array Object
VBO. see Vertex Buffer Object
vmath, 4
Vectors
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cross product, 44–47, 55, 141, 245, 
246, 289, 304

dot product, 44–46, 168, 177, 180
Vertex, 9, 13, 15–18, 51, 62–64, 66, 

68, 72, 130–134, 137–139,  
145–147, 149–151, 162, 277

Vertex Array Object (VAO), 16, 63, 73
Vertex attributes

interpolation of, 66–67
vertex shader, specifying in, 62, 63, 

66, 76, 108, 123
Vertex Buffer Object (VBO), 62–64, 

110
Vertex displacement, 471, 479
Viewing transform matrix, 50
View-Master, 461, 462
View matrix, 50, 65, 67, 68, 80, 82, 

85, 87, 193, 194, 228, 246, 362, 
363, 410, 464, 467

View space. see Eye space
Virtual reality, 461, 470, 479
Visual Studio, 2, 481, 485, 486, 491, 

498–501
installing, 481

VSync, 11

W
Water, 353–380
Water caustics, 378–380
Wavefront OBJ, 146
Winding order, 99, 100, 277, 302,  

321
WiredXDisplay, 477–478
Wireframe rendering, 20
Work group, 390–395
World space, 47
Wood, 183, 328, 333, 337–341, 349
Wrapping, 120–122, 220

X
Xcode, 2, 361, 363

Z
Z-buffer, 22, 92, 101, 191, 192, 

194–195, 314, 347
Z-buffer algorithm, 22, 23, 92, 93
Z-fighting, 92–93
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